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A B S T R A C T

Brain tumours, even though rare, are one of the deadliest types of cancer. The five
year survival rate for the most malignant type of brain tumours is below 5%. Modern
medicine provides many options for treating brain cancer such as radiotherapy and
chemotherapy. However, one of the most effective ways of fighting the disease is
surgical resection. During such a procedure the tumour is partially or completely
removed.

Unfortunately, even after a complete resection some tumourous tissue is left behind
and can grow back or metastasise to a different location in the brain. It has been
shown, however, that more aggressive resections lead to longer life expectancy. This
does not come without risks. Depending on tumour location, extensive resections can
lead to transient or permanent post-operative neurological deficits. Therefore, when
planning a procedure, the neurosurgeon needs to find balance between extending
patients life and maintaining its quality.

Recent developments in Magnetic Resonance Imaging (MRI) fueled by the field of
human cognitive neuroscience have led to improved methods of non-invasive imag-
ing of the brain function. Such methods allow the creation of functional brain maps
of populations or individual subjects. Adapting this technique to the clinical envi-
ronment enables the assessment of the risks and to plan surgical procedures. The
following work aims at improving the use of functional MRI with a specific clinical
goal in mind.

The thesis begins with description of etiology, epidemiology and treatment op-
tions for brain tumours. This is followed by a description of MRI and related data
processing methods, which leads to introduction of a new technique for thresholding
statistical maps which improves upon existing solutions by adapting to the nature of
the problem at hand. In contrast to methods used in cognitive neuroscience our ap-
proach is optimized to work on single subjects and maintain a balance between false
positive and false negative errors. This balance is crucial for accurate assessment of
the risk of a surgical procedure.

Using this method a test-retest reliability study was performed to assess five dif-
ferent behavioural paradigms and scanning parameters. This experiment was per-
formed on healthy controls and was aimed at selecting which paradigms produce
reliable results and therefore can be used for presurgical planning.

This allowed the creation of a battery of task that was applied to glioma patients.
Functional maps created before the surgeries were compared with electrocortical stim-
ulation performed during the surgeries.

The final contribution of this work focuses on technical aspects of performing neu-
roimaging data analysis. A novel data processing framework which provides means
for rapid prototyping and easy translation and adaptation of already existing meth-
ods taken from cognitive neuroscience field is introduced. The framework enables
fully automatic processing of patient data and therefore greatly reduced costs while
maintaining quality control. A discussion of future directions and challenges in using
functional MRI for presurgical planning concludes the thesis.
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1
B R A I N T U M O U R S

1.1 introduction

Brain tumours are abnormal tissue growth inside the head infiltrating the brain or the
central spinal canal (see Figure 1.1). In general tumours can also grow in other parts
of human body, but the following work will focus on those that affect the central
nervous system. Brain tumours can be divided into two major categories, namely
benign and malignant. Benign tumours resemble healthy tissue and grow only up
to a certain size. Unless causing damage by pressing on other tissue (the so called
“mass effect“) they are not dangerous and can often be left untreated. Malignant
tumours on the other hand are a type of cancer —- an uncontrollable tissue growth.
Untreated they will keep growing and infiltrating more of the surrounding tissue
thus presenting a substantial risk to the patient.

The mechanism behind the transformation of a healthy cell into a cancer cell is
complex. It requires a series of mutations to promote growth and inhibit tumour
suppressants. Tumours affecting the brain can arise from different tissue types such
as retinal cells, glia cells, meninges, cerebellar stem cells, or cells of the retina.

Figure 1.1: Post mortem brain section. The dark mass in the temporal cortex is a glioblastoma
— one of the most common types of brain tumour. Source: Science Photo Library.
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1.2 types of brain tumours 2

1.2 types of brain tumours

There are many types of brain tumours. The most common include the following.

1.2.1 Gliomas

Gliomas are the second most common type of tumour and at the same time they are
most likely to be malignant and infiltrate surrounding tissue. Among gliomas the
most common are:

astrocytomas

they originate from astrocytes, the most common cells in the brain. Highly
malignant astrocytoma, Glioblatoma Multiforme (GBM), is the deadliest of all
brain tumours having a median survival time of 17 to 37 weeks depending on
treatment.

ependymomas

tumours originating from ependymal cells compromising the membrane of ven-
tricles. Ependymomas inside the brain are most common in children. In adults
they tend to develop in the spinal cord.

oligodendrogliomas

a malignant transformation of oligodendrocytes, glial cells responsible for myeli-
nating neurons.

1.2.2 Meningiomas

Meningiomas are the most common type of brain tumour. They originate from the
meninges, a sheet of protective tissue between the brain and the skull. 90% of menin-
giomas are benign and often require no treatment apart from periodic observation.
They are also typically asymptomatic since in many cases they do not infiltrate the
surrounding brain tissue. However, a fast growing meningioma can cause increased
intracranial pressure.

1.2.3 Pituitary tumours

The third most common type of brain tumour. These are located in the pituitary gland,
a part of the brain responsible for releasing hormones such as the growth hormone,
prolactin, thyroid-stimulating hormone, adrenocorticotropic hormone, melanocyte-
stimulating hormone, follicle stimulating hormone , and luteinizing hormone. Pitu-
itary tumours can disrupt the hormonal balance in the body and produce unique
symptoms. Even though many pituitary tumours are benign they are often surgically
removed because of the proximity of other vital brain regions (e.g. brain stem).
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1.3 epidemiology and etiology

1.3.1 Incidence

Cancer is relatively rarely found in the brain. In a registry of cancer patients in Eng-
land available at http://www.ons.gov.uk, cancer of the brain accounted for only 1.5%
of all cases (see Figure 1.2). This data, however, does not include benign tumours
which, depending on location, can also be a health hazard and can potentially turn
into a malignant form. The fact that brain tumours are just a small fraction of all
cancers is true when averaged over all ages, but the situation changes dramatically
when we focus just on the youngest patients. In the US, brain tumours are the sec-
ond most common form of cancer among children, with leukemias being the most
common (Gurney et al., 1999). Overall incidence of brain tumours (malignant and
non-malignant) is estimated at a level of 19.89 per 100,000 person-years. This trans-
lates into an estimated 12500 new cases a year in UK and 62500 in the US.

Bladder
4%

Brain
1%

Breast
15%
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Colon
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Colorectum
12%
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1%Kidney
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Tes�s
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Figure 1.2: Distribution of cancer patients diagnosed in England in 2005-2009. Brain cancer
accounts for only 1.5% of all cancer cases. Source http://www.ons.gov.uk.

Brain tumours are also more common in older people and children than in young
adults. In England, most patients are diagnosed at age 50 years and above (see Fig-
ure 1.3). In the US, young adults account for only 9% of all malignant and non-
malignant tumours (Gurney et al., 1999).

http://www.ons.gov.uk
http://www.ons.gov.uk
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The interaction between gender and brain tumour incidence is not clear. According
to statistics collected in England between 2005–2009, males are more likely to be diag-
nosed with brain tumours. However, a similar study carried out in the US showed the
opposite trend (Gurney et al., 1999). It is worth noting that the US registry included
malignant and non-malignant tumours whereas the English study focused only on
malignant neoplasms.
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Figure 1.3: Age standardized incidence of brain cancer across ages for males and females.
Source http://www.ons.gov.uk.

According to US cancer registries of malignant and non-malignant tumours, the
most common histological type is meningioma (34%) followed by glioblastoma (16.3%)
and then pituitary tumours (13.5%). All gliomas taken together account for 30% of
tumours and 80% of malignant tumours (see Figure 1.4).

The distribution of histological tumour types changes across ages. Children (ages
0–14 years) are most likely to develop medulloblastomas and pilocytic astrocytomas.
Youths and young adults (15–34 years) are more likely to be diagnosed with pituitary
tumours. From age 35 onwards meningliomas and glioblastomas are the most com-
mon tumours, with exception of very old age (85+) people where the incidence of
gliomas start to decrease.

1.3.2 Survival

Even though cancer of the brain is relatively rare it remains one of the deadliest of
all cancers. As mentioned before it is the second deadliest cancer among children. In
terms of five year survival rate (as estimated in England between 2005–2009) cancer
of the brain comes fourth after lung, larynx, and colon (see Figure 1.5). Females show
slightly better survival than males and in general younger patients manage to fight
the disease longer than older patients.

http://www.ons.gov.uk
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Figure 1.4: Distribution of brain tumour types. Gliomas account for 30% of all tumours and
80% of malignant tumours. Data collected between 2005-2008. Source: “CBTRUS
Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed
in the United States in 2004-2008“.

Prognosis for different types of tumours can be drastically different. The benign
tumours usually do not present a significant health risk, but in case of malignant
tumours the life expenctancy after diagnosis can range from months to years. Out
of all the malignant tumours, gliablastoma is the quickest in its progression with
75% of patients not surviving past one year after diagnosis. On the other side of
the spectrum, 91% of the patients with pilocytic astrocytoma live beyond ten years
after being diagnosed (see Figure 1.6). For a more extensive review of brain tumour
epidemiology see Ohgaki and Kleihues (2005) and Ohgaki (2009).

1.3.3 Risk factors

Many risk factors have been investigated in the context of brain tumours. Certain
occupations have been reported to coincide with a higher rate of brain tumour di-
agnoses, but many of these studies lack confirmation or have been contradicted by
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Figure 1.5: Age-normalized survival rate for patients diagnosed in England in 2005-2009, split
between different types of cancer. Prognosis for brain cancer is relatively poor.
Almost 60% of diagnosed patients do not live longer than a year after the diagnosis
making it the 4th most deadly cancer. Source http://www.ons.gov.uk.

other investigations based on different samples. For example, it has been reported
that jobs with a higher exposure to lead can cause brain tumours (Anttila et al., 1996;
Cocco et al., 1998). These findings come from analysing occupation information of
deceased brain tumour patient in 24 US states (Cocco et al., 1998), as well as monitor-
ing lead levels in the blood of workers with high exposure risk (Anttila et al., 1996).
However, another study of male US workers (Wong and Harris, 2000) did not find
such a correlation despite finding a significantly increased risk developing cancer of
stomach, lungs and endocrine organs.

Relationships between parental occupation and brain cancer risk have been also
investigated. Children of parents working in the chemical industry (McKean-Cowdin
et al., 1998), as farmers, drivers and mechanics, and in the textile industry (Cordier
et al., 2001) have increased risk for developing brain tumours. Although those rela-
tionships appear plausible, no trend connected to a specific chemical environmental
component has yet been found.

Other potential risk factors include electromagnetic field exposure, cell phone us-
age, diet rich in nitrates, and genetic factors, although very little actual evidence has
been found to support the impact of electromagnetic fields and cell phone usage.
However, diets based on cured meat and ham (which are rich in nitrates) have been
shown to elevate the risk of brain cancer (Blowers et al., 1997). As in case of occupa-
tional risk factors not all studies confirm this diet risk (Chen et al., 2002). Genetic and

http://www.ons.gov.uk
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Figure 1.6: Survival rate of selected brain tumours. Data collected in the US, between 1995-
2008. Source http://www.cbtrus.org/.

hereditary clustering focused research also does not show a clear causal effect of cer-
tain gene mutation. This might be due the complicated interaction between genetic
and environmental factors (Inskip et al., 1995).

However, there is one factor that has been successfully recognized as creating sig-
nificant risk of developing a brain tumour it is ionizing radiation in children (Brüstle
et al., 1992). Exposure to therapeutic radiation at a young age increases the chances
of developing gliomas 7–9 years later. This is true only for dosages of radiation used
for therapy, 70–250 rad (see Ron et al., 1988). The influence of lower radiation ex-
posure used for example in dental X-rays is not clear (Rodvall et al., 1998). For a
further review of the etiology of brain tumours see Inskip et al. (1995) and Ohgaki
and Kleihues (2005).

1.4 diagnosis

The diagnosis of brain tumours is a multistep process. In most cases the patient
starts experiencing neurological symptoms such as, but not limited to, headaches,
partial paralysis, speech problems, loss of memory, visual impairment, or seizures.
Symptoms are highly dependent on tumour location and can be similar to other
neurological issues, such as traumatic brain injuries or strokes. It usually takes years
from the onset of the disease to diagnosis. This is because the tumour has to reach
a certain size to start causing symptoms. In contrast to traumatic brain injuries and
strokes, most tumours grow slowly giving the plasticity mechanisms in the brain the
time to adjust to the change and maintain normal functioning. This is, however, only
possible up to the point where the tumour infiltration is not too invasive.

Because the symptoms of brain tumours are overlapping with other neurological
illnesses, diagnosis is never only based on symptoms. When a doctor of first contact
suspects a brain tumour, the patient is sent to a neurologist or neurosurgeon who
will most likely order a brain scan. Various brain scanning modalities and techniques

http://www.cbtrus.org/
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can reveal brain tumours. The simplest of them is Computer Tomography (CT). It
reconstructs volumetric images of the scanned object from a series of X-ray pictures
taken from different angles. Most tumours appear darker than the healthy tissue
on a CT image (see Figure 1.7). Another imaging technique useful in brain tumour
diagnosis is Magnetic Resonance Imaging (MRI). The principles of MRI are more
complicated than CT and rely on the excitation of atomic nuclei, in particular water
protons (see e.g. Huettel et al., 2008 for detailed explanation on MRI). Depending
on the MRI sequence used, tumours can appear darker (see Figure 1.8a) or brighter
than the surrounding brain tissue (see Figure 1.8b). Contrast agents such as iodine
for CT and gadolinium for MRI administered intravenously can enhance the signal
from some tumours.

Figure 1.7: A CT scan of the head. The darker region on the left indicates a diffuse glioma.

Figure 1.8: An MRI scan of the head. T1-weighted contrast shows a diffuse glioma as a darker
region (a), whereas T2-weighted contrast reveals the tumour as a brighter region
(b). Both scans are of the same patient.

Brain scans performed for different reasons, for example after a head trauma dur-
ing a car accident, can also reveal asymptomatic brain tumours. These accidental
finding give more time to counteract and choose the optimal course of treatment.
Additionally if a patient is already suffering from cancer in another part of the body
there is a chance of metastatic tumours (also called secondary brain tumours). Cancer
can spread through the lymphatic system and blood to distant organs. The blood-
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brain barrier protecting the brain does not to prevent this spread. Metastatic brain
tumours are most common in patients who suffer from lung cancer, breast cancer,
malignant melanoma, kidney cancer, and colon cancer. In such cases a brain scan or
full body scan can be ordered and reveal a brain tumour before it will show any
symptoms.

A definitive way of diagnosing a brain tumour is microscopic investigation of tis-
sue samples (histology). These samples can be obtained through open skull surgery
or (more commonly) biopsy. Brain biopsies are relatively simple procedures involv-
ing drilling a small hole in the skull and a small piece of the brain is removed using
a needle. Often biopsy procedures are guided using previously acquired CT or MRI
images to precisely target the potential tumour site. Tumour tissue can express var-
ious changes on the molecular level which are visible under the microscope (see
Figure 1.9). Additionally staining can be used to increase the contrast between cellu-
lar structures. Hematoxylin and eosin staining for example renders nuclei dark blue
and all other structures in different shades of red, orange, and pink. The following
cellular changes can be observed in brain tumours:

neoplasia

an uncontrolled division of cells.

anaplasia

also known as dedifferentiation of cells. Cells lose structural and functional dif-
ferentiation of normal cells. Often cells are unnaturally shaped and can have
abnormally big nuclei. Ratio of nuclei to cytoplasm size can exceed the normal
1:6 and reach 1:1. Anaplastic tumours can arise from dedifferentiation of neo-
plastic tumours or grow from cancer stem cells. A grade between I and IV is
given to each tumour depending on how dedifferentiated the cells are.

necrosis

Cell death. Usually dead cells are disposed of by phagocytes and will not be
visible in a tissue sample, but necrotic cells have disrupted cell signalling which
makes them invisible to phagocytes. This not only leads to build up of dead
cells but also harmful toxins.

atypia

abnormality of cell shape not included in any of the categories included above.

Additionally cancerous changes can disrupt blood supply by competing for access
to ventricles with healthy cells. Functional abnormality can also change the balance
of neurotransmitters in the extracellular space.

1.5 treatment

There are three major courses of action to treat malignant brain tumours: chemother-
apy, radiation therapy, and surgery. Even though they can be combined they differ
in their mode of action, advantages, risks and side effects; therefore they will be
discussed separately.



1.5 treatment 10

Figure 1.9: Histopathology of a brain tumour. Ki-67 staining shows proliferation (cell growth)
in red. Specimens come from tumours at different stages of development: initial
biopsy (A), six (B) and ten (C) years after presentation. Figure reproduced from
(Tarnaris et al., 2006).

1.5.1 Chemotherapy

The defining characteristic of any cancer including malignant brain tumours is rapid
cell growth. Chemotherapy consists of administering drugs that specifically target
fast dividing cells. Administration is usually intravenous, but sometimes oral. Be-
cause of the mode of administration, drugs act globally targeting all fast dividing
cells. Those not only include cancer tissue, but also blood cells, bone marrow, di-
gestive tract, and hair follicles. Therefore chemotherapy can cause many side effects
such as skin and nail loss, apathy, weight loss, and damage to the immune system.
The latter is probably the most serious of the side effects since it makes the patients
prone to infections. Chemotherapy can also damage reproductive system and fertil-
ity preservation methods are recommended. In the case of pregnant women risk of
damaging the fetus is so high that abortion is recommended.

Because chemotherapy targets fast dividing cells, it is most effective on fast and/or
young tumours. For the same reason the core of the tumour is usually left spared and
requires additional treatment such as radiotherapy or surgery. Chemotherapy is also
less efficient in brain tumours than cancer of other body parts because of the blood
brain barrier which prevents some of the drugs from reaching the tumour. Therefore
the improvement after chemotherapy in brain tumour patients is modest. It is usually
prescribed for the most aggressive tumours such as GBM. Additionally it is used as a
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replacement for radiation in children to avoid its detrimental effect on the developing
brain.

1.5.2 Radiation therapy

Another common way of fighting cancer is using ionized radiation. In this treatment
radiation is used to damage cell DNA and therefore slow down tissue growth and/or
cause cell death. As with chemotherapy this method is most effective on fast dividing
and undifferentiated cells (such as cancer cells but also stem cells) because their DNA
repair mechanisms are least effective. Dividing cells with damaged DNA will cause
accumulation of errors and cease growth. Unfortunately radiation has a detrimental
effect on healthy tissue as well. Therefore narrow beams of radiation targeting only
the tumour or potential tumour sites (lymph nodes) are used. Additionally to miti-
gate the effect of radiation on healthy tissue between the tumour and the source (skin,
skull, grey matter) multiple angles are used. In this technique, the target (tumour) is
exposed to a beam of radiation from multiple angles. Since all the beams cross at
one point, the tumour will receive the biggest dose of radiation sparing the surround-
ing tissue. Additionally, dosages can be spread in time. This allows healthy cells to
recover (since there are able to repair their DNA more efficiently than cancer cells).

Radiotherapy is often applied in conjunction with chemotherapy or surgery (see
below). Because smaller tumours respond better to radiation it is often optimal to
first remove the bulk of the tumour (in a safer non-radical resection) and then treat
the remaining parts with radiation. Additionally radiation can also be delivered in-
traoperatively straight after removing the bulk of the tumour.

Modern, high resolution CT and MR imaging have revolutionized radiotherapy.
Acquiring precise images of the tumour allows more precise targeting of the radiation
beams. When combined with using the same external point of reference for both
the imaging and the radiation (stereotactic procedures), radiotherapy can target just
the tumour sparing healthy tissue to some extent. Procedures based on CT or MRI
are called stereotactic radiosurgeries and are executed in a fully computerized way.
The amount, rate, angle and width of radiation can be optimized using a computer
system to minimize collateral damage. Despite many advantages of this approach,
due to the nature of radiation it can be only successfully used on small tumours. In
the case of bigger neoplasms, surgery can be the only option. Unfortunately, due to
the plastic nature of the brain, tumours often stay unnoticed until they grow to a size
that excludes the option of radiosurgery.

Despite the fact that radiation is mostly painless, it can cause some side effects.
Whole brain radiation often leads to cognitive decline. This involves deficits in learn-
ing, memory and spatial information processing. This is commonly linked with im-
paired neurogenesis in hippocampus (Rola et al., 2004). Additionally (especially in
case of children), radiation increases chances of getting a new malignant brain tu-
mour 7–9 years after the treatment. However, in most cases this risk does not out-
weigh the benefits of radiation as a treatment.
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1.5.3 Surgery

The third treatment option is surgical removal of the tumour. This procedure involves
opening the patient’s skull, cutting through the meninges, whilst avoiding any dam-
age to the vascular system, and removing the tumourous tissue (see Figure 1.10). It
is a serious procedure involving general anaesthesia. The surgery is planned using
preoperative CT and MRI to decide the location and size of the craniotomy (opening
the skull) and extent of the resection. Surgery comes with substantial risk not only
from anaesthesia but also from the fact that parts of the removed brain tissue might
be still involved, and crucial for, some cognitive and mental capabilities. At the same
time it has been shown that the size of the resection correlates with life expectancy
after the procedure (Patchell et al., 1990; Bindal et al., 1993; Woodward et al., 1996).
Therefore surgeons are faced with a dilemma choosing between radical resection and
a risk of post-operative neurological deficit, or a liberal resection and shorter lifespan.
In other words it is a balance between the length of life and its quality.

Figure 1.10: Brain surgery. The surface of the brain has been exposed after pulling away the
skin, removing a bone flap from the skull and cutting through the meninges.

Some attempts have been made to alleviate the risks of post surgical deficits. These
include using anatomical landmarks and functional anatomy knowledge gathered
from lesion studies to localize and avoid functional areas. This techniques has, how-
ever, the obvious limitation of not taking into account the between subject variability.
The anatomical landmark method has been superseded by Electrocortical Stimula-
tion (ECS). This technique involves applying small electrical currents to the exposed
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surface of the brain (Penfield and Boldrey, 1937; Berger et al., 1989). Electrical current
can interferes with normal functioning of neurons which can be observed in the be-
haviour of the patient. The reaction depends on the stimulated region and cognitive
function related to it. For example, stimulating primary motor cortex causes involun-
tary movement. In case of Broca’s area patient can experience speech arrest. To fully
observe the influence of the stimulation on patient’s behaviour, he or she has to be
temporarily woken up from the anaesthesia. Today ECS is carried out during most of
the procedures and its usefulness in terms of reducing the severity of postoperative
neurological deficits has been well established. However, it does not come without
flaws. First of all it extends the length of the procedure which translates to increased
risk and cost. Secondly, subjects woken from general anaesthesia can be confused and
fail to perform the behavioural tests properly. Finally since the cortex is mapped just
before the procedure, any decision about the extent of the resection has to be made
ad hoc by the surgeon. As mentioned before this decision is a tradeoff between the
potential extension of patient’s life and risks of neurological deficits. Cortical map-
ping can be performed as a separate procedure allowing the patient to recover and
make an informed decision about the treatment. This approach, however, adds the
risks and costs of an extra procedure.

There have been attempts to use other techniques to map the cortex that would
avoid the aforementioned issues. repetitive Transcranial Magnetic Stimulation (rTMS)
has been suggested as a potential replacement for ECS (Krings et al., 2001a). This
technique is based on a similar idea as ECS; both methods aim at influencing the
neuronal dynamics to find areas that are related to certain behaviour. rTMS has a
different mode of action. Fast switching electromagnets are used to focally induce
current. The main advantage of this method is that the electromagnetic field can pen-
etrate the skin and bone avoiding the need for opening the skull. Mapping procedure
can therefore be performed, before tumour extraction. However, rTMS does not come
without limitations. Because the magnetic field evoked by the rTMS magnets is very
local it has limited range. This becomes an issue when trying to stimulate areas far
from the surface of the skull.

Another approach involves using functional Magnetic Resonance Imaging (fMRI).
This technique allows the mapping of a wide variety of cognitive skills, is not invasive
and provides information about cortical and subcortical areas. The principles behind
fMRI and its use for presurgical mapping is the focus of the next chapter.

1.6 summary

Brain tumour is a serious disease that often leads to death within months or years
from the initial diagnosis. Among other treatments surgical removal of the tumourous
tissue has proven to extend the survival rate of patients. However, the procedure
carries a risk of neurological impairments caused by damaging functional tissue. In
the next chapter we will discuss how fMRI can be used to asses and minimize that
risk, by localizing the functionally eloquent areas before the surgery.
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F M R I A N D I T S U S E F O R P R E S U R G I C A L P L A N N I N G

2.1 nuclear magnetic resonance primer

Even though MRI images have a spatial resolution in the range of millimetres, the
underlying physical phenomena occurs on the level of atomic particles. During late
1930s and 1940s Isidor Rabi, Felix Bloch, and Edward Purcell discovered that protons
when put in a static magnetic field can absorb energy in the form of an electromag-
netic pulse and release it when the pulse is turned off. Their research (later culminat-
ing in a Nobel Prize) showed that energy can be absorbed only if the electromagnetic
pulse had a particular frequency. This frequency matched the spin frequency of the
atomic nucleus, hence the name Nuclear Magnetic Resonance (NMR).

Because 70% of the mass of a human body consists of water H
2
O, hydrogen is

by far the most abundant element. Hydrogen has only one proton and is positively
charged which makes it particularly interesting in the context of NMR. Since each
positively charged proton spins, it generates a magnetic field perpendicular to the
plane of spinning. This field is infinitesimally small, and even for a large number of
protons (an averaged sized person contains 5× 1027 protons) the net magnetization
will be close to zero. This is because without external interference, each proton points
in a different direction and the magnetic fields created by them cancel each other out.

However, when put into an external static magnetic field (B0) all protons align with
that field. They can either align in parallel (along) or antiparallel to the direction of
the field. The parallel state is also called the low-energy state and more protons reach
it. The antiparallel state is called the high-energy state and is less common. Therefore
the number of low-energy protons is higher than the high-energy protons. Because
protons are not randomly scattered the net magnetization is not close to zero any
more. It in fact depends on the ratio of low and high-energy state protons, since their
magnetic fields point in opposite directions.

The net magnetization caused by unequal number of low and high-energy state
protons remains constant for a given field strength. However, low-energy state pro-
tons can switch to the high-energy state if given an appropriate amount of energy at
the correct frequency. This energy difference between the two states equals to:

∆ E = hν0 (2.1)

where h is the Planck’s constant and ν0 is the resonance frequency given by:

ν0 =
γ B0

2π
(2.2)

where γ is the gyromagnetic ratio depending on the charge and mass of the atomic
nucleus (proton in our case) and B0 is the strength of the magnetic field. After apply-
ing the electromagnetic pulse a subset of the low–energy state protons will “jump”
into the high-energy state. The exact number depends on the length of the pulse. A
90

◦ pulse will equalize the number of low and high state protons yielding a zero net

14
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magnetization. A 180
◦ pulse will reverse the ratio leading to a net magnetization of

the same strength as the stable state (before excitation) but in the opposite direction.
When energy is no longer being supplied through an electromagnetic pulse, protons
begin to recover to their stable state. Transitions from a high–energy state back to
low–energy state is accompanied by a release of energy. The sum of that energy is
equal to energy put into the system by the electromagnetic pulse. This energy is re-
leased in the form of photons and thanks to the fact that their frequency is the same
as the excitation pulse, the same coils can be used for transmitting and receiving
the signal. The change in net magnetization in the longitudinal direction (B0 field
direction) is called T1 recovery and depends on the tissue type. This allows different
anatomical features and tissue types to be distinguished and is a key basis of MRI. T1

also influences how quickly the next electromagnetic pulse can be applied so protons
can fully recover after the previous excitation.

So far we have only mentioned net magnetization in the longitudinal direction.
Since protons are actually precessing in the B0 field, they also have transverse (per-
pendicular) components. If the spins are not in sync this component will be zero,
because each proton’s precession will cancel the others out. However, an electromag-
netic pulse synchronizes the spins causing a non-zero net magnetization in the trans-
verse plane. After the electromagnetic pulse is switched off this coherence is gradu-
ally lost. This is called T2 decay. Despite a similar nature (returning to a stable, initial
state) T1 and T2 relaxation rates are not the same. Both of them are exponential in
form, but the time constant of T1 is usually an order of magnitude larger. In practice
many tissue types can be defined only by a combination of T1 and T2 signals.

A decrease in coherence of the frequency and phase of the spins which leads to
decreasing net magnetization in the transverse plane can be caused by two phenom-
ena: spin-spin interactions and spatial inhomogeneity of the magnetic field. The first
is caused by interference between spins of protons that are close to each other. This
decay is what we described above as T2. The second cause, spatial inhomogeneity
of the magnetic field, is additive to T2 and in literature is referred to as T2*. This
magnetic field inhomogeneity and the T2* signal are the basis of the functional MRI
signal.1

2.2 functional magnetic resonance

2.2.1 Physical principles

fMRI builds on the basis of structural MRI, but focuses on the dynamical signal
changes instead of a single point in time. To be more precise, fMRI acquires a series

1 This brief introduction to NMR is in no way exhaustive. MRI was possible due to major breakthroughs
in physics, engineering, and mathematics. These advancements have been reflected by three Nobel
Prizes: in 1944 to Isidor Isaac Rabi “for his resonance method for recording the magnetic properties of
atomic nuclei”; in 1952 to Felix Bloch and Edward Mills Purcell “for their development of new methods
for nuclear magnetic precision measurements and discoveries in connection therewith”; and in 2003 to
Paul Lauterbur and Sir Peter Mansfield “for their discoveries concerning magnetic resonance imaging”.
Without the work of these and many other scientists the following research would not be possible.
However, explaining in detail the physical principles and engineering solutions that made MRI possible
is beyond the scope of this work. We refer the curious reader to the excellent handbook by Huettel et al.,
2008.
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of images of the brain in rapid (2–3 seconds apart) succession. One would expect
that each of the images in such series would be more or less the same after account-
ing for random noise contributions. However, two physiological phenomena in the
human brain make Echo Planar Imaging (EPI) sequences sensitive to local brain ac-
tivation. Firstly oxygenated and non-oxygenated blood has different magnetic prop-
erties. These differences can be picked up by gradient-echo MRI. Blood flow issues
seem somewhat removed from the issue of brain signals propagated by spiking neu-
rons. One has to remember that recovering the ionic balance between the outside
and inside of the cell is an active process requiring energy. The molecular ion pumps
located on the cell membranes use Adenosino-tri-phosporates (ATP) which has to be
delivered to fuel the process. This is where blood supply system comes into play. An
intricate system of capillary vessels delivers oxygen and other substances crucial for
smooth running of the neuronal cells.

This by itself would not allow us to visualise populations of spiking neurons. After
all, the blood supply could be constant. In this way the varying demand for nutrients
would have been met on average. This is, however not the case. Due to a phenomenon
of neuro-vascular coupling, the vascular system adapts to local demands of nutrients.
In other words, vessels expand increasing the blood flow and allowing more blood to
be delivered to the region that needs it. This, with the combination of higher use of
oxygen, leads to a local change of magnetic properties that can be picked up by EPI
sequences. The local aspect of this process is extremely important because otherwise
MRI would not be able to perform the task of mapping behaviour and cognition to
certain populations of neurons.

The difference in magnetic properties of oxygenated and deoxygenated haemoglobin
was first noticed by Linux Pauling and Charles Coryell (Pauling and Coryell, 1936).
They discovered that oxygenated blood is diamagnetic (has zero magnetic moment)
whereas deoxygenated blood is paramagnetic (has significant magnetic moment).
This difference in magnetic moments leads to 20% greater magnetic susceptibility
of deoxygenated blood. Later, Seiji Ogawa discovered that deoxygenated blood at-
tenuates T2*-weighted signal (Ogawa et al., 1990). In his experiments using rats he
noticed dark lines resembling blood vessels that disappear when rats were breathing
pure oxygen instead of a normal air mixture (rich in CO

2
). The source of this signal

loss was confirmed by scanning test-tubes with oxygenated and deoxygenated blood.
The presence of deoxygenated blood therefore distorted the T2*-weighted signal. This
discovery was a cornerstone of non-invasive in vivo human brain fMRI.

As mentioned earlier, oxygen is an important component of the energy manage-
ment processes inside the human body. Even though energy is delivered to cells
in the form of glucose, it is mainly used to restore membrane potential via active
ion pumps. These molecular mechanisms are fuelled by the reaction of decoupling
ATP into Adenosino-di-phosporates (ADP). Therefore glucose has to be converted to
ATP to be of use to neurons. There are two chemical reactions that can turn glucose
into ATP: aerobic and anaerobic glycosis. The variant without oxygen produces 2

molecules of ATP for every molecule of glucose. Addition of oxygen glycosis boosts
its performance to 36 molecules of ATP.

Oxygen is therefore crucial for restoration of membrane potential after neuronal
spiking. Demand for oxygen and nutrients triggers a reaction of the vascular sys-
tem: blood vessels expand in width increasing the blood flow. As mentioned above,
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this happens on a local level. In other words blood supply will change only within
a millimetre or so from the spiking neuron. How does this change influence the
T2* signal? One would think that increased activation will lead to bigger oxygen
consumption, more deoxygenated blood and decrease of the T2* signal. However, it
turns out that the vascular system overcompensates for the oxygen demand and the
observed change is an increase of T2* signal due to the increased blood flow and
deoxygenated blood being temporarily displaced by oxygenated blood. PET studies
using H

2
O15 and fluorodeoxyglucose have shown that the regional Cerebral Blood

Flow (rCBF) and the regional Cerebral Metabolic Rate (rCMR) increase during acti-
vation phases (neuronal stimulation). However, rCBF and rCMR are not completely
coupled. During activations, the rCMR increase by 5% but the rCBF increases by 29%
(Fox and Raichle, 1986).

The neurovascular coupling is not fully understood, but the results obtained from
fMRI have been shown to be both reliable (Smith et al., 2005) and in agreement with
other measures of neuronal activity (Logothetis et al., 2001). Therefore, there must
be a form of signalling mechanism that would inform the vascular system of a local
demand for nutrients. This signal would have to originate from spiking neurons. The
current most widely believed theory about this pheonomenon involves mediation
of astrocytes. A side product of glycosis, namely lactate, is hypothesised to trigger
astrocytes which interact with the vascular system causing vessel dilation (Pellerin
and Magistretti, 1994). The neuro-vascular relation has been studied extensively and
has lead to the discovery of the Hemodynamic Response Function (HRF). It is a
function between the neuronal activation (e.g. driven by a stimulus or behaviour)
and the observed fMRI signal. The most pronounced characteristic of this relation
is the delay. We observe reaction of the vascular system only 2–3 seconds after the
onset of the stimulus, with the signal reaching a plateau in 5–8 seconds. In addition
the HRF is wide which leads to temporal smoothing and can be a limiting factor in
terms of temporal resolution.

Nonetheless, with appropriately designed stimuli one can elicit a measurable change
in the brain. A goal of a typical fMRI experiment is to find neuronal correlates of cog-
nitive functions, mental states or interaction between mental illnesses and behaviour.
Depending on what the question is, subjects are asked to perform different tasks in-
side the scanner. It is worth remembering that fMRI does not measure absolute values
of activation. It only allows differences between states of the brain to be identified.
Therefore all of the fMRI experiments are optimized to contrast one behaviour/task
with another. For example, a simple task might consist of alternating between look-
ing at a rotating checkerboard and looking at a cross. In such a set-up, differences
between the visual stimulus during the task (rotating checkerboard) and rest phase
(static cross) should elicit activation in the visual cortex.

2.2.2 Data processing

Images produced by an fMRI scanner are three-dimensional cubes of uniformly sam-
pled space. Every point (also called a voxel) is assigned a value, which on its own
does not directly correspond to any physical property of the tissue it is depicting.
As mentioned before, fMRI studies the dynamics of a process and, because of that,
many images (volumes) are acquired in rapid succession. This allows a timeseries
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signal to be extracted for each voxel in the brain. If one takes the timecourse of the
stimulus (for example, when the checkerboard appeared on the screen and for how
long) and convolve it with the HRF, one obtains the expected timecourse of the acti-
vation. Brain mapping using fMRI is therefore essentially finding which parts of the
brain elicit this expected temporal pattern.

However, before statistical analysis of the timecourse can be performed several pre-
processing steps are necessary. The typical preprocessing pipeline involves slice time
correction, realignment possibly artefact removal, and finally coregistration with an
anatomical image. After, discarding the first few volumes to allow for magnetic satu-
ration effects to reach a steady state, one has to deal with inaccuracies and artefacts
that might arise from the different acquisition times for different slices within the
same volume. Most modern clinical scanners are not able to take a “snapshot” of
the whole brain at once, and multiple two dimensional slices are acquired separately
instead. Therefore the fMRI signal is sampled at different timepoints depending on
the slice being imaged. Slice time correction shifts and interpolates the signal so all
slices from the same volume are sampled at the same point in time. This correction
depends on the order in which slices are acquired which can be different for different
scanners, and usually slice order is not sequential to avoid signal cross-talk effects.

The next stage of preprocessing (realignment) deals with potential head movement
of the patient. Even if the patient’s head is fixed to the table and/or tightly cushioned
some movement is unavoidable. This is especially true for paradigms involving overt
speech and for children or patients experiencing micro tremors or seizures. If the
patients head moves between time point t1 and t2 during the scan it means that for
any given location (x,y,z) within the volume, the signal value at t1 does not corre-
spond to the same part of the brain as the signal measured at t2. To correct for this,
an affine transformation (translations and rotations in the x,y,z directions) is applied
to minimize the difference between volumes. Various cost functions exist in order to
quantify this difference, and their choice depends mainly on the software used, but
differences between techniques are minimal.

Based on the realignment and intensity information one can try to find volumes
that most likely contain artefacts and therefore cannot be trusted. This can be caused
by extreme movement or temporary scanner coil failure during the EPI sequence.
Volumes detected this way can be discarded or replaced by an average of the previous
and the next volume. Volumes affected by “large” motion or shift in global intensity
are also often ‘marked’ during the statistical analysis.

Finally to be able to visualise the result on a clinically relevant T1- or T2-weighted
volume one has to transform the fMRI volumes to the dimensions of the T1 or T2-
weighted volumes and realign them. This process (coregistration) is similar to realign-
ment. It consists of finding an affine transformation (again with 6 degrees of freedom)
that minimizes differences between two volumes: T1 or T2 weighted images on one
hand and the mean of the fMRI timeseries on the other hand. The main difference
from realignment lies in the cost function. While realignment can be performed us-
ing linear functions, because images have all the same scales, non-linear functions
like mutual information must be used for coregistration since images have often dif-
ferent scales (e.g. ventricles appear white on T2* fMRI data but dark on T1, thus a
linear distance cannot be used).
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After data preprocessing, the signal is analyzed using statistical procedures, lead-
ing to a Statistical Parametric Map (SPM). There are manny different procedures
achieving this goal but we will focus here on the most common approach, namely
the fitting of a General Linear Model (GLM) (Friston et al., 1994). First, a design ma-
trix X is constructed. It consists of the stimuli/task timecourse convolved with the
HRF. Additionally it can include motion (i.e. parameters estimated during motion
correction) and artefact regressors. It is expressed in the timescale of the volume ac-
quisition (in other words X has as many rows as there are volumes acquired). With
the design matrix X and the timecourse Y from one voxel one can see that:

Y = β X+ ε (2.3)

where ε is the normally distributed noise. Thus one can estimate parameters using
the least squares method by simple inversion:

β̂ = (XXT )
−1
XTY (2.4)

These parameters (β̂) show how strong the relationship is between the signal and
regressors. Their linear combination c (also called a contrast) divided by the noise
(σ2 = (εTε)/df) leads to a t statistic:

T =
cT β̂√

σ2cT (XTX)
−1
c

(2.5)

This is calculated separately for every voxel and leads to a three dimensional SPM2.

2.3 fmri and planning surgical procedures

The clinical potential of using fMRI was investigated soon after its conception (Ogawa
et al., 1990). Jack et al. first showed that fMRI could be used to map motor cotices of
tumour patients (Jack et al., 1994). In their proof of principle study using two subjects
who were experiencing seizures caused by tumours, they showed the potential of the
new imaging technique to improve the safety of surgical procedures. Many others
studies soon followed confirming these findings. Even though this study of tumour-
affected sensory-motor activation provided an early benchmark, it was soon shown
that fMRI could also be used for language mapping. The first attempts at this investi-
gated the use of fMRI to replace an invasive intracarotid amobarbital procedure also
known as the Wada test. In this test, amobarbital is injected in one carotid artery at
time, which causes impairment of neuronal processes in the ipsilateral hemisphere.
This, coupled with behavioural tests can be used to establish the dominant hemi-
sphere in the context of language and memory. In a novel study on seven epilepsy
patients, Desmond et al. (1995) have shown strong agreement of fMRI data with the
Wada test. FitzGerald et al. were one of the first to map Wernicke and Broca areas
using five different paradigms tested on 13 subjects (FitzGerald et al., 1997). Their
findings were confirmed in the operating room using ECS.

2 For detailed overview of fMRI data processing see Friston, 2007; Ogawa and Sung, 2007; Poldrack et al.,
2011.
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With time, studies investigating the use of fMRI for presurgical planning improved
in terms of the number of subjects. Schlosser et al. (1997) compared fMRI maps for
24 patients with arteriovenous malformation and concluded that it provided useful
and reliable information on the location of the eloquent cortex. Krings et al. (2001b)
also addressed the question of how reliable fMRI is terms of finding eloquent cortex.
In their extensive study of 103 patients they managed to find motor cortex in 85% of
the cases.

fMRI has been proven to show reliable information about cortical activation, but
the most important question from a clinical point of view is how this information
could change and improve clinical practice. Lee et al. (1999) attempted to tackle this
difficult question in their retrospective study of 32 tumour and epilepsy patients. In
89% of cases, they found that presurgical fMRI was useful for either checking the
feasibility of the procedure, planning the resection or selecting patients for awake
ECS. The same study has shown that fMRI was also found to be useful for assessing
whether patients should undergo ECS in 52% of tumour cases and 78% of epilepsy
patients.

Another important issue is how to interpret activation maps produced using fMRI.
From a neurosurgeon’s point of view this fundamentally relates to the margin of
safety. In other words, this is the minimal distance between the resected area and the
eloquent cortex that does not lead to postoperative neurological deficits. Initial stud-
ies have shown that if the tumour is 10 mm or further from fMRI activation the risk
of neurological deficits is significantly lower (Hå berg et al., 2004). This was further
confirmed by Krishnan et al. (2004). They have found that there were significantly
more neurological deficits in patients with partial resections when the distance be-
tween the tumour and fMRI activation was lower than 5 mm. They concluded that
in case where the tumour was 10 mm or closer to the activated region ECS should
be performed. This, however, shows that in cases where the tumour margin is far
enough away, ECS is not necessary and fMRI can be a valid replacement. This po-
tentially risky claim was validated in a retrospective study on 25 patients with low
grade gliomas (Hall et al., 2005). In this study patients did not undergo ECS and
resection planning and execution was performed purely using fMRI data. Tumour
progression was also slowed down: there were no signs of it within 25 months after
surgery. Despite the fact that ECS was not used to direct the surgery it did not impair
the outcome of the procedure. Only two patient experience temporary deficits and
those were only temporary.

fMRI based cortical mapping was also validated against the well established ECS
technique. In general, studies found good agreement between ECS and fMRI (Hirsch
et al., 2000). Studies report that between 83% (Majos et al., 2005) and 92% (Lehéricy
et al., 2000) of the ECS stimulation points are also found using fMRI based on sample
size of 33 and 60 patients respectively. However, comparison between fMRI and ECS
is very challenging. First and foremost the two techniques are mapping different
areas. ECS is showing only the essential brain areas for certain behaviour and fMRI
is mapping all brain areas involved, even the non-essential ones. Additionally, both
techniques have intrinsic thresholds. ECS might not elicit a reaction with too low
amplitude, while, as discussed in the next section, the fMRI inferred activation area
changes border location based on the statistical threshold used. Depending on the
selection of these two thresholds one can find good or poor agreement between fMRI
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and ECS. Lastly, one has to be certain about the locations of the ECS stimulations in
the fMRI scans. This is a non-trivial problem because of the non-linear shift of the
brain due to craniotomy and brain resection.

Despite methodological difficulties in direct comparison with ECS, fMRI provides
many advantages. It is able to map subcortical areas in a non-invasive way; ECS
requires partial resection to uncover subcortical tissue. Additionally, because fMRI
mapping can be done before the procedure, it provides valuable information for plan-
ning the craniotomy location and resection extent. The later is mostly related to the
location and distance of the tumour from the eloquent cortex. As mentioned before,
radical resections are more likely to give better results in terms of life expectancy, but
at the same time they provide higher risk of postoperative deficits. fMRI mapping
can be used to asses this risk for different resection scenarios and allows the neuro-
surgeon to discuss different options with the patient before the procedure. ECS is
usually performed just before the resection and does not give such an option. Addi-
tionally, ECS gives a picture of the eloquent cortex, which is limited to the size of the
craniotomy. It also makes the procedure longer and involves waking the patient. It
is very rare, but the experience of waking up in an operating room can cause shock
to the patient and lead to premature termination of the procedure. ECS can also
cause seizures in 5–20% of cases (Sartorius and Wright, 1997). These seizures have
to be carefully monitored and can be chemically managed, but nonetheless provide
another risk factor.

Patients performing behavioural tasks during ECS are often confused and still un-
der some influence of the global anaesthesia. This can lead to failure to follow the
instructions or alteration of the normal neuronal response. Admittedly this issue is
most likely not a problem for basic tasks such as finger tapping, but when cortical
mapping moves towards more complicated paradigms, which aim to identify regions
performing higher cognitive functions, it might become a bigger problem.

2.4 thresholding statistical maps in the context of presurgical plan-
ning

The following work was done in collaboration with A. Golby, L. Soleiman, and L. Rigolo and
was presented at ISMRM 2011 (Gorgolewski et al., 2011a).

As mentioned above, fMRI measures how much the signal is similar to the expected
one. The expected signal is estimated using experimental design (i.e. the onset and
duration of the tasks performed by the subject) and assumptions about the HRF.
This correspondence between the measured and expected signal is determined for
each voxel leading to a statistical map of the brain. This map essentially shows how
much each voxel was involved in a particular mental/behavioural task.

However, to establish “safety margin” and make the interpretation of the imaging
data easier for clinicians, one has to transform a continuous statistical map into a
binary map. This essentially means giving each voxel one of two labels: “active” (i.e.
“not safe to remove”) or “not active” (i.e. “safe to remove”). Such process is known
as thresholding, however, one has to keep in mind that it can take a more elaborate
form than labelling voxels just based on their statistical value. The location of each
voxel and the statistical values of its neighbours also has to be taken into account.
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As one can imagine, given the same statistical map, two different thresholding
methods (or even the same thresholding method with different parameters) can lead
to different binary maps. This in turn can lead to a different estimation of the distance
between the tumour and the eloquent cortex. Such difference can lead to different
clinical decisions (see Figure 2.1). For example, depending on the threshold used,
patient might or might not get ECS mapping during the surgery.

A B C

Figure 2.1: Influence of thresholding on the distance between the eloquent cortex and the
tumour. A low threshold (A) results in bigger activation area and smaller distance
from the tumour. A high threshold (B) results in small region and a bigger distance
from the tumour. Panel C shows an semi transparent unthresholded map overlaid
on the structural image.

One of the most discussed issues in thresholding statistical maps is the multiple
comparison problem. Each voxel individually and independently gets assigned a sta-
tistical value based on its timecourse. However, when the number of measurements
increases the chances of finding at least one accidental finding, also called Family
Wise Error (FWE), increase. This is equivalent to the question, what is more likely:
getting at least one head in 10 coin flips or in 100? If you are going to test the same
variable multiple times, it is more likely you are going to find a certain value (even
if its rare) at least once than if you would test it only once. The fact that variables
(voxels) are samples from the same distribution means that you are testing the same
quantity multiple times.

In the past two decades, this issue has been acknowledge by the neuroimaging
community and many methods for correcting for multiple comparisons have been
introduced (Nichols, 2012). This is, however, true only for the use of neuroimaging
for basic science (i.e. making inferences how the brain works in healthy or diseased
populations). When it comes to using fMRI for presurgical planning the situation
looks different.

There is significant variability in the selection of methods used to threshold fMRI
activation maps acquired for brain tumour presurgical planning. In a review of 50

recent papers (Gorgolewski et al., 2011a), only 12% of studies claimed to use some
kind of FWE correction for multiple comparison testing. 42% of these studies used a
p-value threshold lower than the standard 0.05 in an attempt to minimize the num-
ber of false positives, while 22% did not use the same threshold for all of the subjects,
with the threshold being manually adjusted on per subject basis. What is more, most
of the studies used simple thresholds without taking the spatial properties of the
statistical maps into account; only 4% used cluster size as an additional threshold
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(see Figure 2.2). Although thresholding methods used in neuroscience fMRI studies
have greatly improved in the last few years, there still remains a lack of consen-
sus in the clinical literature about how to identify activation boundaries accurately
and objectively. As a first step towards developing robust frameworks for assessing
thresholding methods for tumour resection, we investigated how several automated
thresholding methods affect the distance between the activation areas determined
from fMRI experiments and the tumour boundary defined on structural MRI, and
how this data might potentially change surgical practice.

Variable
< 0.05 uncorrected
0.05 uncorrected
Multiple comparison corrected
Other

Figure 2.2: Thresholding methods used in studies concerning the use of fMRI for presurgical
planning.

11 patients with primary brain tumours situated near the motor cortex underwent
a hand clenching fMRI task. The hand used was always contralateral to the tumour
location. After fitting a GLM, T-values were calculated for every voxel. These T-maps
were thresholded in three ways: (i) manually by an expert rater with additional clus-
ter extent threshold of 10 voxels, (ii) using SPM8 with a cluster forming threshold of
0.05 FWE corrected and False Discovery Rate (FDR) corrected3 of clusters extent prob-
ability (assessed using Random Field Theory (RFT)) lower than 0.05 (SPM)(Chumbley
and Friston, 2009), and (iii) using FSL and Spatially Regularized Mixture Models with
a 0.5 probability threshold of belonging to the activation class (FSL)(Woolrich et al.,
2005). For each subject, the distance between the activation area and the manually
segmented tumour was determined by an image analyst and verified by a neurol-
ogist. In the case where the tumour margin and the activation area overlapped, a
Dice’s similarity coefficient was calculated (see Table 2.1).

Determining what the appropriate distance from the tumour margin is for surgi-
cal resection based on fMRI activation maps is not straightforward (Hå berg et al.,
2004). We therefore determined how a hypothetical ‘safety margin’ of 5, 10, 15 and
20 mm would influence the clinical procedure. Specifically, if the activation region is

3 A more detailed review of existing thresholding techniques can be found in Chapter 3.
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Table 2.1: Distance between the edge of the activation areas and the tumour margin. Dice’s
similarity measures are calculated in case of an overlap.

SPM FSL Manual

Patient 1 0.23% overlap 0.10% overlap 8.4 mm

Patient 2 2.46% overlap 0.18% overlap 3.07% overlap

Patient 3 2.82% overlap 0.16% overlap 2.39% overlap

Patient 4 3.58% overlap 0.01% overlap 0.08% overlap

Patient 5 11.87 mm 25.61 mm 29.18 mm

Patient 6 13.52% overlap 0.82% overlap 24.91% overlap

Patient 7 1.68% overlap 0.27% overlap 0.48% overlap

Patient 8 1.83% overlap 12.4 mm 18.31 mm

Patient 9 2.38% overlap 0.18% overlap .02 mm

Patient 10 7.14 mm 0.00% overlap 7.28 mm

Patient 11 0.01% overlap 0.00% overlap 7.17 mm

further from the tumour than the safety margin then full resection is recommended,
otherwise a partial resection should be performed. Additionally, we calculated the
theoretical statistical properties of the thresholds generated by the expert rater.

A B

Figure 2.3: Patient 1 (A) and 10 (B). Voxels are colour coded by the thresholding method they
were included by: FSL (green), FSL+SPM (yellow), FSL+SPM+manual (purple).

Figure 2.3 shows two example cases. Table 2.2 shows tumour distance and over-
lap for all subjects. Figure 2.4 shows that if the safety margin is large enough (20

mm) both automated thresholding methods perform similarly to manual threshold-
ing, which we assume is the “gold standard”. However, if the safety margin is re-
duced to 5 mm almost one third of the cases are classified differently; automated
methods tend to produce larger activation regions leading to a partial resection rec-
ommendation. Additionally statistical analysis of theoretical properties of the manual
thresholds shows that the rater chooses thresholds to minimise the number of false
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positive voxels, i.e. FWE corrected p-values lower than 0.002 and FDR lower than
0.0003. However, the clusterwise statistics show that the FDR values in two cases are
surprisingly high (Table 2.2). This is due to a fixed cluster size threshold of 10 voxels
which does not take into account the height of the cluster forming threshold. This
problem can be addressed using modern thresholding methods based on RFT which
estimate the expected cluster size for a given cluster forming threshold (Friston et al.,
1993).
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Figure 2.4: Percentage of cases with partial resection recommendation using different safety
margins.

The conservative approach of using very high p-values, both in the reviewed pa-
pers and presented data, results in very few if any false positives. This, however,
means that the number of false negatives (falsely claiming that a piece of tissue is
not involved in the particular cognitive task and can be safely removed) will also be
very high. Neuroscience approaches focus on controlling the number of false posi-
tives to ensure that the reported findings, if any, are true. In neurosurgery we are in
fact interested in the opposite question —- which parts of the brain are not involved
in a particular task and can be safely removed. Further research is needed to inves-
tigate the use of equality testing in presurgical mapping using fMRI data to create
“safety maps”, rather than mapping functional brain regions. It is also important to
note that as long as the person making clinical decisions based on thresholded maps,
presumably the neurosurgeon, understands how they were prepared he or she can
adjust the safety margins appropriately. In case of manual thresholding even if it is
very conservative it can be a successful base for procedure planning as long as the
expert thresholding it is consistent.

The problem becomes more significant when the fMRI cortical mapping is pre-
pared by an outside centre. Such situations call for standardization in the way thresh-
olded fMRI activation maps are prepared and data to inform the neurosurgeon about
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Table 2.2: Statistical properties of the manual thresholds. FWE corrected voxelwise P — us-
ing Bonferronni correction (PBonf) or RFT based correction (PRFT ), voxelwise FDR
(FDR), and clusterwise FDR (cFDR).

thr PBonf PRFT FDR cFDR

Patient 1 10 0 0 0 0

Patient 2 9 0 0 0 0

Patient 3 10.3 0 0 0 5× 10−6

Patient 4 10 0 0 0 0

Patient 5 6 0.0006 0.002 4× 10−5
0.005

Patient 6 13.1 0 0 0 0.803

Patient 7 17.5 0 0 0 0.789

Patient 8 7 6× 10−6 4× 10−5
0 10−6

Patient 9 10 0 0 0 0

Patient 10 5.7 0.0018 0.005 2× 10−4
0.003

Patient 11 9 0 0 0 0

the statistical properties of the presented data, such as the expected number of false
positives and false negatives.

2.5 summary

In this chapter we have explained the physical principles of MRI. We have also briefly
discussed the physiological basis of the fMRI signal, namely the magnetic properties
of oxygenated versus non-oxygenated blood. Acquiring signal using an MRI scanner
is only the beginning of the journey towards usable information. In the second part of
this chapter we discussed the state of the art for using fMRI for presurgical planning.
We put special focus on the last step of data processing, namely thresholding of the
statistical maps. As we show in the literature review there is a lack of a consensus
how to perform this step when using fMRI for presurgical planning. In the following
chapter we introduce a novel technique for thresholding single subject fMRI statistical
maps.



3
A D A P T I V E T H R E S H O L D I N G

3.1 introduction

This work has been presented at OHBM 2011 (Gorgolewski et al., 2011c), ICML Workshop on
Statistics, Machine Learning and Neuroscience 2012 (Gorgolewski et al., 2012c) and published
in Frontiers of Human Neuroscience (Gorgolewski et al., 2012d).

After appropriate data pre-processing, a GLM is fitted to the measured signal and
a T-test looking for differences between conditions or between a given condition ver-
sus rest is performed. As presented previously in Chapter 2, the final outcome from
this analysis is a SPM, that is a 3D volume of T-values. Given these T-values, each
voxel is labelled as being “active” (involved in the task) or “not-active” (not involved
in the task) based on an ad-hoc threshold. This procedure has been successfully used
in the context of cognitive neuroscience group studies for population inference. How-
ever, three major problems need to be addressed in order to improve inference at the
subject level when used for clinical decision making (such as presurgical mapping),
namely: (i) the impact of Signal to Noise Ratio (SNR) on thresholding, (ii) the rela-
tive importance of Type I versus Type II error rates, and (iii) the spatial accuracy of
the thresholded maps. In this chapter, we investigate how these issues affect statisti-
cal maps and describe a new adaptive thresholding method which improves cluster
detection and delineation.

SNR is usually higher in group studies than in single subject fMRI. In group stud-
ies, one averages the effect (beta parameters of the GLM) observed in multiple sub-
jects, which usually leads to a stronger signal than that obtained for just one subject.
In addition, statistical significance is assessed in comparison to the between subject
variance, which is less dependent on scanner related noise than within subject vari-
ance. In single subject analyses, the effects are usually estimated on a single set of
scans with comparison to the between scan variance. In this context, the SNR can be
low due to scanner noise with potentially high between scan variance. This is par-
ticularly true in the clinical context in which patients are often advanced in age or
impaired by medical conditions (Stippich et al., 2007), resulting in reduced scanning
time (less signal) or increased motion (more noise). In consequence, researchers often
threshold single subject maps manually based on prior anatomo-functional knowl-
edge and expectations (O’Donnell et al., 2011) rather than using the signal properties
or the statistical values. Such a liberal approach is problematic as it may prevent re-
liable (reproducible) results. Depending on the researcher, clinician, or radiologist,
different thresholds will be used leading to different inferences. Single subject fMRI
analyses thus require a thresholding method that gives more reliable results.

Cognitive neuroscience group studies have focused on avoiding false positives,
whereas in the clinical context, false negatives are also an issue. The biggest concern
of the researcher or clinician using fMRI is validity, i.e. is the brain activation that is
observed real or an artefact? Statistical methods reflect this point of view by control-
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ling for the probability of a false positive error, i.e. reporting an activation that is not
present. By contrast, the goal of a surgical procedure such as tumour resection is to
remove as much diseased tissue as possible while preserving mental and cognitive
capabilities. In this context, surgeons are not only interested in delineating eloquent
cortical areas, but also in delineating the tissue that is not involved with a particular
cognitive skill. Therefore, the error of reporting an area as not active, and safe to cut
out, when in fact it is active (a false negative error) has more profound consequences
than a false positive error. In single subject fMRI which is used for clinical decision
making, it is thus more important to have a method that provides a good balance
between the two expected error rates rather than one that controls perfectly for only
one of the two error rates.

The spatial extent of active areas is also of greater importance in the clinical context
than in cognitive neuroscience studies. In the latter, it is often sufficient to answer the
question of where certain neuronal processes take place in an average brain. As a
consequence, many publications report only the peak coordinates of activation. How-
ever, in the clinical context, the precise location matters. In the case of presurgical
planning for example, decisions about the safety of the procedure and extent of the
resection are made based on the distance between a tumour and the eloquent cortex
as revealed by fMRI. The statistical threshold used influences this distance by chang-
ing the spatial extent of activated areas, whilst it usually doesn’t impact on the peak
location. Therefore, the thresholding method used in single subject analyses must
allow a good delineation of the true underlying signal extent.

3.2 review of existing thresholding methods

3.2.1 Voxelwise thresholding, Family Wise Error and False Discovery Rate

As already mentioned, a glsGLM is fitted to every voxel separately resulting in an
SPM. Each voxel now contains e.g. a T-value (though F- or Z-values are also possible)
that can be compared to a theoretical distribution (given the degrees of freedom)
and thus, each voxel can be assigned with a corresponding probability value. This
probability, often called the p-value, is the probability of the statistical value (T, F or Z)
coming from the null distribution (in other words the probability of a false positive).
Therefore the lower the p-value (or higher the statistical-value) the more likely it is
that the observed effect (relation between the stimuli and observed timecourse) is
significant. Following the Neyman-Pearson lemma, one can consider a voxel as being
active (significant) if it has a p-value below an ad-hoc threshold, otherwise this voxel
is said to be inactive (non-significant). For historical reasons, voxel-wise thresholding
has been performed at p < 0.001.

Although this approach is simple, it only works if one considers a single voxel.
In the typical volume sizes used in neuroimaging, there are thousands of voxels,
leading to thousands of tests. Due to random noise each test has a small but non-
zero probability of giving a false result. Chances of making such mistake in terms of
one test are acceptable, but the more tests we make the bigger is the probability of
finding some extremely high (or low) values driven only by random noise. Because
of these issues the probability of obtaining at least one false positive is not 0.001 but
much higher. To avoid such inaccuracies a series of corrections have been developed.
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The first and probably most known correction for multiple comparisons is the
Bonferroni correction (Dunn, 1961). This procedure controls for FWE, which is the
chances of making at least one false positive error in a family of many tests/compar-
isons. The correction works by defining the p-value threshold as α/n where α is the
desired FWE level and n is the number of tests. Because in neuroimaging context,
this would be the number of voxels, this correction tends to be overly conservative.
The notion of FWE does not, however, appeal to all users. Value of probability of
at least one false positive among all tests is hard to use when inspecting one of the
tests; having used FWE correction what is the chance that this particular voxel is a
false positive? To address this issue another approach to multiple comparison correc-
tion was introduced, namely FDR. This is the ratio of false positive tests to the sum
of false positive and true positive tests. There are various procedures to control for
FDR, but the most popular is the top-down approach introduced by Benjamini and
Hochberg (1995). This technique was later introduced to neuroimaging by Genovese
et al. (2002).

3.2.2 Clusterwise thresholding, topological inference and Random Field Theory

All of the approaches mentioned above were focused on voxels. When we talk about
false positive errors it means voxels that should have been labelled inactive but were
not. However, fMRI data rarely produce activation maps with sparse pattern of a few
separate voxels. This can be explained by the intrinsic smoothness of the data. If one
voxel is active it is very likely that voxels surrounding it will be active as well. This
lead to the idea that maybe it should not be the voxels what we should be concerned
with, but groups of connected (neighbouring) voxels otherwise known as clusters. To
address this issue a technique that uses a field of Gaussian processes to establish the
probability of a cluster of given size has been developed (Worsley et al., 1992). This
technique, also known as RFT, estimates how probable it is by chance that a cluster
of suprathreshold voxels are obtained given the cluster-forming threshold (i.e. the
voxelwise threshold that has been used to define suprathreshold voxels which can
form clusters) and the smoothness of the Gaussian field under the null hypothesis
of no activation. The smoothness is estimated from the residuals of the linear model
(Kiebel et al., 1999). Alternatively, one can apply an FDR correction to clusters trying
to control for the number of false positive clusters (Chumbley and Friston, 2009).
The procedure consists in thresholding data at the voxel level without any correction,
assigning a p-value to each cluster using RFT and finally deciding which of them to
label as active and which to discard by applying the FDR probability threshold. This
method is known as topological FDR.

The biggest contribution of these approaches is the change of perspective from sin-
gle voxels to clusters of voxels. This level is indeed more intuitive to look at since in
mapping the brain we are interested in active regions which are usually continuous.
There are two things worth mentioning about topological inference techniques. First
of all the cluster-forming threshold is still a parameter and even though it does not
influence the significance of clusters (since in RFT for higher cluster-forming thresh-
olds smaller clusters are expected) it will influence their size, and as we have shown
in Chapter 3 that means according to the threshold the distance between the active
area and the tumour will change. Secondly, the null distribution in RFT concerns
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lack of activation and the technique is controlling for false positive clusters, but as
mentioned in the Introduction, the false negative rate is also of concern in the clinical
context.

At this point it is also worth mentioning that cluster probability can be also as-
signed without using a parametric distribution. The cluster size distribution can be
estimated by permutations (Petersson et al., 1999). This, however, is a viable option
only for group studies where the assumption of exchangeability of subject labels
holds. In case of single subject studies one would have to permute volumes which
can be problematic due to temporal correlations.

Additionally RFT can also be used to control for FWE rate on a voxel level similar to
Bonferroni correction. This is done by reversing the inference and asking the question:
what is the cluster-forming threshold that will yield the probability of a cluster of size
with the desired FWE level.

3.2.3 Mixture models

From a logical perspective, since in most paradigms used it is expected that some
signal is present in the brain, it seems reasonable to analyze the data assuming a
signal model (Turkheimer et al., 2004). Mixture models represent the entire distribu-
tion of statistical values for a given space as a mixture of the “active” and “noise”
distributions. The first application of mixture models to fMRI data was proposed by
Everitt and Bullmore (1999). In this initial work, voxels values of an SPM were mod-
elled as a mixture of central and non-central chi-square distributions thus producing
a distribution corresponding to no activation, and another distribution correspond-
ing to the presence of some (either positive or negative) activation. After fitting the
model, posterior probabilities were obtained for each voxel to be active or inactive
and this SPM was thresholded to reveal significantly activated areas. At the heart of
such approach is the assumption that signal and noise, in particular the null distribu-
tion, can be separated via modelling. This idea was later adopted by others (Hartvig
and Jensen, 2000; Woolrich et al., 2005) who incorporated spatial priors to account
for the correlation between voxels. Both Hartvig and Jensen and Woolrich et al. used
Markov Random Field (MRF) to spatially regularize labelling of the statistical map,
although Woolrich et al. were the first to train parameters of the MRF from the data in
a Bayesian way. More recently, Pendse et al. (2009) considered a mixture of Gaussians
to model the null distribution in an attempt to improve voxelwise FDR. They used
Bayesian Information Criterion (BIC) to choose how many mixture components were
required to accurately describe the data. However, in this method the inference was
carried out on the voxel level without taking into account spatial characteristics of
the signal such as cluster size. It also suffers from problems with interpreting which
Gaussians correspond to either noise or activation classes.

3.2.4 Performance comparison

3.2.4.1 Methods

To get an overview of a selection of existing thresholding methods we have performed
a series of exploratory toy simulations. Series of eight 2D images of size 128 × 128 pix-
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els and intensity zero were created and ‘activations’ inserted in the last four images.
The activation pattern was systematically varied across the simulations by changing
its size and the SNR. The activation was defined as a square of size 16 × 16, 32 × 32,
64 × 64, 80 × 80, 88 × 88, 92 × 92 or 96 × 96 pixels and intensity of 0.5, 0.75, 1.25

or 1.75. Normally identically and independently distributed noise (µ = 0, σ = 1) was
then added to each pixel of each images and volumes were finally smoothed by con-
volving with a Gaussian of full width at half maximum (FWHM) of 7 pixels. The SPM
software package (http://www.fil.ion.ucl.ac.uk/spm) was used to estimate the β
parameters of the GLM and obtain T-maps. Note that traditional steps included in
fMRI data analysis like convolution with the hemodynamic response function, auto-
correlation, high pass filter were omitted because our data did not vary with respect
to the properties these steps are designed to account for. Every combination of size
and intensity (SNR) of the activation area was run 100 times resulting in 2800 differ-
ent T-maps.

The T-maps generated using the procedure described above were used to evaluate
the following thresholding methods (see Figure 3.1):

1. Voxelwise:

a) Voxel-wise FDR controlling method (Genovese et al., 2002) with the de-
sired voxel-wise FDR set to q = 0.05.

2. Topological:

a) Topological FDR on cluster extent with a desired cluster-wise FDR set to
0.05 (Chumbley and Friston, 2009). Two cluster-forming threshold variants
were used:

i. Low: using a p-value of 0.05 (uncorrected).

ii. High: using a minimum between voxelwise Bonferroni and RFT.

3. Mixture models:

a) Gaussian mixture model using two Gaussian distributions. Similar to the
approach presented by Pendse et al. (2009) but with the threshold set by
the crossing point between the two distributions.

b) Gamma-Gaussian mixture model using one Gamma distribution. As pre-
sented by Beckmann et al. (2003), and identical to the approach described
by Woolrich et al. (2005), but without the spatial regularization.

c) Spatial mixture model using a Gamma-Gaussian mixture model with only
one Gamma distribution with spatial regularisation based on MRF (Wool-
rich et al., 2005)

The Gamma-Gaussian mixture model with spatial regularisation was fitted using the
implementation included in the FSL software package (http://www.fmrib.ox.ac.uk/
fsl). Topological FDR related calculations were conducted using the SPM software
package. Results obtained by these seven thresholding methods were examined in
terms of voxel FDR, cluster FDR and voxel False Negative Rate (FNR):

• Voxel FDR : ratio of false positive voxels to all voxels labelled as active (false
positive and true positive)

http://www.fil.ion.ucl.ac.uk/spm
http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
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• Voxel FNR: ratio of false negative voxels to all voxels labelled as not active (false
negative and true negative)

• Cluster FDR: ratio of false positive clusters1 to all clusters

Figure 3.1: Example simulation run (SNR 0.5) thresholded using six evaluated methods.

3.2.4.2 Results

Overall, topological methods outperformed the other methods. In terms of voxel
FDR, only topological methods gave satisfactory results. Looking at the cluster FDR,
again topological methods performed better giving similar results whatever the clus-
ter forming threshold, especially for bigger cluster sizes and SNR.

Among voxel-wise methods, mixture models (Gaussian, Gamma-Gaussian, spatial)
performed better than the voxel-wise FDR procedure. The Gamma-Gaussian mixture
model performed better than the Gaussian for many cluster sizes and SNR values
suggesting a better fit using Gamma rather than Gaussian distributions. The spatial
model showed a strong decrease of cluster FDR as a function of the cluster size, as a
direct effect of accounting for spatial dependency via MRF.

Looking at the voxel FNR, topological FDR high and the spatial mixture model
performed worse than the other methods (Table 3.1), which overall gave satisfactory
results.

Because as in (Chumbley and Friston, 2009) we have assumed intrinsic spatial de-
pendency of the underlying signal, the artificial binary maps were smoothed before
applying the GLM. This resulted in smooth borders of the activation area, which were
the main source of false positive voxels. The voxel-wise FDR and cluster-wise FDR
decreased for all of the methods with increasing size of the true activation patch (see

1 A false positive cluster is a cluster of which at least half of the voxel do not belong to a true activation
patch.
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Table 3.1: Averaged (over sizes and SNR) results in terms of voxel and cluster FDR and FNR
for the six methods tested. GMM: Gaussians Mixture Model, GGMM: Gamma-
Gaussian Mixture Model, voxel FDR: FDR control over voxels, SMM: spatial mix-
ture model (i.e. Gamma-Gaussian mixture model with regularisation), Topo FDR
low and high: FDR control over clusters with low and high cluster-forming thresh-
old. Performances below 0.1 are highlighted in bold.

Method Voxel FDR Cluster FDR Voxel FNR

GMM 0.213 0.8873 0.0011

GGMM 0.1769 0.7877 0.0033

Voxel FDR 0.1754 0.8708 0.0024

SMM 0.2141 0.8708 0.0592

Topo FDR (low) 0.2232 0.0868 0.0008

Topo FDR (high) 0.015 0.022 0.1926

Figure 3.2). The decrease in the number of false positive voxels is easily explained
by the fact that it is a function of the ratio of the border length (4× a) and the area
(a2). In other words for larger areas, false positive voxels on the borders have less
influence on the FDR than for the small areas. This effect was also reflected on the
voxel-wise FNR which increased with increasing size of the true activation patch (see
Figure 3.2).
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Figure 3.2: Simulation results. Performance (average data over simulations) in terms of voxel FDR, voxel FNR, and cluster FDR for four SNR levels
and seven cluster size levels. Whiskers represent standard deviation around the mean. GMM: Gaussians Mixture Model, GGMM: Gamma-
Gaussian Mixture Model, voxel FDR: FDR control over voxels, SMM: spatial mixture model (i.e. Gamma-Gaussian mixture model with
regularisation), Topo FDR: FDR control over clusters whith low (uncorrected) and high (FWE corrected) cluster-forming threshold.
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3.3 adaptive thresholding

3.3.1 Motivation

Our preliminary simulations show that mixture models excel in finding the right
balance between false positive and false negative voxels, but fail in discarding small
false positive clusters. Topological methods on the other hand perform well in terms
of keeping the number of false positive clusters low, but depending on the cluster-
forming threshold they can create a number of false negative voxels. This discovery
inspired us to introduce a new method that is a combination of the two above.

The aim of our approach is to perform inference on the cluster level and at the
same time provide a good balance between false positive and negative errors in the
delineation of activation borders. We therefore propose a Gamma-Gaussian mixture
model as a method to account for a distributions of T-values in SPMs (Woolrich et al.,
2005) and set a threshold specific to the data at hand. A natural way to determine
this threshold is to take the point which separates signal from noise. This point is the
crossing between the Gaussian, the model corresponding to no activation, and the
Gamma distribution, the model corresponding to positive activations, and provides
a good trade-off between false positive and negative (voxel-wise) rates. Finally, once
this threshold is established, topological inference via FDR correction over clusters
(Chumbley and Friston, 2009) is used to correct for the number of tests performed
while accounting for spatial dependencies across voxels, thereby explicitly controlling
for Type I cluster rate. This heuristic approach combines advantages of the different
methods mentioned above. Specifically it relies on a simple model of the SPM, al-
lows adaptive thresholding, and accounts for multiple comparisons in the context of
topological inference.

3.3.2 Gamma-Gaussian mixture model

Following Woolrich et al. (2005), the T-value distribution from a SPM covering all
brain voxels is modelled using a Gamma-Gaussian mixture model, with the Gaus-
sian distribution as a model for the null distribution (no activation) and Gamma
distributions as models for the negative (deactivation) and positive (activation) dis-
tributions. Note that due to high degrees of freedom in a typical fMRI experiment,
i.e. the number of time points greatly exceeds number of regressors, a normal distri-
bution is good approximation of Student’s T-distribution. In practice, three different
models are fitted to the data, namely:

1. P(x) = N(x|µ,σ)

2. P(x) = πNN(x|µ,σ) + πAGamma(x+ µ|k, θ)

3. P(x) = πDGamma(−(x+µ)|kD, θD)+πNN(x|µ,σ)+πAGamma(x+µ|kA, θA)

with x representing all the T-values, p(x) the probability distribution, µ is the mean
and σ the standard deviation of the Gaussian (N) component, k is the shape param-
eter and θ the scale parameter of the Gamma component(s), and π is the propor-
tion/contribution of each component (N for Gaussian / noise, A and D for Gamma
/ activation-deactivation).
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Model 1 is fitted using maximum likelihood estimator, and Models 2 and 3 are
fitted using an expectation-maximization algorithm (Dempster et al., 1977). In all
three models, the Gaussian component represents the noise. In Model 2, the Gamma
component corresponds to the activations. In Model 3, Gamma corresponds to the
activation and deactivation classes. Note that Gamma components are shifted by the
estimated mean of the noise (Gaussian) component (the non-spatial model described
in Woolrich et al., 2005 did not incorporate such shift). The Gaussian distribution is
a natural choice to model noise, while the Gamma distributions have the advantage
of being restricted to cover only values above (activation) or below (deactivation) the
Gaussian mean (see Figure 3.3). This helps to force these components to fit the tails
of the distribution. For each model, BIC is calculated and the model with the highest
score is selected. Although only Model 2 can be preferred as some signal is expected,
fitting all three models offers much more flexibility. In particular, compared to other
approaches (e.g. Pendse et al., 2009), the explicit model selection via BIC allows the
case when no signal is present (Model 1) to be determined, and avoids having to
attribute subjectively model components to noise or (de)activations, i.e. Models 2

and 3. Similarly, in the case that deactivations are present, the mean of the noise
component in Model 2 can be biased because the left tail is not well estimated and
so is the positive Gamma component; having an explicit model for this case (Model
3) allows for deactivations to be present without interfering with the threshold. In
the case that Models 2 or 3 are selected, each voxel is assigned a label (activation,
deactivation and noise) corresponding to the component with the highest posterior
probability. In these cases, the highest T-value among voxels belonging to the noise
class is chosen as the new cluster forming threshold.
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Figure 3.3: Fit of the Gaussian (GGM) and Gamma-Gaussian (GGMM) mixture models for
an example dataset. In this example in the GGM model the deactivation compo-
nent was fitted to the mode of the distribution representing noise. This shows how
the GGM model can pose problems with respect to interpretability of the compo-
nents. The GGMM model, however, provides additional constrains that restrict the
activation and deactivation components to the tails of the distribution.
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3.3.3 Thresholding procedure

Models 2 and 3 allow a probability of being active to be assigned to every voxel.
This probability is used to find a threshold that corresponds to a point in which
the probabilities of positive Gamma and Gaussian are equal, i.e. the crossing point
between the two distributions. This equal probability threshold thus separates signal
from noise. At this stage, topological FDR is used to control for false positive clusters
(Chumbley and Friston, 2009). In the situation when Model 2 or 3 is selected in
the first stage, thus providing evidence of true activation, but none of the clusters
survive the topological FDR step, a heuristic threshold is applied to make sure that
some activation is found. In this case, the cluster with the highest sum of T-values
is labelled as active. We have found that this situation can arise in a few clinical
cases, and this heuristic approach solves the issue. An overview of the method can be
found in 3.4. A freely available implementation of the method is available at https://
github.com/chrisfilo/Adaptive-Thresholding for both Nipype (python) and SPM8

(Matlab c©).
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Figure 3.4: Overview of the topological FDR inference using our Gamma-Gaussian mixture
model to set adaptively the cluster forming threshold. GLM produces T-maps and
residuals (a). Three models are fitted to the voxels from the T-map (b). Models
include a combination of deactivation (green), noise (red), and activation (cyan)
components. Smoothness of the image is estimated from the residuals (c). Thresh-
old estimated from the winning model (b) and smoothness of the image are used
to perform topological inference on cluster extent (d).

https://github.com/chrisfilo/Adaptive-Thresholding
https://github.com/chrisfilo/Adaptive-Thresholding
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3.3.4 Simulations

To compare the performance of Adaptive Thresholding to Topological FDR using
fixed thresholds, a total of 2500 time series were simulated. Each simulated time
series included eighty planes of 128 × 128 elements. Half of the planes included just
normally distributed noise (µ = 0, σ2 = 1) and the second half included a pattern of
activation added to the noise. The pattern consisted of six squares of different sizes
(4 × 4, 8 × 8, 12 × 12, 16 × 16, 20 × 20, and 24 × 24). Because temporal aspects
of the fMRI signal such as autocorrelation were not the focus of this research, the
time series consisted of only two blocks, namely 40 planes of “rest” followed by 40

planes of “task”. All of the planes were convolved with a Gaussian filter of FWHM
of 6 mm. The height of the pattern, representing the strength of the signal, was also
varied (0.04, 0.08, 0.16, 0.32, and 0.64) and for each of the 5 signal strengths, data
(signal+noise) were simulated 500 times (for an example simulation see Figure 3.6).

Time series generated in this way were fitted with a GLM model with a single
regressor, and no autoregression, high-pass filtering, or convolution with a hemody-
namic response function. Because neither the simulated signal nor the fitted model
included any temporal dependencies, the selected design (40 “rest” followed by 40

“task” planes) was no different from any other combination, e.g. 5 “rest” followed by
5 “task” blocks repeated 8 times. A single contrast was estimated and thresholded
using topological FDR with 3 different cluster forming thresholds. Two fixed cluster
forming thresholds were used across all 2500 SPMs, specifically a p-values of 0.05

with FWE correction (T-value of 4.47) and 0.001 uncorrected (T-value of 3.19). These
thresholds were chosen as they correspond to defaults values used in the SPM soft-
ware package (http://www.fil.ion.ucl.ac.uk/spm/) and we refer to them as Fixed
Threshold (FT) (0.05 FWE and 0.001). This contrasts with the cluster forming thresh-
olds obtained with the Gamma-Gaussian mixture model which by nature change
with the data. Note that for each map, all three Gamma-Gaussian models were always
fitted and the model that best described the data according to our BIC was selected to
set the cluster forming threshold. In these simulations, Model 2 was always the best
model since there was always some signal plus noise, which also showed that the
model selection worked. We refer to these thresholds as Adaptive Threshold (AT).
These simulations therefore allow the performance of AT and FT to be compared in
terms of false positive and false negative cluster rates, spatial accuracy, and influence
of global signal variation (see Figure 3.6).

3.3.4.1 False positive and negative cluster rates

A false positive cluster was defined as a supra-threshold group of connected voxels
that did not overlap to any extent with the squares in the true activation pattern.
By analogy, the false negative cluster rate was defined as the rate of true patterns
that were not detected, i.e. missed. Comparison of AT with FT were performed in
a pair-wise fashion for every simulated time series. First, false positive and negative
cluster rates were calculated for all three thresholding methods. Second, the differ-
ences (trade-off) between false positive and negative rates were computed. Third,
the difference between AT and the two default FT values (0.001 uncorrected and
005 FWE corrected) for the absolute value of the trade-offs were obtained. Finally, a

http://www.fil.ion.ucl.ac.uk/spm/
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percentile bootstrap, resampled with replacement of the differences between thresh-
olding methods, was used to estimate p-values and confidence intervals of the mean
differences and multiple tests correction was applied using the Benjamin-Hochberg
(B-H) method maintaining FDR at the 0.05 level (Benjamini and Hochberg, 1995).
Computing the difference between false positive and negative rates allowed testing
for the average improvement of AT over the two default FT values in terms of trade-
off, i.e. values around 0 mean a good balance between the two types of error. However,
if the method gives two very large errors it can still give a good trade-off. We thus
also computed the total sum of type I and type II errors, ensuring that AT doesn’t
lead to overall larger errors.

3.3.4.2 Spatial accuracy

Spatial accuracy was defined as the difference between the overestimation and un-
derestimation of cluster’s borders, i.e. it reflects if the cluster borders were well de-
lineated. For a given true cluster, the degree of underestimation was defined as the
number of voxels that were falsely declared as not active, and the degree of overes-
timation was defined as the number of voxels that were falsely declared as active.
Using these definitions, cluster borders can be simultaneously overestimated (voxels
declared active that should not be) and underestimated (voxels declared non-active
that should not be; see Figure 3.5). Note that only true positive clusters that were
observed in all thresholding methods were used for this analysis to make the count
fair between the three thresholds. In addition, each cluster size was analyzed sepa-
rately. Comparisons between AT and FT were performed in a pair-wise manner using
a percentile bootstrap on the Harrell-Davies (H-D) estimates of the median Harrell
and Davies (1982) differences. Multiple test correction was applied using B-H method
maintaining FDR at the 0.05 level.

original overestimation underestimation

Figure 3.5: Overestimation and underestimation of the border explained. Left: original pat-
tern (black square) and estimated cluster (blue). Middle: overestimation of the
border marked in red. Right: underestimation of border marked in red.
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3.3.4.3 Influence of global effects

One major confound that can influence thresholding results is a global (occurring in
all voxels) signal change that is correlated with the stimuli. This has been commonly
referred to in the literature as the “global effect” (Friston et al., 1990; Aguirre et al.,
1998; Gavrilescu et al., 2002; Junghöfer et al., 2005; Murphy et al., 2009). This global
effect results in a shift of all T-values by a constant. We simulated this effect by
taking all the T-maps of signal height 0.08 and adding a random constant (normally
distributed, µ = 0, σ2 = 1) to all values. T-maps created this way were thresholding
using AT and the two default FT values. Here only simulations with low SNR were
manipulated to investigate the noisiest scenario. Dice coefficients (Dice, 1945) were
computed for every simulation between the thresholded shifted and unshifted maps.
This allowed the reliability of thresholding methods to be investigated in the context
of global effects. Comparison between AT and FT was performed using a percentile
bootstrap of the mean of the pair-wise differences between Dice coefficients.
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Figure 3.6: Example of the simulated data. Each square shows the effect of the topological
FDR procedure with different cluster-forming threshold and SNR level. The bot-
tom row shows how AT methods adjust the threshold according to the signal
strength.
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3.3.5 Results

3.3.5.1 False positive and negative cluster rates

In terms of sensitivity or false negative clusters, AT outperformed both default FT
values. The difference was largest for lower SNR and a FT of p=0.05 FWE corrected.
In the case of FT of 0.001 uncorrected, AT was more sensitive only for SNR values
below 0.14 (Table 3.2 and Figure 3.7c). This increase in sensitivity for AT, especially
at low SNR, also came with a higher number of false positive clusters than FT (see
Figure 3.7a). However, this increase in false positive clusters was comparatively small
to the gain in sensitivity such that the total number of errors was similar to FT; in fact
even better than FT in most cases (see Table 3.3). Statistical analysis of the differences
between false positive and negative clusters shows that AT has a better trade-off than
both default FT values (Table II), with the biggest advantage for low SNR values.
With high SNR, AT and FT (0.001 uncorrected) gives similar results (Figure 3.7d).
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Figure 3.7: False positive and negative cluster rates. On the left are displayed the mean false
positive and negative cluster rates. On the right are displayed the mean clus-
ters trade-off and the difference between AT and the two default FT values for
this trade-off. Whiskers represent 95% confidence intervals estimated using a per-
centile boostrap for each SNR independently (uncorrected for multiple compar-
isons).

3.3.5.2 Spatial accuracy

Due to the fact that the smallest cluster was found by all of the thresholding methods
in only a handful of runs, it was excluded from further analyses; in other words there
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Table 3.2: Statistical analysis the pair-wise difference (AT-FT) comparison of cluster error
trade-off. Q-values correspond to p-values corrected for multiple comparisons us-
ing the Benjamin-Hochberg method for controlling FDR.

SNR

0.08 0.1 0.12 0.14 0.16

AT - FT 0.001 high CI -0.350 -0.168 -0.118 0.002 -0.018

mean -0.414 -0.228 -0.154 -0.034 -0.046

low CI -0.480 -0.288 -0.194 -0.070 -0.076

q-vals <0.0001 <0.0001 <0.0001 0.059 0.003

AT - FT 0.05 FWE high CI -2.182 -1.242 -0.712 -0.428 -0.346

mean -2.284 -1.324 -0.782 -0.490 -0.394

low CI -2.390 -1.404 -0.856 -0.550 -0.444

q-vals <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

were not enough true positives to reliably estimate border accuracy. For the remaining
cluster sizes, AT outperformed both default FT values in terms of underestimation of
borders, i.e. it showed fewer false negative voxels (see Figure 3.8b), but at the same
time it performed worst in terms of overestimation with more false positive voxels
(see Figure 3.8a). However, the difference was such that AT had a better overall spatial
accuracy, i.e. trade-off between over and underestimation (see 3.4 and Figure 3.8c
and Figure 3.8d). AT provided a statistically significant improvement in terms of the
border over/under estimation when compared to both of the two FT values. As in
the cluster analysis the effect was stronger for lower SNR levels, although in case of
the highest tested SNR, 0.16, FT 0.001 performed equally well as AT.
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Table 3.3: Statistical analysis of the pair-wise difference (AT-FT) comparison of the total num-
ber of errors (false positive + false negative). Q-values correspond to p-values cor-
rected for multiple comparisons using the Benjamin-Hochberg method for control-
ling FDR.

SNR

0.08 0.1 0.12 0.14 0.16

AT - FT 0.001 high CI -0.168 0.072 0.06 0.132 0.036

mean -0.23 0.012 0.022 0.094 0.006

low CI -0.292 -0.048 -0.018 0.058 -0.024

q-vals <0.0001 0.772 0.50222222 <0.0001 0.772

AT - FT 0.05 FWE high CI -1.91 -0.866 -0.424 -0.16 -0.162

mean -2.016 -0.956 -0.494 -0.218 -0.214

low CI -2.126 -1.044 -0.566 -0.276 -0.266

q-vals <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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Overestimation (a) Underestimation (b) Tradeoff (c) Pairwise Tradeoff Difference (d)

C
lu

st
er

 s
iz

e

SNR

8x
8

12
x1

2
16

x1
6

20
x2

0
24

x2
4

50

40

30

20

10

0

10

20

0

5

10

15

20

25

30

35

40

0

10

20

30

40

50

60

50

40

30

20

10

0

10

20

30

80

70

60

50

40

30

20

10

0

0

5

10

15

0

20

40

60

80

100

120

140

140

120

100

80

60

40

20

0

160
140
120
100

80
60
40
20

0
20

0

5

10

15

20

25

30

35

0

50

100

150

200

250

250

200

150

100

50

0

50

250

200

150

100

50

0

0

5

10

15

20

25

30

35

40

0

50

100

150

200

250

300

350

400

400
350
300
250
200
150
100

50
0

50

0.08 0.1 0.12 0.14 0.16
400
350
300
250
200
150
100

50
0

50

0.08 0.1 0.12 0.14 0.16
0

10

20

30

40

50

0.08 0.1 0.12 0.14 0.16
0

100

200

300

400

500

600

0.08 0.1 0.12 0.14 0.16
600

500

400

300

200

100

0

100

FT 0.001

FT 0.05 FWE

AT

- -| |-AT AT | |- FTFT

SNR SNR SNR

Figure 3.8: Illustration of over and underestimation and performances of the different thresh-
olding methods. At the top is an illustration of an observed cluster (purple) over
the true underlying signal (square outline). Estimated voxels outside of the true
border are in orange and missed voxels inside the border are in cyan. Below,
graphs represent four biases: H-D estimates of the median cluster extent over-
estimation, i.e. the number of false positive voxels for a particular cluster (a), H-D
estimates of the median cluster extent underestimation, i.e. the number of false
negative voxels for a particular cluster (b) the overestimation and underestima-
tion trade-off, i.e. differences of the H-D estimates of the medians (c), and the
pairwise comparison between AT and FT trade-offs (d). Each row corresponds to
different cluster size and whiskers represent 95% confidence intervals. Due to the
fact that the smallest cluster (4× 4) was found by all of the thresholding methods
only in a handful of runs it was excluded from this plot.
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Table 3.4: Statistical analysis the pairwise difference (AT-FT) comparison of spatial accuracy tradeoff (see 3.8d). Q-Values correspond to p-values that
were corrected for multiple comparisons using B-H method for controlling FDR.

SNR

0.08 0.1 0.12 0.14 0.16

0.001 0.05 FWE 0.001 0.05 FWE 0.001 0.05 FWE 0.001 0.05 FWE 0.001 0.05 FWE

8x8 high CI 17.624 -17.949 15.924 -24.583 -0.985 -30.220 0.842 -26.872 0.084 -25.104

H-D median -10.574 -35.951 0.209 -36.159 -4.722 -33.886 -0.208 -28.597 -0.323 -26.397

low CI -19.000 -41.000 -8.616 -38.967 -7.310 -36.614 -1.961 -30.305 -1.244 -27.710

q- value 0.720 0.000 0.985 0.000 0.031 0.000 0.824 0.000 0.179 0.000

12x12 high CI -21.769 -67.618 -22.629 -70.496 -18.924 -71.547 -10.301 -62.223 -2.035 -51.868

H-D median -26.068 -76.810 -25.523 -76.621 -20.370 -74.153 -12.286 -64.090 -3.455 -54.108

low CI -29.245 -79.166 -27.671 -79.760 -22.375 -75.860 -14.309 -65.932 -4.912 -55.846

q- value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

16x16 high CI -54.657 -137.005 -40.853 -146.946 -29.412 -122.378 -11.873 -93.170 1.494 -65.270

H-D median -62.178 -143.510 -45.686 -152.128 -33.017 -126.985 -14.093 -97.528 0.032 -67.542

low CI -67.046 -153.732 -49.917 -156.135 -36.206 -132.445 -16.313 -101.854 -1.874 -70.395

q- value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.976 0.000

20x20 high CI -72.921 -204.005 -69.943 -234.604 -40.932 -192.090 -17.569 -130.588 -0.399 -85.261

H-D median -89.445 -218.161 -76.181 -241.916 -44.158 -196.763 -20.186 -137.650 -3.039 -89.292

low CI -101.879 -228.995 -83.028 -247.105 -46.580 -202.319 -22.103 -144.764 -6.096 -95.166

q- value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.035 0.000

24x24 high CI -136.983 -311.630 -109.479 -344.577 -58.295 -280.437 -20.326 -185.564 3.943 -111.384

H-D median -150.097 -324.914 -120.186 -356.117 -60.786 -287.782 -24.314 -188.970 1.566 -117.165

low CI -163.942 -336.446 -129.655 -365.877 -64.013 -293.151 -27.205 -192.819 -0.169 -121.351

q- value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.094 0.000
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3.3.5.3 Comparison of AT to FT using lower cluster forming thresholds

In this additional comparison we looked at two different fixed thresholds, specifically
a low FT value was set to the mean threshold estimated by AT for low SNR cases and
a high FT value was set to the mean threshold estimated by AT for high SNR cases.
Pairwise trade-off difference showed that AT performs equally well as FT low and
outperforms FT high for low SNR. This is reversed for high SNR. Therefore using
the same fixed threshold (FT low or high) for any SNR situation leads to spatial
inaccuracy of the border estimation which can be avoided by using AT (Figure 3.9).
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Figure 3.9: Illustration of over and underestimation, and performances of AT and FT with
low cluster-forming thresholds. At the top is an illustration of an observed cluster
(purple) over the true underlying signal (square outline). Estimated voxels outside
of the true border are in orange and missed voxels inside the border are in cyan.
Below, graphs represent four biases. On the left are displayed the H-D estimates
of the median cluster extent overestimation (number of false positive voxels for
a particular cluster). Next are displayed the H-D estimates of the median cluster
extent underestimation (number of false negative voxels for a particular cluster).
Next is displayed the overestimation and underestimation trade-off (differences
of the H-D estimates of the medians). Finally on the right hand side is displayed
the pairwise comparison between AT and FT trade-offs. Each row corresponds to
different cluster size and whiskers represent 95% confidence intervals. Due to the
fact that the smallest cluster (4× 4) was found by all of the thresholding methods
only in a handful of runs it was excluded from this plot.

3.3.5.4 Influence of global effects

Pair-wise difference between Dice coefficients for AT and FT show an overall higher
immunity to global noise for AT than FT (mean difference: 0.32 for FT 0.001 uncor-
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rected; p <0.0001 and 0.51 for FT 0.05 FWE; p < 0.0001). Global effects lead to a shift
of the overall distribution such that the FT procedures created clusters of different
sizes. By contrast, AT was able to recover from this confound by shifting the centre
of the Gaussian in the mixture model, thus creating clusters of similar sizes. Looking
at the correlation between the applied shift and the estimated mean of the Gaussian
component (see Figure 3.10) showed that the Gamma-Gaussian mixture model accu-
rately estimated this effect (r=0.99, p < 0.0001). Plotting Dice coefficient differences
against the applied distribution shift (see Figure 3.10) showed that the increase in
reliability came from this shift such that it varied proportionally with the absolute
value of the applied shift (FT 0.001 uncorrected r=0.69; p<0.0001 and FT 0.05 FWE
r=0.34;p<0.0001). This demonstrates how big an influence global noise can have on
the thresholded maps. Due to flexibility in the assumptions of the noise distribution,
in that the mean does not necessarily have to be zero, AT managed to accurately esti-
mate the confounding shift. This lead to better recovery of the unshifted maps, which
in real world would translate to better reliability for the same subject between two
sessions.
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Figure 3.10: Estimated mean of the noise component versus the applied distribution shift (A)
and the improvement of AT over FT with respect to the applied distribution shift
(B).

3.4 discussion

Single subject fMRI analyses have different requirements than group studies mainly
because the SNR is often lower, and one wants to reveal specific or expected areas and
delineate their spatial extent. For these reasons, a fixed threshold strategy is rarely
adopted and each subject’s T-value map tends to be thresholded differently. Here,
we propose a method that thresholds each subject’s statistical map differently, but
follows an objective criterion rather than a subjective decision. Indeed, we show that
our adaptive thresholding method outperforms default fixed thresholds both in terms
of trade-off between Type I and Type II cluster error rates and in terms of spatial
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accuracy. This increase in spatial accuracy can also be inferred from the reliability
results. While validity and reliability can be separated in various conditions, we can
infer that, for fMRI, the most valid voxels are the ones detected reliably. Valid and
reliable voxels usually correspond to voxels located at the core of a cluster while
non-valid and non-reliable voxels are located at the cluster borders. Since AT leads
to higher reliability than FT, we can infer that it also improves clusters delineation in
real data sets.

In the analysis of our simulations we have looked at levels of false positive and
false negative clusters and voxels at different levels of noise and true activation patch
size. The combined cost of the two errors (false positive and false negative) was as-
sessed by looking at the sum as well as the difference between them. Another way of
looking at similar classification problems is to use a Receiver Operating Characteris-
tic (ROC). This technique plots the ratio of true positives vs. true negatives across a
range of thresholds. One can compare different classifiers by calculating the are un-
der the ROC curve. It has been successfully used to evaluate classifiers in medicine,
psychology, and biometrics. In the context of presurgical planning, however, it does
not show the full picture. In this analysis we wanted to evaluate the performance of
certain fixed threshold levels or formalized strategies to obtain thresholds in different
noise situations. The goal of this research is to propose a certain thresholding tech-
nique (together with a set of parameters) not to evaluate a classifier across different
threshold levels. Therefore we developed and used set of new “tradeoff" measures
resembling the ROC in many ways but focusing at a single threshold level.

A major source of noise in fMRI time series relates to global effects. Because of the
shift of the overall T-value distribution below or above zero, a fixed threshold strategy
can lead to the under or overestimation of the true signal. By contrast, we show that
AT can correct for “global effects” by shifting the mean of the Gaussian component
in our Gamma-Gaussian mixture model. A similar approach has been used before to
remove global effect biases in a session variability study by Smith et al. (2005), but
not in context of thresholding statistical maps.

Mixture models have been used previously to threshold statistical maps. Most re-
cently Pendse et al. (2009) have used a mixture of Gaussians to improve FDR con-
trol by estimating the empirical null. There are two major differences between this
and our approach. Firstly, inference is performed on the cluster level as described
by Chumbley and Friston (2009), and directly incorporates spatial dependencies be-
tween voxels. Secondly, when it comes to border delineation, we are interested in the
balance between false positive and negative errors. Controlling for voxelwise FDR
does not solve the problem of false negative errors, which as we argue above, are
very important in the clinical context and for single subject analyses in general. The
closest method to our approach is work presented by Woolrich et al. (2005). Their
model also uses a Gamma-Gaussian mixture model, but incorporates spatial infor-
mation through MRF instead of Gaussian Random fields. Such a model is harder to
fit than the Gaussian Random fields approach due to the problems of finding the right
spatial regularization coefficients. Also, both approaches do not assume 0 centrality
for the noise component, whereas our model shifts the activation and deactivation
Gamma distribution according to the estimated Gaussian (noise) mean, thereby pro-
viding immunity to global noise.
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Nonetheless, we acknowledge that future improvements of the Adaptive Thresh-
olding method would benefit from incorporating a fully Bayesian framework. This
would no only involve using the Discreet Markov Random Field as a prior to achieve
spatial regularization, but also incorporating the information about the expected ac-
tivation as well as regions of interest in a formal way. The Bayesian approach would
allow to combine the uncertainty of the smoothness estimation and the uncertainty
of the intensity derived class parameters. Even though the presented solution works
(as we have shown through simulations) a Bayesian method would be easier to ex-
tend at the same time providing a better formalization of the assumptions about the
modelled data.

In our method we decided to choose a cluster forming threshold that would min-
imize the sum of voxelwise false positive and false negative errors. Modelling the
T-values distributions using a mixture of gamma and Gaussian distributions allows
such an optimization to be performed. Higher thresholds yield more false negative
errors and lower thresholds yield more false positive errors. However, when it comes
to the sum of all errors there is an optimal threshold which is equal to the crossing
point between the Gaussian and Gamma distributions. Our simulations confirmed
this theoretical relation (see Table 3.3). There have also been other attempts at cre-
ating adaptive thresholding methods. One of the most notable is Activity Mapping
as Percentage of Local Excitement (AMPLE) (Voyvodic, 2006). In this technique, T-
values are scaled by a local, within Region of Interest (ROI), maximum value just
before thresholding. This results in reduced sensitivity to sample size and increased
test-retest reliability (Voyvodic, 2012). However, this approach does not assume any
formal model of noise and signal and does not incorporate spatial information, al-
though this might not be necessary for small ROIs. It does, on the other hand, apply
different thresholds for different parts of the brain. In principle it is very likely that
characteristics of noise and signal are not stationary across the brain, but finding rois
to fit models locally is not trivial. AMPLE uses rois that are atlas derived, manu-
ally drawn (Voyvodic, 2006; Voyvodic et al., 2009), or semi-automatically discovered
from the same activation signal (Voyvodic, 2006). We aimed at keeping our method
as automated as possible to reduce user input and subjectivity. Additionally using
parcellations derived from activation signal to establish local parameters used for
thresholding the same activation may introduce “double dipping” biases. Nonethe-
less, we can see a potential extension of the method in which mixture model could
be fitted separately to different brain regions. In such approach parcellation and local
thresholding should be done in an iterative way so one would inform the other until
reaching convergence.

Because AT separates signal from noise, it is expected to reduce the false negative
rate. Indeed, simulations show that AT has better Type II cluster error rates than
FT, but this comes at the price of creating more false positive clusters. However,
overall it achieves a better balance in terms of detection. One possible explanation
for this is that AT tends to use lower cluster forming thresholds than the default FT
values and thus a good balance could be achieved simply by using a lower fixed
threshold. Additional analyses (see 3.9) using two such low fixed thresholds, one
corresponding to the mean threshold estimated with AT at high SNR and the other
with AT at low SNR, show that this was not the case and that AT always outperforms
FT because it adjusts to the estimated strength of the signal, thereby providing a lower
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threshold for weak signals and higher threshold for stronger signals. This results
in fewer false negative clusters for weak signal cases and fewer false positives for
strong signal cases. Despite the good balance obtained between false positive and
negative clusters in our simulations, this method does not provide any guaranteed
statistical properties (however, guarantees made by other methods are as good as
their assumprions). It is more of a heuristic approach based on sound assumptions
than an analytical solution. A possible extension of the method that could improve
sensibility is to fix the cluster forming threshold to a certain point, e.g. 0.05, on the
cumulative density function of the signal distribution rather than using a point of
equal probability between signal and noise. This would control explicitly for the
expected voxel-wise Type II error rate. However, because this approach would not
include information about the characteristic of noise, it will not be as accurate in
terms of spatial extend and reliability.

Finally, because AT provides a higher spatial accuracy and adapts to noise, it also
leads to an increase in reliability. In the context of single subject fMRI analysis, and
in particular for data used in clinical procedures such as presurgical planning, it is
worth noting that spatial accuracy is essential. Of particular interest here, AT showed
much lower underestimation than FT, which may be useful in clinical situations. In-
creased spatial reliability in healthy controls also means that one can be confident
that the method will more often detect valid clusters as suggested by the reduced
false negative rate in the simulations. Overall, AT therefore achieves a better balance
than FT approaches, and provides a new tool for reliably and objectively thresholding
multiple single-subject SPMs.

3.5 summary

In this chapter we have introduced a new way of thresholding statistical maps devel-
oped with presurgical mapping application in mind. We have shown through simula-
tions improved spatial accuracy and smaller susceptibility to global effect artefacts. In
the next chapter we will look at test-retest reliability of fMRI and show how adaptive
thresholding improves it.
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R E L I A B I L I T Y O F C O M M O N LY U S E D M A P P I N G TA S K S

4.1 introduction

This work has been presented at OHBM 2012 (Gorgolewski et al., 2012b), and has been
accepted for publication in NeuroImage (Gorgolewski et al., 2013).

In the previous chapter we have introduced a new thresholding method and shown
through simulations that it outperforms its competitors. Simulations are, however,
a simplified version of reality. By definition they include assumptions which can
have significant influence on the results. This is the price one has to pay for being
able to access the ground truth. There is, however, another approach to evaluating
inference methods. Based on assumption that a good method should be resistant to
noise we can claim that it should yield the same result when measuring the same
phenomenon multiple times. This is also known as test-retest reliability. It is not only
useful for evaluating data processing methods, but also data acquisition techniques.
This is a very important issue in presurgical planning since there are many variants of
the behavioural tasks and scanning parameters. Lastly fMRI reliability, even though
studied for many years, is not well understood. There are many metrics for measuring
reliability and theories on what factors can influence it. Therefore the aim of this
chapter is threefold:

• to find out if AT provides more reliable results than FT,

• to investigate the reliability of behavioural task commonly used in fMRI presur-
gical mapping,

• to take a more general look at fMRI reliability by investigating the relation
between different measures of reliability and how different confounding factors
can contribute to them.

We begin by a description of the test-retest reliability dataset used to answer the
aforementioned questions. The three sections that follow include analysis details and
results specific for each of the three aspects of reliability we are interested in.

4.1.1 Behavioural tasks

As we have discussed in the previous chapters, fMRI can map the cortex in a non
invasive way. For every brain area of interest a separate behavioural task has to be
performed. The most commonly used tasks correspond to common post operative
neural deficits such as: hemiplegia (motor cortex), receptive aphasia (Wernicke‘s area),
expressive aphasia (Broca‘s area), and hemineglect (right parietal lobe). Tasks have
to be designed in such way that allows delineating specific activation and provides
reliable location and extent of the eloquent cortex. This information is the basis of the
decision that surgeon will make concerning the risk of the procedure. In the following

52
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study we have investigated five tasks in terms of the intersubject variability in order
to assess how much a single scan can be trusted.

Focusing only on a few areas in the brain might seem crude but in the clinical
context some faculties are more important than others. For example the ability to
speak and move is more important to protect than subtle personality changes that
subjects can experience in the case of frontal cortex damage.

4.1.1.1 Word repetition task

Initial attempts to localize speech related brain areas were based on lesion studies.
Development of in-vivo functional scanning techniques such as PET and fMRI stim-
ulated many new studies on the topic. Language skills can be divided into verbal
(speech) and non verbal (i.e. writing/reading). The word repetition task consists of
hearing and immediately repeating (overtly) a word and is aimed at mapping speech
recognition areas (Wernicke). It does not involve higher level language skills (such
as grammar) and therefore is well suited for avoiding post operative receptive, ex-
pressive, and conduction aphasia, but not anomia. The main concern about this task
(apart from obvious motion artefacts caused by speaking) is that activation in pri-
mary auditory cortex often overlapping with activation in Wernicke‘s area related to
speech comprehension (Binder et al., 1995). However, in the context of presurgical
planning this is not a disadvantage since damaging auditory cortex should also be
avoided.

4.1.1.2 Verb generation task

The two most common tasks that are supposed to elicit speech related brain activation
are overt and covert speech generation. In the latter case subjects are asked to silently
think of speaking instead of executing the motor action. This variation of the speech
task was introduced to minimize the amount of motion related artefacts. Early PET
study compared overt and covert speech tasks found different activation both in the
language and motor areas (Bookheimer et al., 1995), suggesting that the overt task
might not just be the overt task with extra motor activation on top of it. This was
confirmed by fMRI studies (Huang et al., 2002) which found that overt tasks do not
produce a simple superposition of covert and motor action activations. Differences
were found both in the location and strength of the activation within the language
related areas.

The motivation for using covert tasks —- reducing the amount of motion artefacts
—- is also debatable. For example one study had to discard 5 out of 11 subjects due to
motion artefacts (Phelps et al., 1997). In an attempt to quantify the amount of artefacts
defined as activation found outside of the skull one study concluded that covert tasks
produces stronger activation with fewer artefacts (Yetkin et al., 1995). On the other
hand with proper training and head immobilization the influence of motion artefacts
can be negligible (Huang et al., 2002).

To minimize the influence of movement one can incorporate sparse sampling tech-
niques (Hall et al., 1999). In this approach gaps are inserted in the scanning session
during which subject can perform the task. This was initially developed for auditory
tasks in which scanner noise interferes with the stimuli. Because of the gaps the num-
ber of samples is smaller than for continues sampling, but at the same time the Time



4.1 introduction 54

of Repetition (TR) is longer which gives more time for T2* relaxation and improves
SNR (Hall et al., 1999).

For speech tasks, sparse sampling has indeed shown improved motion related arte-
facts (Abrahams et al., 2003). The number of samples vs. SNR trade-off was also in-
vestigated for an auditory task. For certain combination of parameters, improvement
from better SNR makes up for the smaller sample size (Schmidt et al., 2008).

Brain mapping in the context of speech has not only been used to decouple the
language brain network, but also for presurgical planning. In this clinical application
subjects are often confused, medicated and under the influence of the condition they
are treated for such as a brain tumour. This makes scanning harder than in case of
healthy controls. Getting feedback would allow making the decision as to whether
there is a need to retrain the subject and rerun the scan. There have been attempts to
filter out scanner noise from in scanner recordings to check if subjects were speaking
during the task phase, but those were done in an offline post processing (Cusack
et al., 2005). Doing this filtering online (in realtime) seems feasible since we know the
timing of scanner noise with great precision, but this would involve installing extra
hardware. Sparse sampling solves this issue —- scanning is ceased for the time when
the subjects speak and the radiologist or scanner operator can listen in and check if
the task is performed correctly.

Additionally it has been shown that overt speech task corresponds better to ECS
(Petrovich et al., 2005) which is more relevant in the context of presurgical planning.

4.1.1.3 Motor tasks

One of the first presurgical mapping paradigms to be tested was on motor tasks
due to a high signal strength, simple paradigm design. To obtain a fuller map of the
motor cortex more than one motor task is recommended. The most commonly used
are: finger, foot, and lips. This of course makes the scanning time longer which can be
a problem in the case of agitated patients. In such cases, skipping the body area that
is further from the tumour in its suspected cortical representation is recommended.

The way different movements can be contrasted between each other provides in-
sights into different brain regions. The simplest case of one movement vs. rest (no
movement) will elicit activation in primary and supplementary motor cortex. How-
ever, contrasting movement of one limb vs. its contralateral counterpart (i.e. left vs.
right foot) should produce activation only in the primary motor area. In the case
of three movements (and no rest), when contrasting between one body part vs. all
the other primary motor areas will be accompanied with supplementary motor area
exclusive only to this body part (Stippich, 2007). Therefore the most comprehensive
sequence would include three movements and rest periods. This, however, is also the
longest sequence.

Motor tasks carry significant risk of motion artefacts. Repetitive tongue movements
with closed mouth, opposition of fingers D2-D5 to D1, and flexion and extension of
toes without moving the ankle have been recommended in the past as eliciting the
fewest movement artefacts (Stippich, 2007).
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4.1.1.4 Line bisection task

The line bisection has been used in clinical practice to assess hemineglect. In this test
patients are presented with a piece of paper with a printed horizontal line on it. The
paper should be positioned directly in front of the patients who are asked to draw a
vertical line in the middle of it. In case of spatial attention deficit such as hemineglect
patients ignore one part of the visual field and draw the line far from the true middle.

There have been only a few fMRI studies using the line bisection task. Fink et al.
were the first to attempt this task (Fink et al., 2000). They have used the so called
landmark task; instead of asking the patient to bisect the line, as it is done in the
clinical practice, they have been asked to tell if a line is pre-bisected correctly. This was
contrasted with asking subjects to tell if a line was bisected at all or not. They have
scanned 12 subjects (healthy male volunteers) and found activations in right superior
posterior and right inferior parietal lobe, early visual processing areas bilaterally, the
cerebellar vermis, and the left cerebellar hemisphere. Since they were expecting a
lateralized response they have controlled for the hand used for giving the responses
by doubling the number of tasks to cover all combinations. The same group has
also assessed differences between vertical and horizontal landmark tasks (Fink et al.,
2001). The locations of activations found were similar to the previous study. When
contrasted vertical with horizontal lines, increased activation in early visual areas
has been found. The authors concluded that difference in activation pattern between
horizontal and vertical variants is mostly due to visual characteristics of the stimulus
and not due to difference in the underlying task.

Flöel et al. (2005) have looked at the landmark task in subjects with atypical lateral-
ization (language in the right hemisphere with attentions in the left hemisphere and
both language and attention in the right hemisphere). Their control group confirmed
the finding of Fink et al., namely activation in right superior and inferior parietal cor-
tex. The atypical group with left-hemisphere dominance for spatial attention showed
activation in regions homotopic to the control group. The group with both language
and spatial attention in the right hemisphere did not differ in the presented acti-
vation pattern from the control group. The authors also briefly commented on the
use of such tasks in presurgical planning, concluding that for patients with atypi-
cal hemispheric dominance activations outside of homotopic brain areas should be
interpreted with caution.

The landmark task is, however, different from the line bisection task used in the
clinical practice. Ciçek et al. (2009) have developed an fMRI paradigm in which sub-
jects can move a notch on a horizontal line to properly bisect it. They have found that
such tasks elicit activation in right Intra–Parietal Sulcus (IPS), anterior cingulated
gyrus and right Lateral Peristriate Cortex (LPC). A conjunction analysis with the
landmark task revealed left activations in IPS and LPC. However, the activation they
found in the landmark task does not overlap with Fink et al. findings in all regions
(Fink et al. additionally found activation in prefrontal and early visual areas). Ciçek
et al. attributed this to differences in the visual presentation of the lines (corners vs.
middle of the screen) and the control task.
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4.2 test–retest reliability dataset

4.2.1 Participants and procedure

A group of normal healthy volunteers without contraindications to MRI scanning
were recruited using flyers distributed among University of Edinburgh staff in elec-
tronic and traditional form. To match the mean age of diagnosis of the glioma patients
undergoing resection surgery (Ohgaki, 2009), all volunteers were over 50 years of age.
Out of 11 volunteers, data from one participant were discarded due to problems with
executing the tasks. Additionally one session of the word repetition task was dis-
carder for one of the subjects. The remaining 10 subjects included four males and six
females, of which three were left–handed and seven right–handed according to their
own declaration, with median age at the time of first scan of 52.5 years (min = 50,
max = 58 years). The study was approved by the local Research Ethics Committee.

4.2.2 Behavioural tasks

All the behavioural tasks were implemented using Presentation R© Software (Neuro
Behavioural Systems http://www.neurobs.com/). Stimuli synchronisation and pre-
sentation was provided by NordicNeuroLab hardware (http://www.nordicneurolab.
com/). During the first scanning session, each subject was trained for each task with a
few trials inside the scanner. Care was taken to make sure that volunteers understood
and could properly perform the tasks.

4.2.2.1 Overt word repetition

Subjects had to repeat aloud words presented via headphones. The following instruc-
tions were used: “When you hear the word, repeat it immediately”. A block design
with 30 sec activation and 30 sec rest blocks was employed in conjunction with a
sparse sampling data acquisition technique to present and record stimuli during the
silent periods, with four trials used for training. After 2.5 sec of blank screen dur-
ing which the fMRI data were acquired, subjects were presented with an auditory
stimulus which consisted of a pre–recorded native British English speaker reading a
noun chosen at random from a set of 36 nouns (759 msec sound tracks length, mean
lexical frequency: 0.000087, min: 0.000005, max: 0.000392, std: 0.000098). This was fol-
lowed by a question mark prompting the subject to repeat the word. Question marks
disappeared after 1741 msec and the sequence was repeated 6 times (see Figure 4.1).
The nouns used were randomised for every subject/session combination. A blank
screen was also presented during rest periods. There were six activation/rest blocks
for a total scan time of 7 min 40 sec. Subject responses were recorded using an MRI
compatible microphone. During the scanning session, the radiography staff listened
to check if the subject was executing the task correctly.

4.2.2.2 Covert verb generation

Subjects were asked to think of a verb complementing a noun presented to them
visually. The following instructions were used: “When a word appears it will be a
noun. Think of what you can do with it and then imagine saying ‘With that I can . . . ‘

http://www.neurobs.com/
http://www.nordicneurolab.com/
http://www.nordicneurolab.com/
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Figure 4.1: Overt word repetition paradigm design.

or ‘That I can . . . ‘ ”. A block design with 30 sec activation and 30 sec rest blocks was
employed, with eight trials used for training. During the activation blocks, ten nouns
were presented for 1 sec each followed by a fixation cross during which subject had
to generate the response (see Figure 4.2). The nouns were chosen at random from
a set of 70 nouns (mean lexical frequency: 0.000087, min: 0.000005, max: 0.000392,
std: 0.000092). Rest blocks had an analogous structure but with each word replaced
by scrambled visual patterns generated by scrambling the phase of the ‘picture’ of
each word, i.e. the control patterns were matched in the amplitude spectrum. Seven
activation/rest blocks were presented for a total scan time of 7 min 12.5 sec.

4.2.2.3 Overt verb generation

In this task, subjects were asked to say a verb complementing a noun presented to
them visually (overt version of the previous task). The following instructions were
used: “When a word appears it will be a noun. Think of what you can do with
it and then say the corresponding verb: ‘With that I can . . . ‘ or ‘That I can . . . ‘”.
A block design with 30 sec activation/rest blocks was used in conjunction with a
sparse sampling data acquisition technique to present and record stimuli during the
silent periods. Eight trials were used for training. Four volumes were used for signal
stabilization before stimulus presentation. After 2s of blank screen a word/scrambled
image was presented for 0.5s (words were chosen from the same set as in the covert
version of the task). This was followed by a question mark prompting the subject to
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Figure 4.2: Covert verb generation paradigm design.

speak, which was presented for 2.5 seconds (see Figure 4.3). In each block 6 words
followed by 6 scrambled images were presented. Both words and scrambled pictures
were randomized between session and subjects. Seven activation/rest blocks were
presented for a total scanning time of 7 min 20 sec. Subject responses were recorded
using an MRI compatible microphone. During the scanning session radiography staff
was listening in to check if the subject was executing the task correctly.

4.2.2.4 Motor tasks

Subjects had to move a body part corresponding to a picture. The following instruc-
tions were issued: “You have to tap your index finger when you see a picture of a
finger, flex your foot when you see a picture of a foot, and purse your lips when
you see a picture of lips”. A block design with 15 sec activation periods and 15 sec
rest periods was employed, with four trials used for training. In every block, subjects
moved the index finger of their dominant hand, or flipped their dominant foot or
pouched their mouth (see Figure 4.4). Movement was paced with a frequency of 0.4
Hz using a visual stimulus. There were five repetitions of each activation/rest block
for a total scan time of 7 min 40 sec.
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Figure 4.3: Overt verb generation paradigm design.

4.2.2.5 Landmark

Subjects performed two alternate tasks, namely tell if a horizontal line is crossed
precisely in the middle (LANDMARK) and tell if a horizontal line is crossed at all
(DETECTION). The following instructions were used: “Press the button with your left
index finger if the line is bisected in the middle otherwise press the button with your
right finger” or “Press the button with your left index finger if the line is crossed
otherwise press the button with your right finger”. A block design with 16.25 sec
landmark/detection blocks was used, with ten trials used for training. Each task
was preceded by an instruction screen which was presented for 8.25 sec with a rest
period of 8 sec (see Figure 4.5). Each block consisted of 10 lines, four correct and
six incorrect. Each line was presented for 525 msec and subjects had 1100 msec to
respond before the next presentation. Lines were presented in the four corners of the
screen. For the landmark task and incorrect trials, the crossing line was located at
three different distances from the middle, specifically 12, 40, and 62 pixels from the
true middle corresponding to 0.45, 1.5, and 2.325 degrees of visual angle. There were
eight landmark/detection blocks for a total scan time of 9 min 55 sec. All trials were
randomized and all responses were recorded.
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Figure 4.4: Motor paradigm design.

4.2.3 Scanning sequence

All scans were acquired on a GE Signa HDxt 1.5 T scanner at the Brain Research Imag-
ing Centre (BRIC Edinburgh http://www.bric.ed.ac.uk/) located at Western Gen-
eral Hospital, Edinburgh. Each volunteer was scanned twice two (eight subjects) or
three (two subjects) days apart (using the same sequence). All of the fMRI sequences
shared the following parameters (unless otherwise stated): FOV=256× 256mm, slice
thickness 4mm, 30 slices per volume, interleaved slices order, voxel size 4× 4× 4mm,
acquisition matrix 64× 64, and TR=2.5s, flip angle=90

◦, TE=50ms. Scanning session
consisted of the following acquisitions:

1. Overt word repetition task. 76 (4 + 6 blocks of 12). Sparse sampling (effective
TR=5s, real TR=2.5s).

2. Covert verb generation task. 173 (4 + 7 blocks of 24 + 1) volumes.

3. Overt verb generation task. 88 (4 + 7 blocks of 12). Sparse sampling (effective
TR=5s, real TR=2.5s).

4. Motor task. 184 (4 + 5 blocks of 36).

http://www.bric.ed.ac.uk/
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Figure 4.5: Landmark paradigm design.

5. Landmark task. 238 volumes.

6. T1 weighted coronal scan. FOV=256× 256mm, slice thickness 1.3mm, 156 slices,
voxel size 1× 1× 1.3mm, acquisition matrix 256× 256.

The order of the verb generation tasks were counterbalanced across subjects such
that half of the subjects did the task in the order: 1. Overt word repetition, 2. overt
verb generation, 3. covert verb generation, 4. motor, 5. landmark; and the other half:
1. Overt word repetition, 2. covert verb generation, 3. overt verb generation, 4. motor,
5. landmark.

4.2.4 Data analysis

Data was processed using SPM (http://www.fil.ion.ucl.ac.uk/spm/) and FSL(http:
//www.fmrib.ox.ac.uk/fsl/) within the Nipype framework (http://nipy.org/nipype/
- Gorgolewski et al., 2011b).

4.2.4.1 Preprocessing

For every subject T1 volumes from both sessions were coregistered, resliced and aver-
aged. A DARTEL template was created using averages from all subjects (Ashburner,

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/
http://nipy.org/nipype/


4.2 test–retest reliability dataset 62

2007). Additionally a brain mask was estimated from each average using BET (Smith,
2002).

The first 4 volumes, during which the scanner reaches steady state, of every EPI
sequence were discarded and the remaining images were slice time corrected. Fin-
ger, foot, and lips sequences of left–handed subjects (3 subjects) were flipped along
the Z–Y plane. For every subject, all slice time corrected volumes from all tasks and
sessions were realigned and resliced to their mean to remove motion artefacts. The
mean volume was coregistered to the T1–weighted volume between session aver-
age and the resulting affine transformation was applied to headers of realigned files.
Each EPI volume was then normalized using the DARTEL template and correspond-
ing flow field and smoothed with 8mm full width half maximum Gaussian kernel.
Apart from the fact that smoothing improves SNR, it is necessary to maintain as-
sumptions of the RFT which is being used for thresholding. The smoothed volumes
supplemented with a previously estimated brain mask and realignment parameters
were searched for artefacts using ArtifactDetection toolbox (http://www.nitrc.org/
projects/artifact_detect/).

4.2.4.2 First level analysis

Each session was analyzed separately, with a GLM (Friston et al., 1994) being used
to fit a design matrix consisting of an autoregressive filtering matrix (AR1) and task,
realignement (6 parameters), high pass filter (128 Hz), and artefacts (one per artefact)
regressors. Task regressors for overt verb generation, covert verb generation and overt
word repetition were simple boxcart functions convolved with a canononical hemody-
namic response function. For these tasks, a simple contrast including the single task
regressor was used (= activation vs. baseline). In case of finger, foot and lips tasks,
each body part was modelled with a separate boxcart regressor, while 3 simple con-
trasts per body part were computed as well as three contrasts between each body part
against the two others. The design matrix for the landmark task included five event
related regressors acquired from each subject/session experiment log: landmark stim-
uli with correct responses, landmark stimuli with incorrect responses, detection stim-
uli with any response (correct or incorrect), and detection and landmark stimuli with
no response. This allowed four contrasts to be estimated: all landmark stimuli vs.
all detection stimuli, only landmark stimuli with response vs. only detection stimuli
with responses, only landmark stimuli with correct responses vs. only detection stim-
uli with any responses, and only landmark stimuli with correct responses vs. only
landmark stimuli with incorrect responses. Only voxels within previously estimated
brain mask were included in model fitting. For overview of preprocessing and first
level analysis, see Figure 4.6.

4.2.4.3 Second level (random effects) analysis

For every subject and task, contrast volumes were averaged between the two sessions.
These averages were then used in second level group analysis using the Holmes-
Friston approach (Holmes and Friston, 1998), i.e. a one sample t–test on each contrast
was run to estimate a group effect. The result of each t–test was thresholded using
the topological FDR method (Chumbley and Friston, 2009) with a cluster extent prob-
ability threshold set to 0.05 after FDR correction. The cluster forming threshold was

http://www.nitrc.org/projects/artifact_detect/
http://www.nitrc.org/projects/artifact_detect/
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set to the default SPM p-value of 0.001 uncorrected. Anatomical labelling of the acti-
vation areas was done using SPM Anatomy Toolbox (Eickhoff et al., 2006, 2007, 2005),
Harvard-Oxford Cortical and Subcortical Atlases, and Talairach Atlas (Lancaster et al.,
2007, 2000; Talairach and Tournoux, 1988).

4.2.4.4 Reliability analysis

volume overlap of threasholded t maps

Single subject t maps were thresholded using adaptive thresholding (see Chap-
ter 3) and topological FDR with fixed cluster forming threshold p=0.05 FWE
corrected. Using the suprathreshold maps the between–session Dice overlaps
was calculated. In the case where both maps were empty (no suprathreshold
voxels), a Dice overlap of zero was assumed to penalize for lack of signal. In
addition, to test if the tasks were reliable, the mean Dice overlap obtained for
each subject and task was compared with the between-subject Dice overlap. The
between-subject Dice overlap was obtained by computing the overlap between
the thresholded map of every subject in Session 1 and the thresholded maps
of all the other subjects in Session 1. The procedure was repeated for Session 2

and all Dice measures were averaged over sessions for each task. This allowed
the testing of whether the overlap measured within-subjects was significantly
greater than the overlap measured across all subjects, given that all subjects
were in standard space. A percentile bootstrap test of the H-D median (Harrell
and Davies, 1982) was used to estimate if the difference of within- and between-
subject Dice overlap was statistically significant.

comparison of thesholding methods

Dice coefficients and maximum distance differences obtained with the GGMM
and the FT topological FDR approaches were compared for each contrast using
a percentile bootstrap (bootstrap on the differences between measures). In each
case, two robust measures of location (Harrell-Davis estimate of the median and
20% trimmed mean) were tested. The 95% confidence intervals and p-values are
reported for each map separately. However, statistical significance was obtained
using a FDR correction over all measures of location (q=5%) and all measures
of dispersion (q=5%).

within vs . between subjects

In addition to comparing thresholding methods, we also tested the internal va-
lidity of each task, that is we tested if dice coefficients and maximum distance
differences were better within than between subject differences. A lack of differ-
ence means that the location and size of an activated brain region is not more
reliable (reproducible) for a given subject than taking any other subject, making
this task unsuitable in the clinical context. As for the comparison of threshold-
ing methods, Harrell-Davis estimates of the median, 20% trimmed mean and
percentile bootstraps (with independent resampling per group) were computed.
Again, 95% confidence intervals and p-values are reported for each map sepa-
rately but statistical significance was obtained using a FDR correction over all
measures of location (q=5%) and all measures of dispersion (q=5%).
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Results are reported for the full brain, and task specific ROI. These were con-
structed using probability maps available in the anatomy toolbox. For the mapping
of the primary motor cortex, the whole left areas 4a and 4p were used. For Broca area,
Brodmann areas 44 and 45 were used . For Wernicke area, area TE30 was used. For
the auditory cortex, we used areas TE1, 1.1 and 1.2. Finally, for the landmark task,
right Inferior Parietal Cotex and Superior Parietal Lobule were used. Masks were
generated in the MNI space and resliced to DARTEL template dimensions.

4.2.4.5 Intraclass correlation analysis

For every task and contrast an intra class correlation coefficient (ICC) map was cal-
culated(Caceres et al., 2009; Shrout and Fleiss, 1979). We used the ICC(3,1) variation,
a two–way model (subjects vs. sessions) with no interaction and a consistency crite-
ria; in other words allowing for a constant between–session effect such as learning.
ICC(3,1) is an estimate of

ICC(3, 1) =
σ2r

σ2r + σ
2
e

(4.1)

where σ2r is between–subjects (rows) variance and σ2e is the between-sessions variance
(variance of the residuals after removing the subject and session effect).

4.2.4.6 Reduced dataset analysis

MRI scanners in most hospitals are heavily used and therefore there is strong focus
on keeping the scanning sequences short. Therefore using multiple runs or long scan-
ning sessions is not feasible in clinical applications. Additionally many patients strug-
gle with coping with the MRI scanner environment and following the behavioural
paradigm of the fMRI experiment. This results in only a subset of data being useful
for further analysis. To simulate this we have run the same processing pipeline on
just the first 2, 3, and 4 first blocks of each task. The between session Dice overlap
for those reduced datasets were computed to compare if there is a difference in per-
formance of the two thresholding methods in question. Additionally for each session
the Dice overlap between the result from each reduced dataset and the full dataset
was calculated to test how quickly the final map is obtained.
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Figure 4.6: Overview of data processing.
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4.2.5 Group analysis

4.2.5.1 Language tasks

The random effect analysis of overt word repetition revealed a strong activation over
Superior Temporal Gyrus, mostly in the left and right Primary Auditory Cortex (ar-
eas TE 1.1, TE 1.2 and TE 3 - Morosan et al., 2001 and left Wernicke’s Area (IPC-PF -
Caspers et al., 2006). Additional activations were found in the Supplementary Motor
Area (SMA), Brodmann Area (BA) 6, the Postcentral Gyrus (BA 3b) and the Cerebel-
lum (see Figure 4.7). One of the subjects misunderstood the instructions and one of
his sessions had to be excluded; his second session instead of average of two was
used for the analysis. Apart from this single case, subjects replied to 98± 3% of the
stimuli. In the case of covert verb generation, activations were observed in left Broca’s
area (BA 44 and 45), left Temporal Gyrus, left Inferior Parietal Lobule, SMA and left
thalamus. For the overt version of the task, two subjects did not reply to any of the
stimuli in both sessions and had to be discarded bringing the number of subjects in
the group analysis to 8. Additionally one of the subjects replied only during one ses-
sion and therefore results from his second session instead of an average of two were
used. After excluding these cases subjects replied to 81± 15% of the stimuli. Similar
results to the covert generation were obtained with additional activations of motor
related areas (BA 4p and OP 4 — Eickhoff et al., 2010).

4.2.5.2 Motor task

Using simple contrasts (activations vs. rest) strong activations of the left precentral
gyrus were observed respecting the known motor homunculus: (1) Foot contrast re-
vealed activations near the top end of the contra-lateral precentral gyrus (extending
to left SMA) and also showing ipsilateral cerebellar activation; (2) Finger contrast pro-
duced activation in the middle /lateral contra-lateral preentral gyrus and ipsilateral
cerebellum; (3) Lips contrast produced bilateral activation in the inferior part of the
precentral gyrus, but also SMA and cerebellum. Activations were also observed in
the visual cortex over inferior occipital / fusiform gyri in response to the stimulus
presentation.

Using the more complex contrasts (e.g. finger vs. others) produced similar results.
Over motor regions, differences were observed for foot vs. others, additionally reveal-
ing activations of the ipsilateral precentral sulcus and for lips vs. others in which the
SMA did not show significant activations anymore (see Figure 4.8 and Figure 4.9).

4.2.6 Landmark task

For “all stimuli” contrast activation was found in the right Middle and Inferior Tem-
poral Gyrus (V5 and overlapping with Inferior Parietal Cortex (IPC)), SMA (bilat-
erally), right Superior Frontal Gyrus, left Postcentral Gyrus (BA 2), right Precentral
Gyrus (BA 6), right Postcentral Gyrus (BA 2) overlapping with right Inferior Parietal
Lobule (IPC), right Insula, right Supramarginal Gyrus (IPC), right Superior Parietal
Lobule (SPL), and left Middle Occipital Gyrus.

“Only stimuli with responses” elicited activation mainly in the right Superior and
Inferior Parietal Lobule (SPL), left Fusiform Gyrus, left Cerbellum, left Postcentral
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Figure 4.7: Results of the mixed effect analysis (thresholded using topological FDR at 0.05) for
language tasks. From top to bottom: overt word repetition, covert verb generation,
overt verb generation, overlap between overt word repetition (red), covert (blue)
and overt (green) verb generation.

Gyrus (BA 2), right Inferior Temporal Gyrus, Precentral Gyrus (BA 6 - bilaterally),
SMA (bilaterally), right Inferior Frontal Gyrus (BA 44 and 45), and left Calcarine
Gyrus (BA 17).

“Only stimuli with correct responses” mostly replicated pattern of the previously
described contrast with addition of Corpus Callosum and stronger activation in the
left Visual Cortex.

“Correct vs. incorrect landmark responses” produced activation in the Occipital
and Calcarine Gyri (bilaterally BA 17 and 18), left Putamen, left Fusiform and Lingual
Gyri, left Cerebellum, left Inferior Frontal Gyrus, right Cuneus, right Thalamus (see
Figure 4.10 and Figure 4.11).

Subjects responded to 87.25% ± 6.9888 of the landmark stimuli and 78.5625% ±
4.7971 of the detection stimuli. Out of all landmark stimuli, 73.0623%± 9.562 of re-
sponses were correct.
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Figure 4.8: Results of the mixed effect analysis (thresholded using topological FDR at 0.05)
for motor task. Contrasts from top to bottom: finger, finger vs. others, foot, foot
vs. others, lips, lips vs. others.
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simple complex

Figure 4.9: Motor task: 3D views. On the left: simple contrasts. On the right: complex (vs.
others) contrasts. Finger (red), foot (blue), lips (green).
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Figure 4.10: Results of the mixed effect analysis (thresholded using topological FDR at 0.05)
for landmark task. From top to bottom: all stimuli, only stimuli with responses,
only stimuli with correct responses, only stimuli with incorrect responses, over-
lap between the four above: all stimuli (red), only stimuli with responses (blue),
only stimuli with correct responses (green), only stimuli with incorrect responses
(purple).
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Figure 4.11: Landmark task: 3D views. Overlap between: all stimuli (red), only stimuli with
responses (blue), only stimuli with correct responses (green), only stimuli with
incorrect responses (purple).
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4.3 reliability of thresholding methods

Depending on the SNR not all statistical maps survive thresholding. In other words
in some cases thresholding yields an empty map. Since the tasks used were straight-
forward and validated by the mixed effect analysis, we have assumed, for the time
being, that every session should elicit some activation. Our working hypothesis was
that AT will be able to find any activation within the region of interest for more ses-
sions than FT. These results are summarised in Table 4.1. In all cases AT was at least
as good as FT and in many cases found activation in more subjects. A McNemar test
show that overall, Adaptive Thresholding outperforms Fixed Thresholding to detect
activations (chi-squared(1) = 21.8065, p-value = 3.016× 10−6. Table 4.2).
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Table 4.1: Percentage of subjects that produced any activation within the ROI. Contrasts where AT performed better than FT shown in bold.

Task Contrast
Session 1 Session 2

Fixed Thr Adaptive Thr Fixed Thr Adaptive Thr

Language Tasks
Overt word repetition 100.00% 100.00% 100.00% 100.00%

Covert verb generation 100.00% 100.00% 100.00% 100.00%

Overt verb generation 75.00% 100.00% 71.43% 71.43%

Motor Tasks

Finger 90.00% 100.00% 80.00% 100.00%

Foot 100.00% 100.00% 90.00% 100.00%

Lips 100.00% 100.00% 100.00% 100.00%

Finger vs. Other 90.00% 100.00% 80.00% 100.00%

Foot vs. Other 100.00% 100.00% 100.00% 100.00%

Lips vs. Other 100.00% 100.00% 100.00% 100.00%

Landmark Task

Task All Greater Than Control All 20.00% 30.00% 0.00% 50.00%

Task Answered Greater Than Control Answered 60.00% 70.00% 60.00% 80.00%

Task Correct Greater Than Control Answered 0.00% 50.00% 10.00% 60.00%

Task Correct Greater Than Task Incorrect 0.00% 0.00% 0.00% 0.00%
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Table 4.2: Contingency table for activation within ROI for FT and FT thresholding methods.
Sums are split between the first and second sessions. McNemar’s χ2 = 21.8065, df
= 1, p-value = 3.016× 10−6.

Fixed Thr

Found Not found

Adaptive Thr
Found 89+86 12+17 101+103

Not found 2+0 23+23 25+23

91+86 35+40 126+126

To further investigate the performance of the two thresholding strategies we ex-
amined the thresholded maps. To make the comparison fair we have included only
those subject/task/contrast combinations that yielded suprathreshold activation for
both sessions and both thresholding methods. Based on mixed effect analysis and Ta-
ble 4.1 we have excluded the three basic motor contrasts and all landmark contrasts
except the “task answered vs. control answered” contrast. Multiple comparison cor-
rection was applied to the family of all 28 tests.

Investigation of shorter scanning times (re–analysis taking only 2, 3, or 4 first blocks
of the scans) was performed by applying the same threshold to each subset. The com-
parison of thresholding methods used the same combinations of subject/task/con-
trast as for the full data set analysis.

4.3.1 Language tasks

Among all language tasks, AT and FT methods had similar reliability levels. The sign
of the difference was always in favour of the adaptive technique but it did not reach
significance for the three language tasks (see Table 4.3).

The analysis of the reduced datasets shows that adaptive thresholding recovers
more signal with fewer datapoints (see 4.12). In all of the tasks, the advantage of AT
over FT is higher for smaller datasets. For overt word repetition, the AT yielded a
higher reliability than the FT with 2, 3 and 3 blocks of the data, while it also obtained
50% overlap with the final map using only half of the data. For overt verb generation,
AT yielded to a higher reliability than the FT with 2, 3 and 4 blocks of the data, while
it also obtained 50% overlap with the final map using 4 blocks of the data. For covert
verb generation, the AT was not more reliable than the FT (except with 3 blocks of the
data). However, it allowed 50% of the final map to be recovered using only 1 block of
the data (vs. 3 blocks for the FT).

4.3.2 Motor task

In the motor task, the AT method was more reliable than FT method when contrast-
ing hand and foot movements to other movements. Methods did not differ for the
contrast lips vs. other movements (see Table 4.4).

In the motor tasks, as in the case of the language tasks, adaptive thresholding
showed bigger improvement over fixed thresholding in smaller datasets (shorter se-
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Table 4.3: Comparison of between session Dice overlaps between FT and AT for language
tasks. All p values are two sided. Q values obtained by applying Benjamin–
Hochberg False Discovery Correction to all p-values from Table 4.4 and Table 4.5.

Overt Word Repetition (N=9)

H-D median tmean

ROI full ROI full

Fixed Thr 0.422022 0.354664 0.385309 0.348007

Adaptive Thr 0.585318 0.462406 0.575587 0.454410

CI
[0.009461 [-0.007999 [0.015558 [0.001280

0.317416] 0.253925] 0.305255] 0.228477]

p 0.024667 0.110667 0.011333 0.046667

q 0.088667 0.258222 0.063467 0.118788

Covert Verb Generation (N=10)

H-D median tmean

ROI full ROI full

Fixed Thr 0.595107 0.527597 0.591907 0.522306

Adaptive Thr 0.639919 0.564095 0.637900 0.550031

CI
[-0.070474 [-0.077556 [-0.068632 [-0.074999

0.112740] 0.098734] 0.146562] 0.097227]

p 0.828000 0.572667 0.821333 0.663333

q 0.828000 0.697159 0.828000 0.742933

Overt Verb Generation (N=5)

H-D median tmean

ROI full ROI full

Fixed Thr 0.391453 0.432157 0.398388 0.436665

Adaptive Thr 0.463781 0.434408 0.461588 0.438166

CI
[-0.075740 [-0.087042 [-0.085262 [-0.087574

0.224551] 0.133443] 0.242001] 0.142898]

p 0.301333 0.448000 0.334000 0.455333

q 0.519556 0.579515 0.519556 0.579515
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Table 4.4: Comparison of between session Dice overlaps between FT and AT for motor task.
All p values are two sided. Q values obtained by applying Benjamin-Hochberg FDR
correction to all p-values from Table 4.3 and Table 4.5. Tests with q-values below
0.05 highlighted in bold.

Finger vs. Other (N=7)

H-D median tmean

ROI full ROI full

Fixed Thr 0.693010 0.619350 0.675953 0.627243

Adaptive Thr 0.802078 0.647907 0.792059 0.626737

CI
[0.025522 [-0.118262 [0.029282 [-0.116193

0.225890] 0.094456] 0.219961] 0.103365]

p 0.000667 0.292000 0.000000 0.428667

q 0.004667 0.519556 0.000000 0.579515

Foot vs. Other (N=10)

H-D median tmean

ROI full ROI full

Fixed Thr 0.495056 0.502437 0.501763 0.485329

Adaptive Thr 0.713597 0.533353 0.712552 0.533903

CI
[0.118172 [-0.061228 [0.115414 [-0.055593

0.331657] 0.147792] 0.339045] 0.138543]

p 0.000000 0.721333 0.000000 0.639333

q 0.000000 0.776821 0.000000 0.742933

Lips vs. Other (N=10)

H-D median tmean

ROI full ROI full

Fixed Thr 0.805357 0.532662 0.794346 0.525366

Adaptive Thr 0.857566 0.464320 0.853359 0.464550

CI
[0.003405 [-0.102888 [0.001001 [-0.104175

0.213174] -0.021559] 0.215953] -0.008844]

p 0.025333 0.014667 0.041333 0.029333

q 0.088667 0.068444 0.115733 0.091259
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Table 4.5: Comparison of between session Dice overlaps between FT and AT for landmark
task. All p values are two sided. Q values obtained by applying Benjamin–Hochberg
False Discovery Correction to all p-values from this table. Tests with q-values below
0.05 highlighted in bold.

Task Answered Greater Than Control Answered

H-D median tmean

ROI full ROI full

Fixed Thr 0.258408 0.240337 0.250415 0.269457

Adaptive Thr 0.428450 0.347364 0.444036 0.366116

CI
[-0.072476 [-0.125631 [-0.072476 [-0.090491

0.616191] 0.336689] 0.616191] 0.295687]

p 0.313333 0.402667 0.280667 0.318667

q 0.519556 0.579515 0.519556 0.519556

n 3 4 3 4

quences —- see Figure 4.13). AT also managed to recover the final map quicker from
fewer datapoints than FT. For the finger vs. others contrast, AT yielded a higher re-
liability than the FT with 2 blocks, 3 blocks and 4 blocks of the data, while it also
obtained 80% overlap with the final map using only 2 blocks of the data (vs. 70%
with 4 blocks of the data with the FT). For the foot vs. others contrast, AT yielded
to a higher reliability than the FT with 2 blocks, 3 blocks and 4 blocks of the data. It
also obtained 70% overlap with the final map using only 2 blocks of the data (vs. 70%
with 4 blocks of the data with the FT). For the lips vs others contrast, AT and FT did
not differ due to higher variance between sessions. However, AT allowed 80% of the
final map to be recovered with only 3 blocks of the data (vs. 4 blocks of the data for
FT).

4.3.3 Landmark task

For the landmark task, only 1 contrast was tested (showing IPL activation in the RFX
analysis) and in this case, the reliability of both methods was similar (see Table 4.5).

Due to the event related nature of the landmark paradigm reduced dataset analysis
was not possible without changing the design matrix and contrasts, for example some
subjects did not give any incorrect responses during first two blocks. Because this
would make the comparison meaningless and due to the fact that landmark task did
not show reasonable overall reproducibility (see next section) this analysis was not
included.

4.3.4 Thresholding method reliability and global effects

Mapping of the parameter space (see Figure 4.14) showed that many combinations of
thresholds can lead to high Dice overlap, and that the highest values were obtained
when different thresholds between sessions were used. The reason behind this phe-
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nomenon is that maximum T-values are often shifted between sessions as evidenced
by looking at the joint distribution of T-values. Indeed the tail of the joint distribu-
tion is off–diagonal (see Figure 4.14b), meaning that voxels in the second scan session
have higher or lower T-values than the same voxels in the first session. This effect is
mostly observed when there is a shift of the overall distribution, i.e. in the context of
a “global effect” (Friston et al., 1990) such as when temporal noise correlates with the
stimuli sequence and affects the whole brain. Such a between session shift of T-values
in a test–retest study has recently been reported by (Raemaekers et al., 2012). AT at-
tempts to estimate and correct for this effect by allowing the Gaussian component to
have non-zero mean and having the “activation” and “non-activation” components
range fixed to that mean, leading to a choice of a pair of thresholds optimal in terms
of Dice overlap (see Figure 4.14c).

Overall AT shows better sensitivity than FT, as it was able to find activation more
often. We have also found using a test-retest dataset that it provides more reliable
maps. Additionally we have shown that due to its adaptive nature it is able to recover
signal with fewer samples than FT.



4.3 reliability of thresholding methods 79

0.0

0.2

0.4

0.6

0.8

1.0

d
ic

e

overlap between reduced and full dataset

0.0

0.2

0.4

0.6

0.8

1.0

d
ic

e

overlap between sessions

2 3 4 a ll
#  o f b locks  u sed

0.0

0.2

0.4

0.6

0.8

A
T
 -

 F
T
 d

ic
e

overlap between sessions

2 3 4 a ll
#  o f b locks  u sed

2 3 4 a ll
#  o f b locks  u sed

overt word covert verb overt verb

Adaptive
Fixed

Figure 4.12: Results of applying AT and FT to data from just the first 2, 3, 4 or all blocks
of the three evaluated language tasks. Top: H–D medians of Dice’s coefficients
between thresholded data of the reduced dataset and all data available for first
(solid lines) and second (dashed lines) sessions, middle: H–D medians of between
session overlaps, bottom: H–D medians of paired (within subjects) differences of
Dice’s coefficients, with confidence intervals bootstrapped at 0.05.
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three motor contrasts. Top: H-D medians of Dice’s coefficients between thresh-
olded data of the reduced dataset and all data available for first (solid lines)
and second (dashed lines) sessions, middle: H-D medians of between session
overlaps, bottom: H-D medians of paired (within subjects) differences of Dice’s
coefficients, with confidence intervals bootstrapped at 0.05.
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Figure 4.14: Analysis of the T-map reliability of three selected subjects. The top row (a) shows
between session Dice coefficients for different pairs of cluster forming thresholds.
The middle row (b) shows the upper right quadrant of the joint distribution of the
unthresholded T-values, while the bottom row (c) shows distributions of T-values
from the first and the second session. “No global effects” (example from finger
contrast for subject 1) illustrates the case where choosing the same threshold for
both sessions is the optimal course of action; the joint distribution confirms this
by showing lack of a consistent between session value shift, while AT manages
to infer this without having access to the joint distribution. “Global shift session
1” (example from lip movement contrast for subject 2) shows a shift of values
between the sessions. This is clear not only from the joint distribution but from
the two separate distributions. This allows AT to choose a lower threshold for
the second session and optimize the Dice coefficient value. “Global shift session
2” (example from foot contrast for subject 3) indicate a shift in the opposite
direction.
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4.4 reliability of tasks

The goal of these comparisons was to test if the variance between two sessions was
smaller than variance between subjects, i.e. evaluate the test-retest reliability of the
tasks. Subjects who did not show activation in both sessions were again excluded.
Based on the results from the previous section showing the superiority of the AT
method, all analyses were performed using the adaptive strategy.

4.4.1 Language tasks

Overall, the three tasks show a higher reliability within than between subjects (see
Table 4.6). For the overt word repetition task, activations restricted to Wernicke area
were, however, not reliable whereas the full brain pattern of activity was. Covert and
overt word repetition tasks were also reliable when considering the full brain pattern
of activity, but only the covert verb generation task showed reliable results over Broca
area.

Looking at the ICC values for ROI, there was a close similarity with the RFX anal-
yses (Figure 4.15).

For overt word repetition, maximum T–values of the RFX analyses matched max-
imum ICC values over Wernicke area and maximum single subject maps. Thus, in
Wernicke area, despite its lack of reliability within subjects, there was a signal in-
crease consistent across subjects averaged over sessions, which also has similar am-
plitudes in both sessions and is strong enough to be seen in all subjects; at the max
of RFX x=-54, y=-24, z= 1.5, ICC = 0.59 and 0.55% of subjects showed an activation.
This pattern of results was different for the contra-lateral homologue. Maximum T-
values of the RFX analyses did not correspond to maximum ICC and single subject
maps. For instance, in the anterior STS, there was no consistency across subjects (RFX
analysis not significant) despite reliable amplitude increase over sessions and within
subjects.

For the covert verb generation task RFX analysis showed activation mainly in the
left hemisphere despite the fact that there were high ICC values in both hemispheres.
Stacked overlaps (frequency map of intersections of thresholded areas from both
sessions for all subject included in the analysis) reflected the ICC findings with a
slight incline towards lateralized activation; at the max of RFX x=-43.5, y=18, z=10.5,
ICC = 0.77 and 40% of subjects showed an activation. For the overt verb generation
task both RFX and stacked overlaps showed activation in posterior parts of the mask.
To a certain extent, patterns of ICC in the left hemisphere did correspond with this
activation, but this was not the case for the right hemisphere. Here low or even
negative ICC 1 values translated into suprathreshold T values of RFX analysis and
non zero stacked overlap; at the max of RFX x=-45, y=10.5, z=13.5 ICC = -0.61 and
none of subjects showed an activation.

1 Theoretically, ICC is non negative since this is defined as a ratio of variances (which are positive values).
However, estimates of ICC can be negative. This is explained by the fact that both session and subject
effects are modeled and variances are estimated using a two-way ANOVA model. For the variance esti-
mators not to be biased they have to allow for negative values (otherwise estimates of zero value would
not average to zero). In general, this indicates low inter-session reliability. A more detailed explanation
together with examples can be found in Taylor (2010).
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Table 4.6: Comparison between within and between subject variance for language tasks. All
p values are two sided. Q values obtained by applying B-H FDR to all p-values for
each contrast separately. Tests with q-values below 0.05 highlighted in bold.

Overt word repetition (N within =9, N between = 36)

H-D median tmean

ROI full ROI full

within 0.585318 0.462406 0.575587 0.454410

between 0.340059 0.223096 0.309611 0.220995

CI
[0.069453 [0.118324 [0.052999 [0.133929

0.419928] 0.347355] 0.394757] 0.327865]

p 0.010000 0.000000 0.015333 0.000000

q 0.013333 0.000000 0.015333 0.000000

Covert verb generation (N within =10, N between = 45)

H-D median tmean

ROI full ROI full

within 0.639919 0.564095 0.637900 0.550031

between 0.321044 0.249421 0.341339 0.248647

CI
[0.052376 [0.069289 [0.048845 [0.068382

0.491096] 0.421119] 0.457233] 0.416956]

p 0.017333 0.012667 0.016667 0.008667

q 0.017333 0.017333 0.017333 0.017333

Overt verb generation (N within = 7, N between = 21)

H-D median tmean

ROI full ROI full

within 0.309291 0.337577 0.302969 0.326379

between 0.055683 0.069443 0.053890 0.065974

CI
[-0.012147 [0.022319 [-0.004863 [0.032864

0.508635] 0.465002] 0.502423] 0.446286]

p 0.069333 0.038000 0.055333 0.026000

q 0.069333 0.069333 0.069333 0.069333
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4.4.2 Overt vs. covert verb generation

Between subject variability for covert verb generation was much lower than for the
overt verb generation as observed with ICC and stacked overlap (see Figure 4.16).

Distributions of ICC over Broca’s area for covert and overt variants of the verb
generation task show a heavier tail (negative ICC) for the overt task, meaning that
opposite activation patterns were observed between sessions. In comparison, only a
few voxels showed negative ICC in the covert task making, it more reliable. Within
subject (between sessions) overlaps of the overt and covert verb generation task were
also compared using a paired bootstrap test. Adaptive thresholding was used to
create suprathreshold maps and comparison was restricted to Broca’s area and its
right homologue (see Figure 4.17). The test yielded significant difference (p=0.001) in
favour of the Covert verb generation task with 6 out of 7 subjects in the comparison
showing a bigger between session overlap in the covert version of the task.

4.4.3 Motor task

All tested motor contrasts yielded significantly bigger within subject than between
subject reliability (Table 4.7).

Comparison of RFX analysis, ICC and stacked overlaps maps (see Figure 4.18) show
a good consistency: this paradigm leads to strong activations in each subject and over
both sessions (finger: x=-46.5, y=-18, z=57, ICC =0.49 and 70% of subjects showed an
activation, foot: max of RFX x=-10.5, y=-39, z=70.5 , ICC = 0.14 and 80% of subjects
showed an activation, lips: max of RFX x=-57, y=-6, z=39, ICC =-0.15 and 80% of
subjects showed an activation).

4.4.4 Landmark task

In the only contrast of the landmark task that showed any activation in the right
parietal lobe (answered trials landmark vs. answered trials detection), there was no
significant difference between within and between subject overlaps (Table 4.8). Both
variances were high (small overlaps), and in the case of analysis restricted to an
ROI, the average overlap between different subjects was bigger than within the same
subjects; however, this difference was not statistically significant.

Peak activation of the RFX analysis corresponded with low ICC values (Figure 4.19).
On the other side peak ICC values were observed for the same voxels that showed any
non zero values on the stacked overlaps map (note on the stacked map the maximum
overlap is N=3). Thus IPL activation is small and varies between sessions, although
it is consistent across subjects.

4.4.5 Evaluating tasks through their test-retest reliability

We have developed a new technique for looking at the internal validity of a task.
Comparing between and within subject Dice overlaps enables a choice between which
tasks are suitable for surgical planning. We have used this technique to choose the
covert verb generation task over its overt variant and discard the landmark task as
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Table 4.7: Comparison between within and between subject variance for motor tasks. All p
values are two sided. Q values obtained by applying Benjamin-Hochberg False
Discovery Correction to all p-values for each contrast separately. Tests with q-values
below 0.05 highlighted in bold.

Finger vs. Other (N within =10, N between = 45)

H-D median tmean

ROI full ROI full

within 0.761132 0.619930 0.756824 0.608450

between 0.562011 0.338060 0.567423 0.346512

CI
[0.030310 [0.071173 [0.041751 [0.070452

0.342250] 0.391105] 0.326450] 0.388408]

p 0.013333 0.004667 0.008000 0.004667

q 0.013333 0.009333 0.010667 0.009333

Foot vs. Other (N within =10, N between = 45)

H-D median tmean

ROI full ROI full

within 0.713597 0.533353 0.712552 0.533903

between 0.557540 0.313623 0.544175 0.321310

CI
[0.076407 [0.086434 [0.087887 [0.086559

0.263564] 0.310117] 0.271345] 0.299603]

p 0.000000 0.000667 0.000000 0.000667

q 0.000000 0.000667 0.000000 0.000667

Lips vs. Other (N within =10, N between = 45)

H-D median tmean

ROI full ROI full

within 0.857566 0.464320 0.853359 0.464550

between 0.657252 0.239766 0.646546 0.267673

CI
[0.109267 [0.082572 [0.116745 [0.067742

0.275757] 0.326871] 0.277179] 0.306335]

p 0.000000 0.002667 0.000000 0.004667

q 0.000000 0.003556 0.000000 0.004667
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Table 4.8: Comparison between within and between subject variance for landmark task. All
p values are two sided. Q values obtained by applying Benjamin-Hochberg False
Discovery Correction to all p- for each contrast separately. Tests with q-values below
0.05 highlighted in bold.

Landmark (N within =10 N between = 45)

H-D median tmean

ROI full ROI full

within 0.065536 0.113074 0.081616 0.126288

between 0.197776 0.091920 0.184178 0.098469

CI
[-0.253168 [-0.117770 [-0.216622 [-0.100957

0.124880] 0.220737] 0.104472] 0.199243]

p 0.277333 0.791333 0.308000 0.745333

q 0.616000 0.791333 0.616000 0.791333

not being reproducible on single subject level. In addition the technique might pro-
vide valuable insights for neuroimaging in general as the comparison with RFX and
ICC allows those areas showing strong and reliable signals (RFX, ICC, and stacked
overlap) to be distinguished from those with weak but consistent signal (high t val-
ues on the group level, but low ICC and stacked overlap); such patterns might reflect
differences inherent to the computations being performed and the necessity of such
regions in the task involved.
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Figure 4.15: Comparison of mixed effect analysis, ICC, and stacked overlaps. All maps were
restricted with their respective ROI masks. Mixed effects map was thresholded
using topological FDR with 0.05 cluster-forming threshold and 0.05 cluster extent
threshold. Stacked overlaps map was thresholded at 1. Tasks from the top: overt
word repetition, covert verb generation, and overt verb generation.



4.4 reliability of tasks 88

Figure 4.16: A) Distributions of covert (green) and overt (blue) ICC values within the ROI. (B)
Map showing where the ICC distributions are different.
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Figure 4.17: Dice coefficients (within ROI) for covert and overt verb generation tasks. Adap-
tive Thresholding on the left and Fixed Thresholding on the right.
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Figure 4.18: Comparison of mixed effect analysis, ICC, and stacked overlaps. All maps were
restricted with their respective ROI masks. Mixed effects map was thresholded
using topological FDR with 0.05 cluster-forming threshold and 0.05 cluster extent
threshold. Stacked overlaps map was thresholded at 1. Tasks from the top: finger
vs. others, foot vs. others, and lips vs. others.
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Figure 4.19: Comparison of mixed effect analysis, ICC, and stacked overlaps. All maps were
restricted with the ROI mask. Mixed effects map was thresholded using topolog-
ical FDR with 0.05 cluster-forming threshold and 0.05 cluster extent threshold.
Stacked overlaps map was thresholded at 1. Landmark task – task answered
greater than control answered contrast.
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4.5 reliability metrics and confounding factors

4.5.1 Introduction

Having used test–retest reliability to compare different thresholding methods and
behavioural paradigms we turn to a more general problem of relations between dif-
ferent ways to measure reliability and factors that can influence it. Despite the fact
that fMRI has been used in thousands of studies, many of which have been indepen-
dently replicated, there is as yet no consensus on how reliable fMRI measurements
are (Bennett and Miller, 2010). At the same time it is widely accepted that fMRI can
provide valuable insights into the human brain even when used on the single subject
level. In other words, the result of analysing fMRI time-series is not random. How-
ever, it is also accepted that there is some variability in the results that cannot be
accounted for by experimental variables. Understanding this variability of fMRI is
crucial to delineating limits of fMRI as a research tool.

Despite the main theme of this thesis it is worth noting that single subject fMRI
is not limited to presurgical mapping. It potentially can be used as a diagnostic tool
(Raschle et al., 2012) and a way to plan and monitor rehabilitation (Dong et al., 2006).
It is also being used to define individual functional regions of interest (ROIs) through
functional localizer tasks (Duncan et al., 2009).

In comparison to group studies, the change of focus in single subject studies is
reflected in a different approach to analysing data. The Holmes–Friston (Holmes and
Friston, 1998) approach discards uncertainty of the first level analysis, the within-
subject variance, by using each subject’s contrast maps instead of t-maps. The uncer-
tainty that influences the group level results comes from the between–subject variance.
In contrast, a single subject examination relies on t-maps, instead of beta parameters
maps, and thus depends on within–subject variance. This difference between which
variance is relied upon has implications for what levels and metrics of reliability are
suitable for group and single subject analyses. For group studies, it is reasonable to
look at the within– and between–session variance of contrast maps as well as the sim-
ilarity of thresholded and unthresholded group level t-maps. By contrast, for single
subject studies, it is the within– and between–session variance of the BOLD signal
and the similarity of t-maps that are relevant.

In the previous analyses we have primarily used volume overlap as a simple mea-
sure to quantify reliability. This method has the advantage of examining the final
product of the neuroimaging analysis, the t-maps, and the same procedure applies to
group or single subjects maps. However, overlap values heavily depend on the thresh-
old applied to the t-maps, since the cluster overlap measures decrease with increasing
threshold (Fernández et al., 2003; Duncan et al., 2009). Additionally, when used over
the whole brain rather than for a specific cluster of interest, different thresholds can
lead to different activation maps but a similar measure of overlap. Finally, this tech-
nique is sensitive to borderline cases; two very similar t-maps, one slightly above a
threshold and another slightly below, would give a false impression of high variabil-
ity (Smith et al., 2005). Nonetheless, thresholded maps are the typical end product of
fMRI analyses and are used for ROI definitions. Furthermore, in the context of presur-
gical planning, which is the main focus of this work, where single subject thresholded
maps are used, their variability is a major concern.
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Nonetheless there are other levels at which one can look at reliability of fMRI. ICC
is one of the other popular reliability measures. We have used it in previous anal-
yses because it is widely acknowledged in the community. It was initially used in
psychology to asses between raters variability (Shrout and Fleiss, 1979), but has been
adapted to measure reliability (McGraw and Wong, 1996) by replacing judges/raters
by repeated measurement sessions. Since this metric combines both between-subject
and between-session variance, it is suitable for providing insights into random ef-
fect group analyses. However, the same value of ICC can come from both high
σ2r (beetween subjects variance) and low σ2e(between sessions varaince) or low σ2r and
high σ2e, which makes the comparison between tasks harder. ICC is in fact more
heavily influenced by between-subject variance than between-session variance (the
variable of interest), making its usefulness as a quality estimator for group studies
debatable. From the single subject point of view, between-subject variance is irrele-
vant and therefore it is more informative to consider only between-session variance.
Furthermore, in contrast to volume overlap, it is not the variance of contrast maps
(between–subject) that must be considered but the variance of t maps (contrast maps
weighted by error). In the same way volume overlap is sensitive to the selected thresh-
old, t value variability in ICC can be influenced by the design matrix used in GLM.
This involves regressors, the hemodynamic response function (HRF) and contrasts
definitions. For instance, Caceres et al. (2009) found that one can have highly corre-
lated time–series but with a poor model fit leading to low reliability. They concluded
that the wrong HRF model can lead to low reliability. However, inadequate regressors
and contrast could also lead to similar results.

Apart from the issue of how to measure fMRI reliability, a further important ques-
tion is what causes the lack of reliability in the first place and how this could be
prevented. One of the suspected sources of variation in brain activation patterns is
the possibility that different cognitive strategies and therefore different neuronal re-
sponses are produced by different subjects. These effects don’t necessarily have to be
task related. In a block design experiment, it would be enough that the subject consis-
tently performs different mental tasks during the rest period to provide significantly
variable results. The influence of this kind of variability is very hard to quantify be-
cause of the lack of access to the true neuronal activation patterns. It is, however,
very likely that the type of task can reduce this “cognitive noise”. For example, a
simple finger tapping task involving primary motor cortex requires fewer possible
cognitive strategies than the Iowa Gambling Task. Other possible sources of reduced
reliability are easier to quantify. These include, but are not limited to, scanner noise,
subject motion, and between–session coregistration errors. Even though these con-
founds have been recognized in the literature numerous times, to our knowledge,
there is no analysis on how much they contribute to reliability metrics. To date, the
only study examining such effect was performed by Raemaekers et al. (2007) who
showed a positive correlation between “sensitivity” (average absolute t value) and
between–session volume overlap.

In this section we will try to quantify how different measures of reliability relate to
each other and how they are influenced by confounding factors.
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4.5.2 Reliability measurements and confounds

To simplify the analysis we have not used the overt verb generation task in the fol-
lowing section. This decision was justified by the fact that it performed worse than
its covert counterpart which we have shown in the previous section.

4.5.2.1 Measuring reliability

In addition to volume overlap of thresholded t maps described in the previous section
the following additional measurements were performed:

between–session correlation on time–series After the EPI sequences have
been realigned, normalized, spatially smoothed, and detrended using second or-
der polynomials, Pearson correlation coefficients between first and second ses-
sion time-series were calculated for each voxel and then averaged. This allowed
the determination of the similarity of the measurements before any statistical
or HRF models had been fitted.

between-session variance of unthresholded t maps t-maps were first cor-
rected for global effects using estimates of the mean of the noise distribution
estimated using AT (see Chapter 3). The mean of the squared between–session
differences was calculated

tdiff =
1

n

∑
i

(ti1 − ti2)
2 (4.2)

where n is the number of voxels, ti1 and ti2 are the ith voxel t values from the
first or second session respectively. This measure is equivalent to the between-
session component of Intraclass Correlation Coefficient (ICC), but adapted here
for single subject analysis. The mean tdiff across subjects is inversely propor-
tional to ICC, assuming constant between-subjects variance across sessions. The
derivations for this relation depend on the assumptions made while calculating
ICC (for k=2 sessions case):

1. ICC(1) assumes no session (learning) effects and is defined for one voxel
as following

ICC(1) =
σ2r

σ2r + σ
2
w

(4.3)

where σ2r is between subjects variance and σ2w is defined in the following
manner

σ2w =

∑n
j=1(t1j − t2j)

2

n
=

∑n
j=1 tdiff(j)

n
(4.4)

where n is the number of subjects, t1j and t2j are t values for subject
j for first and second sessions respectively, tdiff(j) is tdiff for subject j.
Therefore:

((ICC(1) ∝ 1

σ2w
)∪ (σ2w ∝ tdiff))⇒ ICC(1) ∝ 1

tdiff
(4.5)
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2. ICC(3,1) assumes session effects (learning) and is defined as

ICC(3, 1) =
σ2r

σ2r + σ
2
e

(4.6)

where σ2e is defined in the following manner

σ2e =

∑n
j=1((t1j − t1) − (t2j − t2))

2

n− 1
(4.7)

where t1 and t2 are across subjects mean t values for first and second
sessions respectively. Since:

((t1j − t1) − (t2j − t2))
2 = ((t1j − t2j) − (t2 − t1))

2

= (t1j − t2j)
2 − 2(t1j − t2j)(t2 − t1) + (t2 − t1)

2

= (t1j − t2j)
2 + (t2 − t1)((t2 − t1) − 2(t1j − t2j))

Therefore:

σ2e =

∑n
j=1[(t1j − t2j)

2 + (t2 − t1)((t2 − t1) − 2(t1j − t2j))]

n− 1

=

∑n
j=1[tdiff(j) + (t2 − t1)((t2 − t1) − 2(t1j − t2j))]

n− 1

The relation between σ2e and tdiff(j) depends on the contributions of the
session effects mainly through the t2 − t1 part of the equation. However,
for small or no session effects the relation still holds:

((ICC(3, 11) ∝ 1

σ2e
)∪ (σ2e ∝ tdiff))⇒ ICC(3, 1) ∝ 1

tdiff
(4.8)

4.5.2.2 Measuring confounding factors

For each of the above measurements, a multiple regression model with the task,
scanner noise, subject motion (total displacement, stimuli/motion correlation, and
interaction between task and stimuli/motion correlation) and coregistration error as
regressors was fitted to the data (for the design matrix see Figure 4.20). The rows of
the design matrix corresponded to subject/task combinations (i.e. each subject was
present multiple times – once per each task).The relative importance bootstrap tech-
nique (Ulrike Grömping, 2006) with the Lindeman–Merenda–Gold metric (Lindeman
et al., 1980) was used to assess the contribution of independent variables to the total
explained variance. In short, this technique estimates relative importance by generat-
ing combinations of the given model and weighting contributions to the total R2 by
the order of adding variables. The estimates are boot–strapped 200 times to establish
confidence intervals.

scanner noise

To estimate the noise due to scanner related fluctuations, the temporal Signal to
Noise Ratio (tSNR) was measured

tSNR =
1

n

∑
i

µi
σi

(4.9)
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where n is the number of voxels, µi and σi are the mean and the standard
deviation of the ith voxel across time. The average was taken across all voxels
within the brain mask. Before calculating tSNR, the time-series were truncated
by discarding the first four volumes, realigned to remove motion confounds
and detrended using second order polynomials.

subject motion Two metrics were used to characterize motion: total displacement
and stimulus by motion correlation. Total displacement (Wilke, 2012) measures
in a single variable the overall motion using realignment parameters from ev-
ery EPI volume. This measure has the advantage of capturing cortical voxel
displacement due to both translation and rotation. Subject motion was charac-
terised here by an average over this parameter from both sessions. Stimulus/mo-
tion correlation allowed the influence of motion on regressors of interest (and
thus beta values) to be measured. For every design matrix (80 design matrices:
4 tasks × 10 subjects × 2 sessions), we measured the correlation between the
regressors of interest and motion regressors using multiple regression models.
The dependent variable of this model were the stimuli regressors (after HRF
convolution) multiplied by the contrast vector, whilst the 6 motion parameters
were used as independent variables, This way, for every design matrix, we were
able to calculate R2 —- the percentage of stimuli variance explained by motion.
As for total displacement, values from the two sessions were averaged.

coregistration error Inaccuracies of coregistering EPI volumes between two
sessions was characterised by the correlation ratio (Roche et al., 1998) between
mean EPI volumes from the two sessions. This metric measures functional de-
pendencies between voxel intensities and has been previously used as a reg-
istration cost function. The correlation ratio was calculated on brain–masked
volumes.

4.5.2.3 Measuring relations between reliability metrics

To investigate the relationships between reliability metrics, robust Spearman corre-
lations with outlier removal (Rousselet and Pernet, 2012) were computed between
each pair of measurements before and after fitting the multiple regression models
accounting for confounds.

For each subject, the HD estimate of the median of tdiff and each time–series were
also computed for three different ROIs: the area activated in both sessions (overlap),
the area activated in one (either the first or second) of the sessions, and the area not
activated in any of the sessions. Correlations were then computed to test whether the
voxelwise reliability measures (tdiff and timeseries correlations) were significantly
different between these regions.

4.5.3 Non–Dice based reliability

Low mean correlation values were observed on voxel time–series across the four
tasks (range 0.07 to 0.17). Time–series correlations were not homogenous through
the whole brain and higher values were observed within ROI (range 0.12 to 0.23)
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Table 4.9: Reliability measurements obtained across the full brain and within ROI. Significant
differences in within and between subjects Dice overlaps are marked in bold. For
the motor task the average across three contrasts is shown in the brackets).

Mean timeseries correlation mean tdiff

Finger

Full brain 0.101± 0.040

1.98± 0.505
Foot 2.10± 0.524
Lips 2.44± 1.15

All 2.17± 0.80
Finger

Motor cortex 0.230± 0.067

2.03± 0.78
Foot 2.50± 0.53
Lips 1.85± 0.70

All 2.13± 0.73

Verb generation
Full brain 0.070± 0.084 3.58± 1.15
BA44/45 0.120± 0.086 4.39± 2.28

Word repetition
Full brain 0.090± 0.031 2.83± 0.68

Auditory cortices 0.255± 0.066 3.42± 1.24

Landmark
Full brain 0.135± 0.054 1.69± 0.28
Right IPL 0.173± 0.063 1.97± 0.37

compared to the whole brain (Table 4.9). This indicates that for ’activated’ regions,
time-series were more similar than for non activated regions.

The opposite pattern of results was observed with tdiff (the between session vari-
ance of T values). We observed lower tdiff values for the whole brain (range 1.36 to
6.1) than within ROI, (range 1 to 8.4), but high tdiff values indicate lower reliability.
However, as we show later, there was no clear relation between absolute t values (‘ac-
tivated‘ area) and tdiff. For an example map showing the reliability measures of one
subject see Figure 4.21.

4.5.4 Contribution of scanner noise, subject motion and coregistration errors to between-
session variance.

4.5.4.1 Data modelling

Since multiple regression is based on correlations, it requires a non-zero variance of
the explaining factors. As shown by the correlogram between all of the confounding
factors (Figure 4.22), the explaining factors have a reasonable spread of values (for
example total displacement ranges from 0.2 to 1.4mm). We also looked at the contri-
butions of the number of artefact volumes found by the ArtDetect algorithm used in
preprocessing. These volumes are selected based on the signal intensity and motion
signals and added as a confounding regressor (one per artefact) to the single subject
design matrix. On average there were 1.75 artefacts in motor tasks, 0.27 in word rep-
etition, 1 in verb generation, and 2.95 in line bisection. Despite the fact that the tasks
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differed significantly in terms of these numbers (F(5,53) = 4.121 p = 0.003) adding
them to the multiple regression model used to analyze reliability did not yield signif-
icant improvements in the model fit (similar adjusted R2). Similarly, the model used
here was the most parsimonious among a set of models where motion regressors
were modelled either as a single parameters, split per task or both (see Table 4.10).

4.5.4.2 Model results

Fitting task, scanner noise, subject motion and coregistration error to the time–series
correlation values led to a R2 of 40.47% (F(10,28) = 1.903, p=0.08767; adjusted R2 =
19.2%) with a large contribution of the task (17.53%) and subject motion 20%. When
tested on tdiff (the between-session differences of t values — a component of the
ICC measure), the model yielded a higher R2 of 67% (F(14,44) = 6.479, p = 8.171e-07;
adjusted R2=57%) with again a large contribution of the task (40.32%) but also of
motion (24%) and scanner noise (11.02%). Finally, when fitted to the Dice values, the
model produced an R2 value of 71% (F(14,44)=7.86, p=5.947e-08, adjusted R2 62%)
with again a major contribution of the task (42.68%) and motion (23%).

Overall task-induced variations is a major single contributor to reliability (18%,
31%, and 43% respectively). This could be explained by the high variability of the
landmark task compared to others. If we sum up contributions from all motion re-
lated regressors (total displacement, stimuli/motion correlation, and interaction be-
tween task and stimuli/motion correlation) it also explains a large portion of the vari-
ance (20%, 24%, and 23% respectively). Interestingly, this was not the actual amount
of motion that mattered the most (i.e. total displacement), but the correlation between
the stimulus presentation (paradigms) and motion. Scanner noise and coregistration
confounds add little to the equation, accounting only for 6%, 2% and 6% respectively
(see Table 4.11 and Figure 4.23).

No matter how we measured reliability, out of the most commonly reported in
previous reliability studies of confounds (scanner noise, subject motion, and correg-
istration error) only subject motion has a high contribution. To further verify this
findings, we reran the reliability analysis on data acquired using the same pipeline
but without motion correction (no realignment with runs, no motion parameter re-
gressors and artefact detection in the design matrix). Turning off these corrections
decreased the Dice overlap by 20% (t(58) = 3.0795, p = 0.003166), increased tdiff by
28% (t(58) = -4.4787, p = 3.578e-05) but did not influence time-series correlation sig-
nificantly (8% decrease; t(38) = 1.6644, p = 0.1043). It is worth noting that for Dice and
tdiff, turning off motion lead to changes equivalent to the amount of variance that
can be explained by motion regressors, that is motion lead to a decreases in T value
reliability and thus a decrease in map overlap.

4.5.5 Relationships between reliability metrics

No significant correlations were observed between time–series correlations, t value
variance and Dice coefficients. Weak negative correlations were observed between
time–series correlations and tdiff, however these weak effects disappeared once con-
founds were accounted for (see Figure 4.23). At the same time regressing out the con-
founds strengthen the relation between tdiff and Dice making it statistically signifi-



4.5 reliability metrics and confounding factors 99

Table 4.10: Goodness of fit of different combinations of motion regressors. All models in-
cluded task, scanner noise and corregistration error regressors. The best model (in
bold) was chosen based on the adjusted R2 (total variance explained accounting
for the number of regressors) and Akaike information criterion (AIC) on the Dice
measure. Despite the fact that the models that include total displacement and task
interaction had slightly better AIC and adjusted R2 results for time–series corre-
lation and between–session variance, they also experienced colinearity problems
due to high correlation between task and interaction regressors. Because of this
co–linearity estimation of relative importance was nearly impossible and a sim-
pler model was chosen.

Time-series corre-
lation

tdiff Dice

Total displace-
ment and stim-
ulus by motion
as unique re-
gressors (2
regressors)

R2 = 0.327

Adj. R2 = 0.175

AIC = -104.388

R2 = 0.626

Adj. R2 = 0.557

AIC = 132.423

R2 = 0.568

Adj. R2 = 0.489

AIC = -43.701

Total displace-
ment as 1 regres-
sor across all
tasks and split
by tasks + stim-
ulus by motion
as 1 regressor
across all tasks (6
regressors)

R2 = 0.430

Adj. R2 = 0.227

AIC = -104.894

R2 = 0.662

Adj. R2 = 0.554

AIC = 136.396

R2 = 0.584

Adj. R2 = 0.452

AIC = -35.912

Total displace-
ment as 1 regres-
sor across all
tasks + stimulus
by motion as 1
regressor across
all tasks and
split by tasks (6
regressors)

R2 = 0.404
Adj. R2 = 0.192
AIC = -103.1326

R2 = 0.673
Adj. R2 = 0.569
AIC = 134.4486

R2 = 0.7143
Adj. R2 = 0.623
AIC = -58.02556

Total displace-
ment and stim-
ulus by motion
split by tasks (8
regressors)

R2 = 0.5378577

Adj. R2 = 0.297

AIC = -107.009

R2 = 0.7136207

Adj. R2 = 0.574

AIC = 136.686

R2 = 0.7249795

Adj.d R2 = 0.590

AIC = -50.260

Total displace-
ment and stim-
ulus by motion
as 1 regressor
across all tasks
and split by tasks
(10 regressors)

R2 = 0.5378577

Adj. R2 = 0.297

AIC = -107.009

R2 = 0.7136207

Adj. R2 = 0.574

AIC = 136.686

R2 = 0.7249795

Adj. R2 = 0.590

AIC = -50.260
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Table 4.11: Relative contribution in percentage (with 95% confiance intervals) of task, scanner
noise, subject motion and coregistration error to time-series correlation, between
sesion variance and Dice overlap.

Time-series correlation tdiff Dice

Task 17.54% 31% 42.68%

[7.31 49.19] [20.4 48.25] [22.39 63.76]

Scanner noise 1.57% 11.84% 4.48%

[0.57 22.66] [1.67 25.95] [0.5 16.23]

Subject motion 7.18% 0.48% 4.95%

(total displacement) [0.63 23.44] [0.03 4.46] [1.14 15.56]

(stimuli/motion correlation) 4.5% 17.96% 3.84%

[1.14 26.35] [4.35 40.08] [1.23 14.21]

(taskstimuli/motion correlation) 8.4% 5.35% 14.52%

[1.84 36.4] [1.60 17.17] [4.2 25.81]

Coregistration error 1.28% 0.66% 0.96%

[0.18 10.95] [0.16 3.42] [0.24 6.67]

cant ( = 3.11 vs. 0.05 = 2.43). The direction of the relation (r=-0.44) makes conceptual
sense (smaller differences in t values lead to higher overlaps). To investigate further a
possible (non–monotonic) relationship between these variables, all voxels from each
task/contrast were pooled together to create a series of scatter plots between t values
and time–series correlations and tdiff.

Most voxels with high t values show increased time–series correlation for all tasks.
The same is true for negative t values, which indicates that even though the nega-
tive t values are not usually of interest, they are stable between–sessions even on
the time–series level (Figure 4.24a). It is also worth noting that there were many
voxels with high correlation but low t value. These indicate a reliable signal not
captured by the design matrix. When restricting the analyses to overlapping vs. non–
overlapping activated areas, the highest time–series correlation values were observed
in the overlapping (those that by definition will have high t values) rather than non–
overlapping areas (Figure 4.25), confirming that high t values relates to reliable voxels
(time–series).

No relationship was observed between mean t values and the variance (tdiff). High-
est tdiff values (poorest reliability) were observed for t values close to zero, but one
has to bear in mind that those values were also the most common (see Figure 4.24b).
There were, however, differences in the observed patters between tasks. The distribu-
tion of tdiff across mean t values was almost uniform for verb generation. This was
in contrast to the lips task for which the highest tdiff values were observed almost
exclusively for the voxels with t values close to zero. The landmark task, on the other
hand, showed a smaller spread in both t values and their between-session variance.
When restricting the analyses to overlapping vs. non-overlapping activated areas, we
noticed that mean tdiff in the overlapping area was no different than in the parts of
the brain that were not active in either of the two session, but there was a significant
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increase of tdiff for non overlapping active areas (see Figure 4.25). This relation can
even be observed on the individual subjects maps (see Figure 4.21). In other words,
tdiff is bigger in regions that were active in one of the sessions, but not in both of
them. These are usually the borders of suprathreshold clusters.

We have shown that reliability is mostly influenced by the task and motion (es-
pecially correlated with the stimuli). Scanner noise and coregistration errors on the
other hand, have little influence on reliability. We have also shown that relationships
between reliability measures are not straightforward. This means that one cannot
make decision about reliability of suprathreshold maps based on ICC alone.
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Figure 4.20: Design matrix of the multiple regression model used to establish contributions of
confounding factors to reliability measures. Each row in this matrix corresponds
to one subject and one task/contrast (therefore each subject entered the analysis
multiple times - once per each task/contrast). Please note that since the relative
importance technique has been used on top of this model the order of the regres-
sors (columns) does not matter.
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Figure 4.21: Brain statistical maps from a representative subject (subject 2). There is a spatial
correspondence between time-series correlation (TS corr) and mean t maps, but
there is no correspondence between tdiff and mean t. Additionally most heat
points of the Tdiff maps overlap with non-overlapping active areas (orange and
red colours in the overlap column).The anatomical ROIs are marked in green.
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Figure 4.22: Distributions of modelled explanatory factors to reliability. Combinations of sym-
bols and colours of points represent different subjects.
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Figure 4.23: Relationships between reliability measures and confounds. Top row: percent-
age of timeseries correlation, tdiff, and Dice variance explained by task, scan-
ner noise (tsnr), motion (total displacement (td), stimulus by motion correlation
across tasks (s/m corr) and split by task (tasks/m corr)), and corregistration er-
ror (corr_err). Middle and bottom row: Scatter plots between reliability metrics
(middle = raw metrics, bottom = metrics after removing confounds). The skip cor-
relation was computed on data points after outlier removal (outliers are marked
as circle —- polygons highlight the centre (75th decile) of the data cloud).
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Figure 4.24: Joint distributions of mean t values and timeseries correlations (a) and mean t
values and tdiff (b). Voxels from all subjects were pooled together.
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Figure 4.25: ROI analysis of voxel–wise reliability metrics. H-D median of tdiff and time-
series correlation for three different ROIs: area activated in both sessions, area
activated in either the first or second session, area not activated in any session.
P values were estimated using pair–wise (within–subject) one sample bootstrap
test. Each colour represents a different subject.
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4.6 discussion

4.6.1 Reliability of thresholding methods

Using AT, we found activations in the expected area of the brain in more cases than
using FT, and paired comparisons of activations maps show bigger between sessions
overlap with AT than FT for most tasks/contrasts. Analysis of reduced datasets also
shows that significant more reliable voxels in expected areas can be observed with
AT when less data is being used. We can hypothesise that each task/contrast has an
upper bound reproducibility (influenced by SNR, variability of underlying neuronal
response etc.) that can be reached when using infinite scanning time. With such hy-
pothetical dataset both thresholding methods should perform equally well. However,
in practice, scanning sequences have finite length and subjects do not always manage
to follow the paradigm throughout the whole experiment. AT managed to recover
reproducible maps with fewer datapoints than FT. In other words AT was able to
reach the aforementioned upper bound of reproducibility quicker than FT.

The main difference between AT and FT is the way the cluster-forming threshold is
chosen. In FT it depends on the smoothness of the data and number of voxels in ques-
tion (when defined as FWE corrected p-value). Despite that dependency, the actual
threshold expressed in T values does not vary much between the sessions. In contrast
AT tries to estimate the distribution of noise (using a Gaussian distribution) and sig-
nal (using a shifted Gamma distribution). This accounts for the SNR of the dataset
and global signal changes that can cause distribution shift (non-zero mean of the
noise Gaussian). These global signal changes are major sources of between-session
variation (Raemaekers et al., 2012), and accounting for them in the thresholding pro-
cess can be the cause of improved single subject test-retest reliability.

4.6.2 Reliability of tasks

Overt word repetition is a reliable localizer of the Wernicke‘s area Group analysis of
the overt word repetition task confirmed the validity of our paradigm. As expected
activation was observed in regions commonly associated with speech comprehension
and production: auditory cortex, Wernicke‘s and Broca‘s areas. Additionally activa-
tion in the motor cortex and SMA was observed, most likely related to the motor
component of the speaking activity. In the single subject analysis within subject (be-
tween sessions) reliability was statistically significantly higher than between session.
This is a strong evidence for suitability of this task for presurgical cortical mapping.

Covert variant of the verb generation task is more reliable than its overt counterpart
One of the goals of this study was to compare overt and covert verb generation tasks
in terms of their single subject reliability. The paradigms were validated by group
analysis which produced activations in Broca’s area, auditory cortex, and SMA. Au-
ditory cortex activation was stronger in the overt version of the task where activation
in left visual cortex was stronger in the covert variant. However, only the covert
verb generation showed a higher within subject than between subject reliability over
Broca’s area. In addition, comparing between session reliability between tasks in a
paired manner (within subjects) we observed that 6 out of 7 subjects had a higher
reliability with the covert task.
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Having twice as many data points (due to continuous vs. sparse acquisition) out-
weighs the advantage of having higher SNR. One can also argue that motion artefacts
could have caused this result, but we have tried to decrease their influence by prepro-
cessing steps (motion correction, artefact detection, inclusion of motion and outlier
regressors in the design matrix). Informal analysis of the estimated motion param-
eters did not show major differences between the two tasks. Our findings indicate
that covert verb generation should be used in favour of the overt verb generation.
However, the question if the underlying cognitive and neuronal mechanisms in these
two tasks are comparable remains open. Finger, foot and lips areas can be reliably
mapped in the motor cortex Not surprisingly motor tasks performed well showing
expected activations in the motor cortex and reliable single subject results.

4.6.3 Landmark task is not reliable enough for presurgical applications

The group analysis revealed activations in locations previously reported in the litera-
ture. The only region active in the “all stimuli”, “only stimuli with responses”, “only
stimuli with correct responses” was the right Lateral Occipital Cortex, Contrasting
answered trials of Landmark vs. detection revealed activations of the SPL and IPL.
Both results are in agreement with previous findings (Fink et al., 2000, 2001). How-
ever, within subject reliability was very poor (not significantly different from between
subject) and in many subject/contrast, no activation was found at all. Additionally
regions reported by group level analysis corresponded with low ICC values. The
explanation for this discrepancy might lie in the fact that Holmes-Friston group anal-
ysis procedure discards error term (residuals) from the first level. ICC and single
subject analysis will down weight noisy voxels. This task seems thus unsuitable for
single-subject mapping.

4.6.4 Reliability metrics and confounding factors

Studies involving fMRI are complex and easily influenced by many factors. This is
not only because the subject in question, the human brain, has intricate and not fully
understood hemodynamics. The data acquisition and processing is a multilevel com-
plicated process (Savoy, 2005). In this study, we investigated how different factors can
contribute to between-session variance. We found that about 30-40 % of the observed
single subject reliability (unthresholded or thresholded T-maps) can be explained by
the task used and that among confounding factors, motion is the main problem ac-
counting for about 20% of the variance.

4.6.5 Choosing the right metric

One important aspect of this study is the application of different methods of measur-
ing reliability. Specifically, we assessed three different ways of measuring reliability,
from the correlation of time-series, to t values and thresholded t maps. In addition,
compared to many previous studies (Raemaekers et al., 2007; Caceres et al., 2009), we
have not restricted our measurements to a predefined ROI or split analyses between
different ROIs. This decision was motivated by the fact that reliability and activations
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are not strictly related (see e.g. Caceres et al., 2009) and in some cases like Dice, ROI
analysis introduces a selection bias. It is therefore misleading to assess a task only by
the reliability within a predefined ROI. Our decision to use tdiff as the measure of
between session variability of unthresholded maps was mostly driven by the ability
to relate it to Dice overlap measure. First, we decided to use t-values instead of beta
values because t-values are influenced by residual noise and thus reflect better acqui-
sition (scanner) related variance. Second, tdiff captures the variance of t-values that
translate directly into the extents of suprathreshold regions. Finally, tdiff can be re-
lated to ICC. As mentioned in the Introduction, this choice is of course only relevant
if one is looking at single subject reliability, and betadiff could be more appropriate
for group reliability.

Despite the fact that Dice overlap was previously being criticized as a reliability
measure (Smith et al., 2005), we have still included it in our analysis. Thresholding
as any form of dimensionality reduction can introduce biases and we agree that cal-
culating overlaps of thresholded maps is a rough estimate of reliability. However, let
us not forget that the thresholded maps are what the end result of an fMRI analysis
is. Papers describing group studies are presenting and making claims about thresh-
olded maps. The same applies to the single subject domain. Neurosurgeons plan and
execute procedures based on thresholded maps. Functional localizers produce ROIs
which are nothing less than thresholded statistical maps. We acknowledge problems
with analyzing thresholded maps (that is why we have included two other reliability
metrics) and at the same time we try to minimize their influence. Importantly, we
have used the same method as Smith et al., 2005) for correcting for global effect (a t
value distribution shift derived from a Gamma-Gaussian model).

Indeed, global effects in the context of single subject test-retest reliability has also
been a topic of a recent work by Raemaekers et al., 2012). In their approach they
fitted a line to session 1 vs. session 2 scatter plots. This allowed them to estimate
between session variance as the variance orthogonal to this line. This is a variant
of global effect correction used in our work. Their approach allowed the amount of
shift applied to the t values to be in linear relation to them. In other words, in our
model this line can be shifted from the centre of the data cloud, but keeps the 45

degrees angle. However, the approach we used (Smith et al., 2005) is more flexible
as it allows applying the correction to one session without knowing anything about
the other, i.e. the model is fitted using single session distribution, not the joint scatter
plot. Additionally, when applied to the full brain, a linear fit to the joint distribution
of values from two sessions would be driven by values close to zero and thus not
capturing the shape of the tails which are the activated voxels (see Fernández et al.,
2003).

Finally, we found that good time–series reliability is a necessary but not sufficient
condition for good t map reliability. For example, one could observe a good correla-
tion between time-series of two sessions, but a large difference in t values, a case that
may correspond to a poor model fit, i.e. some regions may activate similarly in both
sessions, in relation to the task, but not with the stimulus or block onsets described in
the design matrix —- such regions can be captured by, e.g. independent components
analyses. More intriguingly, we have observed a similar effect in the relationship be-
tween t values and thresholded maps. Small between-session differences in t values
are necessary for a good suprathreshold overlap, but not sufficient, because a high
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threshold can lead to low Dice overlap. For instance, the task that performed the
worst (landmark) in terms of Dice, was the one showing the lowest tdiff values. This
brings us to a paramount question, namely what makes a good task/analysis? The
task should be reliable, but this is not the full answer, because it can be reliable in
not measuring any meaningful activation. In other words we don’t only want low
between-session t value variance, but also high t values consistently across sessions.
Dice overlap captures this property due to thresholding, since only high t values that
survive thresholding contribute to the overlap. We showed here that using Dice, one
can compare within- vs. between-subject overlap, and a reliable task can be defined
as having a significantly higher degree of overlap within- than between-subjects.

4.6.6 Explanatory factors

The type of task was the main explanatory factor on our reliability metrics, which
can explain the large variance observed across different studies (Bennett and Miller,
2010). Here, one can argue that the large effect observed depends essentially on the
landmark detection task which failed to produce any suprathreshold clusters more
often than the other tasks. This indeed can explain the effect over Dice overlap mea-
surements, but not on tdiff. The observed between-session t value differences were
actually lower for the landmark task than for the other tasks. It is therefore a case
where one can observe differences between small t values not yielding any statisti-
cally significant activation. As already mentioned in the Introduction, this result also
highlights the need to differentiate reliability of the fMRI signal (single subjects) from
reliability of contrast maps (group studies) since a small BOLD signal but with a low
between-subject variance gives significant group results.

The fact that the type of task can have such a big influence on reliability should
perhaps not be surprising. First of all, the tasks in our study were not only different
in terms of the behavioural paradigms (or in other words what the subject was meant
to do during the scan), but also in terms of acquisition parameters. Word repetition
used sparse sampling which in theory should improve SNR (Hall et al., 1999), al-
though at the cost of the number of volumes acquired. Scanning time and therefore
the number of volumes acquired ranged from seven up to almost ten minutes. All the
tasks were executed in blocks, but the landmark task used event related regressors
to restrict the response to correct answers only. All these factors can influence reli-
ability on a purely data acquisition level. Further studies with systematic variation
of these parameters, for example sparse/non-sparse, block/event related and num-
ber of volumes acquired, would be necessary to establish their exact contribution to
reliability.

Apart from the data acquisition aspect of different tasks there is one more impor-
tant reason explaining the observed influence of the task type on reliability. Different
tasks involve different neuronal populations and can incorporate different cognitive
strategies. For a given task the same observed behavioural response, such as generat-
ing a verb, can be achieved by different neuronal subsystems, hence eliciting different
BOLD reaction. We hypothesise that this “cognitive freedom” is different for differ-
ent tasks. For example, a simple finger tapping task is most likely to be executed in a
similar fashion each time. In contrast, a more sophisticated task involving language
generation or spatial attention could involve different neuronal subsystems each time.
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This might be part of the explanation why in our study the landmark task did not
perform well in terms of single subject reliability.

Scanner noise, and coregistration errors have previously been suggested to con-
tribute to reliability (Bennett and Miller, 2010; Caceres et al., 2009; Fernández et al.,
2003). Even though we have found such relationships, their magnitude was surpris-
ingly small. Both of the confounding factors we investigated have been accounted and
corrected for in the data processing pipeline. Scanner noise, for example, can be influ-
enced by signal dropouts due to failing coils. Smoothing can mitigate this to a certain
extent by improving tSNR, although this is achieved by the loss of spatial accuracy.
Volumes with sudden signal dropout are also either removed or accounted for in the
design matrix during the artefact detection step. As for the coregistration step, it is
perhaps not surprising that modern algorithms managed to realign brain volumes of
the same person scanned using the same sequence on the same scanner. Our results
therefore suggest that thanks to advances in data processing methods, issues such
as scanner noise and coregistration errors are not the most important contributing
factors to between-session variance. This is, however, true only within normal work-
ing conditions. For example a serious scanner malfunction would inevitably result in
poor reliability.

Subject motion on the other hand had non-negligible influence on reliability. It
was the largest confounding factor (the 2nd largest explanatory variable) and for
time-series correlation, even explained more than the task. Comparison of realigned
vs. non realigned data confirmed those results by showing equivalent changes in
tdiff and Dice. Only correlations on time-series were not significantly affected by
turning off motion correction (-8%) despite a large portion of the variance explained
by motion regressors on realigned data. In the present context this is difficult to
explain. One possibility is that using Pearson correlation is not efficient enough to
fully capture changes in reliability given the various limitations related to data range
restriction, curvature, or heteroscedasticity (Wilcox, 2005). Importantly for planning
fMRI experiment, we have found that motion correlated with the stimuli explains
the lack of reliability much better than absolute motion. On time-series correlation
(i.e. before model fitting) both total displacement and motion correlated with the
stimuli mattered whilst for tdiff and Dice, only motion correlated with the stimuli
mattered. This can be explained by the fact that t-values depends strongly on the
signal correlated with the task (beta value) while the whole time-series correlation is
also affected by the overall motion. This finding has implication towards behavioural
task design and poses a question of theoretical upper limit on single subject reliability
of motion related tasks. It is, however, important to also acknowledge the limitations
of our modelling approach. We did not control explicitly the levels of confounding
factors. In this study we have looked at the relation between reliability and measured
(but not induced experimentally) confounds. What we are reporting is how much
these factors explain the variability in reliability measures. This approach has some
obvious limitations – for example if all of the subjects were expressing substantial
motion but of an identical level there would be no variance within the confounding
factor and it would yield no explanatory value. However, as we shown in Figure 4.22

we have a reasonable spread of combinations of values of confounds across subjects
and tasks which allows concluding reasonably on the contribution of each factor.
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4.7 summary

In this chapter we have shown that AT can detect and create more reproducible areas
of activation then FT. This effect was even more pronounced in case of fewer data
points (shorter scanning times).

Using AT, we determined a new approach to select tasks suitable for single subject
analyses. Among the tasks chosen, motor tasks showed very satisfactory reliability.
Most of language tasks (overt word repetition, covert verb generation) also produced
reproducible activations. However, overt variant of the verb generation task did not
perform as well as the covert counterpart. The advantage of more natural and con-
trolled task and higher SNR due to longer TR was outweighed by higher number of
data points and fewer motion related artefacts. Finally, the landmark task does not
provide single subject activations that are reproducible enough to be used for cortical
mapping.

To conclude, we have shown that task and motion (especially correlated with the
stimuli) can have significant detrimental effect on reliability. Coregistration errors and
scanner noise, however, contribute much less to observed reliability variance
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C L I N I C A L P I L O T S T U D Y

5.1 introduction

This work has been done in collaboration with Prof. Iain Whittle

In the previous chapters we have established a methodology for performing presur-
gical planning using fMRI. This included a new adaptive method for automatic
thresholding of statistical maps and selection of behavioural tasks suitable for pro-
viding reliable results. In the following chapter we present results from the applica-
tion of these tools to a group of patients with brain tumours. Our goal was to test the
methods and paradigms and check correspondence between ECS and fMRI mapping,
in relation with pre-surgical behavioural deficits.

5.2 methods

5.2.1 Patient population

Eighteen patients diagnosed with a brain tumour were included in the study (8 fe-
males, 10 males). The median age was 42.5 years (min = 25, max = 75 years). Patients
were recruited based on the tumour location (nearby motor cortex, Wernicke and
Broca‘s areas) and their suitability for surgery. The most common tumour types were
GBM and meningioma (see Figure 5.1). The study was approved by the local Research
Ethics Committee.

Oligodendro glioma 11% Metastatic 11%

Astrocytoma 17%

GBM 33%

Unknown 6%

Meningioma 22%

Figure 5.1: Distribution of tumour types found in patients included in the study.
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5.2.2 Scanning procedure

Based on the findings from the previous chapter we selected three fMRI paradigms:
motor (with the finger vs. others, foot vs. others, and lips vs. others contrasts), covert
verb generation (for mapping Broca‘s area) and overt word repetition (for mapping
the auditory cortex and Wernicke‘s area). For details of scanning procedures and
data processing see Chapter 3 and Chapter 4. In all cases AT was used to create the
suprathreshold maps.

5.2.3 Behavioural tasks

To assess behavioural deficits prior to the surgery a series of neuropsychological tests
have been administered. Hand dexterity has been assessed using The Nine Hole Peg
Test (9HPT —- see Grice et al., 2003; Mathiowetz et al., 1985. In this test the patient
was asked to put nine wooden pegs into a square board with nine holes (all pegs
and holes are the same, and order does not matter). After performing a test trial to
get accustomed with the task, patients were timed on a second trial. Timing started
with the patient grasping the first peg and finished when they inserted the last peg in
the last remaining hole. Cut off time was 120 seconds. Patients were tested for both
hands separately. According to the norms in Mathiowetz et al. (1985), the test was
considered to be unsuccessful if the patient finished the task in a time longer then
the mean + two standard deviations for the corresponding sex and group age.

To asses gait and mobility performance a 10 meter walk test was performed. In
this simple test patients were asked to walk at a comfortable pace in a 10 meter
stretch of corridor. The time to cover this distance was measured and the average
speed was calculated. This speed was compared to the sex/age matched healthy
controls norm (Bohannon, 1997). Again, the test was considered to have failed if the
speed was lower than norm mean minus two standard deviations. Based on these
two tests patients were divided into two subgroups: those with a motor deficit and
those without. Failing at least one test was sufficient to be assigned to motor deficit
group.

Additionally, six patients with speech and language related syndromes underwent
two more tests, namely the Rey Auditory Verbal Learning test (RAVLT see Rey, 1941;
Schmidt, 1996 and the Controlled Oral Word Association Test (COWAT —- see Loon-
stra et al., 2001). RAVLT involves presentation and memorizing several lists of words
followed by a delay, and a recognition task with distractors. In COWAT, patients
were asked to name as many words beginning on letters “F”, “A”, and “S” within
60 seconds for each letter. As in the previous examples, norms were used to classify
the tests results (Geffen et al., 1990; Loonstra et al., 2001). A score lower than the
sex/age matched average reduced by two standard deviations was considered a fail-
ure. Patients that failed at least one language test were labelled as having a language
deficit.
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5.2.4 Surgery

All patients were operated on by Prof. Ian Whittle. Prior to the procedure fMRI
data were used for planning and assessing the risks. Based on the fMRI data six
patients did not undergo ECS. Out of remaining twelve, nine had the stimulation
points recorded; missing data for three patients was due to technical problems or
lack of consent from the patient. After craniotomy, but before the resection, the site
of ECS was recorded by taking a photograph of the brain with paper labels and refer-
ence ruler. Stimulation was then performed using a bipolar electrode with amplitude
ranging between 2.5 and 4 mA, and frequency of 60Hz.

5.2.5 Cortical mapping assessement

For each case fMRI scans were visually inspected to asses the distance between the
active area and the tumour. Each fMRI map (finger, foot, lips, Wernicke, Broca) was
labelled as being close to the tumour if this distance was less than 10mm. Each case
was also assessed based on the expected location of the activation. If the activation
was not found in its typical location (M1 for finger/foot/lips, BA 44/45 for Broca, BA
22 for Wernicke) or the pattern was unusual (such as asymmetrical lips activation)
the map was labelled as “unexpected”. These changes were taken as signs of either
changes of location due to mass effects or plasticity.

For cases with recorded ECS location, each stimulation point was positioned man-
ually on the structural MRI map using the intraop photographs and post surgery
notes. This allowed the assessment of the correspondence between fMRI and ECS by
labelling each stimulation point as a true positive (fMRI activation and positive ECS
response), true negative (no fMRI activation and lack of ECS response), false positive
(fMRI activation, but no ECS response), or false negative (no fMRI activation, but an
ECS response) —- Figure 5.2. Each fMRI map was assessed separately. Therefore, for
example, a stimulation point eliciting finger response at a location predicted by the
finger activation map is a true positive for that map, but a true negative for the foot
map.

ECS was also used to classify the stimulation points in terms of proximity to the
tumour. If a positive ECS stimulation was found within 10mm from the tumour based
on post-operative notes and photographs, the case was labelled as being close to the
tumour. Using the behaviouraly derived labels (deficit/no deficit; motor/language)
and distance between the eloquent cortex and the tumour (derived from fMRI and
ECS), eight contingency tables were generated, namely two (fMRI/ECS) for each task
(finger/foot/lips/speech). McNemar tests were calculated for the contingency tables
to establish the statistical significance of the relations.

5.3 results

5.3.1 Behavioural test

Three patients did not manage to complete the 9HPT. Among the remaining subjects,
theaverage time to complete was 15.55 sec (std: 3.54) for the right hand and 16.46
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Figure 5.2: One of the surgical cases with ECS. Arrows shows correspondence between the
stimulation points and fMRI.

sec (std: 7.26) for the left hand. The average pace in the 10 meter walk test was 1.25

m/sec (std: 0.36).
For the six patients that performed the language test, the average RAVLT score was

52.66 (std: 21.19), and average COWAT score was 27.83 (std: 10.24). The high spread
of the measurements is due to differences in age and case severity.

5.3.2 fMRI mapping success rate and cortical plasticity

On average fMRI maps were successfully created in 92.96% of the cases (for task
break down see Table 5.1). Unexpected activation pattern or location was found in
39.4% of the cases (for task break down see Table 5.1). An example of an abnormal
activation pattern is shown in Figure 5.3.

Table 5.1: Rates of successfull mappings and mappings that provided unexpected location for
different tasks.

finger foot lips Wernicke Broca

success rate 100.00% 94.44% 94.44% 75.00% 88.89%

unexpected location 44.44% 27.78% 55.56% 25.00% 33.33%
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A B

Figure 5.3: fMRI maps of lips representiation in the motor cortex. Normally lips movement
is represented bilaterally on the same level (A). However, in presence of a tumour
this pattern can change, by shifting the ipsitumoural representation of lips (B).

5.3.3 Correspondence between ECS and fMRI

We have found 100% correspondence between fMRI and ECS for both motor (see
Table 5.2, Table 5.3, and Table 5.4) and speech (see Table 5.5). However, there were
many more negative ECS stimulation points than positive ones (49 vs. 9). Nonetheless,
no false positives or false negatives were observed.

Table 5.2: Correspondence between ECS stimulation and fMRI map for finger movement

ECS

pos neg

fMRI
pos 4 0

neg 0 54

Table 5.3: Correspondence between ECS stimulation and fMRI map for foot movement

ECS

pos neg

fMRI
pos 1 0

neg 0 57

5.3.4 Distance between the eloquent cortex and the tumour vs. pre operative behavioural
deficits

No significant relationship between the preoperative deficits measured using the be-
havioural tests and proximity of the eloquent cortex to the tumour have been found.
This was true for distances measured using both ECS and fMRI. All subjects were
used to calculate the fMRI distance vs. motor deficits (see Table 5.6). The nine sub-
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Table 5.4: Correspondence between ECS stimulation and fMRI map for lips movement

ECS

pos neg

fMRI
pos 2 0

neg 0 56

Table 5.5: Correspondence between ECS stimulation and fMRI map for speech

ECS

pos neg

fMRI
pos 2 0

neg 0 18

jects that had ECS location recorded were used to calculate ECS distance vs. motor
deficits (see Table 5.7). The six subjects that performed the RAVLT and COWAT tests
were used to calculate fMRI distance vs. language deficits (see Table 5.8). Finally,
the four subjects that had both ECS locations recorded and performed the RAVLT
and COWAT tests were used to calculate the ECS distance vs. language deficits (see
Table 5.9).

Table 5.6: Correspondence between fMRI measured distance between the tumour and the
eloquent cortex and motor deficits. chi-squared = 0.9, df = 1, p-value = 0.3428

Motor deficit

yes no

fMRI
close 4 7

far 3 4
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Table 5.7: Correspondence between ECS measured distance between the tumour and the elo-
quent cortex and motor deficits. chi-squared = 0, df = 1, p-value = 1

Motor deficit

yes no

ECS
close 1 3

far 2 3

Table 5.8: Correspondence between fMRI measured distance between the tumour and the
eloquent cortex and language deficits. chi-squared = 0.25, df = 1, p-value = 0.6171

Language deficit

yes no

fMRI
close 0 3

far 1 2

Table 5.9: Correspondence between ECS measured distance between the tumour and the elo-
quent cortex and language deficits. chi-squared = 0, df = 1, p-value = 1

Language deficit

yes no

ECS
close 0 1

far 1 2
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5.4 discussion

5.4.1 fMRI mapping for surgery

fMRI mapping was performed for 18 tumour patients with very high success rate.
92% of the attempted maps were created successfully. fMRI mapping never failed
completely; for any given subject at most one (and in most cases none) of the tasks
failed. These rare failures were mainly caused by patients failing to understand the
task instructions, the involved skill being severely impaired by progressing disease
(i.e. troubles moving a finger during motor mapping), and seizure related artefacts.
We also observed lower success rate for language related tasks than motor tasks. This
is most likely due to the fact that those tasks are more complicated both in terms of
instructions as well as the neuronal circuitry involved. It also cannot be ruled out that
physiological changes related to the growing neoplasm have influenced fMRI signal
and disrupted the mapping procedure.

Out all successfully created maps, 39% showed patterns uncommon for healthy
controls. This is to be expected considering the effect of a slowly growing mass such
as a tumour. Some tissue has been compressed and rewiring have most likely oc-
curred to compensate and maintain functionality. There were differences between
tasks in terms of frequency of these abnormal patterns (ranging from 25% to 55%).
One has to remember, however, these abnormalities has been assessed by visual in-
spection and might be biased because of that. For example, consider the task for
mapping the region responsible for moving lips (55% cases had unexpected pattern).
Departure from its healthy symmetrical and bilateral pattern is easier to spot than
for other changes (see Figure 5.3). On the other hand there is much more variance
in language related areas (33% of unexpected patterns for Wernicke’s and 33% for
Brocka’s areas) in healthy controls so the norm, and departure from it, is harder to
define.

5.4.2 fMRI vs ECS

These data show that fMRI has a 100% correspondence with the ECS measurements.
This suggests that fMRI may be a viable replacement for ECS, however, one has to
keep in mind the limitations of this pilot study. Only 9 patients were included in
this comparison since ECS was not performed or the stimulation locations were not
recorded for the other subjects. Additionally there were many more negative stimu-
lation points than positive ones (49 vs. 9). The sample was heterogeneous in terms of
age and tumour type and location. To fully establish correspondence between fMRI
and ECS using methodology presented in this thesis, a bigger study has to be per-
formed.

Comparing ECS with fMRI has proven to be challenging due to many factors. Even
though we have established an automated and adaptive procedure for thresholding
fMRI maps, ECS suffers from thresholding issues as well. Depending on amplitude of
the stimulation current used one may or may not elicit a response. Additionally ECS
mapping is intrinsically limited by the procedure time and the size of the craniatomy.
Additionally the methodology used in this pilot study for relating the stimulation
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location to presurgical MRI scans can be inaccurate. In the future a neuronavigation
system could be used to intraoperatively record the position of stimulation points
(O’Shea et al., 2006).

5.4.3 Behavioural correspondance

No significant relation has been found between preoperative behavioural deficits and
proximity of the eloquent cortex to the tumour. This could be caused by the small
and heterogeneous sample. In terms of the ECS measured distance, one has to keep
in mind that ECS was only performed just before the resection and the deficit might
have been caused by subcortical functional areas. fMRI correspondence may be im-
proved with delineation of the tumour, calculating the distance automatically and
fitting a linear model. Behavioural deficit might also be more correlated to differ-
ence in activation pattern before and after the disease onset. However, such a dataset
would be hard to come by. Additionally some aspects of the observed deficits might
be caused by oedema compressing the eloquent cortex rather than the tumour itself
or to damage to the white matter which could be assessed using Diffusion Tensor
Imaging (DTI).

One has to ask, however, if ECS is the absolute gold standard that all other mapping
methods should be aspiring to. Despite the already mentioned amplitude selection
problem, the understanding of how ECS influences the cortex is limited (Borchers
et al., 2012). Stimulation at the same location can lead to either inhibition of exci-
tation of behaviour such as hearing voices vs. deafness. Additionally regional non-
specificity has been reported – where different stimulation locations elicit the same
response (Borchers et al., 2012). Such findings put the status of ECS as the gold stan-
dard under question.

One of the most promising results of this study is that in one third of the cases fMRI
based information was enough for the surgeon to perform the procedure. Patients
were not woken up during the procedure and ECS was not performed. This reduced
the complexity and length of the procedure making it safer and cheaper. One has to
keep in mind, however, that this finding is very preliminary. A randomized clinical
trial comparing fMRI and ECS on a well balanced and homogenous population of
patients needs to be performed.

Last but not least another big achievement of this study is to show that despite
common practice of manual thresholding of statistical maps (O’Donnell et al., 2011;
O’Shea et al., 2006), fMRI mapping can be performed in a fully automatic way with
the help of our AT algorithm. Automation improves reproducibility, decreases influ-
ence of potential biases and creates a standard for using presurgical mapping as an
out hospital service.

5.5 summary

In this chapter we have described a pilot study on 18 tumour patients and shown
that using methods described in previous chapters we were able to create maps with
excellent correspondence with ECS. Additionally, thanks to the use of presurgical
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fMRI and our methods, ECS did not have to be performed in one third of the cases
making the surgery shorter, safer and cheaper.

In the next chapter we will describe a neuroinformatics framework that facilitated
this research and its deployment in the clinical setting.
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N I P Y P E - A N E U R O I M A G I N G D ATA P R O C E S S I N G
F R A M E W O R K

6.1 introduction

This work has been undertaken in collaboration with Christopher D. Burns, Cindee Madison,
Dav Clark, Yaroslav O. Halchenko, Michael L. Waskom, Satrajit S. Ghosh and other contrib-
utors to the Nipype project (see http://github.com/nipy/nipype/contributors). This
work has been published in Frontiers of Neuroinformatics (Gorgolewski et al., 2011b) and has
been presented on OHBM 2010 (Ghosh et al., 2010) and OHBM 2012 (Gorgolewski et al.,
2012a).

In this chapter we will introduce and describe a novel data processing framework
that was used to conduct the analyses described in the previous chapters. Even
though this framework was to some extent developed to facilitate this research it
addresses much broader questions. We will attempt to describe it in a general way
and use the simulations, reliability and clinical studies as examples of how it can be
used. Nonetheless its potential applications are beyond this particular project and we
believe that it can improve the way data processing is performed in the neuroimaging
community.

Over the past twenty years, advances in non-invasive in vivo neuroimaging have re-
sulted in an explosion of studies investigating human cognition in health and disease.
Current imaging studies acquire multi-modal image data (e.g., structural, diffusion,
functional) and combine these with non-imaging behavioral data, patient and/or
treatment history and demographic and genetic information. Several sophisticated
software packages (e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM) are used
to process and analyze such extensive data. In a typical analysis, algorithms from
these packages, each with its own set of parameters, process the raw data. However,
data collected for a single study can be diverse (highly multi-dimensional) and large,
and algorithms suited for one dataset may not be optimal for another. This compli-
cates analysis methods and makes data exploration and inference challenging, and
comparative analysis of new algorithms difficult. Additionally the heterogeneous na-
ture of the neuroimaging software ecosystem makes it difficult to translate methods
developed for cognitive human neuroscience studies into solutions ready for clinical
use.

6.1.1 Current problems

Here we outline issues that hinder replicable, efficient and optimal use of neuroimag-
ing analysis approaches.

1. No uniform access to neuroimaging analysis software and usage information. For cur-
rent multi-modal datasets, researchers typically resort to using different soft-
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ware packages for different components of the analysis. However, these differ-
ent software packages are accessed, and interfaced with, in different ways, such
as: shell scripting (FSL, AFNI, Camino), MATLAB (SPM) and Python (Nipy).
This has resulted in a heterogeneous set of software tools with no uniform
way to use these tools or execute them. With the primary focus on algorithmic
improvement, academic software development often lacks a rigorous software
engineering framework that involves extensive testing, documentation, and in-
tegration/compatibility with other tools. This often necessitates extensive inter-
actions with the authors of the software to understand their parameters, their
quirks and their usage.

2. No framework for comparative algorithm development and dissemination. Except for
some large software development efforts (e.g., SPM, FSL, FreeSurfer), most algo-
rithm development happens in-house and stays within the walls of a lab, with-
out extensive exposure or testing. Furthermore, testing the comparative efficacy
of algorithms often requires significant effort (Klein et al., 2010). In general, de-
velopers create software for a single package (e.g., VBM8 for SPM), create a
standalone cross-platform tool (e.g., Mricron) or simply do not distribute the
software or code (e.g., normalization software used for registering architectonic
atlases to MNI single subject template - Hömke, 2006).

3. Methods developed for cognitive neuroscience research are hard to convert into clini-
cal tools. Many new neuroimaging algorithms have been developed to facilitate
research on both healthy and diseased populations. However, the process of
translating these advancements into methods that could improve clinical prac-
tice (for better diagnosis, procedure planning and evaluation) has been difficult.
Due to heterogeneity of the available implementations it is troublesome to cre-
ate self-contained, automatic and easy to use data workflows that would be
suitable for clinical trails.

4. Neuroimaging software packages do not address computational efficiency. The primary
focus of neuroimaging analysis algorithms is to solve problems (e.g., registra-
tion, statistical estimation, tractography). While some developers focus on algo-
rithmic or numerical efficiency, most developers do not focus on efficiency in the
context of running multiple algorithms on multiple subjects, a common scenario
in neuroimaging analysis. Creating an analysis workflow for a particular study
is an iterative process dependent on the quality of the data and participant
population (e.g., neurotypical, presurgical, etc). Researchers usually experiment
with different methods and their parameters to create a workflow suitable for
their application, but no suitable framework currently exists to make this pro-
cess efficient. Furthermore, very few of the available neuroimaging tools take
advantage of the growing number of parallel hardware configurations (multi-
core, clusters, clouds and supercomputers).

5. Method sections of journal articles are often inadequate for reproducing results. Several
journals (e.g., PNAS, Science, PLoS) require mandatory submission of data and
scripts necessary to reproduce results of a study. However, most current method
sections do not have sufficient details to enable a researcher knowledgeable in
the domain to reproduce the analysis process. Furthermore, as discussed above,
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typical neuroimaging analyses integrate several tools and current analysis soft-
ware does not make it easy to reproduce all the analysis steps in the proper
order. This leaves a significant burden on the user to satisfy these journal re-
quirements as well as ensure that analysis details are preserved with the intent
to reproduce.

6.1.2 Current solutions

There were several attempts to address those issues by creating a pipeline engine.
Taverna (Oinn et al., 2006), VisTrails (Callahan et al., 2006) are general pipelining
systems with excellent support for web services, but they do not address problems
specific to neuroimaging. BrainVisa (Cointepas et al., 2001), MIPAV (McAuliffe et al.,
2001), SPM include their own batch processing tools, but do not allow mixing com-
ponents from other packages. Fiswidgets (Fissell et al., 2003), a promising initial ap-
proach, appears to have not been developed and does not support state of the art
methods. A much more extensive and feature rich solution is the LONI Pipeline (Di-
nov et al., 2009, 2010; Rex et al., 2003). It provides an easy to use graphical interface
for choosing processing steps or nodes from a predefined library and defining their
dependencies and parameters. Thanks to advanced client-server architecture, it also
has extensive support for parallel execution on an appropriately configured cluster
(including data transfer, pausing execution, and combining local and remote soft-
ware). Additionally, the LONI Pipeline saves information about executed steps (such
as software origin, version and architecture) thereby providing provenance informa-
tion (Mackenzie-Graham et al., 2008).

However, the LONI Pipeline does not come without limitations. Processing nodes
are defined using eXtensible Markup Language (XML). This “one size fits all” method
makes it easy to add new nodes as long as they are well-behaved command lines.
However, many software packages do not meet this criterion. For example, SPM,
written in MATLAB, does not provide a command line interface. Furthermore, for
several command line programs, arguments are not easy to describe in the LONI
XML schema (e.g., ANTS – Avants and Gee, 2004). Although it provides a helpful
graphical interface, the LONI Pipeline environment does not provide an easy option
to script a workflow or for rapidly exploring parametric variations within a workflow
(e.g., VisTrails). Finally, due to restrictive licensing, it is not straightforward to modify
and redistribute the modifications. For summary of comparison of other solutions see
Table 6.1.

To address issues with existing workflow systems and the ones described ear-
lier, we created Nipype (Neuroimaging in Python: Pipelines and Interfaces —- Gor-
golewski et al., 2011b), an open source, community-developed, Python-based soft-
ware package that easily interfaces with existing software for efficient analysis of
neuroimaging data and rapid comparative development of algorithms. Nipype uses
a flexible, efficient and general purpose programming language —- Python —- as
its foundation. Processing modules and their inputs and outputs are described in an
object-oriented manner providing the flexibility to interface with any type of software
(not just well behaved command lines). The workflow execution engine has a plug-in
architecture and supports both local execution on multi-core machines and remote
execution on clusters. Nipype is distributed with a BSD license allowing anyone to
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make changes and redistribute it. Development is done openly with collaborators
from many different labs, allowing adaptation to the varied needs of the neuroimag-
ing community.
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Table 6.1: Feature comparison of selected pipeline frameworks. BrainVisa, MIPAV and SPM were not included due to their inability to combine software
from different packages.

Local multi-
processing1

Grid
engine

Scripting
support

XNAT
Web
Services2

Platforms
Graphical
User Interface

Designed for
neuroimaging

Taverna Yes PBS Java, R Yes Yes
Mac, Unix,
Windows

Yes No

VisTrails Yes n/a Python Yes Yes
Mac, Unix,
Windows

Yes No

Fiswidgets No n/a Java No No
Mac, Unix,
Windows

Yes Yes

LONI No DRMAA No Yes No
Mac, Unix,
Windows

Yes Yes

Nipype Yes
SGE, PBS,
Condor,
IPython

Python Yes No Mac, Unix No Yes
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6.2 implementation details

Nipype consists of three components (see Figure 6.1): 1) interfaces to external tools
that provide a unified way for setting inputs, executing and retrieving outputs; 2)
a workflow engine that allows creating analysis pipelines by connecting inputs and
outputs of interfaces as a directed acyclic graph (DAG); and 3) plugins that execute
workflows either locally or in a distributed processing environment (e.g., Torque3,
SGE/OGE). In the following sections, we describe key architectural components and
features of this software.

6.2.1 Interfaces

Interfaces form the core of Nipype. The goal of Interfaces4 is to provide a uniform
mechanism for accessing analysis tools from neuroimaging software packages (e.g.,
FreeSurfer, FSL, SPM). Interfaces can be used directly as a Python object, incorpo-
rated into custom Python scripts or used interactively in a Python console. For exam-
ple, there is a Realign Interface that exposes the SPM realignment routine, while the
MCFLIRT Interface exposes the FSL realignment routine. In addition, one can also
implement an algorithm in Python within Nipype and expose it as an Interface. In-
terfaces are flexible and can accommodate the heterogeneous software that needs to
be supported, while providing unified and uniform access to these tools for the user.
Since, there is no need for the underlying software to be changed (recompiled or ad-
justed to conform to a certain standard), developers can continue to create software
using the computer language of their choice.

An Interface definition consists of: (a) input parameters, their types (e.g., file, float-
ing point value, list of integers, etc.) and dependencies (e.g., does input ‘a’ require
input ‘b’); (b) outputs and their types, (c) how to execute the underlying software
(e.g., run a MATLAB script, or call a command line program); and (d) a mapping
which defines the outputs that are produced given a particular set of inputs. Using
an object-oriented approach, we minimize redundancy in interface definition by cre-
ating a hierarchy of base Interface classes to encapsulate common functionality (e.g.
Interfaces that call command line programs are derived from the CommandLine class,
which provides methods to translate Interface inputs into command line parameters
and for calling the command.)

We use Enthought Traits5 to create a formal definition for Interface inputs and
outputs, to define input constraints (e.g., type, dependency, whether mandatory) and
to provide validation (e.g., file existence). This allows malformed or underspecified
inputs to be detected prior to executing the underlying program. The input definition
also allows specifying relations between inputs. Often, some input options should
not be set together (mutual exclusion) while other inputs need to be set as a group
(mutual inclusion).

Currently, Nipype (version 0.6) is distributed with a wide range of interfaces (see
Table 6.2.). Adding new Interfaces is simply a matter of writing a Python class defi-

3 http://www.clusterresources.com/products/torque-resource-manager.php

4 Throughout the rest of the chapter we are going to use upper case for referring to classes (such as
Interfaces, Workflows etc...) and lower case to refer to general concepts.

5 http://code.enthought.com/projects/traits/

http://www.clusterresources.com/products/torque-resource-manager.php
http://code.enthought.com/projects/traits/
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nition. When a formal specification of inputs and outputs are provided by the under-
lying software, Nipype can support these programs automatically. For example, the
Slicer command line execution modules come with an XML specification that allows
Nipype to wrap them without creating individual interfaces.

Table 6.2: Supported software. List of software packages fully or partially supported by
Nipype. For more details see http://nipy.org/nipype/interfaces

Name URL

AFNI www.afni.nimh.nih.gov/afni

BRAINS www.psychiatry.uiowa.edu/mhcrc/IPLpages/BRAINS.htm

Camino www.cs.ucl.ac.uk/research/medic/camino

Camino-TrackVis www.nitrc.org/projects/camino-trackvis

ConnecomeViewerToolkit www.connectomeviewer.org

dcm2nii www.cabiatl.com/mricro/mricron/dcm2nii.html

Diffusion Toolkit www.trackvis.org/dtk

FreeSurfer www.freesurfer.net

FSL www.fmrib.ox.ac.uk/fsl

Nipy www.nipy.org/nipy

NiTime www.nipy.org/nitime

Slicer www.slicer.org

SPM www.fil.ion.ucl.ac.uk/spm

SQLite www.sqlite.org

PyXNAT www.github.com/pyxnat,xnat.org

6.2.2 Nodes, MapNodes, and Workflows

Nipype provides a framework for connecting Interfaces to create a data analysis
Workflow. In order for Interfaces to be used in a Workflow they need to be encap-
sulated in either Node or MapNode objects. Node and MapNode objects provide
additional functionality to Interfaces, e.g. creating a hash of the input state, caching
of results and the ability to iterate over inputs. Additionally, they execute the underly-
ing interfaces in their own uniquely named directories (almost like a sandbox), thus
providing a mechanism to isolate and track the outputs resulting from execution of
the Interfaces. These mechanisms allow not only for provenance tracking, but aid in
efficient pipeline execution.

The MapNode class is a sub-class of Node that implements a MapReduce-like
architecture (Dean and Ghemawat, 2008). Encapsulating an Interface within a MapN-
ode allows Interfaces that normally operate on a single input to execute the Interface
on multiple inputs. When a MapNode executes, it creates a separate instance of the
underlying Interface for every value of an input list and executes these instances inde-
pendently. When all instances finish running, their results are collected into a list and
exposed through the MapNode’s outputs (see Figure 6.2D). This approach improves

http://nipy.org/nipype/interfaces
www.afni.nimh.nih.gov/afni
www.psychiatry.uiowa.edu/mhcrc/IPLpages/BRAINS.htm
www.cs.ucl.ac.uk/research/medic/camino
www.nitrc.org/projects/camino-trackvis
www.connectomeviewer.org
www.cabiatl.com/mricro/mricron/dcm2nii.html
www.trackvis.org/dtk
www.freesurfer.net
www.fmrib.ox.ac.uk/fsl
www.nipy.org/nipy
www.nipy.org/nitime
www.slicer.org
www.fil.ion.ucl.ac.uk/spm
www.sqlite.org
www.github.com/pyxnat, xnat.org
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granularity of the Workflow and provides easy support for Interfaces that can only
process one input at a time. For example, the FSL ‘bet’ program can only run on a
single input, but wrapping the BET Interface in a MapNode allows running ‘bet’ on
multiple inputs.

A Workflow object captures the processing stages of a pipeline and the depen-
dencies between these processes. Interfaces encapsulated into Node or MapNode
objects can be connected together within a Workflow. By connecting outputs of some
Nodes to the inputs of others, the user implicitly specifies dependencies. These are
represented internally as a directed acyclic graph (DAG). The current semantics of
Workflow do not allow conditionals and hence the graph needs to be acyclic. Work-
flows themselves can be a node of the Workflow graph (see Figure 6.1). This enables
a hierarchical architecture and encourages Workflow reuse. The Workflow engine
validates that all nodes have unique names, ensures that there are no cycles, and
prevents connecting multiple outputs to a given input. For example in an fMRI pro-
cessing Workflow, preprocessing, model fitting and visualization of results can be
implemented as individual Workflows connected together in a main Workflow. This
not only improves clarity of designed Workflows but also enables easy exchange of
whole subsets. Common Workflows can be shared across different studies within and
across laboratories thus reducing redundancy and increasing consistency.

While a neuroimaging processing pipeline could be implemented as a Bash, MAT-
LAB or a Python script, Nipype explicitly implements a pipeline as a graph. This
makes it easy to follow what steps are being executed and in what order. It also
makes it easier to go back and change things by simply reconnecting different out-
puts and inputs or by inserting new Nodes/MapNodes. This alleviates the tedious
component of scripting where one has to manually ensure that the inputs and out-
puts of different processing calls match and that operations do not overwrite each
other’s outputs.

A Workflow provides a detailed description of the processing steps and how data
flows between Interfaces. Thus it is also a source of provenance information. We en-
courage users to provide Workflow definitions (as scripts or graphs) as supplemen-
tary material when submitting articles. This ensures that at least the data processing
part of the published experiment is fully reproducible. Additionally, exchange of
Workflows between researchers stimulates efficient use of methods and experimenta-
tion.

6.2.3 Example - building a Workflow from scratch

In this section, we illustrate to the creation and extend a typical fMRI processing
Workflow, as applied to the healthy subjects (session 1) presented in Chapter 4 and to
patients in Chapter 5. This fMRI Workflow can be divided into two sections: 1) pre-
processing and 2) modeling. The first one deals with cleaning data from confounds
and noise, and the second one fits a model to the cleaned data based on the experi-
mental design. Here we will present how to set up only two steps: 1) skipping initial
volumes (to remove artefacts related to scanner stabilization) and 2) slice timing cor-
rection (temporal resampling of the data to make all voxel from the same volumed
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aligned to the same point in time). We use FSL and SPM Interfaces to define the
processing Nodes.6

from nipype.pipeline.engine import Node, Workflow

skip = Node(interface=fsl.ExtractROI(), name="skip")

skip.inputs.t_min = 4

skip.inputs.t_max = -1

slice_timing = Node(interface=spm.SliceTiming(), name="slice_timing")

slice_timing.inputs.num_slices = 28

slice_timing.inputs.time_repetition = 2.5

We create a Workflow to include these two Nodes and define the data flow from the
output of the realign Node (realigned_files) to the input of the smooth Node (in_files).
This creates a simple preprocessing workflow.

preprocessing = Workflow(name="preproc_func")

preprocessing.connect(skip, "roi_file", slice_timing, "in_files")

The remaining preprocessing steps as well as the modeling Workflow is constructed
in an analogous manner. Modeling is implemented by first defining Nodes for model
design, model estimation and contrast estimation. We again use SPM Interfaces for
this purpose. However, Nipype adds an extra abstraction Interface for model specifi-
cation whose output can be used to create models in different packages (e.g., SPM,
FSL and Nipy). The nodes of this Workflow are: SpecifyModel (Nipype model ab-
straction Interface), Level1Design (SPM design definition), ModelEstimate, and Con-
trastEstimate.

We create a master Workflow that connects the preprocessing and modeling Work-
flows, adds the ability to select data for processing (using DataGrabber Interface)
and a DataSink Node to save the outputs of the entire Workflow. Nipype allows
connecting Nodes between Workflows. We will use this feature to connect realign-
ment_parameters and smoothed_files to modeling workflow.

The DataGrabber Interface allows the user to define flexible search patterns which
can be parameterized by user defined inputs (such as subject ID, session etc.). This
Interface can adapt to a wide range of directory organization and file naming con-
ventions. In our case we will parameterize it with subject ID. In this way we can run
the same Workflow for different subjects. We automate this by iterating over a list
of subject IDs, by setting the iterables property of the DataGrabber Node for the in-
put subject_id. The DataGrabber Node output is connected to the realign Node from
preprocessing Workflow.

DataSink on the other side provides means for storing selected results in a spec-
ified location. It supports automatic creation of folders, simple substitutions and
regular expressions to alter target filenames. In this case we store the statistical
(T-maps) resulting from contrast estimation. A Workflow defined in this way (see
??workflowfig:patient_workflow

6 Some essential input parameters such as slice order were omitted in this presentation to save space.
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) is ready to run. This can be done by calling the run() method of the master
Workflow.

If the run() method is called twice, the Workflow input hashing mechanism ensures
that none of the Nodes are executed during the second run if the inputs remain the
same. If, however, a highpass filter parameter of specify_model is changed, some of
the Nodes (but not all) would have to rerun. Nipype automatically determines which
Nodes require rerunning.

6.2.4 Iterables — Parameter space exploration

Nipype provides a flexible approach to prototyping and experimentation with dif-
ferent processing strategies, through the unified and uniform access to a variety of
software packages (Interfaces) and creating data flows (Workflows). However, for var-
ious neuroimaging tasks, there is often a need to explore the impact of variations in
parameter settings (e.g., how do different amounts of smoothing affect group statis-
tics, what is the impact of spline interpolation over trilinear interpolation). To enable
such parametric exploration, Nodes have an attribute called iterables.

When an iterable is set on a Node input, the Node and its subgraph are executed for
each value of the iterable input (see Figure 6.2). Iterables can also be set on multiple
inputs of a Node (e.g., somenode.iterables = [(‘input1’, [1,2,3]), (‘input2’, [‘a’, ‘b’])]).
In such cases, every combination of these values is used as a parameter set (the
prior example would result in the following parameter sets: (1, ‘a’), (1, ‘b’), (2, ‘a’),
etc.). This feature is especially useful to investigate interactions between parameters
of intermediate stages with respect to the final results of a workflow. A common
use-case of iterables is to execute the same Workflow for many subjects in an fMRI
experiment and to simultaneously look at the impact of parameter variations on the
results of the Workflow.

It is important to note that unlike MapNode, which creates copies of the underlying
interface for every element of an input of type list, iterables operate on the subgraph
of a node and create copies not only of the node but also of all the nodes dependent
on it (see Figure 6.2).

6.2.5 Parallel Distribution and Execution Plug-ins

Nipype supports executing Workflows locally (in series or parallel) or on load-balanced
grid-computing clusters (e.g., SGE, Torque or even via SSH) through an extensible
plug-in interface. No change is needed to the Workflow to switch between these exe-
cution modes. One simply calls the Workflow’s run function with a different plug-in
and its arguments. Very often different components of a Workflow can be executed
in parallel and even more so when the same Workflow is being repeated on multi-
ple parameters (e.g., subjects). Adding support for additional cluster management
systems does not require changes in Nipype, but simply writing a plug-in extension
conforming to the plug-in API.

The Workflow engine sends an execution graph to the plug-in. Executing the Work-
flow in series is then simply a matter of performing a topological sort on the graph
and running each node in the sorted order. However, Nipype also provides additional
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plugins that use Python’s multi-processing module, use IPython (includes SSH-based,
SGE, LSF, PBS, among others) and provide native interfaces to SGE, PBS/Torque, and
Condor clusters. For all of these, the graph structure defines the dependencies as well
as which nodes can be executed in parallel at any given stage of execution.

One of the biggest advantages of Nipype‘s execution system is that parallel exe-
cution using local multiprocessing plug-in does not require any additional software
(such as cluster managers like SGE) and therefore makes prototyping on a local multi-
core workstations easy. However, for bigger studies and complex Workflows, a high-
performance computing cluster can provide substantial improvements in execution
time. Since there is a clear separation between the definition of the Workflow and its
execution, Workflows can be executed in parallel (locally or on a cluster) without any
modification. Transitioning from developing a processing pipeline on a single subject
on a local workstation to executing it on a bigger cohort on a cluster is therefore
seamless.

Rerunning workflows has also been optimized. When a Node or MapNode is run,
the framework will actually execute the underlying interface only if inputs have
changed relative to prior execution. If not, it will simply return cached results.

6.2.6 The Function Interface

One of the Interfaces implemented in Nipype requires special attention: The Function
Interface. Its constructor takes as arguments Python function pointer or code, list of
inputs and list of outputs. This allows running any Python code as part of a Workflow.
When combined with libraries such as Nibabel (neuroimaging data input and output),
Numpy/Scipy (array representation and processing) and scikits-learn or PyMVPA
(machine learning and data mining) the Function Interface provides means for rapid
prototyping of complex data processing methods. In addition, by using the Function
Interface users can avoid writing their own Interfaces which is especially useful for
ad-hoc solutions (e.g., calling an external program that has not yet been wrapped as
an Interface).

6.2.7 Workflow Visualisation

To be able to efficiently manage and debug Workflow one has to have access to a
graphical representation. Using graphviz (Ellson et al., 2002), Nipype generates static
graphs representing Nodes and connections between them. In the current version
four types of graphs are supported: orig – does not expand inner Workflows, flat –
expands inner workflows, exec – expands workflows and iterables, and hierarchical –
expands workflows but maintains their hierarchy. Graphs can be saved in a variety of
file formats including Scalable Vector Graphics (SVG) and Portable Network Graphics
(PNG) (see Figure 6.3 and Figure 6.5).

6.2.8 Configuration Options

Certain options concerning verbosity of output and execution efficiency can be con-
trolled through configuration files or variables. These include, among others, hash_method
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and remove_unecessary_outputs. As explained before, rerunning a Workflow only re-
computes those Nodes whose inputs have changed since the last run. This is achieved
by recording a hash of the inputs. For files there are two ways of calculating the hash
(controlled by the hash_method config option): timestamp —- based only on the size
and modification time and content –– based on the content of the file. The first one
is faster, but does not deal with the situation when an identical copy overwrites the
file. The second one can be slower especially for big files, but can tell that two files
are identical even if they have different modification times. To allow efficient recom-
putation Nipype has to store outputs of all Nodes. This can generate a significant
amount of data for typical neuroimaging studies. However, not all outputs of ev-
ery Node are used as inputs to other Nodes or relevant to the final results. Users
can decide to remove those outputs (and save some disk space) by setting the re-
move_unecessary_outputs to True. These and other configuration options provide a
mechanism to streamline the use of Nipype for different applications.

6.2.9 Deployment

Nipype supports GNU/Linux and Mac OS X Operating System (OS). A recent In-
ternet survey based study showed that GNU/Linux is the most popular platform
in the neuroimaging community and together with Mac OS X is used by over 70%
of neuroimagers. There are not theoretical reasons why Nipype should not work on
Windows (Python is a cross-platform language), but since most of the supported
software (for example FSL) requires a Unix based OS Nipype is not tested on this
platform.

We currently provide three ways of deploying Nipype on a new machine: manual
installation from sources (http://nipy.org/nipype/), PyPi repository (http://pypi.
python.org/pypi/nipype/), and from package repositories on Debian-based systems.
Manual installation involves downloading a source code archive and running a stan-
dard Python installation script (distutils). This way the user has to take care of in-
stalling all of the dependencies. Installing from PyPI repository lifts this constraint by
providing dependency information and automatically installing required packages.
Nipype is available from standard repositories on recent Debian and Ubuntu releases.
Moreover, the NeuroDebian (http://neuro.debian.net - Halchenko and Hanke, 2012

repository provides the most recent releases of Nipype for Debian-based systems and
a NeuroDebian Virtual Appliance making it easy to deploy Nipype and other imag-
ing tools in a virtual environment on other operating systems, e.g. Windows. In ad-
dition to providing all core dependencies and automatic updates NeuroDebian also
provides many of the software packages supported by Nipype (AFNI, FSL, Mricron,
etc), making deployment of heterogeneous Nipype pipelines more straightforward.

6.2.10 Development

Nipype is trying to address the problem of interacting with the ever changing uni-
verse of neuroimaging software in a sustainable manner. Therefore the way its devel-
opment is managed is a part of the solution. Nipype is distributed under the Berkley
Software Distribution license which allows free copying, modification and distribu-

http://nipy.org/nipype/
http://pypi.python.org/pypi/nipype/
http://pypi.python.org/pypi/nipype/
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tion, and additionally meets all the requirements of open source definition (see Open
Source Initiative - http://www.opensource.org/docs/osd) and Debian Free Software
Guidelines (http://www.debian.org/social_contract#guidelines). Development is
carried out openly through a distributed version control system (git via GitHub -
http://github.com/nipy/nipype) in an online community. The current version of
the source code together with its complete history is accessible to everyone. Discus-
sions between developers and design decisions are undertaken on an open access
mailing list. This setup encourages a broader community of developers to join the
project (the project has a constantly growing user and developer base – see Figure
growth) and allows sharing of the development resources (effort, money, informa-
tion and time). Additionally, because the project is not tied to one source of funding
or one particular lab it is able to develop freely and adjust to the needs of a wider
range of users. This leads to the ability to cover more use cases and further facilitates
rapid prototyping. 41 contributors submitted 4020 commits leading to a code base
of 38942 lines of code (after exclusion of white spaces and comments; these number
were retrieved at 21/08/12). Within the Basic COCOMO framework (Boehm, 1984)
and assuming an average yearly salary of 55000 the project would have cost 512,036

USD.

http://www.opensource.org/docs/osd
http://www.debian.org/social_contract#guidelines
http://github.com/nipy/nipype
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Figure 6.1: Architecture overview of the Nipype framework. Interfaces are wrapped with
Nodes or MapNodes and connected together as a graph within a Workflow. Work-
flows themselves can act as a Node inside another Workflow, supporting a compos-
ite design pattern. The dependency graph is transformed before being executed
by the engine component. Execution is performed by one of the plugins. Currently
Nipype supports serial and parallel (both local multithreading and cluster) execu-
tion.
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and also merges the results of the branches, effectively performing a MapReduce
operation (D).



6.3 usage examples 139

6.3 usage examples

6.3.1 A framework for comparative algorithm development and dissemination

Uniform semantics for interfacing with a wide range of processing methods not only
opens the possibility for richer Workflows, but also allows comparing algorithms that
are designed to solve the same problem across and within such diverse Workflows.
Typically, such an exhaustive comparison can be time-consuming, because of the need
to deal with interfacing different software packages. Nipype simplifies this process
by standardizing the access to the software. Additionally, the iterables mechanism
allows users to easily extend such comparisons by providing a simple mechanism to
test different parameter sets.

All simulations in Chapter 3 have been made using Nipype. Simulation generator
Interface has been written for this purpose. It is an example of a pure Python inter-
face that does not call any underlying software. It’s purpose is to generate artificial
timeseries of data (in NIfTI) format for given parameters (such as the true activation
pattern, number of volumes, and noise). To generate multiple samples and explore
the parameter space, iterables was used on these parameters (and a bogus “simu-
lation id” parameters). Standard preprocessing and modeling workflows have been
connected to this node and its outputs were fed to a set of different thresholding
algorithms that were evaluated (see Figure 6.3). This was possible, because these al-
gorithms have been previously “wrapped” in Nipype Interfaces and therefore were
accessible in a unified way. This made adding and exchanging algorithms included
in the comparison straightforward. The whole simulation was run on an Intel Core i7
machine with four independent processing units and was seamlessly parallelized us-
ing the “MultiCore” execution plugin. Debugging of the simulations was made less
time-consuming by the caching mechanism included in Nipype. Thanks to internal
tracking of values used for inputs only the nodes that had to rerun were rerun after
correcting the simulation parameters.

Algorithm comparison is not the only way Nipype can be useful for a neuroimag-
ing methods researcher. It is in the interest of every methods developer to make his
or hers work most accessible. This usually means providing ready to use implemen-
tations. However, because the field is so diverse, software developers have to provide
several packages (SPM toolbox, command line tool, C++ library etc.) to cover the
whole user base. With Nipype, a developer can create one Interface and expose a
new tool, written in any language, to a greater range of users, knowing it will work
with the wide range of software currently supported by Nipype.

A good example of such scenario is ArtifactDetection toolbox (http://www.nitrc.
org/projects/artifact_detect/). This piece of software uses EPI timeseries and
realignment parameters to find timepoints (volumes) that are most likely artifacts
and should be removed (by including them as confound regressors in the design
matrix). The tool was initially implemented as a MATLAB script, compatible only
with SPM and used locally within the lab. The current Nipype interface can work
with SPM or FSL Workflows, thereby not limiting its users to SPM. The AT algorithm
introduced in Chapter 3 is also distributed as a Nipype Interface.

http://www.nitrc.org/projects/artifact_detect/
http://www.nitrc.org/projects/artifact_detect/
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6.3.2 An environment for prototyping clinical neuroimaging workflows

Nipype due to its abilities to combine heterogeneous pieces of software supplemented
by homebrewed solutions can be used to create custom yet fully automatic workflows
for clinical use. In Chapter 3 we introduced a data processing workflow used in a test-
retest study. Its aim was to establish which methods and paradigms provide reliable
single subject results. It was implemented using Nipype and self-contained reusable
subworkflows (such as preprocessing, modelling, and group analysis). Thanks to this
design, creating a clinical workflow to be used on a weekly basis on patients em-
ployed the shared code. The subworkflows shared between the two studies included
preprocessing, modeling, and thresholding (see Figure 6.5). These tasks were inte-
grating many heterogenous software solution (such as SPM, FSL and ArtifactDetect).
However, due to the unified access provided by Nipype the integration was straigh-
forward.

The clinical workflow was supplemented by automatic report creation. These re-
ports included various quality-control information (see Figure 6.4) and the final
thresholded maps overlaid on the structural scans. Additionally, for future use in
a neuronavigation suite, the final maps were binarized and turned back to DICOM
format. The whole workflow was deployed on a server based in the hospital where all
the patients were scanned. Due to fully automatic nature of Nipype workflows data
was analyzed straight after acquisition and did not require improvement from any
personnel. This is an important feature that streamlines the process and cuts the costs
of hiring qualified staff for manual data processing. The results were made accessible
to authorized personnel (neurosurgeons and researchers on the study) through a se-
cure network drive. Autogenerated reports were used to perform quality assessment
to make sure that the results were not spoiled by artefacts or acquisition issues. Fi-
nally the thresholded maps were used by the neurosurgeon to evaluate the risks and
plan the procedure (see Figure 6.6).

The final solution is fully automatic (partially due to the new thresholding algo-
rithm) yet safe (thanks to quality-control). The development cost was minimized by
reusing existing software solutions developed by the neuroimaging community and
combined using Nipype.
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Figure 6.3: This pipeline was used to perform the second set of simulations described in
Chapter 3. Rectangles represent subworkflow. Names in brackets correspond to
the package the node s interface comes from. Nodes in gray are using iterables. In
this example it allows iterating over different simulation ids (simgen node), SNR
(add_signal_and_smooth node), and fixed threshold (fixed_threshold node).
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Figure 6.4: Part of the quality-control reports generated for clinical cases. This graph was
generated using ArtifactDetect and was used to asses if the patient did not move
too much in the scanner.
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Figure 6.6: Schematic overview of the data flow and access set up for scanning patients. Af-
ter anonymization, data is transferred to a processing server where Nipype is
employed to create reports and DICOM files ready to be used in a neuronaviga-
tion suite. These are deanonymize to avoid potential patient mismatch. However,
patient confidentiality is secured by keeping the deanonymized data in a secure
network share which can be accessed only by researchers on the study and neuro-
surgeons.

6.3.3 Computationally efficient execution of neuroimaging analysis

A computationally efficient execution allows for multiple rapid-iterations to optimize
a Workflow for a given application. Support for optimized local execution (running in-
dependent processes in parallel, rerunning only those steps that have been influenced
by the changes in parameters or dependencies since the last run) and exploration
of parameter space eases Workflow development. The Nipype package provides a
seamless and flexible environment for executing Workflows in parallel on a variety
of environments from local multi-core workstations to high-performance clusters. In
the SPM workflow for single subject functional data analysis, only a few components
can be parallelized. However, running this Workflow across several subjects provides
room for embarrassingly parallel execution. Running this Workflow in distributed
mode for 69 subjects on a compute cluster (40 cores distributed across 6 machines)
took 1 hour and 40 minutes relative to the 32 minutes required to execute the anal-
ysis steps in series for a single subject on the same cluster. The difference from the
expected runtime of 64 minutes (32 minutes for the first 40 subjects and another 32

minutes for the remaining 29 subjects) stems from disk I/O and other network and
processing resource bottlenecks.

6.3.4 Captures details of analysis required to reproduce results

The graphs and code presented in the examples above capture all the necessary de-
tails to rerun the analysis. Any user, who has the same versions of the tools installed
on their machine and access to the data and scripts, will be able to reproduce the re-
sults of the study. For example, running Nipype within the NeuroDebian framework
can provide access to specific versions of the underlying tools. This provides an easy
mechanism to be compliant with the submitting data and scripts/code mandates of
journals such as PNAS and Science.



6.4 discussion 145

6.4 discussion

Current neuroimaging software offers users an incredible opportunity to analyze
their data in different ways, with different underlying assumptions. However, this
heterogeneous collection of specialized applications creates several problems: 1) No
uniform access to neuroimaging analysis software and usage information; 2) No
framework for comparative algorithm development and dissemination; 3) Methods
developed in neuroscience are hard to translate in clinical reality; 4) Neuroimaging
software packages do not address computational efficiency; and 5) Method sections
of journal articles are often inadequate for reproducing results.

We addressed these issues by creating Nipype, an open-source, community-developed
initiative under the umbrella of Nipy. Nipype solves these issues by providing uni-
form Interfaces to existing neuroimaging software and by facilitating interaction be-
tween these packages within Workflows. Nipype provides an environment that en-
courages interactive exploration of algorithms from different packages (e.g., SPM,
FSL), eases the design of Workflows within and between packages, and reduces the
learning curve necessary to use different packages. Nipype aims to address limita-
tions of existing pipeline systems, thereby creating a collaborative platform for neu-
roimaging software development in Python, a high-level scientific computing lan-
guage.

We use Python for several reasons. It has extensive scientific computing and vi-
sualization support through packages such as SciPy, NumPy, Matplotlib and Mayavi
(Millman and Aivazis, 2011; Perez et al., 2011). The Nibabel package provides support
for reading and writing common neuroimaging file formats (e.g., NIFTI, ANALYZE
and DICOM). Being a high-level language, Python supports rapid prototyping, is
easy to learn and adopt and is available across all major operating systems. At the
same time Python allows the potential to seamlessly bind with C code (using Weave
package) for improved efficiency of critical subroutines.

Python is also known as a good choice for the first programming language to learn
(Zelle, 1999) and is chosen as the language for introductory programming at many
schools and universities (http://wiki.python.org/moin/SchoolsUsingPython). Be-
ing a generic and free language, with various extensions available “out of the box”, it
has allowed many researchers to start implementing and sharing their ideas with min-
imal knowledge of Python, while learning more of the language and programming
principles along the way. Later on, many such endeavors became popular community-
driven FOSS projects, attracting users and contributors, and even outlasting the in-
volvement of the original authors. Python has already been embraced by the neu-
roscientific community and is rapidly gaining popularity (Bednar, 2009; Goodman
and Brette, 2009). The Connectome Viewer Toolkit (Gerhard et al., 2011), Dipy, Ni-
Babel, Nipy, NiTime, PyMVPA (Hanke et al., 2009), PyXNAT (Schwartz et al., 2012)
and Scikits-Learn are just a few examples of neuroimaging related software written
in Python. Nipype, based on Python, thus has immediate access to this extensive
community and its software, technological resources and support structure.

Nipype provides a formal and flexible framework to accommodate the diversity of
imaging software. Within the neuroimaging community, not all software is limited to
well behaved command line tools. Furthermore, a number of these tools do not have
well defined inputs, outputs or usage help. Although, currently we use Enthought

http://wiki.python.org/moin/SchoolsUsingPython
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Traits to define inputs and outputs of interfaces, such definitions could be easily
translated into instances of XML schemas compatible with other pipeline frameworks.
On the other hand, when a tool provides a formal XML description of their inputs
and outputs (e.g., Slicer 3D, BRAINS), it is possible to take these definitions and
automatically generate Nipype wrappers for those classes.

Nipype development welcomes input and contributions from the community. The
source code is freely distributed under a Berkeley Software Distribution (BSD) license
allowing anyone use of the software, and Nipype conforms to the Open Software
Definition of the Open Source Initiative. The development process is fully transparent
and encourages contributions from users from all around the world. The diverse and
geographically distributed user and developer base makes Nipype a flexible project
that takes into account needs of many scientists.

Improving openness, transparency, and reproducibility of research has been a goal
of Nipype since its inception. A Workflow definition is, in principle, sufficient to re-
produce the analysis. Since it was used to analyze the data, it is more detailed and
accurate than a typical methods description in a paper, but also has the advantage
of being reused and shared within and across laboratories. Accompanying a publi-
cation with a formal definition of the processing pipeline (such as a Nipype script)
increases reproducibility and transparency of research. The Interfaces and Workflows
of Nipype capture neuroimaging analysis knowledge and the evolution of methods.
Although, at the execution level, Nipype already captures a variety of provenance
information, this aspect can be improved by generating provenance reports defined
by a standardized XML schema (MacKay, 2003).

Increased diversity of neuroimaging data processing software has made systematic
comparison of performance and accuracy of underlying algorithms essential (for ex-
amples, see Klein et al., 2009, 2010. However, a platform for comparing algorithms,
either by themselves or in the context of an analysis workflow, or determining opti-
mal workflows in a given application context (e.g., Churchill et al., 2012), does not
exist. Furthermore, in this context of changing hardware and software, traditional
analysis approaches may not be suitable in all contexts (e.g., data from 32-channel
coils which show a very different sensitivity profile, or data from children). Nipype
can make such evaluations, design of optimal workflows and investigations easier
(as demonstrated via the smoothing example above), resulting in more efficient data
analysis for the community.

6.5 summary

In this chapter we presented Nipype, an extensible Python library and framework
that provides interactive manipulation of neuroimaging data through uniform Inter-
faces and enables reproducible, distributed analysis using the Workflow system. It
has been used to analyze all the data included in this dissertation which leads to
improved performance and reproducibility. Nonetheless applications of Nipype go
beyond the work presented in the previous chapters. It has encouraged the scientific
exploration of different algorithms and associated parameters, eased the develop-
ment of Workflows within and between packages and reduced the learning curve
associated with understanding the algorithms, APIs and user interfaces of disparate
packages. An open, community-driven development philosophy provides flexibility
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required to address the diverse needs in neuroimaging analysis. Overall, Nipype rep-
resents an effort towards collaborative, open-source, reproducible and efficient neu-
roimaging software development and analysis for application in neuroscience and
the clinic.



7
D I S C U S S I O N

The aim of this work was to improve the way fMRI is used for planning surgical
resections of brain tumours.

We focused first on the importance of the thresholding of statistical maps. On one
hand, we showed that thresholding maps manually can lead to high error rates and
is not reproducible between hospitals (Chapter 2). On the other hand, simulations
showed that existing thresholding methods which were developed for group stud-
ies are not suitable for single subject clinical applications due to poor performance
in terms of low SNR, no control for false negative errors, lack of concern with the
delineation of the borders of activation, and poor reliability (Chapter 3). We have
therefore introduced a new technique combining Gamma-Gaussian mixture models
and topological FDR. We demonstrated through simulations that this new method
outperforms other methods in terms of error trade-of: better balance between false
positives and false negatives, better border delineation. Simulations, however, can be
biased and limited. We have therefore conducted a test-retest reliability study to see if
our new method could produce more reliable suprathreshold maps in real conditions,
the results of which demonstrated that AT produced better results than FT.

A second important focus was to asses which paradigms were suitable for single
subject use. This was performed by undertaking a test-retest reliability study compar-
ing Dice overlap between sessions with Dice overlap between subjects. This approach
lead to the selection of the covert verb generation, overt word repetition, and motor
mapping (finger tapping, foot movement, and lips pouching) tasks as suitable for
presurgical planning. Overt verb generation and landmark tasks were not reliable
enough for such use. We also took advantage of the reliability dataset we collected
to ask more general questions of how reliability can be measured and what factors
influence it. We found little relation between the reliability of thresholded and un-
thresholded maps, and timeseries. This shows that if one is interested in single subject
applications and will be using thresholded maps (which is the case for presurgical
planing and functional ROI) looking at unthresholded maps is not enough. The de-
cision how to create the suprathreshold map can have significant influence on the
reliability. Additionally we have shown that scanner noise and co-registration error
have little effect on reliability in contrast to patient motion. This is especially true
when the motion was correlated with the stimuli. It therefore seems essential to have
minimum motion during scanning and to model various regressors related to mo-
tion (6 motions parameters, their 1st derivative or “outlier” scans) to ensure good
delineation of activated areas (assuming reliable areas are also the most valid).

Having established and tested the methodology of data processing and picked suit-
able behavioural paradigms, we performed a pilot study on 18 patients with brain
tumours. The aim of this study was to check if our thresholding methods can per-
form equally well on the target brain tumour patient population as it did on the
healthy controls in the reliability study. Additionally, we compared fMRI generated
maps with ECS performed before the resection. Our method was able to successfully
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create a useful map in 92% of the time and never failed completely for any patient.
Additionally we have found 100% correspondence between ECS and fMRI generated
maps, but we expect this number to fall when more samples are acquired in the
future.

We concluded this dissertation by introducing and describing a data processing
framework that has been developed to enable this researc - Nipyp. It enables rapid
prototyping, provenance tracking, parameter exploration and efficient parallel exe-
cution. Its creation and maintenance also represents a new approach to scientific
projects – a decentralized open source collaboration between many researchers. Nipype
was paramount to performing research included in this dissertation, but at the same
time addresses problems common to many projects involving neuroimaging and can
therefore be used in wide range of applications.

7.1 open questions and future directions

7.1.1 Single subject statistical maps thresholding

The thresholding method presented here belongs to a category of model based meth-
ods. This means that there is an underlying model of the data whose freedom is
restricted by the set of parameters it can take. In case of AT this was the Gamma-
Gaussian mixture model and the Gaussian field used in the topological FDR. The
parameters of these models were fitted from the data, but if the model assumptions
(such as all activation can be described by one Gaussian) were wrong it could pro-
vide inaccurate results. A way to avoid this issue is to use non-parametric methods
that do not make many assumptions about the underlying data (Petersson et al.,
1999). Such an approach would require resampling of the single subject data to estab-
lish the null distribution. This would require generating many permutations of the
timeseries which can be difficult due to autocorrelations (Friman and Westin, 2005).
There have been, however, some developments that might in the future make single
subject resampling both feasible and efficient (Eklund et al., 2012). A non-parametric
approach to thresholding statistical maps with presurgical applications has the po-
tential to provide improved results.

Additionally the concept of all activation coming from the same distribution has
to be questioned. A combined fMRI data driven parcellation with a regional mixture
model can potentially provide more robust results by adapting to local differences
in SNR, an approach similar to that described by Voyvodic (2012). How the parcella-
tion could be driven by mixture modelling and vice versa remains an open question.
One, however, has to be careful when using such an approach not to bias it through
circularity, or in other words “double dipping” (see Kriegeskorte et al., 2009).

Our approach has a two-stage nature, the first being voxelwise and second clus-
terwise. There is, however, little information flowing between the two stages, since
the crossing point from the mixture model is used as a cluster-forming threshold for
topological FDR. This could be improved by applying a fully Bayesian approach. Such
attempt would be very similar to Woolrich et al. (2005) with a different way of inform-
ing the model of spatial dependencies. This could be achieved by an approach similar
to Kiebel et al. (1999), which is now the standard way of estimating smoothness in
topological FDR. Despite mathematical neatness (a prominent feature Bayesian mod-
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els) practical gains would have to be investigated experimentally. It could be the case
that flow of uncertainty achieved through Bayesian reasoning would not provide sig-
nificant improvements despite substantially higher computational cost, as it was the
case with Holmes-Friston approach to group analysis (Mumford and Nichols, 2009).

7.1.2 Using test-retest reliability to compare methods

In Chapter 4 we have used a test-retest reliability study to compare two thresholding
methods. In contrast to simulations such methodology is based on real data and al-
lows methods to be compared without the need to access the ground truth. However,
such an approach is susceptible to certain problems. Imagine a method that always
gives the same answer no matter what the input is. Such a method would show per-
fect reliability, but at the same time being useless. This issue has been addressed
by the NPAIRS framework (Strother et al., 2002), by comparing reliability with pre-
diction power. However, the prediction means in this context inferring the design
matrix from the data. This is useful for evaluating data processing methods up until
the GLM stage. For any method beyond that stage (such as thresholding) prediction
power is hard to define.

7.1.3 Using fMRI in presurgical planning

We have only covered some issues that arise in presurgical fMRI. There are remaining
unsolved problems including artificial signal from draining veins which are especially
visible in single subject fMRI which has low SNR (see Krings et al., 2001a) and the neo-
plasm altering HRF (Stippich, 2007). There are potential solutions to these problems
that involve change of the scanning protocol. In the case of draining veins, a contrast
enhanced scan can reveal their location and can be used to remove the spurious ac-
tivation. Establishing the HRF alone without using any behavioural paradigm can
be achieved by a breath-hold scan. Alternatively one can use model free approaches
such as Finite Impulse Response to model HRF (Goutte et al., 2000). All of these
approaches have to be investigated in the context of clinical applications.

Despite good correspondence between fMRI and ECS, fMRI is far from replacing
ECS for all patient cases. The biggest issue with fMRI is that it does not show regions
of the brain crucial to the execution of certain behaviour, but rather all those regions
involved. This means that it might be potentially safe (as in postoperative deficit risk)
to remove some of the tissue labelled as active through fMRI mapping. This can po-
tentially lead to unnecessary partial resections where a more radical approach could
have been done. There is, however, a subset of cases where fMRI can provide a sig-
nificant improvement over ECS. When fMRI mapping shows that the eloquent cortex
is far enough away from the tumour to perform a full resection, our results suggest
that there is no need to perform ECS. This means that the patient does not need to be
woken up, which makes the procedure shorter, safer and cheaper. fMRI has also the
advantage of providing all of this information in advance before the procedure. This
allows the surgeon to plan the procedure, consult a panel of specialists and the pa-
tient themselves. These advantages need to be quantified to address the real impact
of fMRI on clinical practice. This leaves many questions such as: how can presurgical
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fMRI mapping influence the surgeon’s procedure plan? How accurately can fMRI
asses the risks of surgery? Will patients appreciate a more informed decision about
treatment? Most of these issues involve an interface between technology and clinical
practice and investigating them will require expertise from fields of health and social
sciences.

Additionally the question how to best present data to surgeons remains open. Fol-
lowing the false positives vs. false negatives analogy it might be better to present
maps of areas safe to remove instead of regions to be avoid. Suprathreshold maps
also do not convey any information about the uncertainty of the border of the ac-
tivation. Some work has been done to bootstrap thresholded maps to create such
confidence intervals (Kirson et al., 2008), but it has not yet been applied to surgical
planning.

7.1.4 The future of Nipype

Nipype has filled a gap in the neuroimaging software ecosystem and has been ap-
preciated by its users. It does not mean, however, that it is complete and cannot
be improved. The way the lack of uniformity between software packages has been
solved requires a laborious process of writing Interface code. This could be avoided
in many cases if the community would agree on standards describing software be-
haviour. Such attempts have been made previously by the Slicer and LONI Pipeline,
but they did not reach widespread popularity. Additionally provenance tracking
should be standardized to allow improved meta-analysis and third party applica-
tions development. LONI Pipeline did introduce an XML Schema describing prove-
nance (Mackenzie-Graham et al., 2008), but it was not used outside of their ecosystem.
There is also an attempt to create a more general standard for reporting provenance
by the World Wide Web Consortium (http://www.w3.org/2011/prov). One of these
approaches needs to be picked and implemented in Nipype.

Last but not least despite the fact that a substantial development effort has been put
into the workflow engine of Nipype it should be replaced in the future by an external
solution. Execution of a set of tasks with dependencies and transfer of results is
not a neuroimaging specific problem and there are dedicated solutions to perform it
(for example see http://www.taverna.org.uk/). This would allow some development
cost to be offloaded, while focusing on issues strictly specific to neuroimaging.

7.2 summary

We hope that advancements presented in this dissertation will lead to improved clin-
ical practice, fewer awake craniatomies, smaller risk of postoperative deficits and
more informed patients. Additionally some aspects of this work (such as reliability
study and data processing workflow) have a broader impact and can influence the
way fMRI is being used and interpreted.

http://www.w3.org/2011/prov
http://www.taverna.org.uk/
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