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Abstract

The structure of tree-level open and closed superstring amplitudes is analyzed.
For the open superstring amplitude we find a striking and elegant form, which
allows one to disentangle its o’-expansion into several contributions accounting
for different classes of multiple zeta values. This form is bolstered by the
decomposition of motivic multiple zeta values, i.e. the latter encapsulate the
o’-expansion of the superstring amplitude. Moreover, a morphism induced by
the coproduct maps the o’-expansion onto a non-commutative Hopf algebra.
This map represents a generalization of the symbol of a transcendental
function. In terms of elements of this Hopf algebra the o’-expansion assumes
a very simple and symmetric form, which carries all the relevant information.
Equipped with these results we can also cast the closed superstring amplitude
into a very elegant form.

PACS numbers: 02.10.De, 04.60.Cf, 11.25.—w

1. Introduction

One important question in quantum field theory is how to find a simple principle to easily
compute physical quantities such as Feynman integrals describing higher-order quantum
corrections. Analytic results for Feynman integrals are encoded by transcendental functions
such as multiple polylogarithms or elliptic functions [1]. These functions, which depend on
the kinematic invariants, have a rich algebraic structure and obey a variety of different classes
of relations among each other. Although these equations may allow one to obtain a short and
simple answer, in practice it is not straightforward how to concretely apply and disentangle
these relations to arrive at this simple answer. Hence, a guiding principle to get a grip on these
relations is important.

A recent step towards an implicit application of these relations, which also leads to quite
remarkable simplifications [2], is the concept of the symbol of a transcendental function,
which maps the combinatorics of relations among different multiple polylogarithms to the
combinatorics of a tensor algebra [3]. All the functional identities between the polylogarithms
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are mapped to simple algebraic relations in the tensor algebra over the group of rational
functions. A generalization of the symbol approach is the coproduct structure of multiple
polylogarithms [4, 5]. The advantage of the coproduct structure is that it also keeps track of
multiple zeta values (MZVs) in contrast to the symbol S, for which we have S(x), S(¢) = 0.
Recently, in [6] the coproduct structure has been applied for a concrete physical amplitude.

The properties of scattering amplitudes in both gauge and gravity theories suggest a
deeper understanding from string theory; see [7] for a recent review. Many field theory objects
and relations such as Bern—Carrasco—Johansson (BCJ) [8] or Kawai-Lewellen—Tye (KLT) [9]
relations can be easily derived from and understood in string theory by tracing these identities
back to the monodromy properties of the string world-sheet [10, 11]. In this context we would
also like to mention the question of transcendentality of a Feynman integral [12], which
can be related to superstring tree-level amplitudes given by generalized Euler integrals [13].
Moreover, the concept of symbols and the coproduct structure for Feynman integrals might
have a natural appearance in string theory. In fact, in this work we shall demonstrate that the
aforementioned coproduct structure allows one to cast the «’-expansion of the tree-level open
and closed superstring amplitude into a short and symmetric form.

Generically, the string amplitudes are given by integrals over vertex operator positions on
the Riemann surface describing the interacting string world-sheet. At higher loops there is also
an integral over the moduli space of this manifold. At tree-level such integrals over positions
boil down to generalized Euler integrals [14]. Expanding the latter w.r.t. to powers in the string
tension ¢’ yields higher-order string corrections to Yang—Mills (YM) theory. Their expansion
coefficients are given by MZVs multiplying some polynomials in the kinematic invariants:
at each order in o’ only a set of MZVs of a fixed transcendentality degree (transcendentality
level [12]) appears. In practice, extracting these orders from the integrals [14, 15], which boils
down to computing generalized Euler—Zagier sums, is both cumbersome and provides quite
complicated expressions: the appearance of various MZVs of different depths seems to lack
any sorted structure. Furthermore, there is no selection principle to choose the right basis of
MZVs in the o’-expansion. As for computing amplitudes in field theory, a lot of their simplicity
and symmetry structure is lost by not using the most appropriate approach. In other words,
though the final result may have a simple structure, the actual computation might not be able
to reproduce this simplicity and yield a difficult answer.

In fact, by passing from the MZVs to their motivic versions [4, 5] and then mapping
the latter to elements of a Hopf algebra endows the superstring amplitude with its motivic
structure. More precisely, the isomorphism ¢, which is induced by the coproduct, maps the
a’-expansion of the open superstring amplitude A into the very short and intriguing form in
terms of elements f; of a non-commutative Hopf algebra:

AL (fom) SN fifoe fy My, MMy A (1.1)

k=0 =0 ijenip
P €Nt +1

In equation (1.1) the vector A encompasses a basis of YM subamplitudes, the matrices Py
and M, encode polynomials of degree 2k and 2n + 1, respectively in &’ and the kinematic
invariants. As the vector A the string amplitude .4 represents a vector of the same dimension;
see section 3 for further notational details. All the relevant information of the o’-expansion of
the open superstring amplitude is encapsulated in (1.1) without further specifying the latter
explicitly in terms of MZVs. This way all relations between MZVs are automatically built in
as simple algebraic relations following from the coalgebra structure. Furthermore, the result is
independent on any particular selection of a basis of MZVs. Finally, in contrast to the symbol
the map ¢, which is invertible, does not lose any information on the amplitude.

2



J. Phys. A: Math. Theor. 46 (2013) 475401 O Schlotterer and S Stieberger

The present work is organized as follows. In section 2 we review those aspects of MZVs,
which will be needed in the sequel. In section 3 we present our findings for the «’-expansion
of the N-point open superstring amplitude. After some short exhibition on the work of Brown
[5] on motivic MZVs in section 4 we compute the decompositions of motivic MZVs from
weight 11 to weight 16 and compare the results with the structure of the open superstring
amplitude. Equipped with these results, in section 5 we investigate the motivic structure of the
open superstring amplitude and derive (1.1). In section 6 we use our open superstring results
to also cast the closed string amplitude into a compact form. In the appendix we present some
more results on the decomposition of motivic MZVs.

2. Aspects of multiple zeta values

One prime object in both quantum field theory and string theory are MZVs:

e, = Con) = > J[k™ meNt, m>2 @1

O<ky <<k, [=1
In this section we review some of their aspects. They can be written as special cases [16]
Cnym, = (=" G, ...,0,1...,0,...,0,1; 1) (2.2)
—— ——
n—1 ni—1
of multiple polylogarithms [16, 17]

o de
Gai,...,an2) = G(az, ..., aut), (2.3)
o I—a

with G(z) = 1 and a;,z € C. In (2.1) the sum w = ) _,_, n; is called the transcendentality
degree or weight of (2.1) and r its depth. The integral representation (2.2) is useful for
establishing various properties and relations of (2.1). The set of integral linear combinations
of MZVs (2.1) is a ring, since the product of any two values can be expressed by a (positive)
integer linear combination of the other MZVs [18], e.g.

Cm Cn = é‘mﬁ + §11,1n + §m+n~ (24)

This relation is known as the quasi-shuffle or stuffle relation. There are many relations over
Q among MZVs, e.g. {14 = 2¢5 — £2¢3. We define the (commutative) Q-algebra Z spanned
by all MZVs over Q. The latter is the (conjecturally direct) sum over the Q-vector spaces Zy
spanned by the set of MZVs (2.1) of total weight w = N, with n, > 2,ie. Z = @1@0 Z.
For a given weight w € N the dimension dimg (Zy) of the space Zy is conjecturally given
by dimQ(ZN) = dN, with dN = dN_z + dN_3, N 2 3 and do = 1, dl = 0, dz =1
[18]. Starting at weight w = 8 MZVs of depth greater than 1 r > 1 appear in the
basis. By applying stuffle, shuffle, doubling, generalized doubling relations and duality it
is possible to reduce the MZVs of a given weight to a minimal set. Strictly speaking this
is explicitly proven only up to weight 26 [19]. For D, , being the number of independent
MZVs at weight w > 2 and depth r, which cannot be reduced to primitive MZVs of smaller
depth and their products, it is believed that Dgy = 1,Djpo, = 1, Dyj3 = 1, Dpp =1
and Djp4 = 1 [20]. For Z = Z>ZO>ZO>0 the graded space of irreducible MZVs we have:
dim(Z,) = Zer,r =1,0,1,0,1,1,1,1,2,2,3,3,4,5 for w = 3, ..., 16, respectively
[19, 20].

The selection of a basis of MZVs can be performed by following some principles. For
instance, a minimal depth representation may be preferable. In addition, one may write as
many elements of the basis as possible with positive odd indices n; only. However, it is not
possible to achieve this for the whole basis, i.e. a number of basis elements needs at least
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Table 1. Basis elements for Z,,, with 2 < w < 12.
w 2 3 4 5 6 7 8 9 10 11 12

Z, L G s e 835 8o 837 83,35 08 lias G0
LG 6 Lt Lo & §32§7 G586 Ll G 3 83

Bo 0l Lo L GO b Ll
OG5 Lhs G600 LG GO Lhh
GG LGt 664 & &6
RS & ¢
I &
d, 1 1 1 2 2 3 4 5 7 9 12
Table 2. Basis elements for Z,,, with 13 < w < 15.
w 13 14 15
Zy $3.3.7 £ 855 $333.5 & 811,46 $1,1,3,4,6 £ 837 {3 s
8355 £ 83835 &t 5 G $33,9 £ 855 30 8s
13 &t 59 $2 83 & 8537 & Gis &
8.7 83 5 3 ¢ $335 §3 £ 8587 C1s $ 83837 L3¢ gs
835 &5 3y 035 & o C11.46 83 £ 85835 5
G4 & & & &5 & 29 83 X eRe & &
582 54 & & 5 Gs Lo &3 H6id Iole)
& & gs & &6 &858 & &
oxs & &6 & & teRs!
& &6 237 &
& &3 &3
¢ 83587
dy, 16 21 28

two even entries [19]. Up to weight w = 16, one can choose the following basis elements,
displayed in the following three tables; see tables 1-3.

A slight generalization of (2.3) represents the iterated integral I, over a product of closed
1-forms [16]

le dZn
Iy(ao;al,...,an;anﬂ):/ — A A —, (2.5)
Any 1 —ap Zn — Qn

with y apathin M = C/{ay, ..., a,} with endpoints y (0) = ap e M, y(1) = a,4+; € M and
A, asimplex consisting of all ordered n-tuples of points (zi, ..., z,) on y. For the map

p(ni,....n) =10""1...10m 1, (2.6)
with n, > 2 Kontsevich observed that:
Suprn, = (=) 1, (05 p(ny, ... 1p); 1), (2.7)

This defines an element in the category MT (Z) of mixed Tate motives over Z. It is an Abelian
tensor category, whose simple objects are the Tate motives Q(n). The periods of MT (Z) are

.....

3. Open superstring amplitude

The string S-matrix, which describes string scattering processes involving on-shell string states
as external states, comprises a perturbative expansion in the string tension «’ and the string
coupling constant gyying. From this expansion one may extract for a given order in o’ and ggyring
the relevant interaction terms of the low-energy effective action.
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Table 3. Basis elements for Z¢.

w 16

Zy $1,1.6.8 LG Gas L8sas L ae
$3.3.3.7 08 bs & G 03 5o
$33.5.5 586 &¢n $2 859 035 4

43,13 083 g5 £ 85 8o 523 837
st gy & cz 5s
GBGsr G860 42 3
58355 566 o3

[€NSE 86 s
G186
858385
&4
&6
&7 &
&s
&5 S
8335 85
d, 37

Open superstring theory contains a massless vector identified as a gauge boson. Its
interactions are studied by gluon scattering amplitudes. Geometrically, at tree-level (i.e. at
leading order in gqying) the latter are described by a disc with (integrated) insertions of gluon
vertex operators. Due to the extended nature of strings the amplitudes generically represent
non-trivial functions of the string tension «'. In the effective field theory description this o’'-
dependence gives rise to a series of infinitely many higher order gauge operators governed
by positive integer powers in «’. The classical YM term is reproduced in the zero-slope limit
o« — 0, while its modification can be derived by studying the higher orders in «’ of the
tree-level gluon scattering amplitudes.

At string tree-level the complete open string N-point superstring amplitude has been
computed in [22, 23]. The main result is written in a strikingly compact form?

Al ... N = > A1, 2, ... (N=2);, N = LN) F§ (@), 3.1
O'ESN,3

where Ay represent (N — 3)! color ordered YM subamplitudes, F? («’) are generalized Euler

integrals encoding the full «’-dependence of the string amplitude and i, = o (). The labels

(1,....N)inF§ _y, arerelated to the integration region of the integrals: choosing an ordering

of the vertex operator positions z; along the boundary of the disc determines the color-ordering
of the superstring subamplitude. The system of (N — 3)! multiple hypergeometric functions

F° appearing in (3.1) are given as generalized Euler integrals (with z; = 0, zy—; = 1 and
Zy = 00)
N2k ’
R = 0 H & (T ) T2
a<tivi | i<l k=2 m=1 <k
= (—1)N’3f l—[ dz; nlzz‘zlsi’
Zi<Zi+1 j=2 i<l

Tmk k=[N/2141 n=kt+1 k1

3 A very compact expression for D = 4 maximal helicity violating N-gluon amplitudes has been derived in [13].
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with permutations o € Sy_3 acting on all indices within the curly brace. Above, [- - -] denotes
the Gauss bracket [x] = maxX,ez <1, Which picks out the nearest integer smaller than or
equal to its argument. The o’-dependence of (3.2) is encoded in the kinematic invariants

sij = o (ki + k)%, (3.3)

with the external gluon momenta ; satisfying the on-shell condition k? = 0. For further details
we refer the reader to [22, 23].

The result (3.1) is valid in any space—time dimension D, for any compactification and
any amount of supersymmetry. Furthermore, the expression (3.1) does not make any reference
to any kinematical or space—time helicity choices. Hence, the same is true for our results
throughout this paper. The integrals (3.2) boil down to linear combinations of the following
generalized Euler or Selberg integrals [23]

N-3 .1 N-3 N-3 ! Spti2t
o= (H / dxi) o T = [T : (3.4)
i=1 Y0 j=1 I=j k=)

with the set of %N(N— 3)integersnj, nj € Zaswellass; ; =o' (k;+-- -+k)?* and Sij = Sij.
The integrals By share a very interesting mathematical structure [14, 23]. For a given N the
functions (3.2) represent integrals on the moduli space of Riemann spheres with N marked
points M x [24, 25]. These spaces have an N-fold symmetry following from N-fold cyclic
transformations on the disc; see [23] for more details. The lowest terms of the «’-expansion
of the functions F° assume the form [23]

Fo=14+p o+ 53+---, 0=(23,...,N=2),
Fo =l +pi s+, 0#(23,...,N=2), (3.5)

with some polynomials p§ of degree n in the kinematic invariants s;; and s; ;. Note that
starting at N > 7 subsets of F° start at even higher order in o/, i.e. P5, ..., p5 = 0 for
some v > 2. In [24, 25] it is proven that at lowest order in o’ these integrals always lead to
linear Q combinations of MZVs of weight w < N — 3. Consequently, to all orders in «’ only
combinations of MZV's show up.

In the following let us discuss the cases N = 4 and N = 5 in more detail before moving
to the general case afterwards.

31 N=4
For N = 4 equation (3.1) becomes:
A(1,2,3,4) = Aym(1,2,3,4) F, (3.6)
with the function
F(l+s) Tl +u)
r'd+s+u)

and the two kinematic invariants s = o’ (k; + k2)? and u = o’ (k; + k4)%. With the identities

r'd+x) o x2n+1
———— =exp {—2 ; Il Cont1 { exp{—2yex},

1
Fi=F®,,=s f el (1= x) = , G.7)
0

(

I(l—x)

su_ sin[w(s+w)] o~ S on 2
ST a SnGes) Smor = exp {2 Z . [s7" +u (s+u) g,

n=1
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we may bring (3.6) into the following form

A(1,2,3,4) =P exp { Y Conpt Mant1 ¢ Aym(1,2,3,4), (3.8)
n>1
with:
&
2n 2 2n 2n
P= = — ,
exp ;Zn [s“" +u (s4+u) ]}
1
My = _2n—+l [SZIH_1 + Pt - (s+ M)2n+l ] (3.9)

In (3.8) we observe a disentanglement of Riemann zeta functions of even and odd arguments.
Furthermore, no MZVs of depth greater than one r > 1 appear.

32.N=5
For N = 5 we have a basis of two color ordered superstring amplitudes A(1, 2, 3,4, 5) and
A(1,3,2,4,5). According to (3.1) they take the form:
A(1,2,3,4,5) =Aym(1,2,3,4,5) Fi + Aym(1, 3,2,4,5) B,
A(1,3,2,4,5) = Aym(1,3,2,4,5) Fi + Ayn(1,2,3,4,5) B,

with the hypergeometric functions (3.2):

(3.10)

1 1
Fii= Y545 = 10 5% fo dr /0 dy 2yt (1= (1= y) (1= )™
P +512) D1 +523) I'(1 4+ 534) T'(1 + 545)
L1+ 512 +523) T'(1 + 534 + 545)

y F[ s12, 1+ 845, —524 .]:|
2 L+sip+s3, L+su+sas |

1 1
Fyi=F{2s 45 = 513 524 [o dx/o dy 2™ 32 (1 —x)™ (1 =) (1 —xy)>!
L1+ 512) (1 + 523) T'(1 + 534) T(1 + 545)
(2 + 512 + 523) ['(2 + 534 + 545)
[ 1+s12, 14845, 1 — 504 :|
X 3F ;1.
2+ 512 + 523, 2+ 534 + 545

= 813 524

(3.11)

Furthermore, we have:
Fi=Files. B=hBhos. (3.12)

When investigating the o’-expansions* of (3.10) one makes the following intriguing
observation’:

A= PQ - eXp Z{ZnJrl M2n+1 DA, (313)

n>1

4 Expanding Gaussian hypergeometric functions oFy [ZIIZ;] w.r.t. small parameters a;, b; can conveniently be
performed up to weight eight with the help of the prografns f ypExp [26] or XSummer [27]. However, for higher
weights we used a FORM code to Taylor expand the hypergeometric function, manipulate the resulting harmonic
sums and express the latter in terms of MZVs. Eventually, these MZVs are expanded w.r.t. to the MZV basis of [19]
by using the tables thereof.

3> We have tested this formula up to weight 16. Work beyond this order is in progress [28].
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with the vectors
_ (AYM(1,2,3,4,5)> Ao (A(1,2,3,4,5))
“\Aym(1,3,2,4,5) )7 7 \AU,3,2,4,5))°
and the matrices

F, FE
Moy = (I::; 1’5?)

’

Sonti
Z Pan Czn Z qon Czn
n=0 n=0
P=|_ ~ . =14+ ) & Py,
Z q2n é‘; Z Dan ;2’1 g "
n>=0 n>0 -

where P, = Panloes» @on = Gonlaes- Furthermore, we have the matrix:
Q = 1 + Z Qns
n>8
with:

1
Qs = = §3 5 [Ms, M3], Q¢ =0,
Qi = {14 &+ 4 37} [M7,M3],
On=1{90c0+ 25 G0 — %85 05+t Gas) [Ms, [Ms, M3]],
Q1= {38587+ 5 G0} [Mo, M3]
+ e B G+ E6s-10060-208 -2 653087

— 5 = s o+ 22 0300+ 28 530+ Cy146) {[Mo, Ms] — 3 [Mq, Ms]},

Ou={4 00— %8l— 320 01— 5 Gss+ 1 (a7} [Ms, [M7, M3]]
S nlu 428 0o+ 185 85+ 5% G3ss) [Ms, [Ms, Ms]],
Qu={4000+ 758 Gs— 6f11732238()7 6 — BB s o+ B2 g5
+20 00— B8 o+ 1 Gas 5} M3, [M5, [Ms, M5]]]
+{- §3§ o - B s lo+ o L50 — m g1} My, Ms)
+ {3 & + 38580+ % Gt — 55 850} [Mo, Ms),
Os={nm+2gum-2¢ cg ol B S
—E G -t Gs— &0 Ba+ % Gao) [Ma, (Mo, M3]]
{50 = B8 o 1S5 8 b T 5+ s & 6 s 6 4
+1 §7 G35+ 2 Us 037 — 7—10 tsa7) [Ms, [M7, M3]] + & $s.37 (M3, [M7, Ms]]
toor 80068+ isbs—5 0 ;355+2;2 £330 =265 635 &7
— 0 03— 68 §3 G — 8‘1‘251537 G =T8RG G— 58 60s
TG GasHF6 65 6 0+ i - T 3
* Thows & Gt Sokip £ 75 656~ 35 6 G 6 0 55 6 G
— R G s+ 5 838304 83 0114 + s $537 — o33 £330 + C113.46)
x| (M3, (Mo, M1 = 3 (M, (M3, M3 11 |,
O16 = 55 435 ([Ms, M3))> + {333 ¢ &7+ 15 C11 &s — 335 &5 + 35 8313} [Min, Ms]
BB 0o &7 — 35 011 &5 + 535 G511 — 356 (313} [Mi3, Ms]
RO E+ 5 G0+ 0+ 50906+ 26 0

(3.14)

(3.15)

(3.16)
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+%§9§5C2—%§5,9§2+%C3,11 Cz-%@&-%(n {s

+ B8 s — 200 13— L 3355+ o $337) (M3, [Ms, [Mq, M3]]]
s 0 GG -5 GG -G R G0

— 21808548508 — 3 Gt b — 20202 0o & — 222 41 g

+ 3555 £5.11 — 35§33 + % 5 8335 + 35 33,5} [Ms, [Ms, [Ms, Ms]]]
ta (R oG - R GG s — ka5
—%53,9522—%572 2—%(5(9(24—%(5,9{2—%53,11{2
BTG - GG GG TR GGG s G 6
—§§32§52—%C§§7+%§7§9+45;§4 C5§11+82%C3§13+%§32C3,7
— U s+ B 33 — 45 8355 — S 03 Gass + 3 £33 83

+32 53355 — 2 53337+ Cues) {5 [Min, Ms] — & [Mis, Ms] — [Mo, Mj]

+ 855 (M3, [M3, [M7, M3]1] — 238 [M3, [Ms, [Ms, M3]11} . (3.17)
Finally, in (3.13) the ordering colons : - - - : are defined such that matrices with larger subscripts
multiply matrices with smaller subscripts from the left,

MM = {MjM,-, i< (3.18)

The generalization to iterated matrix products : M; M;, - - - M;, : is straightforward.
To illustrate the structure of the matrices P and M, given in (3.15), let us display P, and

M3I
—5354 + 51 (53 — 85) 513 524 my mp
P, = , M3 = , 3.19
? ( 183 (s1+52) (52 +53) — S4S5) } (mZI mzz) (3-19)
with
myy = 53 [—s1 (51 + 252 + 53) + 5354 + 551 + 5155 (51 + 55),
miy = —S13 524 (S1 + 82 + 83 + 854 +55), my; =51 53 [s1 + 52+ 53 — 2 (54 + 55)],

my = (s2+53) [(51 4+ 52) (51 + 53) — 2 5154] — [25153 — 55 + 252 (53 + 54)I55 + 8452, (3.20)
and
si=ao (ki + ki) i=1,...,5, (3.21)

subject to cyclic identification k;;y = k;. The expression (3.13) allows one to conveniently
extract any order in o’ of the superstring amplitude by simple matrix manipulations. For
example, at weight w = 8 from (3.13) we obtain the expressions

Alges = Ms M3 A,

Alg, =5 [Ms, M3] A,

Al = 5 P M3 Ms A,

Al =P A, (3.22)
while for weight w = 10 we get:

Alge, = M7 M3 A,

Aley, =14 M7, M3] A,

Al = (5 Ms Ms + 3 (M7, M3]) A,

Algeyes = P2 Ms M3 A,
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A |§2§3,5 = % P, [Ms, M3] A,
Alge =5 Pa M3 M3 A,
Al =Po A (3.23)

The terms MsM3A in (3.22) and M;M3A, P,MsM3A in (3.23) use the ordering
prescription (3.18) introduced in (3.13) for the matrices M; stemming from the exponential.

3.3. General N

For generic N in (3.1) we have a basis of (N — 3)! color ordered superstring amplitudes
A, 24,...,(N —2),, N — 1, N). Putting these (N — 3)! amplitudes into an (N — 3)!-
dimensional vector A according to (3.1) the latter can be expressed by an (N —3)! x (N —3)!-
matrix F acting on the vector A encoding an (N — 3)!-dimensional YM-basis as:

A=FA. (3.24)

The matrix F encodes the full «’-dependence of the superstring amplitude (3.24). We conjecture
that the o’-dependence of the latter assumes the same form (3.13) as for the case N = 5

F=PQ :exp { Z Sont1 M2n+l} 5 (3.25)

n>1
with the matrices P, M and Q now being (N — 3)! x (N — 3)! matrices, following from
Moy = F |Czu+| ’

P=14) & Pyi=1+) & Flg, (3.26)
n=1 n>1
with P, = P| 1% and Q given in (3.16). The polynomial structure of the matrices M, P and Q
is further exhibited® in [28].

What makes the form (3.25) appealing is the disentanglement of the full o’-expansion
into several contributions accounting for different classes of MZVs: P comprising powers of
{2, M accounting for ¢,41 and powers thereof and Q encapsulating the MZVs ¢, ., of depth
r > 1 greater than 1. As we shall see in section 4 the specific form (3.25) is bolstered by the
decomposition of motivic MZVs. It is interesting to note that in (3.16) MZVs of depth greater
than 1 » > 1 appear with commutators as:

Sy (Minys My oo [My,, My, 11 (3.27)

This property turns out to have a crucial impact on the closed string amplitude; see section 6.
At weight 16 in (3.16) the term g5 ¢35 ([Ms, M3])? gives rise to the speculation that all
terms in Q follow from expanding an exponential:

O =-exp{1esMs, M31+ (2 &5+ 4 &37) M7 M1+ -} (3.28)

In fact, at weight 18 we find the following terms’

Algy sy = + & [M7, M3) [Ms, M3] + 305228 (M3, [M53, [M7, Ms]]]

— 82 My, [Ms, (Mo, M3]1],

% While the world-sheet integrals (3.2) for N = 5 can still be reduced to a set of single (variable) Gaussian
hypergeometric functions 3F,, their six- and higher-point versions comprise multiple Gaussian hypergeometric
functions [14] of the type (3.4), whose expansions in «’ are much more involved. Though computing some of
these expansions has been accomplished at the six- [14, 15] and seven-point level [23, 29], a systematic approach is
still lacking and will be presented in [28].

7 Note the commutator relations: [M7, M3l[Ms,M3] = [Ms, M31[M7, M3] and [Ms, [Ms, [M7, M3]]] =
[Ms, (M5, [M7, M3]]].

10
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Algyer = 5§ [Ms, M3IM3 + § 55 [M7, M3] [Ms, M3] + § [Ms, [Ms, M3]1Ms

514
+arser (Min, M7) — S550% [Mis, Ms] + 530957 [Mis, Ms]
M a1 01, (0, M1+ ZR05 s, s, s, M1

— 28258 [Ms, [Ms, (M7, M3]]] — ZE3I88G [0, (M3, [Mo, M3]1],  (3.29)

in agreement with the Ansatz (3.28).

Obviously, for N = 4 in (3.25) we have Q = 1 as all commutators vanish for the scalars
M>, 41 given in (3.9). With this information (3.25) boils down to (3.8). So far, for N = 6 we
have verified (3.25) up to '®. Further tests are in progress [28] and confirm (3.25).

3.4. Minimal depth representation with Euler sums

The choice of basis elements may follow some minimal intrinsic representation guided by the
minimal depth representation and the choice of positive odd indices only. For MZVs this is
achieved by also allowing for Euler sums as basis elements:

tem,....en)= >  []¢ k™ meN n>2 (3.30)
O<k <...<k, [=1

with signs €, = +1. For M,, , being the number of basis elements for MZVs when expressed
in terms of Euler sums in a minimal depth representation at weight w > 2 and depth r we
have M12,2 = 2, M12’4 = O, M15’3 = 3, M]5’5 = 0, M](,’z =3 and M16,4 =2 [20] At Weight
12 one may get rid of the basis element ¢} 4,¢ With even entries at the cost of introducing the
Euler sum &5 5 := ¢ (=5, =7) [19]:

Cia6=—22 53o0+3007+285 85— 2 600-Lt55+100 8¢

F OG- 100G+ 50— RE G aes b — 567 (33D
Similarly, we may use the Euler sum Gs=¢ (=3, —9) to arrive at [30]:

G146 =B Go+3087+28 65— G+ 560+100068

+lad-tdas+sn - L8 g - 0+ %55 (33D
In [19] the object As 7
Asg =857+ 85 (3.33)

has been argued to play a special status within the Euler sums, since it is quite similar to the
MZVs. With this (3.31) can be written:

(46 = T 5304+300671+2 8 65— 2 G+ 52 s +100 08

HI0E GGt HG R E —os b — 5 A (334
Clearly, the above three equations (3.31), (3.32) and (3.34) are related by the identities:
{57 = % §3,9+% {5 &7 — % z5,
Gg=—1%857— S22 {30+ 100 0300 — 200 U5 &7 + yemeresd 9. (3.35)
We can write the weight 12 part Qp, of (3.16) in terms of Euler sums in a minimal depth

representation and positive odd indices only in the following three ways corresponding to
(3.31), (3.32) and (3.34), respectively;

Q= {3050+ 5 Go) (Mo, M3l + &5 {[Mo, M3] — 3 [M7, Ms]}

694891 .6 _ 7615 595 64 5
x {2837835 O -4 50— a3 55,7}
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= {3050+ 35 3o} (Mo, Ms] + & {[Mo, M3] — 3 [M5, M5}
x {—3ea7eas & + 315 & &1 — 35 3 8o+ Tagg o+ F G5)
= {34500+ % o) (Mo, M3] + 2 {[Mo, M3] — 3 [M5, M5}
5607853 .6 5827 7 64
X {_6081075 ;2 + 1296 CS §7 + 186 43,9 — 27 A5,7} . (336)

At weight 15 in (3.16) one may get rid of the basis element ¢ ;3 4, With even entries at the
cost of introducing the Buler sum {33557 := ¢(=3, =5, =7) [19]:

__ 16663 150481 _ 20651486329 1903 _ 101437
51,1,3,4,6 — 11664 {3,3,9 + 68 040 §5,3,7 4082400 &is + 120 718355 38880 gs 4‘3,7

— 2080 03 110 43 C1 146+ 1838 15 150 — B 03056+ 20 17
UG+ 005520037+ 2538 hry -2 o 65 s
— 21060~ S 0B -840 G —48 Gas+ e & i
2 9 .2 .2 490670609 -3 186 3 »3 _ 1455253 .4
=58 868651t 586 88— F5m100 62 991 35 6 & — Seases 62 &7
40031 15y BRI g M, 637
More precisely, with the relations (3.37) and (3.34) the combination £3¢1.1.4.6 + £1.1.3.4.6 can

be eliminated to cast the weight 15 part Q5 in terms of Euler sums in a minimal depth
representation and positive odd indices only:

Os={2 o+ 2 g -2 g3 gdu-2 56
— 0 — k0 Gs— & s+ 5 Gao) [Ms, [Mo, M3]]
+{—%§2C13—%§22§11+%§z3§9+%§53+%§24§7+%§25§5
+1 885+ 2 85 837 — 75 Csa) [Ms, My, M3]] + & ¢s37 [Ms, [M7, Ms]]

48 [1408 704 20651486329 1149577
+ 7e01 { st A357 = 37 457 83— Tiomane - S5+ Tsmes S28613

1912097 2 230351 3 414007 o4 45779 .5 24257 .6

+ 36080 %2 §11 ~ 357210 62 $9 ~ 283500 52 7 T 30690 52 65 ~ 3360775 $2 &3
77 77 319 ,3 15983 781

T 53868+ 3 8398+ 330585 — 5723 63785 — 730 §3.5 &7

+ 225307 1557+ 2% 5350} {IM3, [Mo, M3]] — 3 [M3, [M7, Ms]]}. (3.38)

4. Motivic multiple zeta values

In this section we want to compare our findings (3.25) with the excellent work of Brown on
the decomposition of motivic MZVs [5]. For this purpose, after reviewing some aspects of
motivic MZVs, we determine the decomposition of motivic MZVs for weights 11 to 16.

4.1. Motivic aspects of multiple zeta values

An important question is how to explicitly describe the structure of the algebra Z, which
eventually allows one to get a grip on all algebraic MZV identities over Q. For this purpose
the actual MZVs (2.1) are replaced by symbols (or motivic MZVs), which are elements of a
certain algebra.

In this section we review some aspects of motivic MZVs [5]. The task is to lift the ordinary
iterated integrals I, given in (2.5) to motivic versions I" such that the standard relations are
fulfilled. With an embedding o : F' < C the iterated integrals I, can be upgraded to a framed
mixed Tate motive over F (motivic iterated integral)

I"(ag; ay, ..., ay; aye1) € H(F), ag,...,a,1 € F, 4.1)

12
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with p, (I"(ag; a1, ... a: ans1)) = 10 (@0); 0 (ar), .., 0 (a,); o (ans1)) [4] and some
number field F. The latter is a finite degree field extension of the field of rational numbers Q.
The symbols (4.1) are elements of a commutative graded Hopf algebra H (F):
H =P H.. (4.2)
n=0

The Hopf algebra® 7 implies a product given by the shuffle product
" an, .., any) - 105, G Y) = ) X Aoy, - Gorin ), (43)

oeX(rs)
with Z(rns) ={c e 2 +s) o' (D) <--- <o !N '+ 1D < - <ol (r+s)
and a;, x, y € {0, 1} and the coproduct A acting on the elements I as [4]

AT"(aos ar, - .., an; Gp1) = > I"(ao; @iy, - - -, i A1)

O=ip<ij <<y <ips1=n+1

k
® Hlm(aip; Aiytls v vs Qipy—15 Qi ) (4.4)
p=0
with 0 < k < nand ag; € F. Asin (2.7) by (4.1) with g; € {0, 1} we may define the motivic
versions T of the MZVs &y, .._p,, 1.€. by (4.1) the motivic MZVs are defined as

Snyon, = (D05 p(nys - ne) 1) € Hy(Z), 4.5

with the weight w = Z;zl n; and p given in (2.6). Any symbol I"(ag; ay, . .., Gy} Ant1),

with a; € {0, 1}, can be reduced to a linear combination of elements of the form (4.5), with

n; > 1, n, > 2 and w = N. The dimension of the space of motivic MZVs of weight k is equal

to dy, i.e. dimg (Hy) = di. The map Hy — Z is surjective, i.e. dimg (Zy) < dimg (Hy) = d

[21, 31]. By this certain identities between MZVs can be lifted to their motivic versions [5].
There is a non-canonical isomorphism’

..... n

H>~A ®q Q&3']., A=H/JH, (4.6)
with the first factor graded by the weight, i.e. A = P A,.
To explicitly describe the structure of H one inntfooduces the (trivial) algebra-comodule:
U=Q(fs, f5,..) Bq Qlf2]. 4.7

The first factor U’ = U / U is a cofree Hopf-algebra on the cogenerators f5,.; in degree
2r+1 > 3, whose basis consists of all non-commutative words in the f;11. The multiplication
on U’ is given by the shuffle product m

fooofolfin o frn =Y fow oo (4.8)
oeXx(rs)
with 2 (7, s) given after equation (4.3). The Hopf-algebra /' is isomorphic to the space of
non-commutative polynomials in f>; ;. The element f, commutes with all f5,;,. Again, there
is a grading U, on U, with dim (U ) = d. Then, there exists a morphism ¢ of graded algebra-
comodules

¢o: H— U, 4.9)

8 Coalgebras and comodules are dualizations of algebras and modules. A coalgebra over a field K (K-coalgebra) is
a K-module V over K endowed with the coproduct A : V. — V ® V and the counit € : V — K. Moreover, a Hopf
algebra is an algebra A with multiplication u : A ® A — A, i.e. u(x; ® xp) = x; - x, and associativity. At the same
time it is also a coalgebra with coproduct A : A — A ® A and coassociativity such that the product and coproduct
are compatible: A(xy - xp) = A(xy) - A(xp), withxy, xp € A.

9 Note that in contrast to [4], in this setup ¢5" is non-zero.
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normalized'® by:

() = frn n=2. (4.10)
The map (4.9) sends every motivic MZV to a non-commutative polynomial in the f;.
Furthermore, (4.9) respects the shuffle multiplication rule (4.8):

P(x1x2) = ¢(x1) W (x2), x1,x €H. (4.11)
It is believed that the isomorphism Z; >~ U, of graded algebras over Q holds.

The motivic MZVs have a hidden structure, which is revealed by the action of motivic
derivations. The latter are derived from the coaction A : H — A ®q H [5, 21]

k
AT™(ag; ar, ..., an; Angy) = Z I Hlm(ai,,; Qi1 - iy =15 iy, )
0=ig<i) << p=0
<ip<igp=n+l
®I"(ap; ai, . . ., Qi A1), (4.12)
which represents a modification of the coproduct (4.4). Here, I1 is the projector IT : H — A

. n . id
acting on ¢} as ¢J"—0. The derivations D, : H, — A, ®q Hn_,ﬂg L, ®q Hy—r on H are

defined as the infinitesimal version of the coaction (4.12) [5]

n—r

D, I"(ag; ai, . .., Gp; Apy1) = Zn (I(ap; apirs - - -y Apars pyri))
p=0
®I"(ap; ar, ..., Ap, Aptrit, -« - An} An1), (4.13)
with the projection w : A — L onto the Lie coalgebra £ = A“‘(‘);‘" - describing all
indecomposable (irreducible) elements of .A. By this we have D,.I" = 0. Above, the symbols

I denote elements of the quotient A = H /5 H.

4.2. On the decomposition of motivic multi zeta values

The coalgebra structure (4.7) underlying the motivic MZVs can be used to decompose any
MZV into a basis. Let us now describe the decomposition of motivic MZVs up to some weight
M = 2 [5].

We are looking for decompositions in the Q-vector space Hy, 2 < N < M spanned by
the symbols (4.5), with w = N and n; > 1, n, > 2. To check that a (conjectural) polynomial
basis B of motivic MZVs EBK,, <m Hn up to weight M indeed represents a polynomial basis
of motivic MZVs up to weight M for n < N for each set B, of elements of B of weight n, one
constructs the map (4.9):

¢: B, — U, n<N. 4.14)
This map assigns to every element of our basis B (of weight at most V) a Q-linear combination
of monomials
bt P fos nk=0001, .0 =1, 26+ +i) +r+2k=n, 4.15)
which are basis elements of the Q-vector space U, supplemented by the multiplication rule
m : Uy X Uy = Uy given in (4.8). Actually, ¢ can be extended to the vector space H,,:
¢: H,— U,, n<N. 4.16)

For the basis B we must have: dimq ((B)y) = dy, 2 < N < M, with (B)y the Q-vector
space spanned by monomials in the elements of B of total additive weight N. Furthermore, we
have

BO B ={g" Uy, ... o) “.17)

10 Note that there is no canonical choice of ¢ and the latter depends on the choice of motivic generators of H.

14
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with r = | (M — 1)/2]. For the elements of B® the map ¢ is given by (4.10). For the
remaining elements of B the explicit construction of ¢ is performed inductively, i.e. from
(4.14) the case n = N + 1 is determined. To find ¢ (&) for a general £ € By,;, with

& = I'"(ap; ay, . ..,ayN+1; ay+2) according to (4.5), we need to compute the coefficients
N-=2r
i = ) 5 (M@ pirs s piarsts Gpiai2))
p=0
x¢ (I"(ag; ay, ..., p, Appor42, - - -, AN41; AN42)) € Un—2p, 3<2r+1 <N
(4.18)
in the expansion:
$E) = Y fusr b1 €Uy (4.19)
32r+1<N

Above, the operator c?r 1) with & € Hj,,; determines the rational coefficient of f5,,; in
the monomial ¢ (§) € U,,+;. Note that the right hand side of (4.18) only involves elements /™
from Hy for which ¢ has already been determined.

The above construction allows one to assign a Q-linear combination of monomials to

.....

N to a non-commutative polynomial in the f;s. Inverting this map gives the decomposition of

o w.r.t. the basis B,,, withn = er,l n;. In other words, the derivations (4.20) are used to
 PTTYY ny —

detect elements in U and to decompose any motivic MZV £ into a candidate basis B.
In [5] the map (4.14) and the decomposition are explicitly worked out up to weight 10.
For example, one finds

#(&3's) = =5 f5f3, 9(&3) = —14 f1fs — 6 fs5fs, 4.21)
and at weight 10 one has for &y € H g the following decomposition
S0 =ao (&) +ar (&) (&) +ar g g ¢

tay (¢ + as & £+ as 8 ¢+ a6 ¢, (4.22)
with the operators:

a; =3¢ 03, ay = ¢ 0503, a3 = 3 05 + 35 [97, 93],

= L [07, 0] (4.23)

acting on ¢ (£9). The derivation operators 95,41 : U — U are defined as [5]:

A Y — fizv"-vﬁ,, 11=27’l+1,
Pty o0 fid = {0, otherwise,

with 0p,41f> = 0. Furthermore, we have the product rule for the shuffle product:
Opy1(ab) = 0ppr1allb + a woy,+1b, a,b cel. (4.25)

Finally, ¢} takes the coefficient of f}'.

It seems very amusing that the coefficients (4.23) and the commutator structure agree
exactly with (3.23). Therefore, MZVs encapsulate the o’-expansion of the open superstring
amplitude.

as = 1 ¢ [95, 03], as = 3103, ae

(4.24)

1 The choice of ¢ describes for each weight 2r + 1 the motivic derivation operators ag’r 4 acting on the space of
motivic MZVs 89 | : H — H [5]
89 = (cS,,, ®id) o Dyypy. (4.20)

with Dy, 41 given in (4.13) and the coefficient function cf, 1 introduced above.
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4.3. Decomposition of motivic multi zeta values for weights 11 through 16

In order to bolster this connection, in the following subsections we determine the
decompositions &,, of any motivic MZV for the weights 11 < w < 16.

For a given weight w we proceed as described in [5]: in the lines of tables 1-3 at weight w
we first detect the new elements B, to be added to constitute the conjectural basis B up to weight
w. For these new elements B,, we then compute their coefficients (4.18) or motivic derivations
Bfr +1 by applying the relations (RO) — (R4) given in section 5.1 of [5]. Equipped with these
results we then determine the map (4.19) by using the findings from the lower weights. After
having derived the map (4.19) for all d,, basis elements of (B),, we can construct the basis for
U, and eventually the operator &,,.

For the depth two case ¢, there exists a closed formula, which computes the map
¢(§rﬁl,nz) directly [32]. Our results for ¢(§3’f‘9), ¢(§3’f'11), ¢>(§5””9), ¢(§3””13) and ¢(§5’f'11) agree
with what this formula gives. However, as will become clear in the following, beyond depth
two the computations involve new aspects and become rather involved.

4.3.1. Decomposition at weight 11. At weight 11 we take the following set of motivic MZVs

B={g), ¢, ¢ o, o, & o ot s ) (4.26)

as independent algebra generators up to weight 11. In [5] up to weight n < 10 to each element
of B an element of I/ is associated by the map ¢ given in (4.14). Hence, we only need to
compute ¢ (3" 5), which according to (4.18) requires the following derivatives:

b rm m m m)?2 m\3
33}3,3,5 = 0’6 , 3%:53,3,5 =545 = =3 (&) + 5 (&) (4.27)
s ==5 (&) WL =454
From these results the expression (4.19) gives rise to:
$@3s5) = =3 fs(swf) + 3 f55 = § fifs =45 fofa. (4.28)

Gathering the information about the lower weight basis U< o with (4.28) we can construct
the following basis for U :

=3 B+ 3 5 = § A5 =45 fof

=5(fs W, fu, fufsufs, ffufzmfsf,

fofar 5. 1555 B (4.29)
This basis gives rise to the following decomposition of any motivic MZV &;; of weight 11
En=a1 s+ a5 ay ol +an (&) ¢ +as ot (g)]

tae &' &' +ar (') & +as (&) 65 a0 (1) 2! (4.30)
with!? the following operators

ap = 1 [95, [95, 311, a» = 1 [0s, 33103,

az = dy1, ag = % 85832, as = é c 83,

ag = 3 39 + 9 [03,[05, 0311, a7 = c3 &7 + = [05, [05, 0311,

ag = c3 95 — 3= [93, [95, 3311, ao = c3 03 (4.31)
acting on ¢ (£11).

12 The following relations [3, [5, 33113 W f3 W fs = O and [d3, [35, d3]1f5f3 WLf3 = O are useful. More generally,
we have: [3g, [0p, 0c]1fa W fp W fe = 0 and [, [0p, du]lfpfallfa = 0.

16
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4.3.2. Decomposition at weight 12. Next, at weight 12 we take the set of motivic MZV's

B=1{4&" &' &5 &' &35 89 &7 G 835350 6359 (liae ) (4.32)
as independent algebra generators up to weight 12. We need to compute ¢ (3"y) and ¢ (£1") 4 4),

which require the following derivatives
¢ m ¢ m m
3¢§ s =0, 82}3,9 =154, (4.33)
95835 = =6 57", g &3 = —27 43",

and
3 a6 = 3 (fm)s 77929 &' +1047°¢)" — 5 5 (52) fm(fm) )
8¢§1 Lae =298 = 1155"¢" — % &' (42 )2’ (4.34)
8 &4 = 1%23 g5 =328,
ag;l”,ll,zt,ﬁ = 1?39 &
respectively. With the derivatives (4.33) and (4.34) we determine the following maps:
¢(&3%9) = =6 fsfr — 15 fifs — 27 fofs,
(L] 46) = 12 f9f3 —RAHHL+HEE A2 - 11 f5 L—1 f5f3f2
+ FA(mfmfs) — 799 2 Bl +10 fifsfo— % fifsfs — R 5. (4.35)
Inspecting the lower weight basis Uk<12 w1th (4.35) we have the following basis for U;:
e fofs =32 f7f3fz +82 A+ -1 -2 A
+5 (s Hlf3 wfs) — 22 fsfo+10 f3f7f2 -1 s — 2 315
=6 fsfr1 =15 fafs =27 f9f37 S fo, fsf7, f3 U f3 W f3 /3,
(—14f1fs = 6f) fr. =5 fsfsfs. S5 Whsho. f3 W frfa
pufsfy, fufifs, 3 (4.36)
Therefore, the decomposition of any motivic MZV &), of weight 12 assumes the form
Ein= a1 &) o+ El a3 8 E au £ E as (68)' g £ &
tar &5 (68) +as (68) & + a9 " 67 88" + a0 68 57 (58)
+an (C3 ) (Cgm) +ap (¢ ) ; (4.37)
with the following operators
ar = o ([89, 83] — 3 (37, 95]) , az 57 [0, 83] + 25 g,
ay = oty + 2 ay, ay = s + 2 ; 3 [0, 5] — foF a1, as = 57 01 — 5 an,
ag = 1 ¢2 [07, 031 — 3 ay, a; = 1 3 [0, 33] —-32a
ag=cy (393 + 2 [07,33]) — % ar, 619 =y 0703 — 10 ay,
ap = c; 85834-%611, ap = c2 33 + 35 ap, alz—cg (4.38)
acting on ¢ (§2).

4.3.3. Decomposition at weight 13. At weight 13 the following set of motivic MZVs
B= { szv {’?15 é‘smv §7m7 {;757 Cva ;:;1:[77 é‘]”]lv é";’:lf;,s’ C:;?:’Q’ {1”:[1’4.67 ;:;1’13,77 ;;’75’5} (439)

represents independent algebra generators up to weight 13. We need to compute ¢(¢3"; ;) and
#(¢3's 5), which require the following derivatives

¢ —
83 é‘.’fr,l3,7 - O’

8‘1’ — _56 (#m ,
8:% 57 = —0¢7%, X i_s 7 fm(%m) (4.40)
37835, =7 (fm) 2 (@) Ny =T



J. Phys. A: Math. Theor. 46 (2013) 475401 O Schlotterer and S Stieberger

and

351)(3’”5 s =0, ¢ 2

¢om m 998355 = —10(8)")",
9583’55 = =3 &35, 83’ S _ _m( 2m) (4.41)
8¢§m =0 1153,5,5 - 2 6

753,55 ’

respectively. The derivatives (4.40) and (4.41) give rise to the maps:

PN =30f—THBuf)+2 A -2 fofs =2 fuk,
D) =25 f215 =10 fofs — 22 firfo. (4.42)

Collecting the information about the lower weight basis U3 with (4.42) we have the
following basis for U3:

3051 —TfH(BFwf)+ 2 fifs — 2 fofs = fufe
25 f2f5 =10 fofs — 22 fufo. fiz. (—l4f2fs — 63 Wwfs,
=5 (fsfa) Wfs, fruwfzmf;, fswfsufs,
— 3wt fsfs =S fifs =45 fofs, =5(fsf) mbafa,
fufe sufwpif, fufsufifs. fofs. fifs, 5. B (4.43)

Therefore, we have the following decomposition of any motivic MZV &3 of weight 13:
b1 = @ &fly 5+ ax (s s+ a o+ aa 8 ' as &l o s i (68) +ar (57) e
s £l 5 £ a0 8 G 8 an &) g8 an & () 8
+ap (C3m)3 (sz)z +ai3 ¢y ((2’”)2 +ais &y (sz)3 +ais &5 (5571)4 + a6 53" (sz)s,

(4.44)
with the following operators
ar = 74 [03, [37, 1], a2 = 5 [05, [95, 3311 — 5= [93, [37, 311, a3 = 13,
ay = 1 [07, 35103, as = 1 05[0s, 03], as = 30705, a7 = 2 [0, 93103 + § 9503,
ag = £ 3 [93, [95, 33]], ao = £ c2[0s, 03105,
ao = 2011 + 5 [3s, [35, 311 + L [05, [87, 3311, a1 = 2 20503, ann = % 393,
ai3 = 300 + 9 23, [95, 3311 +  [9s, [3s5, 3311 — & [93, [07. 511,
aiy = 3 + = 2[5, [95, 3311 — 2% [05, [37, 3311,
ais = 395 — 5= c2[3, [35, &3]], a16 = 303 (4.45)

acting on ¢ (&13).

4.3.4. Decomposition at weight 14. At weight 14 we take the following set of motivic MZVs

B=1{5". &' &' &' &ls, &' G 4 G5 Gl Sliaer 83570 Giss
833350 S3110 G509}

as independent algebra generators up to weight 14. Hence, we only need to compute the maps

#(83"1), 9(&5'y) and @ (&3 5 5), which require the following derivatives

(4.46)

¢ m

83}3,11 =0,
35¢§3r711 =—6 §9m’
3830 = —15¢7",

3543",111 = —28¢4,

. - 4.47)
8?153,11 =447y,
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and
a¢’§-m — O’
o, — 0 sy = 6047 (4.48)
S e m ofy el s = —165 ¢2',
0785 = —15.¢7, '
and

¢ m
d5 {3335 = 0, X \
O om 5 m\> 5 om 4 om m
83}3,3,3,5 =756 (53 ) —3% t78 (Cz ) )
0783555 = =51 8" +30 85" &5,

a?jc;g,s,s =P +905 gy
311§3r73,3,5 =—15¢9,
(4.49)

respectively. These derivatives give rise to:
(L) = =6 fsfo — 15 f5 — 28 fofs — 44 fi1 fs,
$(&3'y) = =15 f7 — 69 fofs — 165 fu f,
d(ths5)=—2fs (Fwmwfswfs)—3 fsfot+ 2 fsfsfy —51f5

30 fifsfo — 22 fofs +90 fofsfo — 15 fur fi (4.50)

respectively. Gathering the information about the lower weight basis U<i3 with (4.50) we
can construct the basis for U4 displayed in (A.1). This basis (A.1) gives rise to the following
decomposition of any motivic MZV &4 of weight 14

§lu=a1 83535 +a2 {3y +a3 85 +as £33 5 85" + as &3 (53’")2 +as &' &)
+a; (53’”)3 (5" +as &5 &g + ag (57’")2 +a10 81468 ta11 8398
tan ¢ 8 an ¢ g e+ an () G+ as £ (8]
taig &5 (6) +an () (&2 + ans & ¢4 (&) + a0 £ 82 (¢2)]
+axn (& (@) +an (7)) 4.51)

with the operators a; acting on ¢ (&)4) and given in (A.2).

4.3.5. Decomposition at weight 15. At weight 15 we have the following set of motivic

MZVs

B=1{8" &% &% & &5 69" &3 G 83550 83 Sliae 8350 8355
83335 G 859 85370 833,90 Cl1346)

as independent algebra generators up to weight 15. Hence, we only need to compute the maps

#(85"5.7), 9(83"59) and @(L(" 5 4 ), which require the following derivatives

(4.52)

¢ m m m 3
95 {537 = 0, s s 3;555,3,7 = % (52 ) )
¢ m m 96 m m m m\2
83}5,3,7 =-3 (§5 ) + 355 (52 ) +6 {375 . 8?145,3,7 =22 (42 ) )
m m m ~m m 48 m [ 1001 +m
97 {537 = —14 {53 = -4 "+ 14 &35 T 55 (42 ) ) 81355,3,7 =—7 &
(4.53)
and
boem dom 27 (ym\2 _ 116 (rm)3
83)53,3,9 =0, 89 §3,3,9 -7 (43 ) 2_ 35 (Cz ) ’
958359 = =0 835, ) ety g = =22 (¢), (4.54)
¢ m 72 m m m m
07639 = —175 (&3') — 15 ¢35, agfz,w =- g,
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and
8;%1”,11,3,4,6 =B - 830 — iy — e+ 683 o+ B (é“zm)2
+8 (&) & 2 g+ B e () - SR (o)
Welaae =58 (@)~ B G 15 8 - 3 s+ 'y
@) @)+ R @)

oy ) sa6 = G0+ R L5 — 12 (53’”)242'11 + & (52"1)4,
3 {46 = _5599 (Cz) + % (sz)B,

0 &l 346 = 519 (Cz) ,

13§1 13,46 = 561;37 &' (4.55)

respectively. These derivatives give rise to:

G(s7) = =3 f5 (fsWfs) + 5 fsf3 —6 fs (14f1fs+65) — 14 fr(fs w fs)
=70 frfsfs + 3 f7f4 + 88 £ —22 f11f22 L i3 fo,
P(Lih0) =6 fs (14f1f3 +6f3) — = f7f4 +75 frfsfs — 2 fo (f3 1 f3)
-2 fufs — 22 fish,
¢(§ﬁ11,3,4,6) = _H ] (15(53,9) - f3 ¢(§1n,11,4,6) + % S(fsmfr) — 83 f3(f3 W fo)
—6 f(14f1f3 +6/) > =8 fifs /of7 +8 f5(fs wf5) f>
+R2 AWML+ S ABLf)fy — B2
85 s wfs) = 3 (s mf) - 1 SU4ff+6f3)
+2 BAA+Y S (fs wfs)fo+ 5 0w+ g 5
+3 f(fs Hlfs) — Bl fsfs— 12 f7(f3 wh)fo+ E8 f1
=22 fo(fswfs) + 2565)57 fofs + 332 fir 5+ B2 fis 5, (4.56)

respectively. The maps ¢(§3,9) and ¢>(§1’1! 4!6) are given in (4.35). With the information
about the lower weight basis U<i4 with (4.56) we can construct the basis for {/;5s shown
in (A.6). This basis (A.6) gives rise to the following decomposition of any motivic MZV &5 of
weight 15

Eis=a1 {1 346 T @2 8330+ a3 8557+ as {5 +as &'y 46 83" + a6 £3'9 85
+ar & (68) +as 8 2 + a0 (6) H o & 2 an (&) +an & o
tai3 &' Gt aa &' s s Hais & 43+ aie ' 6 83+ air 8 851 8
+ars & (&) & o & 8 (82) + am (&) ¢85+ am (&) €0 s
tan () o Fan ' (8 (68) +au () (@) +as (@) &
t+azs (6) 6" + axn (¢57) &8+ ans (887)° &2, (4.57)
with the operators a; acting on ¢ (&s) and collected in (A.7).

4.3.6. Decomposition at weight 16.  Finally, at weight 16 we have the following set of motivic
MZVs

= {gzmr §3m’ g-m’ é";nr é‘?:fls’ é‘gmr é‘?:fl7’ é‘ﬁ’ g;:lijv é‘;}gv é‘]nj174’67 é‘?:r’l3’7’ {3”?5_5, 53'73,3,5,
m m m m m m m m m m
é'3,11’ é.5,9’ é‘5,3,7’ é-3,3,9’ §1,1,3,4,6’ é‘3,3,3,7’ é‘3,3,5,5’ §3,13’ ;‘5,11’ é‘1,1,6,8}
(4.58)
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as independent algebra generators up to weight 16. Hence, we only need to compute the

maps ¢(€£’73!3‘7)’ ¢(§;f3,5,5)’ ¢({£’:‘13)a ¢(§5njll) and ¢(§1r71,6,3)7 which reqUire the f0110Wing
derivatives

®m _ [ _ m
8’j;¢é-3,3,3,7 =0, 85 §3,3,3,7 - _36 é‘3,3,5’ ) 3
m 775 «m 7 m msm 36 sm(s+m 8 sm(sm
3783337 = "% %9 — 3 (53) + 638"+ 5 & (52) +3584 (52) )

¢ om m mem 4.59)
g £33, = —476 ¢7" + 280 £5"¢)",
Oh el sy = — T2 (40T Eey Oy, = —165 ¢,
35?4“3",13,5,5 =0, 3¢§3ms 55 = 738355
8?43",13,5,5 =3Bl gm— 1050 —6 §5m(§2m)2, (4.60)
3;’53",13,5,5 =708 +25¢"¢" — 36 fsm(fzm)z’ ’
a1¢)l§£,13,5,5 == 1%481 é‘m + 275 Qﬂé‘éﬂv 814534'3'73,5,5 = % §3m,
09¢3 =0, Ay =28 ¢
03¢y s = —6 411, 0%y, = —45 02, (4.61)
a¢€“3m13 =154, aﬂ{fn = —65¢7,
8(Z)é-Sll:O 8(()15(;7112_7()@'7’"»
9 5 &5 =0, 8?145’711 = —209 ¢4", (4.62)
Bt = —15, oty = —429 ¢y,
and

8?41”3,6,8 = —§ {350+ g {355 — % g -+ s é“én(fsm) + (45 ) &
HI3T efiey + L () - B () - B ()t - e ()
00el o5 = —2 85— BH el + () el + B w4+ 2 (e’
+38 e (e = B2 (),
e os = 7200 + () =22 8ey — 7 ¢ (¢5) = L8 e (er)’,
00C] 65 = 222 o 2T emem 41 g0 (c),
3?1“71,6,8 = 11536 =y, 3?351",11,6,8 28513 ¢, (4.63)
respectively. These derlvatlves give rise to:
D(Lf5572) = =6 fs d(¢ss5) — 12 fifo— 1 fr(fsmfsmfs) +63 frfo+ 2 fifsfs
+ L B — 476 fofr +280 fofsfr — 222 fiifs +407 f11f3f2 165 fi3f3,
G535 55) = =5 fs d(¢35) + B ffo =105 f7 /o — 6f7fsf2 +70 fofr +25 fofsfa
—36 fofsfs — @ firfs +275 fufsfo + % fisfs
#(&3'3) = =6 f5f11 — 15 f7f9 —28 fof7 — 45 fufs — 65 fi3f3,
#(¢5") = =15 f1fo — 70 fof7 — 209 fi1fs — 429 fisf3,
Pt 6s) =—2 [ 057+ S foss)+ 2 AlA LA+ 6] — 2L fifi3
+ § HHwfswfs) + (3 lllf3 wf7) + 137 fafunfo+ u f3f9fz
332 BAEE-BAfh -2 mhf -t ¢ (Csmz 5) — 3451 S/
+hwfwfs) + 5 fhf+ 2 5+ 2 65 — B2 A
+72 fifo+ fi(f3 mf3 wf) —22 f7f7fz - 7 f7fsf2 Brmifh+ 22 ffh
=2 fofsfr =41 fofsf5 + 1320 11536 mfs=Z s+ 28513 f13/3. (4.64)
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respectively. The maps ¢(§§7}3,5)7 ¢(§§”’3,7) and ¢(§3””5,5) are given in (4.28) and (4.42),
respectively. Gathering the information about the lower weight basis U<is with (4.64) we
can construct the basis for ¢ shown in (A.8). This basis (A.8) gives rise to the following
decomposition of any motivic MZV &4 of weight 16

§16 = a1 {165 a2 83337+ a3 83555 +aa §313 +as &5y + a6 3" 5335
+ar 8 e s as £ 4 a0 &t (641) + ano ¢ ¢ g+ an & (88)
+an (§5m)2 (fén)z +ai3 &' 8 4 arg (G5'5)7 + ars §f S8+ are O 5 LY
tan & s+ a &' () 8+ a & & 8+ an £ () &
+ax (63 (&) +an & 80 (68) +an o' o8 (&) a8 g (53)
+ ass (Cgm)z (sz)5 +ax 83535 8 + a2 83 &' +axs 859 &'+ ax &' &5 5y
taso (&) 8"+ ann &' a6 (68) + an &y (&) +an &' & (¢8')
+ass 83 (52'")3 +ass ¢3's (sz)4 + aze ((én)z (sz)3 +ax ((2’")8, (4.65)

with the operators a; acting on ¢ (&)6) and listed in (A.9).

4.3.7. Comments on regularizing the coproduct and the map ¢. Some terms in the sum of
the coproduct (4.4) may imply divergences [4, 6, 16]. Divergences of multiple polylogarithms
are end-point divergences, i.e. the poles in the integrand (2.5) coincide with the endpoints of
the path y. A canonical regularization has been introduced in [16] by shifting the endpoints
by a small parameter €:

I"0;ay,...,a,;1) > I"(e;aq,...,a,; 1 —€). (4.66)

Expanding the latter w.r.t. small € gives a polynomial in Ine. Its constant term defines the
regularized value m (0; ay,...,ay; 1). The coproduct in the non-generic case is defined
by replacing in the sum of (4.4) every multiple polylogarithm I (0; ay, ..., a,; 1) by its
regularized value fm(O; ai,...,a; 1) [4, 16].

Also the coaction (4.12) and therefore (4.13) and (4.18) may be plagued by divergences.
We have regularized the terms in the sum (4.18) in the same way as described above for the
coproduct (4.4). The problem, which only affects the first factor cgr 41 (- ) of the terms in
(4.18), occurs only in the computation of the maps ¢ (¢, 4 ), P(5[") 346) and @(L[") 4 ¢)- In
addition, in the above three cases c‘gr 41 (- - -) computes the coefficient of ¢J" 41 which does not
depend on the regularization, i.e. it is independent on €.

Let us demonstrate the regularization at the computation of 8;1’ (¢1".6.8)> Whose result is
given in (4.63). With ;1”711’6’8 =171"0;1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0; 1) computing
(4.18) for r = 1 yields:

£ = 2" ©0; 1,1,0; 1) +1"(0; 1,0, 1; D1 1"(0; 1,0,0,0,0, 1,0,0,0,0,0,0,0; 1)
—c§ [1"(0; 0,0, 1; 1)] 1"(0; 1,1,0,0,0,1,0,0,0,0,0,0,0; 1). (4.67)

Above, the integral I (0; 1, 0, 1; 1) has to be replaced by its regularized value m (0;1,0,1; 1).
The latter is computed from expanding

1- t t
dr St > dr
Im(e;l,O,l;l—e):f 3 / _2/ !
€ -5 Jo © e 1—n

= Ine -2+ 248" — (Ine)’] e + O(e?) (4.68)
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w.r.t. small €. Hence, we have'3:

1"(0;1,0,1; 1) = =2 ¢, (4.69)
Note, that this agrees with what one would obtain by applying the shuffle rule (4.3)

I"@o;1,0; 1) I"(0; 1; 1) =I"(0; 1,0, 1; 1) +2I"(0; 1, 1, 0; 1), (4.70)
from which we obtain:

I"0;1,0,1; 1) =I"(0; 1,0; 1) I'"(0; 1; 1) =2 7I"(0; 1,1, 0; 1). (4.71)

With I"(0;1,1,0; 1) = {ffz = {3 the two expressions (4.68) and (4.71) give the same finite
piece. This is a consequence of the fact that the shuffle relation also holds for the canonical
regularization of multiple polylogarithms [16]. Another way to arrive at the conclusion (4.69)
follows from simply identifying I (ag; a;; a;) =~ Ofor a; € {0, 1} in the shuffle relation (4.70);
see [5].

4.4. Motivic decomposition operators and o' -expansion

By comparing the decomposition operators & given for/ = 10, ..., 16in (4.23), (4.31), (4.38),
(4.45), (A.2), (A.7) and (A.9), respectively, with the corresponding order «” in the expansion
of (3.25) (with the operators (3.26) and (3.17)) we see an exact match in the coefficient and
commutator structure by identifying the motivic derivation operators (4.20) and the matrix
operators (3.26)

Oont1 = Moy, (4.72)
and the coefficient operator ¢, with the matrix operators (3.26):
APy, k=1 4.73)

We can further strengthen this connection. Let £ = Q(es, es, ...) be the free graded

Lie algebra (some vector space over Q) freely generated by the generators e, of degree
—(2r + 1) with the Lie-bracket (e;, e;) — [e;, e;] and the Jacobi relations:

lei, [ej, ex]] + [ej, Lex, eil] + ek, lei, ej1] = 0. (4.74)

With £ = Qle,]® L' the underlying graded vector space over Q is generated by the following
elements [33]:

e, e3, es, e7, [es, es], eq, [e3, 7], enn, les, [es, e3ll, [es, e0l, [es,e7], ..., 4.75)
e.g. at weight 11 the elements e;; and [e3, [e3, es]] generate L),. For f3, fs, ... being the
functionals on the vector space generated by the vectors e3, es, ... such that (f;, e;) = §;; the

dual to the universal enveloping algebra U (£) is isomorphic to the space U of non-commutative
polynomials in f;,, with the shuffle product [16, 34].

In fact, the Lie algebra £ generators ¢; can be identified with the matrices My, and P,
introduced in (3.26), i.e.

exyt1 = Moy,
0 ~ Py, 4.76)

and of course the matrices M5, fulfil the Jacobi identity (4.74):
[M;, [Mj, Mi]] + [M;, [My, M;]] + [My, [M;, M;]] = 0. @.77)
To conclude, motivic MZVs encapsulate the «’-expansion of the open superstring

amplitude.

13 With this result equation (4.67) becomes: & = cff ({I”_‘Z — 2{_{”) ¢({5"fs) + cg’ (—;5") ) = 7¢(§§':L8) _
Sl ).
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5. Motivic structure of the open superstring amplitude

The symbol of a transcendental function represents a motivic road map encoding all the relevant
information about the function without further specifying the latter explicitly in terms of
multiple polylogarithms [2, 3, 35]. In particular, the various relations among different multiple
polylogarithms become simple algebraic identities in the corresponding tensor algebra. In this
section we show that the isomorphism ¢, which is induced by the coaction (4.12), encapsulates
all the relevant information of the «’-expansion of the open superstring amplitude without
further specifying the latter explicitly in terms of MZVs. By passing from the MZVs ¢ € Z
to their motivic versions ¢ € H and then mapping the latter to elements ¢ (™) of the Hopf
algebra U the map ¢ endows the superstring amplitude with its motivic structure: it maps
the o’-expansion into a very short and intriguing form (1.1) in terms of the non-commutative
Hopf algebra U{. In particular, the various relations among different MZVs become simple
algebraic identities in the Hopf algebra {/. Moreover, in this writing the final result (1.1) for
the superstring expansion does not depend on the choice of a specific set'* of MZVs as basis
elements.

In this section we apply the isomorphism ¢ to the motivic version 4™ of the open
superstring amplitude expression (3.24)

P(A") = ¢(F™) A, 5.1
with

Fm = pmn Qm N eXp { Z ;;’L’H_] M2n+1} 5

n=1

(5.2)
P"=Ploygp, Q" =0, > >

Aoty

and the matrices P, M and Q defined in (3.26) and (3.17), respectively. The action (4.9) of ¢
on the motivic MZVs is explained in the previous section.

5.1. Motivic structure up to weight 16

The first hint of a simplification under ¢ occurs in (3.22) at weight w = 8, where the
commutator term [Ms, M3] together with the prefactor é{;"s conspires' into:

¢ (558" MsMs + QF ) = fsfs MsM3 + fsfz MsMs. (5.3)

The right-hand side obviously treats the objects f3, M3 and fs5, Ms in a democratic way. The
effect of the map ¢ becomes even more drastic'® at weight w = 11 at the permutations of
M;3MsMs:
& (F™oi) = o O+ 0F &' M+ 5 (G028 MsM3 + ¢t My + (53¢ P

+ '8 PaMo + £7'(83") PaMy + 85 () PsMs + ¢4 (83')* PyMs)

= fir My + [ fs MsM3 + ffsfs MsMsM; + f5 f3 M3Ms

+Pofo (foMy + f3 M3) + Pufs fy My + Pofs fs Ms + Psfy fs M. (5.4)

From (5.3) and (5.4) we observe that in the Hopf algebra U/, every non-commutative word of

odd letters f+; multiplies the associated reverse product of matrices My ;. Powers fzk of

14 For instance, instead of taking a basis containing the depth one elements $on4y one also could choose the set of
Lyndon words in the Hoffman elements ¢,;7 . with n; = 2,3 [19, 21].

15 Note the useful relation #(Q%) = fsf3 [M3, Ms] for Q' = %Q",ls [Ms, M3].

16 We use the identity: ¢ (Q}) = f5f32 [M5, [M3, M5]].
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the commuting generator f, are accompanied by P»;, which multiplies all the operators My
from the left. Most notably, in contrast to the representation in terms of motivic MZVs, the
numerical factors become unity, i.e. all the rational numbers in (3.16) drop out. Our explicit
results confirm that the beautiful structure with the combination of operators M; , ..., M;,M;,
accompanying the word f;, f;,, ..., fi,, continues to hold through weight w = 16:

¢ (F™) = (14 P+ P+ [P+ P+ P+ fsPo+ fiPa+ fPie+ )
x (1+ fsMs+ fs Ms + f; M5 + f, My + fofs MsMs + fsf MsMs
+ fo Mo + f3 M3 + f5 M5 + fsfs MaMs + fr.fs MsM7 + fi1 My
+ fifs MsM5 + fafsfs MsMsMs + fs f3 M3Ms + f{ M5 + f3 fo MoMs
+ fofs MsMo + fsf; MiMs + fr fs MsM7 + fi3 My + f3 fr MaM;
+ ff1fs MsMaMs + f1f3 M3My + f3f3 M3Ms + fs f3 fs MsM3Ms
+ f5 s MsM5 + f7 M3 + fyfuy MiuMs + fi1 fs MsMyy + fs fo MoMs
+ fofs MsMo + f3 fs MsM3 + f3 fs fs MsMsM3 + fs fs f3 M3MsMs
+ fsf3 M3Ms + fis Mis + f3 M3 + f3 M3 + fifo MoM3 + f3 fo fs MsMoMs
+ fofs M3Mo + f3fsfr MiMsMs + fs fr fs MsMaMs + fs f3 f; MaM3Ms
+ f5f13 MsM7Ms + f7 f3fs MsM3M7 + f7 5 f3 MaMsM7 + f7 fo MoM~
+ fofi MaMy + fi1fs MsMyy + fsfit MuMs + f3 fis MisMs + fis 5 MaM 3
+ fifs MEMS + f3fs MAM3S + f3f5 fs MsM3Ms + fs f5 fs MsM3Ms
+ ffsfsfs MsMsMsMs + fs 3 fs fs MsMsMsMs + f5 f; MaM;
+f5 1 fs MsMa M3 + f f5 3 MMM + frf MMy + -+ ). (5.5)

Writing the amplitude (5.1) in terms of elements of the algebra comodule ¢/, with ¢ (F™) given
above encodes all the information contained in (3.17).

5.2. Motivic structure at general weight

Motivated by the observation that every non-commutative word constructed from odd
generators fp;41 shows up in (5.8) we write down the following formula

H(F™) = (Z s sz) S fifoo £y My, MM, | (5.6)
p=0 i.ip

k=0
€Nt 41

for the image'” ¢(F™) valid for any weight. In (5.6) the sum over the combinations
Jufo oo fi,Mi, ... M;,M;, includes all possible non-commutative words f; fi, ... f;, with
coefficients M;, ... M;,M; graded by their length p. Matrices Py associated with the powers
fé‘ always act by left multiplication. The commutative nature of f, w.r.t. the odd generators
Jfor+1 ties in with the fact that in the matrix ordering the matrices P»; have the well-defined
place left of all matrices My . With (5.8) one easily checks that (5.6) is compatible through
weights less than or equal to 16. Combining equations (5.1) and (5.6) gives the final result'®

(1.1):

17 Note that a different normalization (4.10) or choice of ¢ (see footnote 8) can be compensated by an appropriate
modification of the definition of the matrices M5, such that the form of (5.6) stays unchanged.

18 The combinations fifiy - fiyMi, ... Mi, M in (1.1) reflect the agreement of the coefficients in the o’ expansion
Al,, of the superstring amplitude with those in the motivic decomposition operators &,, observed in subsection 4.4.
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[e.¢] o0
HA™) = (Z IA P2k) Z Z fufooo iy My .. .MM, ¢ A, (5.7)
=0 P A

In the following we shall give further evidence that the validity extends to higher weights.
In subsection 4.4 we have already pointed out that the decomposition formula &, for MZVs
of weight w exactly matches the corresponding o'”-part of the superstring amplitude subject
to the replacements (4.72) and (4.73). If this mapping holds to arbitrary weight, then the
simplicity of our final result (5.6) reflects the role of ¢ (£,,) being the unit operator projected
to weight w, e.g.

&) = £6 + 1356305 + (150505 + f5£30305)cn
1303 + frfsdsdh + frfrdnds =id|,_ (5.8)

maps any non-commutative weight ten polynomial in f>, f3, f5, f7, fo toitself. More generally,
the differential operator c’;a,-p ...0;,0; annihilates all ¢/ elements except for f5f; fi, ... Ji,-

Hence, the weight w identity operator is given by

GE) =D HBAE YD fufuoo [y, 050,

k=0 =0 ip.ip
P €Nt +1

x8(iy+ i+ +ip+2k—w) = id| (5.9)

where the § (- - -) function makes sure that the correct weight is picked up. Clearly, (5.9) maps
to the weight w contributions of (5.6) under the replacements (4.72) and (4.73). In this sense,
the image under ¢ of the disc amplitude at weight w is closely related to the identity operator
in the algebra comodule U, restricted to weight w.

6. Closed superstring amplitude

The string world-sheet describing the tree-level string S-matrix of N gravitons has the topology
of a complex sphere with N (integrated) insertions of graviton vertex operators. One of the key
properties of graviton amplitudes in string theory is that at tree-level they can be expressed as
sum over squares of (color ordered) gauge amplitudes in the left- and right-moving sectors.
This map, known as KLT relations [9], gives a relation between a closed string tree-level
amplitude M involving N closed strings and a sum of squares of (partial ordered) open string
tree-level amplitudes. We may write these relations in matrix notation as follows

M,...,N)=A'S A, 6.1)

with the vector A encoding the (N — 3)! independent color ordered open string subamplitudes
and some (N — 3)! x (N — 3)! matrix S. The latter encodes the sin-factors from the KLT
relations [9] and the contributions from the monodromy relations [10, 11] to express both left-
and right-movers in terms of the same open string basis .A. Hence, in superstring theory the
tree-level computation of graviton amplitudes boils down to considering squares of tree-level
gauge amplitudes .4 given in (3.1). For this sector the explicit expressions (3.24) and (3.25) and
subsequent results from the previous sections can be used. The KLT relations are insensitive to
the compactification details or the amount of supersymmetries of the superstring background.
Hence, the following discussions and results are completely general.

In the sequel we shall discuss the implication of (3.25) to the closed string amplitude
(6.1). Especially, we shall be interested in the structure of its «’-expansion. The latter has been
already investigated up to the order o’® for the cases N = 4, 5 and N = 6 with the remarkable
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observation that the graviton amplitudes do not allow for powers of ¢ in their o’-expansions
up to the order o’® [36]. With the explicit expression (3.25) for the open superstring amplitude
we are now able to reveal the pattern and more general framework behind these findings.

6.I.N=4

For N = 4 the KLT relation (6.1) can be written as:

M(@1,2,3,4)=A"S A, (6.2)
with the basis A = A(1, 2, 3, 4) of open string amplitudes (3.8) and the scalar:
§ = sin(rs) ST (6.3)
sin(rrt)

With (3.8) and

Pl su 'sin[rr(s?i—u)] 1/2 6.4)
s+ u sin(ws) sin(mwu)
equation (6.2) yields:
su
1,2,3,4) = 2 w1 Mo, A%, 6.5
M( )= exp 2D Gt Mo Al 6.5)

n>1

with the YM subamplitude A = Aym (1, 2, 3,4) and M, given in (3.9). Obviously, in the
4-graviton amplitude (6.5), not any Riemann zeta function with even entries shows up.
The field-theory contribution from (6.2) arises from P = 1 and A = A, i.e.

M(lvzv 3s4)|FT:At SOA9 (66)
with
u
SOE S|FT:7TS;. (67)
‘We observe that:
P'SP = S,. (6.8)

This equation guarantees the absence of powers of ¢, in (6.5). Stated differently, the absence
of powers of ¢; in (6.2) allows one to determine the scalar P = P’ from the equation (6.8) as:

P=s)"(H"2 (6.9)

6.2.N=5

For N =5 the closed string amplitude (6.1) can be cast into
M(1,2,3,4,5) = A" S A, (6.10)

with the basis A of open string amplitudes given in (3.14) and the symmetric matrix S
encoding the diagonal matrix diag{sin(ws,) sin(ws34), sin(mwsy3) sin(mwsy4)} from the KLT
relation [9] and further sin-factors from the monodromy relations [10, 11] expressing the string
amplitudes A(2, 1,4, 3,5) and A(3, 1, 4,2, 5) in terms of the basis elements A(1, 2, 3,4, 5)
and A(1, 3, 2, 4, 5). More precisely, we have

S = [sin(7rs3s) sin(wss) sin(wsia)] ™" o T , 6.11)
Y X»
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with
Y= % sin(rrsy) sin(msz) [Sinm(s; — s, — 83) — sinw (51 + 55 — $3)
+sinm(s; + 52 + 53) +sinw(s; + 5o — 53 — 254)
+sinmw (—s; + 52 + 53 — 2855) — sinw (s; + 52 + 53 — 254 — 285) |,
Yp = —sin(mwsy) sin(mws3) sin(mwsyz) sin(wsyy) sin (sq4 + 55),

Y = %sin(nslg) sin(7r524)
X [sinw(sy + 85, — 53 — 84 —85) —sinw(s] + 52 — 853 — 54 + 55)
—sinmw(s; 4+ 52+ 853 — 84— 85) +sinmw(s; — 53 — 53 — 4 + 55)
—sinm(s;y — s, — 53+ 54+ 55) +sinm(s; +52+53+854+55) 1, (6.12)
and the kinematic invariants defined in (3.3) and (3.21).
The field-theory contribution from (6.10) arises from P = ((1) ‘1)) and A = A, with the
YM basis vector A given in (3.14), i.e.
M(1,2,3,4,5)|pr = A" So A, (6.13)
with
So = Slpp = 7% (525 535 514) " (0“ 012> ; (6.14)
012 02
and:
o11 = 5153 [$4(s3 — 85) (=2 + 54 + 55) + 51(—53(54 + 55) + 55(—52 + 54 + 55))],
012 = —5153 513 $24 (84 + 55),
022 = —813 524 [$154 (52 + 53) + 515385 + $255(s3 + 54)]. (6.15)
By considering the closed superstring amplitude (6.10) and analyzing its ’-expansion
[36] we find that the following matrix equation holds:
PSP = 5,. (6.16)
We have checked the validity of (6.26) up to the order o’'®. As a consequence of the
relation (6.26), the contribution of the matrix P stemming from the open superstring amplitudes

(3.13) and accounting for powers of ¢, drops out of the o’-expansion of (6.10). In addition,
we find the relation

M; So = So M;, (6.17)
which we have verified up to weight [ = 19. For commutators Q, of M;, equation (6.17)
implies
S0 Q)+ Q) So =0, Q) = [M;, My,
So Qay) — Q3 S0 =0, Qp) = [M,, My, My]], (6.18)
So Quy + Qiyy So =0, Quy = [My, [My, [My, M,]11]
generalizing to
SO Q(r) + (_1)r t(r)SO =0, Q(r) = [anv [an ey [Mnrv Mnl]] .. ] (619)
for nested commutators Q. of generic depth r. In contrast to (6.19) in the closed string
amplitude the nested commutators Q(,) show up in the combination Sy Q) + Q(,,So, which
only vanishes for commutators of even depth » € 2N. Assuming for Q the exponential form
(3.28) the relation
Sp 20 = eV 5 (6.20)

following from (6.19) guarantees the decoupling of any power of nested commutators Q) of
even depth r € 2N in (6.10).
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On the basis of (6.26) and (6.17), we obtain the final form

M(1,2,3,4,5) = A’ (: exp{ > ;,.M,.} :) 0'So0 :exp{ > ;SMS} DA

re2N++1 SEANF+1
t
=A"S, (: exp{ Z ;,M;} :) 00 :exp{ Z {SMS} A, (6.21)
reN+ 11 SEINF 41

where the ordering colons enclosing the exponentials'® are defined in (3.18) and the matrix é
is obtained from Q by replacing commutators Q) as follows:

0=20 loy— 110, - (6.22)

As a consequence, terms with commutator factors Q. of even depth do not show up in the
product?:

00=1+201+20i3+20i5+---. (6.23)

Hence, we observe that in (6.21) MZVs of even weight or depth > 2 only enter through the
product (6.23) starting at weight w = 11. This result is in agreement with the observation
made in [36]. We now have verified this observation through weight 18. Let us display the
expansion of (6.21) through the order o’

M(1,2,3,4,5) = A" S (1 +2 53M5 +2 §sMs + 2 CIM3 + 2 £My + 2 £3¢85{M3, Mis)
+ 2 5oMo + 3 GIM3 + 2 03M3 + 2 535{M3, M7} +2 Q11 + 2 LM
+ £5¢5{M3, (M3, Ms}} + % (3M5 + 2 £380{M3, Mo} + 2 {587 {Ms, M7}
+ 2013 + 2 {i3Mis + 56 {M5, (M5, M)} + 2 §3¢3{M5, M3}
+ 2 5{M3, Qui} + 2 &7 M5 + 2 581 {Ma, My} + 2 §5o{M's, Mo}
+ 1 6¢s(Ms, (M3, (M3, Ms}}} + - -) A, (6.24)

with the anticommutator {A, B} = AB + BA. Up to the order shown, MZVs of depth » > 2
enter through the objects Q11, Q13 and {M3, Q1;}. In the single zeta sector, the coefficient of
the general power ({1 Mok+1)? is given by 27/p!.

6.3. General N

Let us now phrase the observation from above for general multiplicities N. The general form
of the N-point closed string amplitude is given in (6.1),

M@A,...,N)=A" S A, (6.25)

with the (N — 3)! x (N — 3)! matrix S specified above and the vector .4 encoding the (N — 3)!
open string subamplitudes (3.24). Just as in the five-point case, the relations

PSP =S, (6.26)
M Sy = Sy M, (6.27)
So Qi + (=1)" QS0 =0, (6.28)

with Sy = Slpr and Oy = [M,,, [M,,, ..., [M,, , M, 1]...] imply that from (3.25) both the
matrix P and the part of Q with admixtures of even depth commutators Q,,) are canceled in

19 Note that the transpositions involved in the expression (: exp{zr ¢ Mﬁ} :)t lead to a reversal of the

matrix multiplication order compared to the ordered product : exp{zj, s MS} : without transposition, i.e.:
(- exp{Xeonias & My} ) = Lk M3 + GsMs + 3E5M5 + cMy + G30sMsMs + §63M5 + GoMo + 363M3 +
§3§7M3M7+%CfCSM§M5+C11M|1+---- -

20 The exponential form (3.28) leads us to expect even weight contributions to QQ starting at weight 22, e.g.
00 =102+ suchthat O Ql,—p =2 03,.
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the N-point closed string amplitude (6.25). With the information from (6.26) and (6.27) the
closed superstring (6.25) amplitude for any number N of external states takes the generic form

M(,...,N)=A"S, (: exp[ > ;,.M;} :) éQ;exp{ > QMS] : A, (6.29)

re2N++1 SEINT+1
with the (N —3)!-dimensional vector A specifyinga YM basis A = Ayy, the (N—3)! x (N—3)!
matrix Sy introduced above and the (N — 3)! x (N — 3)! matrices M5, defined ig (3.26). The
ordering colons enclosing the exponentials are defined in (3.18) and the matrix Q is obtained
from Q according to (6.22). Due to (6.28) and the exponential form (3.28), the product

00=1+4201+203+205+ - (6.30)

in (6.29) is free of even depth commutators Q.. Finally, the o’-expansion of the N-point
amplitude (6.29) assumes the same form as (6.24), with the matrices M5, given in (3.26).

We would like to mention two final remarks: as for the N = 4 case (6.9) one can constrain
P from the matrix equation (6.26); moreover, equation (6.27) provides restrictive relations
between entries of the matrices My ;. Their information content on the polynomial structure
of P and M is further investigated and exhibited in more detail in [28]. Of course, with the
explicit expression for P and M the relations (6.26) and (6.27) and hence (6.29) can be verified
to all orders.

6.4. Motivic structure of the closed superstring amplitude

Experiencing the simplicity in the open string sector suggests that one should also investigate
the image under ¢ of the gravity amplitude (6.25). We insert the result (5.6) for ¢ (A™) into
(6.25). The multiplication rule (4.11) of the isomorphism ¢ yields:

t

d)(Mm):At Z Z filﬁg--'fi,,Mip"'MizMil

P=0 A,
o0
wSo YY" fifno fi, Mj, ... MpM;, ¢ A (6.31)
q=0 Jj1--Jq
€Nt 41

The sum over fxPy in the open string amplitudes A’, A has already been dropped, taking into
account the motivic version of the relation (6.26). As a result the commutative Hopf algebra
element f5 is absent in ¢ (M™).

In order to simplify (6.31) we can make use of (6.27) to convert all the M from the left
moving open string amplitude to M; factors multiplying Sy from the right:

GM™)=A"So 1> D" fifu-o fiy MMy, .. M;,

p=0ij.mmip
€Nt +1

00
_LL[Z ij]sz...ququ...szMj A
q=0 jll.v"-;]q]
€2NT +

00 P
=AS 3> DY MMy My, > fifoo fo i fir o fin A (6.32)

=0 ij.ip k=0
P Nt +1
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On the way to the last line of (6.32), the double sum over non-commutative words in f;
has been rearranged to identify the overall coefficient of A’SoM; M;, ... M; A. Symmetry of
the shuffle product implies that each string of matrices M; M;, ... M;, multiplies the same f;
polynomials as its reverse M;, ... M;,M;,. In particular, this assigns the symmetric coefficient
2fiwfj = ¢(2¢"¢;") to the matrix products M;M; of length 2, reflecting the absence of the
first double zetas along with Q).

Let us present the momentum expansion of (6.32) up to weight 14:

PM™) =A" Sy (142 fsM3 +2 fsMs + 4 M3 +2 fiM7 +2 f3 w fs{Ms, Ms}
+2 foMo + 8f3M3 + 4 fsM3 + 2fs w fr{M3, M7} + 211 M,
+ f5 mfs mfs{Ms, (M3, Ms}} + 2 fs f7 [M3, (M3, Ms]] + 16 f{M}
+2 f 1 folMs, Mo} + 2 fs W f7{Ms, M7} + 2 fi3M3
+ f5 W fs wfr{Ms, (M3, M7}} + 22 f5 (M5, [M3, M7]]
+ fs wfs W f3{Ms, {Ms, M3}} + 25 f5 [Ms, [Ms, M3]]
+4 M3+ 211 W f3{Ms, Mii} + 2o w fs{Ms, Mo}
+ 1 fwfswfswfs{Ms, (M3, (M3, Ms}})
+2 5w (fsf5){Ms3, [M3, [M5, Ms]]} + -+ ) A. (6.33)

Starting from weight 11, some of the f; polynomials cannot be represented as a pure shuffle
product f; wf, w--- wf, reflecting the presence of depth > 2 MZVs in (6.29) due to
Q0. As expected from Qy, Qi3, ... given in (3.17), they multiply nested M; commutators
93y, 95y, - - . of odd depth, seee.g. - - - + 2f5f32[M3, [M5, M5]]+ - - - or the last line of (6.33).

To summarize, we have shown that the closed string tree amplitude also has an &’ expansion
whose beautiful motivic structure is revealed through the ¢ isomorphism.

7. Conclusion

In this work we have investigated the structure of the «’-expansion of the open and
closed superstring amplitude at tree-level with particular emphasis on their transcendentality
properties. The strict matching of powers ' with their associated MZV prefactors of weight
w constituting a well-confirmed pattern has been considerably refined.

The main point is to replace the C valued MZVs ¢ by more abstract versions thereof, the
so-called motivic MZVs ¢™, which are endowed by a Hopf algebra structure. Furthermore,
through the isomorphism ¢ the motivic MZV's are mapped into an algebra comodule generated
by the non-commutative words in generators f3, fs, f7, ... and an additional commutative
element f,. In the same way as the symbol conveniently captures patterns of field theory
amplitudes the isomorphism ¢ yields a strikingly simple and compact expression (5.7) for the
open superstring disc amplitude: the systematics of the o’-dependence is written in closed and
short form to all weights. In contrast to the symbol, the map ¢ does not lose any information
and can be inverted to recover the tree amplitude in terms of motivic MZVs.

In the closed superstring sector the properties of the matrix P encoded in (6.26) and
the commutation relations (6.27) between matrices My, and Sy result in the compact form
(6.29), where MZVss of even weight or depth > 2 only enter through (6.30) starting at weight
w = 11. On the other hand, after applying the map ¢ this result turns into (6.31), in which
the element f, is absent and all matrices M;,,; and Hopf-algebra generators f»,4 are treated
democratically without the necessity for the ordering prescription (3.18) in (6.29).

Note that, based on the observation (3.13) for N = 5, which we have proven through
weight w = 16, we have conjectured (3.25) to hold for generic N of the open superstring
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amplitude. The polynomial structure of the matrices M and P and various other aspects of
o’-expansions are further elaborated in [28]. Moreover, in this reference further evidence for
the generic form (3.25) is given for N = 5 through weight w = 22, for N = 6 through weight
w = 9 and N = 7 through weight w = 7. On the same grounds the form (6.24) for the N = 5
closed superstring amplitude in (6.29) is conjectured to hold for any N. At any rate, in [37] a
mathematical proof for the generic form (3.25) for any N will be presented.

The structure underlying the motivic open and closed superstring amplitudes in terms of
a Hopf algebra is not only a tool to conveniently express these amplitudes but seems rather to
be an intrinsic feature, which might allow one to compute the latter by first principles.
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Appendix. Decomposition of motivic multi zeta values

A.l. Decomposition at weight 14

Gathering the information about the lower weight basis U< 3 with (4.50) we can construct
the following basis for If}4:

=2 (hwfswf) =3 fsfot+ 2 fsfsfs =515 +30 fifsfr— 22 fofs

+90 fofsf2 — 15 fi1f3s

—6 fsfo—15 f3 =28 fofs — 44 fi1 f3, =15 f7 — 69 fofs — 165 fi1 f3,

(=2 fs(Bwf) +3 15— fifs —45 fofs) whs, =5 (fsfs) Wwfswfs,

fullfs, fs Wwfs wfs, folwfs, frWf7,

(52 fofs =32 fiihh + S22 Hfs +29 fsfr — 11 f3fa = 2 51 f5

BB uf) — 2 i+ 10 fififs — L fsfs — 2 56) fo

(=6 fsf1 =15 fafs = 27 fof3) fa, fo Wl fafa, fr W [fsfa, f3 1 f3 W f5 W f3 /2,
(4fifs =6/, =5 55, Sufsfy, fmffs, fufsfs, fufify, fi. (A
The operators a; of the decomposition (4.51) are:

ap = 1 95, [35, [35, 33111, a2 = — 2 [011, 03] + = [Do, B5] — 2284 [35, [95, [35, d511],
a3 = —5 [do, 0s] + 55 [911, d3] + 22 [35, [95, [3s, d311],

32



J. Phys. A: Math. Theor. 46 (2013) 475401 O Schlotterer and S Stieberger

ay = 1 [03, [9s, 31103, as = 15 [0s, 03103, as = 1193, a7 = & 0503,
ag = 0905 — 33 [311, 03] + 3 [, ds] — 3272 93, [05, [3s, D3]],

ag =507 — 32 [0y1, 03] + 32 [0, 05] — SLZT 35, [35, [3s, 33]1]
aio = c2a9, a1 = ¢2 (55 [00, %3] + 22 ag) + 2 [93, [93, [0s, 05]11,
apy = ¢2 (393 + 22 ag) + 9 [95, [35, 31195,

arz = ¢ (95 + 5 [do, 03] — 357 ag) + 4 [03, [93, [35, 33111,

aiy =2 (305 — 5 a0), a15 = 1 ¢3 [37, 331 — 3 caa,

L3 195, 331 — 2 c2 ap + 13 [83, [33, [9s, 33111,

ai7 =3 ¢3 (05 + 2 [07, 33]) — 2 caa0,

aig = c3 3703 — 10 caap + 2—65 [03, [0s, 03]]03,

aio = c3 3503 + £ caap — 1= [33, [35, 331103,

1 492 18 7
a = ;3 6‘283 + 35 €200, A21 = C, (A.2)

ale

acting on ¢ (£14). Above we have introduced the operator:
ao = gor ([d9, 831 —3[d7,35]). (A.3)

Furthermore, we have used some useful formulae exhibited in the following. Nested
commutators involving the derivatives d3 and ds acting on various products of f3 and f;s
have a ‘diagonal’ structure:

[03, [93, [03, 05111 fs /3 /3 /3 = 1,

[03, [03, 051103 (fs f3/3) mf3 =1,

[0, 85192 (fsf3) w f3 m f3 = 2,

3503 fs W fs wfswfs = 6. (A4)

On the other hand, all the other combinations of differential operators
[05. [03, [93, 35111, [3s, [9, 951103, [03, D5195, 9503

acting on the products {f5 /3, (fsfsf3) Wfs, (fsf3) Wfs W fs, fs wfs W f3 W fs} vanish, e.g.
[03, [03, [03, 35]1] annihilates all of (f5f3f3) W f3, (fsf3) Wf3 W3, fs5Wf;wf;mf;. More
generally, we have:

[03, [03, [..., [33, 05]...1]] 3§)(f5f3k_q)( wf3)? =plé,, (A.5)

(k—p)-fold commutator

A.2. Decomposition at weight 15

At weight 15 we collect the information about the lower weight basis U< 4 and with (4.56)
we can construct the following basis for Us:

¢(§1”,11,3,4,6)a ¢(§3",13,9), ¢(§5”,l3,7)a fis, f3 111(15((1",11,4,(,)» Ve 111¢(§3(79)»

Sow fswfs, f3Wfswfr, f3Uf;Wfs Wy,

(=14f1fs —6f2) Wfs, fswfsmfs, (=5fsf3) W,

PN fre D) fon fiafo (C1AF s —6f) wfsfo, (=5f5f3) Wfsfa,
fumfsmfsfe, fsmfs mffa,

$(8355) 2 (SSFAY WAL, fufy, fufswfifs, fufmffs,

fofss fifss fsf5. 515, (A.6)
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with ¢(§zm35)’¢(§3m9)7‘P(g{nl46)’¢(§3m37)v¢(§3m55)’¢(§1ml346)a¢(§zm39) and ¢(§5mz7)
given in (4.28), (4.35), (4.42) and (4.56), respectively. The operators a; of the

decomposition (4.57) are:
a; = 760, (105, [89,83]]—3[83 [07, 3511) . a2 = % [03, [0, 3311 — 22 ay,
a3 = & [93, [97, 9511 — 0 [0, [07, B3] + 228 ay, a4 = 05,

2665 29
as = ay + ag 03, ag = 27 [99, 03103 + 648 agds + 9 ar

ar =1 8092 + 2 agds + 6174745 a],

ag = 373533 + 5 [39, 83]3% 8 apds — L ay,

ag = 33 ao33 5 a1,

ajo = 1 [, 33]35 + 291558 ar + 3 [9s, [37, 33]] 2 [03, [99, 0511,

apg = 1 93 + 2 [97, 3105 + ‘;35218‘ 5 [0, [37, 911 — % 93, [0o, 33]]

ap = 5 [85, 83187 — 55> a1 + 5 [3s, [87’ 83]] — 75 (05, [8, 551
a3 = ﬁ c2 [93, [97, O3]] + 2 al’

ay = —35 €2 [03, [97, 3s1] + 35 ¢2 [95, [05, 0311 — % @y,
ais =, aL — ST g — LB (95, [97, 0311 + B2 ”39 [03, [0o, 3311,

aig = 14 2 [97, 33105 — 3 aoa3 —6ay,

ai7 = 1 ¢3 [3s, 33195 + 1 ¢ [3s, [3s, 0311 + 3 ay,

ag = % C 87832 —10 61083 — 26 a,

aj = 5 ¢y 0305+ 3 ¢2 [07, 03103 — 3 apds — 8 ay,
1

ax =+ & (83, [85, 311 + 4 a1, axn = + & [85, 83195 — 2 apds —
ayn =3 01+ 4 2 [95,[97, 11+ 5 2 [05, [9s, 9311 — 8‘1‘251337 ap
— 11 a5, [87, 3511 + @ (95, [39, 511, a3 = 3 3593 + & aods — 5 i,
a24:éc3833+%a083+%
3 o +9¢3 [93, [35, 8311 — % ¢ [93, [87, 3311+ 2 ¢ [95, [05, 8511
+5‘;§§3351 ar + 15 [as, [07, 3311 — o 33, [9o, D3]],
ax=¢3 0+ % 02 [0, [05, 33]] — 5% €2 [03, [07, 0311 + 3258 @
875 [05, [07, 03]] — 5t 95, [do, 83]]

ars

ay =3 35 — 5 ¢ [33, [3s, 0311 — 522 gy + BB [55, [97, 35]),
— 22 93, [80, 3311, ans = 5 5 + 2212 g (A7)

acting on ¢ (£5). Above we have used the operator gy defined in (A.3).

A.3. Decomposition at weight 16

Gathering the information about the lower weight basis U< 5 with (4.56) we can construct
the following basis for Ug:

¢(§1n,q1,6,3)’ ¢(§3n,13,3,7)’ ¢(C3n,q3,5,5)v ¢(§3n,113)» ¢(§5m11)

Fuwecls ), HweEss), fswfis, (—14ffs —6f) wfswfs,
(=5fsf3)wfswfs, f5Wf3mfsmfs, f5WfsWfsmfs, f7Uf,

25 (fsf) w(fsfs), f5 Wfin. fs mwp (¢ s),

Hwe(yss)fe, fufsm(=5f5/)f f5Wfiife f5WfsWfsWfsf
fupsupsufsfy, fufefs, fmfifs, fmfsfs, HWfsfa
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(L3 5) o DD oy SELD fou fsWhofo, frWfrfo,
P 146>f§, QD [swfify, (145 —6fDf5, —5f5h1,
fsufsfy, f3, (A.8)

with the maps (]5(%’73,5), (p(é-éng)s ¢(;{71’4Y6)’ ¢(§3mg7)v ¢(§3m55)s ¢(§3r73!3,5)’ ¢(§3{71])’ ¢(§5m9)
B ) D 5.5 DES). d(62)) and $(C!") ¢ ) given in (4.28), (4.35), (4.42), (4.50)
and (4.64), respectively. The operators a; of the decomposition (4.65) are:
ar = 325 {5 [011, 951 — & [013, 03] — [09, 97] + &332 [03. [03, [07, 05]1]

zgg [05, [05, [05, 33111} .
ay ==L a; + L [95, [9s, [37, &:11],
a3 = 322 ay — 5= [93, [9, [07, 03111 + 5 [03. [9s. [3s, 93111,
ay = — 55 [013, 331+ 35 [011, 95] + 245003 ay — 202 (95, 95, [97, 33]]]

— 3600 [33, [3s, [35, 5111
as = 535 [013, 93] — 335 [011, 05] — 1%;37 a + 23%2(1) [0, [93, [37, 35111

+ 3505 [03, [35, (05, 33111, as = —m (05, [0, 31103 + 3 al,

a7 = —3 [9s, [0, 35]]33 + = [33, (05, 37]]33 al, ag = 91303 + 33 ay,
ag = ﬁ [97, 33]33 + 7 ai, al() =3 [35, 33]3533 + 3 s, [35, 33]]33,

apg =3 #9% — a1, an=1% (305 + 3 [87,031) 95 — 3 a1,
a3 = 8987 + 482207013 ar — 2;370239373 [05, [83, [87, ;111 — 23‘7333 [03, [0s, [05, 35111

— 122 [913, 851 + 22 [011, 35], a1s = =5 [05, 351°,

ais = 01105 + 252 ay — GPST (05, [03. [07, 03]1] — 25 (03, [0s. [9s. 93111

— 3L (313, 93] + 7 [311, Bs],
[33, [3s, 31195 + £ [3, [ds. [s. 33111 — 2 ay,
a7 = £ ¢2 (93, 05, 331135, arg = 75 2 95, 93193,
ao = ¢ 01193 — 4 [03, [03, 371195 — 171 [0s, [93, 051103 — 137 ay,

W |—

aje =

wi

1 1
204 1 2
6120:3' ¢ 3593, A = 77 € 93 — 13 ¢ ao,

an =c; 8983 + 9 2 [03, [0s, 031193 + 799 C% ap — [33, (07, 031193
[35, [05, 031103 — 01,
ayn =c3 8783 + 2 ¢33, [05, 031195 — 10 5 ag — 245 [05, [07, 331105 + 222 ay,

ax = ¢} 8505 — & 2 [95, (35 351135 + 3 c% ay+ 55 ar,

as=13i3+ 8 Ga+ 2695 ai, ax = 1 ¢ [03, [03, [95, 33111,
_ .23 5 _ 12841 191
ay = — 35 ¢ [h1, B3]+ % ¢2 [90, 351 — 23 ¢; [05, [05, [05, 3311 a

+5 [33, [05. [37, 83111 —  [95, [0s. [3s, 35111
as = 5 ¢ [0, 33] 2 3 [99, 05] 4+ 22 232 ¢ [05, 93, [9s, 05111 + &L ay
— 4 [95. [03. [97, 83]]] + [83, [ds. [s, 33]]]
az9 = €3 905 + 9 [03, [05, 031105 — 3 c2 [011, 03] + 3 €2 [0, 05] — 252 @
”1355 ¢ (93, [93, [as, 111 + 3% [83, [05. [07. 33111 — 21 [03, [0s, [3s, 33111,
azo =3 €2 95 — 22 ¢3 [011, 03] + 22 ¢3 [0o, 85] — SI3I ¢, [05, [05, [05, 35111

— B2 ay + % 85, [05, [, 03111 — 3 (05, [05, [0s, 3111, a3 = ¢3 ao,
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asp

ass

asq =
=1c}[05,031— 32 5 a + 175 2 [03, [83, [0s, 33]]] + B ay
= C% (Fa:+2 [37, 33]) 3L 95, [9s, 831195 — 2 3 ag

ass

ase

=+ c3 [, 33] + 25’; Sap+ 32 2 ¢5 [03, [03, [95, 05111 — 322 ay

+55 [03, [93., [97, 83]]] — = 83, [0s, [9s, d5]11,

=c3 0705+ % &3 [89,33]+%[83,[85,83]]as 1‘3; c3 ao + 4 ¢ [93, [9, [3s, 35]1]

- a+ 3 [33, (05, [87, 33111 — 25 [05, [0, [95. 93111,
T C% [97, 03] — 3 c2 ap — 535 a1 + % [03, [93, [97, 35111,

=3 ay + 2 [05,[05, [07, 3111 — & [95, [35, [35, 5111, azr =3, (A.9)

acting on ¢ (£16). Again, we have used the operator a( defined in (A.3).
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