MAX-PLANCK-INSTITUT

FUR
INFORMATIK

(M

Structural Decidable Extensions of Bounded
Quantification

Sergei Vorobyov

MPI-1-94-257 October 1994

- /

=i

INFORMATIK

Im Stadtwald
D 66123 Saarbriicken

Germany

Author’s Address

Sergei Vorobyov (sv@mpi-sh.mpg.de),
Max—Planck—Institut fiir Informatik

Im Stadtwald

D-66123 Saarbriicken

Germany
(http://www.mpi-sb.mpg.de/guide/staff/sv/sv.html)

Publication Notes

To appear in the Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’95), January 23-25, 1995, San Francisco, U.S.A. Preliminary
versions appeared as Technical Report CRIN-94-R-121, July 1994 (Centre de Recherche en Infor-
matique de Nancy, France) and Research Report INRIA-94-RR-2309, September 1994 Institut
National de Recherche en Informatique et en Automatique, France.

Acknowledgements

I am greatly indebted to Luca Cardelli, Benjamin Pierce, Martin Abadi, Roberto Amadio,
Philippe de Groote, Didier Galmiche, Jean-Luc Rémy, Hubert Comon, Michel Parigot for invalu-
able remarks, ideas, and discussions. I am grateful to my anonymous referee for his substantial
help. To produce proof trees I used Paul Taylor’s IATpXmacro package. This work was mainly
done when I was at CRIN (Centre National de Recherche en Informatique de Nancy, France),
which provided me the excellent research opportunities.

Abstract

We show how the subtype relation of the well-known system F'<, the second-
order polymorphic A-calculus with bounded universal type quantification and
subtyping, due to Cardelli, Wegner, Bruce, Longo, Curien, Ghelli, proved unde-
cidable by Pierce (POPL’92), can be interpreted in the (weak) monadic second-
order theory of one (Biichi), two (Rabin), several, or infinitely many successor
functions. These (W)SnS-interpretations show that the undecidable system
Fsub possesses consistent decidable extensions, i.e., Fsub is not essentially un-
decidable (Tarski, 1949).

We demonstrate an infinite class of structural decidable extensions of F,
which combine traditional subtype inference rules with the above (W)SnS-
interpretations. All these extensions, which we call systems F2™ are still more
powerful than Fc, but less coarse than the direct (W)SnS-interpretations.

The main distinctive features of the systems F2™ are: 1) decidability,
2) closure w.r.t. transitivity; 3) structuredness, e.g., they never subtype a
functional type to a universal one or vice versa, 4) they all contain the powerful
rule for subtyping boundedly quantified types.

Structural Decidable Extensions
of Bounded Quantification

Sergei G. Vorobyov

*

Max-Planck-Institut fiir Informatik

Im Stadtwald, D-66123, Saarbriicken, Germany

(e-mail: sv@mpi-sb.mpg.de)

Abstract

We show how the subtype relation of the well-known system
F<, the second-order polymorphic A-calculus with bounded
universal type quantification and subtyping, due to Cardelli,
Wegner, Bruce, Longo, Curien, Ghelli [6, 2, 8], proved un-
decidable by Pierce [12], can be interpreted in the (weak)
monadic second-order theory of one (Biichi), two (Rabin),
several, or infinitely many successor functions[13, 14]. These
(W)SnS-interpretations show that the undecidable system
F< possesses consistent decidable extensions, i.e., F< is not
essentially undecidable (Tarski et. al., 1949, [17]).

We demonstrate an infinite class of “structural” decidable
extensions of F«, which combine traditional subtype in-
ference rules with the above (W)SnS-interpretations. All
these extensions, which we call systems F<S"S7 are still more
powerful than F, but less coarse than the direct (W)SnS-
interpretations:

Fe C Fssns C (W)SnS-interpretations

The main distinctive features of the systems FZ™ are:

1) decidability, 2) closure w.r.t. transitivity; 3) structured-
ness, e.g., they never subtype a functional type to a universal
one or vice versa, 4) they all contain the powerful rule for
subtyping boundedly quantified types:

rrn <oy Fa <k o < mn
IF'FWVa<o.02) < Va<m.m)

(All)

Key words: second-order polymorphic typed A-calculus,
subtyping, system F«, bounded universal type quantifica-
tion, parametric and inheritance polymorphisms, (un-)deci-
dability, essential undecidability, (weak) monadic second-
order theory of several successor functions (W)SnS.

1 Introduction

The advantages and usefulness of strict typing disciplines
in programming with static typing and rigid compile-time

*This work was done while the author was at the Centre de
Recherche en Informatique de Nancy, France

type control have been widely accepted, studied, and advo-
cated in Software Engineering [10, 6, 4, 11] since creation
of Simula-67, Algol-68, Pascal, Clu, Alphard, Modula, ML,
Ada, etc. Typeful programming should be based on power-
ful and, preferably, decidable type systems.

The system F< is the polymorphic second-order typed A-
calculus with subtyping, combining the universal (or para-
metric) polymorphism of Girard’s system F' with Cardelli’s
calculus of subtyping (inheritance polymorphism [3]). Intro-
duced in [6], later improved, simplified, and investigated by
many researchers [2, 1, 8, 12, 7, 5], the system F< serves a
core calculus of type systems with subtyping and a model to
represent polymorphic and object-oriented features in pro-
gramming languages.

F< is an extension of I with subtyping. In addition to the
usual functional and universal type formation of F, the sys-
tem F< allows one to form boundedly quantified types:

Yo < bound .body. Such type is a function on types trans-
forming any subtype o of a bound into a type body[o/a].
As F< also contains the largest type T, the unbounded
type quantification of F' is included as a particular case:
YVa < T.o.

The system F«< consists of two components. The first one ax-
iomatizes the subtyping relation on types I' + ¢ < 7. The
second generates the typing relation T' + ¢ : 0. Both com-
ponents interact by means of the rules as (Subsumption),
allowing one to derive the judgment T' + ¢ T from

I'tt:ocand F o <7

In [12] Pierce proved that already the subtyping component
of F< is undecidable, and hence the typing relation in F<
is undecidable too. Using Ghelli’s example of divergence of
F<-subtyping algorithm (mainly due to the subtle interac-
tion between the quantifier rule (All) above and transitiv-
ity), he succeeded to encode instances of the termination
problem into F<-subtyping judgments.

Given an undecidable theory T one usually tries to weaken
it to get a decidable subtheory Ty.. C T. Accordingly, at-
tempts were made to restrict F« to get decidable subsys-
tems. In [7] the general quantifier rule (All) above was re-
placed by its weaker version:

'rFtn <o TD,a<T ko <m
'tk WVa<oi.02) < Va<1.m)

(All-Top)

Subtyping in the resulting subsystem FI C Fc is de-
cidable. In [9] a decidable subsystem of F< is obtained by

restricting bounds in bounded quantification to be T-free
(with some relaxations to allow unbounded quantification).
An extensive discussion of different other weakenings of the
powerful rule (All) is contained in [7].

For an undecidable theory T there sometimes exists another
possibility, to reinforce it (instead of weakening) in order
to obtain a consistent decidable extension Tgec 2 1. This
works only if T is not essentially undecidable, i.e., possesses
consistent decidable extensions (A. Tarski, 1949, [17]).

Curiously enough, F« appears to be undecidable, but not
essentially [18], with infinitely many nontrivial consistent
decidable extensions. This reopens the possibility for ob-
taining good decidable systems relative to F« without sacri-
ficing the general quantifier rule (All) or somehow restricting
the form of bounds in bounded quantification.

The first infinite class of such extensions was introduced in
[18], where it was shown that there exist infinitely many
ways to translate F<-subtyping judgments into formulas of
Rabin’s $2S. Each such translation maps the F<-axioms
to valid S2S-formulas, and each F<-inference rule preserves
validity with respect to any S2S-translation. It follows that
everything provablein F< is valid in any S2S-interpretation.
Consequently, F< is not essentially undecidable; any S2S-
translation is a consistent decidable extension of F<. S2S-
interpretations generalize for recursive types [19].

Precautions, however, should be taken concerning consis-
tency. For theories based on predicate calculus consistent
means “do not prove everything”. For theories, which are
not based on predicate calculus, like F«, consistent might
mean “do not subtype any pair of types” (weak consistency)
or “do not subtype too many types” (strong consistency).

S2S-interpretations appeared to be weakly, but not strongly
consistent. They are coarse in the sense that they do not
make fine distinction between differently structured types,
and subtype too many of them, which is undesirable in strict
typing disciplines. In this paper we remedy this drawback by
combining our S2S-interpretations with the traditional F«-
like subtype inference rules. These rules guarantee the so-
called “strict structural subtyping”, where the subtype re-
lation is defined by co(ntra)variant induction on type struc-
ture. This prevents us from subtyping differently structured
types, e.g., universal and functional ones.

The main idea of our systems F<S"S is that they disable
the infinite alternations of applications of the rule (All) and
the transitivity rule. This alternation is the source of non-
termination and undecidability of F, [12]. Instead, we
prune proof tree branches, which may lead to infinite al-
ternations, and decide the remaining judgments by inter-
preting them in (W)SnS. Of course, as F< is undecidable,
and F<S"S are decidable extensions of F«, sometimes they
accept” Fe-unprovable judgments. But this is a reasonable
price for attaining decidability.

The scenario of the presentation is the following. Section 2
recalls the system F<. (Un)decidability results concerning
F< are listed in Section 3. Section 4 introduces systems
FZ"™. Section 5 describes the decision procedure. In Sec-
tion 6 we show infinitely many ways to interpret the sub-
type relation in any (W)SnS. Section 7 discusses the con-
sistency of F<S"S In Section 8 we explain the rule inver-
sion principle, the main tool of our proofs of the inclu-

sion F« C FZ™ and the transitivity of FZ™. In Sec-
tions 9 and 10 we show that the inversion principle does not
hold for SnS-interpretations, but holds for systems F<S"S
In Sections 11, 12, and 13 we prove the inclusions F C
FZ™ C (W)SnS-interpretations and the transitivity of all

F<S"S Section 14 discusses further improvements of F<S"S
In Section 15 we sketch problems for future research. Ap-
pendices A and B contain the reference material on second-
order monadic theories and on Curien-Ghelli’s algorithmic
variant of F'<. The proofs are collected in Appendix C.

In this paper we deal only with the subtyping relation. Com-
binations with typing and related problems, like subject re-
duction [20], typing proof normalization, the least type prop-
erty, strong normalization are in the course of study and will
be considered elsewhere.

Added in Proof. In [21] we continued the study of decid-
able extensions of the F« subtyping relation and developed
the general theory of converging hierarchies of structural de-
cidable extensions of the F<-subtyping. The systems F<S"S
presented in this paper form just the first level of the hi-
erarchies from [21]. In [22] we combined these hierarchies
with the standard F< term typing rules and obtained an
infinite family of the extensions of the polymorphic system
F< where both subtyping and typing are decidable.

2 System I¢

For complete and exact reference see, e.g., [8, 12, 5]. We
just briefly remind the essential definitions, retaining the
notation of [12].

Definition 2.1 (Types) The set of F<-types is defined by
the following abstract grammar:

T=y¢ V|T|T->T|VVLST.T
where:

1. 'V is a set of type variables denoted by Greek letters o,
B, v

2. T 1s the largest type majorazing any other type, o < T;

3. — is the functional type constructor, o — T is the
type of functions with domain of type o and codomain
of type 7;

4. Ya < p.1 is a polymorphic boundedly quantified type,
i.e., a function assigning to each subtype o of p, o < p,
the type T[o/a] obtained from T by substituting o in-
stead of free occurrences of o (with usual non-clashing
preconditions on free variables). In Ya < p.7 the
bound p does not contain « free.

The letters T, o, p from the end of the Greek alphabet de-
note arbitrary (variable or compound) I'<-types; V3.1 ab-
breviates V3 < T.7; FV (o) denotes the set of free variables
no.

Definition 2.2 (Contexts) An Fc-context is an ordered
sequence a1 < 01,...,0n < 0n of <-relations between type
variables and F'<-types such that:

1. all «a; are different type variables, and

2. for each i, FV (o) C {an,...,ai—1}.

Contexts are denoted by capital Greek T'. Dom(T') is the set
of type vartables appearing to the left of < wn ['. We write
I'(«) = o if T contains o < ¢ and call ¢ a bound of a in T.
We define I'*(a) as I'(«) if the latter is not a variable, and
as T*(T'(a)) otherwise. o

Definition 2.3 (Subtyping Judgments)
An F<-subtyping judgment is a figure of the form:
'+ o < 7
where F'V (o) U FV (1) C Dom(T). |
The intuitive semantics of a judgment I' + o < 71is: o

is a subtype of 7 provided that all o; mentioned in T' are
subtypes of their respective bounds o;.

Definition 2.4 (Subtyping Rules) The F<-subtyping re-
lation is generated by the system of 3 axzioms and 8 inference
rules, shown tn Figure 1.

re-r<r (Refl)
Trr < T (Top)
't a < T'(a) (T'Var)
F " T1 S T2 F " T2 S T3
(Trans)
F " T1 S T3
't <oy T'E oy < r
= = " (Arrow)
r+ a1 — 02 S T —7 T2
''tn <o Tha<n ko2 < 7
(A1)

' Va<or.02) < (Va<7.72)

Figure 1: F< subtyping axioms and inference rules

Let Fr_ denote the least three-place relation I' = o < 7
containing all particular cases of the F<-azxioms and closed
with respect to the F<-inference rules. Sometimes, by abus-
ing notation, we denote by F< the set of subtyping judgments
provable in F<. - a

Definition 2.5 (Variants of I'<) 1) Original Fun [6] re-
places the (All) rule by the weaker rule (All-Fun) (Fig-
ure 2).

2) System F. [7] replaces the rule (All) by its particular
case (All-Top) (Figure 2).

3) System F<'°®! [7] replaces the rule (All) by its modifica-
tion (All-local) (Figure 2).

By Frun, I—F<T and tp_iocar we denote the corresponding

subtyping relations. a

FNa<ptko <mn
' Va<p.o2) < Va<p.m2)

(All-Fun)

't <o I'a<T ko < mn
't Va<oi.02) € Va<7.m)

(All-Top)

T n S (241 l",ozgal F oo S T2
F'F Va<oi.02) € Va<n.m)

(All-local)

Figure 2: Variants of the (All) rule

3 (Un)Decidability
The interesting facts about F< are:

Theorem 3.1 (Undecidability of I'<, [12]) The relation
I—FS 1s undecidable. O

The weakenings of F< are however decidable:

Theorem 3.2 (Decidability of Fun and F. [7]) Both
- O

relations b run and 1 are decidable.
<

Nothing is known about decidability of F<'** [7].

In [18] we demonstrated that the decidability of I'< could be
reached also by reinforcement, and not only by weakening,
as opposed to systems FI and F'un.

Definition 3.3 (Essential Undecidability, [17]) A con-
sistent theory T' is essentially undecidable ¢ff it has no con-
sistent decidable extensions T D T. m|

Definition 3.4 (Consistency) An extension of F< is con-
sistent iff it is closed with respect to the F< inference rules
and does not subtype any two types.]

Remarks. 1) Further we replace “any two types” by “any
two differently structured types” getting the stronger con-
sistency. 2) As we are interested only in the extensions of
F<, the closure with respect to the F'<-inference rules seems
natural and meaningful. It would not be the case for F.
and Fun. [mi

Theorem 3.5 (I'< Is Not Essentially Undecidable, [18])
There extst infinitely many different consistent decidable ex-
tensions of Fp_ . O

This result was obtained by interpreting the F<-subtyping
relation in S2S, the monadic second-order logic of two suc-
cessors due to M. Rabin [13, 14]. The corresponding in-
finite class of extensions of F< (which we call the S2S-
interpretations) and their properties are studied in [18].

The main objection (by L. Cardelli and others) against these
extensions was that they were too coarse and non-structural.
S2S-interpretations subtype too many types, sometimes

differently structured ones (i.e., universal and functional
ones).

In this paper we introduce a new infinite class of decidable
extensions of I'< refining the S2S-interpretations . We call
these extensions systems FZ™. We also (re)introduce the
S2S-interpretations in a slightly more general setting and
call them SnS-interpretations (with S2S being a particular
case of SnS for n = 2). We prove that all systems F<S"S are
more powerful than F<, but being structural (they do not
subtype differently structured types any more), they are less
coarse than SnS-interpretations:

Fe C Fssns C SnS-interpretations

Again note that the decidable system F/ introduced in [7]
is weaker than Fc: F; C F<.

4 System FSS"S

Definition 4.1 The system FZ™ is defined by the collec-
tion of subtyping axioms and inference rules shown in Fig-
ure 8, supposed to be applied bottom-up in the order of their
presentation.

xk % See Fligure 3 * *x

The DECIDE component in the rule (Var-All-Decide) and

the whole Ff”g—decision procedure are described in the fol-
lowing Sections. a

Roughly speaking, the system F<S"S is F'« without the gen-
eral transitivity rule (Trans) replaced by a built-in decision

procedure DECIDE.

Remarks and Explanations

1. Our intention is to define the decision and not semide-
cision procedure for subtyping judgments. That is why
we are going to apply rules bottom-up and introduce
two constants TRUE and FALSE to treat both the

accepting and rejecting cases.

2. Rules (Refl), (Top), and (TVar) correspond exactly
to their F< counterparts. We formulate them as rules
with the premises T'RUF just to be able to treat sym-

metrically the negative case FALSFE in other rules of
F3m,

3. Rules (Arrow) and (All) are the same as in F<.
4. Motivation for the rules (T'op-L) and (TVar-R-2) is:

the conclusions of these rules are NOT provable in F<
(Proposition 4.2).

5. Motivation for the rules (V £ —) and (— £ V) is the
same: the conclusions of these rules are underivable in

Fe.

6. The (Var-Arrow) rule is just a half (with only arrow-
types on the right of <) of Curien-Ghelli’s algorithmic
transitivity rule (AlgTrans), see [8] and Appendix B.

7. The crucial difference with F< is the absence of the
general rule (Trans) or of its algorithmic equivalent
(AlgTrans) for universal types (see the rule (Var-All)
below). Transitivity in this case is dealt separately, by
means of a DECIDFE procedure. Note that we do
not weaken the general F'< quantifier rule (All), which
remains the same as in F2™.

8. The built-in procedure DECIDE appearing in the
premise of the rule
(Var-All- Decide) is a parameter of the system. Below
we define infinitely many different such procedures.
Note, in particular, that if we define the DECIDE
procedure recursively, as F<S"S plus the second half of
Curien-Ghelli’s transitivity rule:

F'FDa) < (V8<Lo.7)
F'ta < (V8<o.7)

(Var-All)

then we will get ezactly F<! m|

Proposition 4.2 Subtyping judgments of the forms:

I.TFH T (r#T7T),

2.T+F o<a (o non-variable, a variable),
where I' is any context, are not provable in F<.]
Proof . See Appendix C.1. a

5 Decision Procedure

The rules of the system F<S"S read bottom-up can be seen
as a decision procedure (with a built-in DECIDE oracle).
Given a subtyping judgment, the rules of F<S"S apply deter-
ministically in ordered manner (e.g., (Var-All-Decide) does
not apply before (Var-All-2)). The rule application process
always terminates, provided that the built-in DECIDFE pro-
cedure is finitely terminating, and this is the fundamental
difference with Fg, see [12].

Proposition 5.1 (Finite Termination of F£™) For eve-

ry subtyping judgment I' + o < 7 any F<S"S—_proof tree s
finite. - a

Proof . The complexity of judgments decreases as one
moves bottom-up. a

So the termination of the whole decision procedure depends
on termination of its DECITDFE component.

Irreducible leaves of Fssns—proof trees are either:
1. TRUE or
2. FALSFE or
3. of the form DECIDE(J), where J is a subtyping
judgment in the Fssns—normal form, i.e.:
J =g ar<or...an<on, B BT, (3)

where ay1,...,an, 3 are type variables, o1,...,0, are
arbitrary types, and 7 is a universal type.

TRUE
'kto <o

TRUE
TkFo < T

FALSE

—TrT < JrtED

LFIE) < a

or different variables «,
r'rs<a (f If 8)

FALSE

—— (o non-variable, o variable)
I'ko < a

FPALSE
't Va<or.02) < (11— 1)

FALSE
'k (61 =>02) < (Va<m.m)

F'T(a) < o>7
Fr'ra<o—->r

TRUE
't a < INa)

(if T'(«) is a variable)

I' v FALSE

T'Ha < (V8<o.7) (if T(a) is T or an — -type)

DECIDE(T F a

F|_T1§0'1 F"O’QSTQ

F"O’l—>0'2 S T1 — T2

'tn <o Fa<n ko < 7
' Va<or.02) < (Va<T1.72)

Figure 3: System FZ™

(Top-L)

(TVar-R-1)

(TVar-R-2)

¥V £ =)

(= £ V)

(Var-Arrow)

(TVar)

(Var-All-1)

(Var-All-2)

(Var-All- Decide)

(Arrow)

(All)

Obviously:

o if all leaves of a F<S"S—pr00f tree are T'RUFE, we declare
the input judgment valid;

o if one of the leaves of FZ™-proof tree is FALSE, we
declare the input judgment invalid;

e otherwise, before announcing our verdict we analyze
FZ™_normal forms (3) using the built-in DECIDFE

procedure.

To decide normal forms (3) we use a method [18] of in-
terpretations in monadic second-order theories of successor
functions [14]:

o first, we compile FZ™ -normal forms (3) in a monadic
second-order theory,

e second, we decide them using a decision procedure for
this theory.

Therefore, instead of remaining in the undecidable F'« we
forget it and work in the decidable F<S"S7 which replaces
the transitivity rule (T'rans) by the transitivity implicitly
present in a monadic second-order theory. As we show be-
low, the proper choices of the DECIDFE component lead
to decidable extensions of F< (Theorem 11.1), closed with
respect to transitivity (Theorem 12.1).

6 Interpreting FSS"S-NormaI Forms in SnS

In [18] we introduced an infinite class of direct interpreta-
tions of F< into S2S, the monadic second-order arithmetic
of two successor functions [13, 14]. These direct S2S-inter-
pretations do not use any inference rules (as opposed to Fg
or F<S"S)7 immediately translating F'<-judgments into S2S-
formulas. Like this we established that F< possesses in-
finitely many different consistent decidable extensions, i.e.,
is not essentially undecidable.

The drawback of the direct S2S-interpretations of F« is that
they subtype too many types (see [18] and below), in par-
ticular, differently structured types. The systems F<S"S are
more subtle. By their very definition they do not subtype
differently structured types. They cannot prove a subtyping
between, say, an —-type and a V-type. The systems F<S"S
apply the method of interpretations only to normal forms,
i.e., to judgments of the form (3) inside the DECIDFE pro-
cedure.

There is only a minor difference in defining the S2S-inter-
pretations only for normal forms (3) and for general Fc-
subtyping judgments, so we give a complete definition of
S2S-interpretations of Fe. Also, S2S-interpretations gener-
alize straightforwardly to SnS-interpretations for arbitrary
n € N or even SwS.

Choose and fix any monadic second-order theory of succes-
sor function(s), say, Blichi arithmetic S1S, Rabin’s arith-
metic S2S, ..., SnS, SwS, or their weak counterparts, with
second-order quantifications restricted to finite sets (see Ap-

pendix A).

The intuition behind interpretations of F'x into SnS is ex-
tremely simple. We interpet the F'< types as propositions of

SnS. Each F<-type o is assigned a SnS-formula S(z) with
just one free object variable &, and each subtyping relation
o < 7 is translated into Vo (S(x) D T(z)), where S(z) and
T(z) are SnS-formulas assigned to types o and 7.

Our translation satisfies the following properties:

1. all axioms of F< are transformed into valid formulas

of SnS;

2. all F<-inference rules preserve validity with respect to
any SnS, i.e., whenever both premises of a rule are
translated into valid SnS-formulas, then the conclu-
sion of the rule is also translated into such formula.

3. consequently, by 1 and 2, any F<-subtyping judgment
is interpreted as a true formula of SnS, and, hence-
forth, F< is not essentially undecidable, i.e., possesses
consistent decidable extensions; any SnS-translation
of I« satisfying the above properties is such an exten-
sion.

It remains to show that the needed SnS-translations of F«
with the above properties exist. We show it in the rest of this
Section. The idea is quite simple: interpret type variables
«, 3, ...as corresponding SnS-atomic formulas A(z), B(z),

., choosing a new predicate variable for each new type
variable. Then knowing that S(z) and T'(x) interpret ¢ and
T respectively, interpret:

e 0 — 7 as S(z) D T(x), or, more generally, as
S(x) O T(f(x)),

o Va<o.TasV:A {le[A(x) D S(z)] > T(x)}, or, more

generally, as
VAV 2[A(z) D S(x)] D T(g(x))},

where f, g are arbitrary strings composed of SnS-
SUCCessors.

Introduction of parameters f and g allows us to define in-
finitely many different interpretations of F< in SnS, see [18].
Surprising, but it works! We now proceed to formal defini-
tions.

Definition 6.1 (SnS[F<](f, g)-interpretations) Let f
and g be two arbitrary strings composed of successor func-
tion symbols of SnS. Both may be equal to the empty string
€.

For an arbitrary type p of F<, the Types-As-Propositions-
Interpretation of p in SnS with parameters £ and g (the
SnS[F](f, g)-interpretation for short) is defined as an SnS-
formula [[p]]g(x) with unique distinguished free object vari-
able z by induction on the structure of p:

1. Ja]]g(x) =g A(z) (a new predicate

variable A for each type variable o);

2 [T I =

T = x;

3. [o—rlk@) =4 [olb@ o[- 15(E@);

1. [Va<o.rlg@) =4

va{ve (@) 5 [oI5®) o [I5EE)}-

The SnS[F<](f, g)-interpretation is extended to all subtyp-
ing judgments by:

5. [o <k = Ve(olh@ > [7150)

6. [ar<o1...an<on F O'ST]]g =g

f f f
[ar <o]]g...[[ozngan]]g |:SnS [[UST]]g' o

Definition 6.2 (Theory) Define the SnS[F<](f, g)-theory

as:

SnS[F<l(f,g) =y {T Fo<7|[T +o<rIf)

Further we will freely say that a typing judgment is true or
valid in (or with respect to) a SnS[F](f, g)-interpretation
iff it belongs to the set SnS[F<](f,g). ad

Remarks. In SnS[F<](f, g)-interpretation we use just one-
variable restricted fragment of SnS. If f = g = ¢ then this
fragment is also function-free (and can be seen as the propo-
sitional second-order logic). x is the only free object vari-
able of any SnS[F<]|(f, g)-interpretation of any type. Sub-
typing judgments are interpreted as statements about SnS-
semantical consequence relation |:S containing no free

object variables at all. Any SnS[F<](f, g) is decidable. O
The SnS-interpretationsenjoy the following important prop-
erties:

Lemma 6.3 (Embedding) 1) All axioms of I'< are valid
with respect to any SnS[F<](f, g).

2) All inference rules of F'< preserve validity with respect to
any SnS[F<](f,g), i.e., if both premises of a rule are valid
in SnS[F<|(f, g), then so is the conclusion of the rule. O
Proof . Straightforwardly rephrasing the proof from [18].
O

As a direct consequence we have, [18]:

Theorem 6.4 (On Decidable Extensions of F<) Any
SnS[F<|(f,g) is a consistent decidable theory containing all
F<-derivable subtyping judgments. Henceforth, F< is not es-
sentially undecidable possessing consistent decidable exten-
STOMS. O

Definition 6.5 (FZ™(f,g)) Define a system FZ™ (f,g) as
a combination of the inference rules from Figure 8 and a

DECIDE procedure for SnS[F<](f, g). |

Below, in Theorems 11.1 and 12.1 we show that all systems
FZ™(f,g) also extend F< but are less coarse than SnS-
interpretations, i.e.,

F¢ C FZ™(f.g) C SnS[F](f,g) (4)

7 Consistency and Well-Structuredness of FSS"S

Proposition 7.1 All systems FZ™ are consistent: they do
not prove, e.g., £ T < (T — T). Neither do they subtype
any pair of differently structured types. O

Proof . Immediate by definition. m|

8 Inversion Principle

The main tool of the proofs of inclusions (4) (Theorems 11.1
and 12.1) and of the transitivity of F2"(f, g) (Theorem 13.1)
is the well-known inversion principle. The rule invertibility
is the fundamental principle of the cut-free Gentzen-type
derivation systems, see, e.g., [15].

The inversion principle is the key property needed to prove
the minimal typing property for F<. In fact, this is almost
all what is needed to reconstruct F<-inferences into normal
forms, [8]. B

The inversion principle can be formulated as follows: for an
inference rule of a system S

r- ¢ re+w
rr+oe

(Rule)

if a sequent I' + O from the conclusion is derivable in S
then the premises are also derivable in S.

The inversion principle is important for goal-oriented proof-
search procedures, which are guaranteed to be complete
just stupidly applying inference rules bottom-up. Proofs
in systems satisfying the inversion principle are direct, con-
structed from subproofs of subformulas of goal formulas, do
not contain insights and roundabout ways.

The inversion principle is not evident, or even fails for sys-

tems with the CUT rule:
- A>C r-cohB

'-A>B

(Cut)

In the presence of (C'ut), one cannot always be sure that
a provable formula © of the form A O B is obtained by
some (Rule) or by the (Cut). But applying (Cut) requires
ingenuity to find intermediate formulas C, unattainable for
mechanic theorem provers.

Note that the usual transitivity rule of F«

F'_TlgTQ F'_TQST?,

F|_71§T3

(Trans)

has the definite (C'ut) form.

Proposition 8.1 (Inversion for F<, [8]) In F< the rules
(Arrow) and (All) are invertible. |

This may be seen as a good structural property.
9 Failure of the Inversion Principle for SnS[F<](f, g)

The inversion principle fails for SnS-interpretations. In
fact, we can have

[TF@sn<(»)Ik
WITHOUT having

[T+ alga]]ig. and [T + TST/]]ig.

Take, for example, the judgment
a<TF(a->T)<(T=>T)
with the valid SnS-translation, but the SnS-translation of
a<TF T<a

is false: V'w(Az Do =) £ Vo(r =x D Ax).
10 Inversion Principle for FSS"S

Inversion principle trivially holds for F<S"S:

Lemma 10.1 (Inversion Principle) In any Fssns(f7 g):

e if ' F o1 =5 02 < 71 — T2 is provable, then
't7mn < o1 andD F o2 <7 are also provable;

e ifT + (Va<o1.02) < (Ya < 71 .72) is provable,
then I' F 11 < o1 and
I'ao<m F o2 < 72 are also provable. a

Proof . Immediate by definition. In FZ™ there are no
other ways to subtype two —- or V-types except applying
(Arrow) or (All) (or by the (Refl), in which case the con-

clusion is straightforward). a

The proofs in F<S"S are direct, one needs not subtype any-
thing which do not belong to a goal subtyping judgment,
proofs are conducted without roundabout ways and insights,
completely deterministically.

11 FSS"S is More Powerful than F¢

Now we prove two strict inclusions:

F< C FE™(f,g) C SnS[F](f,g)

So, the systems F<S"S occupy an intermediate position be-
tween F< and SnS-interpretations: they are more strong
than F< and more subtle than SnS-interpretations. Note

that the decidable system FI lies to the left of F< in the
above diagram. -

Remark. F<S"S is an infinite family of systems. To decide
normal forms each system uses a parametric SnS[F<](f, g)-
interpretation . For each f and g we have different para-
metric FZ™(f,g). In fact, for the same f, g we have the
above inclusion FZ™(f,g) C SnS[F<](f,g). In general,

Fssns(f7 g) and Sn_S[FS](f'7 g') are unrelated [18].

Theorem 11.1 (F< C FZ™) Each system FZ™(f,g) is
strictly more powerful than F< is: if a subtyping judgment
is provable in F< then it is also provable in F2™(f, g); the
converse is not true in general. - O

Proof . See Appendix C.2. a

12 FSS"S Are Less Coarse than SnS-Interpretations

We prove that F<S"S(f7 g) subtypes strictly less types than
the corresponding SnS[F'<|(f, g)-interpretation:

Theorem 12.1 (FZ™(f,g) C SnS[F<](f, g).) Fach sys-
tem F<S"S(f7 g) s strictly less powerful than the correspond-
ing interpretation SnS[F<|(f,g): whatever is provable in

Fssns(f7 g) is also true in SnS[F<](f, g); the converse in gen-

eral does not hold. In particular, F<S"S does not subtype dif-
ferently structured types (e.g., a universally quantified and a
functional type). O

Proof . See Appendix C.3. a

13 Transitivity of FSS"S

Changing F< for F<S"S we gain decidability and do not lose
transitivity! Transitivityis an indispensable property needed
for many purposes, in particular, for proof normalization,

see [8, 21, 22].

Theorem 13.1 (Transitivity of FSS"S) All systems
F<S"S(f7 g) are closed with respect to the transitivity rule

(Trans):

whenever I' F o < 7and T + 7 < p are provable in

Fssns(f7 g), then I' + o < p is also provable in Fssns(f7 g).

Proof . See Appendix C.4. a

14 Improvements

The F<S"S—decisi0n procedure may be obviously refined as

follows: instead of pruning the Fé”g—proof tree! on the first

application of (Var-All-Decide), one may fix £ € N and
allow k applications of (Var-All) on each branch of a sub-
typing proof tree before applying (Var- All- Decide), which
invokes the brute force SnS-decision procedure for normal
forms. Denote the resulting system F2™ (f, g)(k).

Consider a simple example. The non-modified procedure
analyzing the normal form

Fa<(V8(T=T)=>T) Fa< (V8. T=T)

returns TRUE. But if we allow just one application of
(Var-All), weget T... - (T =>T)—=T < T =T,
then ' + T < T — T, and, finally FALSFE, which
corresponds exactly to the I'<-proof.

With these modifications we still have for all k € w
Fc C FE™(f,g)(k)
It is not difficult to notice that
FZ™(fg)(k+1) C F<™(f,8)(k)

and Fssns(f,g)(oo) = I«

The general theory of the converging sequences
{ Fssns(f7 g)(k) }iZ, is systematically developed in [21].

15 Conclusion

In this paper we concentrated exclusively on the the sub-
typing relations more powerful than in F«. When combined
with the usual Fc-term typing rules, our subtyping exten-
sions produce systems, which type strictly more terms than
Fe. Let T F o < 7 be Ff"s—provable but F<-unprovable.
Then I' & : o, f : T 7 F fa TinF<S"S,butis
untypable in Fc. -

Therefore, the problems of subject reduction, strong normal-
ization, and minimal typing are nontrivial for our extensions.
If the general answers appear to be negative, it might be
interesting to investigate restricted classes and/or to mod-
ify senses in which we understand the above properties. It
would also be interesting to construct models of FZ™. The
work on these problems has been started [21, 22, 20].

As shows the example in Section 14, the systems F<S"S (and
hence SnS-interpretations) do not separate the sefs of F-
provable and F<-finitely disprovable subtyping judgments.
So, the problem is: whether these two sets are recursively
separable. If yes, the separating cover of I'< will be a bet-
ter substitute for the DECIDE component of the FE™-
decision procedure. -

In a particular case, when f = g = ¢, our SnS-interpretations
of F<-subtyping are just interpretations into the second-
order propositional logic. As it was established by Shamir

1F2“'q is the Curien-Ghelli algorithmic equivalent formulation of

Fe, see [8] and Appendix B

[16], the class PSPACE coincides with the class of lan-
guages recognizable by the so-called interactive proof sys-
tems. These systems are probabilistic algorithms exchang-
ing messagesin order to get convinced whether a given string
belongs to a language with a given probability. It is chal-
lenging to introduce probabilistic algorithms in the domain
of type systems.

Acknowledgments. I am greatly indebted to Luca Cardelli,
Benjamin Pierce, Martin Abadi, Roberto Amadio, Philippe
de Groote, Didier Galmiche, Jean-Luc Rémy, Hubert Comon,
Michel Parigot for invaluable remarks, ideas, and discus-
sions. T am grateful to my anonymous referee for his sub-
stantial help. To produce proof trees I used Paul Taylor’s
IWTEpXmacro package. This work was done when I was at
CRIN (Centre National de Recherche en Informatique de
Nancy, France), which provided me the excellent research
opportunities.

References

[1] BREAZU-TANNEN, V., CoQuaND, T., C., G., AND SCEDROV,
A. Inheritance as implicit coercion. Mathematical Structures
in Computer Science 93 (1991), 172-221.

[2] Bruck, K. B., AND LONGO, G. A modest model of records,
inheritance and bounded quantification. Information and
Computation 87 (1990), 196-240.

[3] CARDELLI, L. A semantics of multiple inheritance. Informa-
tion and Computation 76 (1988), 138-164.

[4] CARDELLI, L. Typeful programming. Research Report 45,
Digital Equipment Corporation System Research Center,
1989.

[65] CarpELLI, L., MARTINI, S., MITCHELL, J., AND SCEDROV,
A. An extension of system F' with subtyping. Information
and Computation (1994). To appear, preliminary version in

LNCS’526, 1991, pp.550-570.

[6] CARDELLI, L., AND WEGNER, P. On understanding types,
data abstraction, and polymorphism. Computing Surveys

17,4 (1985), 471 522.

[7] CASTAGNA, G., AND PIERCE, B. C. Decidable bounded quan-
tification. In 21st ACM Symp. on Principles of Program-
ming Languages (1994), pp. 151-162.

[8] CuURIEN, P.-L., AND GHELLI, G. Coherence of subsumption,
minimum typing, and type checking in F. Mathematical
Structures in Computer Science 2 (1992), 55-91.

[9] KaTIYAR, D., AND SANKAR, S. Completely bounded quan-
tification is decidable. In ACM SIGPLAN Workshop on ML
and its Applications (1992).

LEIVANT, D. Polymorphic type inference. In 10th ACM
Symp. on Principles of Programming Languages (1983),
pp. 88-98.

[11] MITCHELL, J. C. Type theory for programming languages.
In Handbook of Theoretical Computer Science (1990), J. van
Leeuwen, Ed., vol. B, Elsevier, pp. 365-458.

[12] PiERCE, B. C. Bounded quantification is undecidable. In
19th ACM Symp. on Principles of Programming Languages
(1992), pp. 305-315.

[13] RABIN, M. Decidability of second order theories and au-

tomata on infinite trees. Transactions of the American

Mathematical Society 141 (1969), 1-35.

[14] RABIN, M. O. Decidable theories. In Handbook of Mathemat-
ical Logic (1977), J. Barwise, Ed., Studies in Logic and the
Foundations of Mathematics, North Nolland, pp. 595-630.

[10

[l

[15] SCHWICHTENBERG, H. Proof theory: some applications of
cut-elimination. In Handbook of Mathematical Logic (1977),
J. Barwise, Ed., Studies in Logic and the Foundations of
Mathematics, North-Holland Publishing Company, pp. 867—
895.

[16] SHAMIR, A. PSPACE=IP. In Proc. 81st IEEE FOCS (1990),
IEEE, pp. 11-15.

[17] TArskI, A., MosTOWSKI, A., AND ROBINSON, R. M. Un-
decidable theories. Studies in Logic and the Foundations
of Mathematics. North-Holland Publishing Company, 1953.
Third printing, 1971.

[18] VoroBYOV, S. F<: Bounded quantification is NOT essen-
tially undecidable. Technical Report CRIN-94-R-018, Cen-
tre de Recherche en Informatique de Nancy, January 1994.

FTP: FsubTAPIL[dvi,ps].Z .

[19] VoroBYOV, S. F. with recursive types: “Types-As-
Propositions” Interpretations in M.Rabin’s $S2S. Technical
Report CRIN-94-R-035, Centre de Recherche en Informa-
tique de Nancy, February 1994. FTP: FsubREC.[dvi,ps].Z

[20] VOROBYOV, S. 3-n-T-subject reduction and stucklessness for
perfectly-structured second-order type systems with subtyp-
ing. In preparation, April —September 1994.

[21] VoroBYOV, S. Hierarchies of decidable extensions of
bounded quantification. Research Report INRIA-RR-2354,
Technical Report CRIN 94 R 120, Centre de Recherche en
Informatique de Nancy, August September 1994. FTP:
INRIA-RR-2354.ps.Z, FsubHi.[dvi,ps].Z .

[22] VOROBYOV, S. Extensions of F¢ with Decidable Typing.
Technical Report CRIN 94 R 127, Centre de Recherche en
Informatique de Nancy, September 1994. FTP: FsubDec-
Typing.[dvi,ps].Z .

Note. Papers with mention FTP: filename are available by anony-
mous ftp ftp.loria.fr directory pub/loria/prograis/vorobyov
or via URL ftp://ftp.loria.fr/pub/loria/prograis/vorobyov
(mosaic).

A Monadic Second-Order Arithmetics

We briefly recall basic definitions and facts about decidable (weak)
monadic second-order theories of one or several successors.

Fix arbitrary n € w U {w}. The alphabet of n-successor monadic
second-order arithmetic SnS consists of: 1) infinitely many object
variables z, y, z,..., 2) the equality predicate symbol =, 3) in-
finitely many unary (monadic) predicate variables A, B, X, Y, ...,
4) one, several, or countably many successor function symbols
{succ; }i<n, b) all usual boolean connectives, parentheses, 6) uni-
versal and existential first- and second-order quantifiers: V', 3!,

V2, 32,

Terms are constructed as usual, starting from object variables by
applying the successor function symbol(s).

Atomic formulas are either equalities of terms or expressions of
the form A(t), where A is a predicate variable and t is a term.

Formulas are constructed from atomic ones by the usual rules
using boolean connectives, parentheses, first- and second-order
quantifiers: Vlz &, 3'» &, V2X &, 32X P, (where z is an object

and X is a predicate variable).

Interpretation. For an n-successor theory SnS consider the in-
finite n-ary tree T,2°. Interpret: 1) object variables as nodes of
the tree, 2) succ;(¢) as the i-th son of the node interpreting t, 3)
equality, boolean connectives, and first-order quantifiers as usual,
4) predicate variables as arbitrary sets of nodes, 5) atomic for-
mula A(t) as the membership relation “the node ¢ is in the set
A”; 6) second-order quantifiers as quantifiers over sets of nodes.

Denote by Th?(SnS) or simply by SnS the set of all formulas
valid under the above interpretation.

Replacing the interpretation 6) of the second-order quantifiers
above by the following clause:

6') second-order quantifiers are interpreted as quantifiers over fi-
nite sets of nodes,

we get the weak monadic second order arithmetic of n successors,
denoted by WSnS.

All theories WSnS and SnS are decidable.

The most well known of all these are: Biichi’s arithmetic S18S,
Rabin’s arithmetic S2S, and their weak counterparts WS1S,
WS2S. The theory S2S is strictly more powerful than WS2S,
S18S, and easily encodes all SnS. For details see [13, 14].

B Fé”g: Curien-Ghelli’s Algorithmic Variant of F'c

Curien and Ghelli [8], Sect. 6.1, suggested F?lg, an alternative
equivalent formulation of Fic. We present it following [12]:

rer<T (Top)
I' - o < a (o1isavariable) (Refl)
' Ta) <7
(AlgTrans)
't a <t
I‘FTlgo'lI"*UQgTQ
(Arrow)
FF01—>0'2§7'1—>7'2
F'Frn <o T',a<n F oy < 7
(All)

' Va<oi.02) < Va<1.72)

Three differences of F?lg, as compared to F¢ are: 1) reflexivity

(Refl) is unlike (Refl) of F< is restricted to variables, 2) tran-
sitivity (Trans) is replaced by (4lgTrans); 3) rules are applied
in ordered manner (e.g., (AlgTrans) never applies if (Refl) is
applicable).

Remark. Note that the inversion principle trivially holds for the
(Arrow) and (All) of Fé”g: a conclusion of each rule is prov-
able iff so are the premises. Proofs in Fé”g are direct, without
roundabout ways. -

Lemma B.1 (Fé”g = Fc, [8]) The systems F< and Fé”g are
equivalent: a subtyping judgment is derivable in Fe iff it is deriv-
able in Fé”g. O

As an immediate consequence we have the following

Lemma B.2 (Inversion Principle for F¢) In Fc:
e ifI' F 01 > 02 < 71 — 7o is provable, thenT F+ 1 < o3
and T' + oo < 7o are also provable;

o ifI' F Va<o1.02) < (Va< 7 .72) is provable, then
T'F <oy andl,a<7 b o3 <72 are also provable.

Proof. Using equivalence ofFS and Fé”g. LetI' F o7 = 02 <

71 — 72 be provable in F<. Then it is provable in F?lg. But the
only way to prove it in F' ?lg consists in proving I' F 71 < o1 and
' F 05 <72in Fé”g (since inversion principle holds for F?lg).
Henceforth, by equivalence, I' + 7 < oy and T F 09 < 7

are provable in Fc. The proof of the second claim is exactly the
same. O

C Proofs
C.1 Proof of Proposition 4.2

Proof . (1). Is obvious. To prove (2) suppose, on the contrary,
that a judgment of the form (2) is provable in Fi, i.e., there exists
a proof, i.e, a sequence of judgments -

Jos Jiy ey iy oty In=T F 0 < o, (5)

where each J; is either an F<-axiom, or is obtained from some
Ji and J; (k < 7 and [< ¢} in the sequence by application of
one of the Fe-rules: (Arrow), (All), or (Trans). Without loss
of generality we can suppose that .Jy, is the first appearance of
the judgment of the form (2) in the proof (5); otherwise, we can
move left to select the first judgment of this form.

It remains to notice that J, cannot be an axiom, since there are
no Fc-axioms of the form (2). Next, neither (Arrow), nor (All)
can produce a judgment of the form (2) (both produce types of
the same structure). Therefore, (2) is obtained by (Trans). But
to derive (2) by (Trans) one needs either Jy =T F o < 7 and
Jy =T + 7 < a (7 non-variable type), or J, =T + o <3
and J; =T F 8 < a (B is a type variable). Therefore, J; has
the form (2) and appears in (5) before J,,. But this contradicts
to the choice of J,. O

C.2 Proof of Theorem 11.1

Let a subtyping judgment J =T F o < 7 be provable in Fc.
Then, by equivalence of Fc and Fé”g (Lemma B.1), it is provable
in F?lg. Consider the F?lgfinference tree of J. If this tree does
not contain applications of the rule (AlgTrans) corresponding
to the (Var-All-Decide) rule, then this tree is also the F<S”Sf
inference tree of J and we are done.

Suppose now that the F?lgfinference tree 7 of J does contain
applications of (AlgTrans) corresponding to the

(Var-All-Decide) rule. Transform this tree 7 as follows. Start-
ing from the root J follow each branch till the first applica-
tion of (AlgTrans) (if any), and cut it on this application so
as the conclusion of (AlgTrans) remains in the tree. Denote by
T'(J1,...,Jn) the resulting tree, where Ji,...,.J, are all leaves-
conclusions of (AlgTrans) remaining after the above pruning.
Note that 7'(Ji1,...,Jn) is exactly the Ff"s—inference tree, and

Ji,...,Jn are precisely Ff"s—normal forms. Instead of applying
(AlgTrans), the Ff"sfdecision procedure transforms Ji,...,Jy,

into SnS-formulas and decides them. So, to finish our proof
we have to prove that Ji,...,J, are interpreted as true SnS-
formulas.

To do this, notice, that by equivalence of F« and Fé”g, all the
judgments Ji,...,.J, are provable in F«. But by Theorem 6.4
above everything provable in Fc¢ is true with respect to any SnS-
interpretation.

The strictness of inclusion is simple: since F<S"S is decidable and

F< is not, there should certainly exist Fgﬁsfprovable and not
F-provable subtyping judgments. - m|

C.3 Proof of Theorem 12.1

Again applying Theorem 6.4 above, all Ff"s—inference rules pre-

serve validity with respect to any SnS-interpretation. As nor-
mal forms of F' <S"S are decided by the same SnS-decision pro-

cedure, they are simultaneously true with respect to an SnS-
interpretation SnS[F<](f, g) and F<S"S(f7 g). By definition,

F<S"S(f7 g) does not subtype diﬁeren?ly structured types, whereas
SnS-interpretations do, e.g., - T — T < Va.T is true in any

SnS-interpretation. m|
C.4 Proof of Theorem 13.1
By induction on complexity of subtyping inference.

Suppose the premises of the theorem hold, i.e.,
'Fo<7andT F 7 <pare F<S”S—provable.

We must show that sois ' - ¢ < p.
We have to consider several cases:
1. pis T;

2. pis a type variable;

LW

. p is an arrow or a universal type, both ¢ and 7 are type
variables;

. 7 and p are both arrow types and ¢ is a type variable;

. 7 and p are both universal types and ¢ is a type variable;

Sy Ot

. o, 7, and p are all arrow types;

~J

. o, 7, and p are all universal types.

Case 1. Vacuous: I' + o < T, always.

Case 2. If p is a type variable then ¢ and 7 should also be type
variables; otherwise the rule (TVar-R-2) would disprove one of
the premises of the theorem.

So we should demonstrate that F<S"Sfpr0vability of:

T'ta < B, (6)
rep < v (7)

imply the Fssngfprovabﬂity of
I'Fa<y (8)

for type variables o, G, .

Note that the F<S”Sfpr00fs of (6) and (7) are just finite sequences
of (TV ar-R-1)-applications finishing by an application of (Refl).
These two sequences could be easily merged into just one such
sequence proving (8). Indeed, starting from the judgment (8)
by backward applications of (T'Var-R-1) we are guaranteed (by
provability of (6)) to reach 3 on the left of <, i.e., we reach (7),
which is provable by hypothesis.

Case 3. Suppose that p is either an —- or a V-type, ¢ and 7 are
type variables o and (3 respectively.

We transform the proofs of

'k a
TF 3

B, 9)

INIA

into the proof of

as follows. Starting from the judgment (11) we first repeat (back-
wards) exactly the same sequence of steps as in the proof of
(9), which leads to T+ g < g (but applying (Var-Arrow)
or (Var-All-1) instead of (TVar-R-1)). This gives the inference
of (11) from (10) used as axiom. We then repeat the proof of the
latter judgment, which exists by assumption. The result is the
desired proof.

Case 4. Suppose

'k o
FF71—>7'2

T — T2, (12)

<
< p1 = ope (13)

are F<S”Sfprovab1e. We must prove that so is
Tka< pt—pe (14)

The proof of (12) is a finite sequence of (Var-Arrow) followed
either a) by (Refl) or b) by (Arrow).

In the Case 4.a we construct the proof of (14) (in a backward man-

ner) first applying to (14) exactly the same sequence of (Var-Arrow)

applications until (Refl), as in the proof of (12). This gives a
subinference of (14) from (13) used as an axiom. We then com-
plete the latter subinference by including the proof of (13) (which
is F<S"S—pr0vable by assumption).

In the Case 4.b we construct the proof of (14) as follows. Consid-
ering the final part of the inference of (12) till the first application
of (Arrow):

T + g1 — 02 < Tl — T2 (\/)

TFo < 711—m

(15)

a < 711 =7

we see that (12) is provable iff (/) is provable. By the inversion
property for F<S"S (Theorem 10.1) this implies provability of

rern < o1, (16)
'k os < 7 (17)

Similarly, provability of (13) implies provability of

T+ P1 § T1, (18)

'Emn < p2 (19)
Applying the inductive hypothesis to (18) and (16), then to (17)
and (19) we get the F<S"Sfpr0vability of ' v p1 < o1 and
' =02 < po. B
But this means that 01 — 02 < p; — p2 is also F<S"Sfprovab1e.
This allows us to transform the proof (15) into the proof of (14)
by simple replacement of 71 — 7 by p1 — p2.

Case 5. Suppose

'+ o
' - (V8<m1.72)

(Vﬁng.TQ), (20)

<
< (VB < p1.p2) (21)

are F' <S nS_provable. We have to prove that

' a < (V< p1p2) (22)

The proof of (20) is a finite (possibly empty) sequence of (Var-All-1)

followed either a) by (TVar) or b) by (Var-All-Decide).

In the Case 5.a we construct the proof of (22) first applying to
it the same sequence of (Var-All-1) as in the proof of (20), until
(TVar). This gives a subinference of (22) from (21) used as ax-
iom. We then complete the latter subinference by including the
proof of (21) (which is F<S”Sfprovab1e by assumption).

In the Case 5.b we construct the proof of (22) as follows. Con-
sider the final part of the inference of (20) till the application of
(Var-All-Decide):

I' v DECIDET + o < V8<m .m)()
ko < (V8L .m)

a < (V< .m)

We see that (20) is provable iff the Ff"g—normal form in (/) is

valid in a chosen theory SnS[F<](f, g). Aseach SnS[F](f, g) is
more powerful than the corresponding F<S"S(f7 g) (Theorem 12.1),

the F<S"S(f7 g)-provability of (20) implies that:

ITIf g Vol @) D [Vo<n nIh@] (24

Similarly, the FSS"S(f7 g)-provability of (21) implies

I Rypg YelIVE < m 15 @) S TVE < o oo T ()]
(25)
Henceforth, by syllogistics, (24) and (25) imply

[rIf g Yeld'@ D IVA< o2 5@ (20

Now, to construct the inference of (22) we start by the sequence
of the same (Var-All) applications as in (23) til T F o <
(VB < p1 . p2). After that we should apply either the rule (TVar)
(in this case we are done), or the rule (Var-All-Decide) getting
DECIDE(T + o' < (V8 < p1.p2)). But in the latter case
DECIDE should necessarily return the result TRUE (by (26)),

and the desired F<S"S(f7 g)-proof is completed.

Case 7. Let

'k (V8<o1.02) < (VB<71.72), (27)
T - (V8<m.m) < (Y8<pm . pm) (28)

We have to show
Ik (V8<o1.02) < (VB< p1.p2) (29)
By Inversion principle (Lemma 10.1) from (27) and (28) we get:
'rn < o1 (30)
< ko2 < m (31)
I'Fp < mn (32)
Lg<m F 7 < po (33)

From (32) and (30) by induction hypothesis we get
'k p <oy (34)
From (31), (32) and (33) by induction hypothesis we get
D,a<p F o2 < p2 (35)

(each time instead of using the hypothesis 3 < 71 we use the
hypothesis 8 < p1 and (32)). But (34) and (35) imply (29).

Case 6 is completely analogous to the preceding one. m|

o

INFORMATIK

Below you find a list of the most recent technical reports of the research group Logic of Programming
at the Max-Planck-Institut fir Informatik. They are available by anonymous ftp from our ftp server
ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via
WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW
access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)
can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
Library

attn. Regina Kraemer

Im Stadtwald

D-66123 Saarbriicken

GERMANY

e-mail: kraemer@mpi-sb.mpg.de

MPI-1-94-246

MPI-1-94-241

MPI-1-94-240

MPI-1-94-239

MPI-1-94-238

MPI-1-94-235
MPI-1-94-234
MPI-1-94-233

MPI-1-94-232
MPI-1-94-230
MPI-1-94-229
MPI-1-94-228

MPI-1-94-226
MPI-1-94-225

MPI-1-94-224

MPI-1-94-223

MPI-1-94-218
MPI-1-94-216
MPI-1-94-209

M. Hanus On Extra Variables in (Equational) Logic
Programming
J. Hopf Genetic Algorithms within the Framework of

Evolutionary Computation: Proceedings of the

KI-94 Workshop

P. Madden Recursive Program Optimization Through Inductive
Synthesis Proof Transformation

P. Madden, I. Green A General Technique for Automatically Optimizing
Programs Through the Use of Proof Plans

P. Madden Formal Methods for Automated Program
Improvement

D. A. Plaisted Ordered Semantic Hyper-Linking

S. Matthews, A. K. Simpson Reflection using the derivability conditions

D. A. Plaisted The Search Efficiency of Theorem Proving
Strategies: An Analytical Comparison

D. A. Plaisted An Abstract Program Generation Logic

H. J. Ohlbach Temporal Logic: Proceedings of the ICTL Workshop

Y. Dimopoulos Classical Methods in Nonmonotonic Reasoning

H. J. Ohlbach Computer Support for the Development and

Investigation of Logics
H. J. Ohlbach, D. Gabbay, D. Plaisted Killer Transformations
H. J. Ohlbach Synthesizing Semantics for Extensions of

Propositional Logic
H. Ait-Kaci, M. Hanus, J. J. M. Navarro Integration of Declarative Paradigms: Proceedings

of the ICLP’94 Post-Conference Workshop Santa
Margherita Ligure, Ttaly

D. M. Gabbay LDS - Labelled Deductive Systems: Volume 1 —
Foundations

D. A. Basin Logic Frameworks for Logic Programs

P. Barth Linear 0-1 Inequalities and Extended Clauses

D. A. Basin, T. Walsh Termination Orderings for Rippling

