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Accurate parameter estimation of gravitational waves from coalescing compact binary sources
is a key requirement for gravitational-wave astronomy. Evaluating the posterior probability
density function of the binary’s parameters (component masses, sky location, distance, etc.) requires
computing millions of waveforms. The computational expense of parameter estimation is dominated by
waveform generation and scales linearly with the waveform computational cost. Previous work showed
that gravitational waveforms from nonspinning compact binary sources are amenable to a truncated
singular value decomposition, which allows them to be reconstructed via interpolation at fixed computa-
tional cost. However, the accuracy requirement for parameter estimation is typically higher than for
searches, so it is crucial to ascertain that interpolation does not lead to significant errors. Here we provide a
proof of principle to show that interpolated waveforms can be used to recover posterior probability density
functions with negligible loss in accuracy with respect to noninterpolated waveforms. This technique has

the potential to significantly increase the efficiency of parameter estimation.
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I. INTRODUCTION

Astronomy and tests of fundamental physics with gravi-
tational waves from compact binary coalescence (CBC)
will ultimately be limited by our ability to estimate the
binary’s source parameters from the gravitational-wave
signal [e.g., [1-3]]. CBC sources with total masses in the
range 2Mg = Mt =< 500 Mg will be amongst the prime
sources for advanced LIGO [4] and VIRGO [5] when they
begin operating around 2015 [6].

In a Bayesian treatment of parameter estimation, one is
interested in the probability distribution of the set of source
parameters of the underlying model given observational
data. Waveform computation represents the majority of the
computation cost in the Bayesian analysis of CBC sources,
so the total computational cost scales roughly linearly with
waveform generation. This becomes burdensome when
one needs to explore a large dimensional parameter space
as the number of waveform computations is large, e.g.,
O(10°) [7].

Recently, Cannon et al. [8] showed that a truncated
singular value decomposition (SVD) can be applied to
gravitational-wave template banks which span the two
mass parameters of the coalescing binary. The SVD has
been used to interpolate template waveforms [9] for use in
gravitational wave searches. It is possible to set up the
waveform computation for parameter estimation such that
the waveform calculations are done by interpolation alone.
However, the errors incurred from interpolation could, in
principle, affect parameter-estimation accuracy.
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In this paper, we describe the application of SVD-
interpolated waveforms to CBC parameter estimation.
For a simulated data set containing a gravitational-
wave signal, we provide a proof of principle that
SVD-interpolated waveforms can be used for parameter
estimation without significantly affecting the accuracy of
the inferred probability distributions of the source
parameters. We further show that the computational
cost of interpolating waveforms is around an order of
magnitude less than that of commonly used time-domain
waveform families. This technique has the potential to
increase the computational efficiency of CBC parameter
estimation when the computational cost is dominated by
waveform computation. Our application of the SVD is
limited to a small patch of parameter space about the
injected signal value.

This paper is organized as follows. In Secs. II and IIT we
outline the principles of parameter estimation for CBCs
and interpolating template waveforms based on the SVD,
respectively. In Sec. IV we describe the application of
SVD-interpolated waveforms to parameter estimation. In
Sec. V we compare the results of using interpolated and
noninterpolated waveforms for parameter estimation and
compare the computational cost of interpolation to using
noninterpolated waveform families. In Sec. VI we consider
the future of using SVD-interpolated waveforms for pa-
rameter estimation and discuss the technical requirements
of implementing these waveforms in parameter-estimation
pipelines.
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I1. CBC PARAMETER ESTIMATION
The central quantity of interest in Bayesian parameter

estimation is the posterior probability density function

(PDF) of a set of parameters # which parameterize a
model, ', assumed to describe a data set d. The PDF is
related to the likelihood function and prior probability via
Bayes’ theorem, given by

P H) L(d|6, H)
p(d|H) '

p(6ld, 3) = @2.1)

where £(d|6, H) is the likelihood and P(d|F) is the
prior probability which encodes our a priori belief in the
distribution of 6. The quantity in the denominator,
p(d|FH), is known as the “evidence.”

The CBC parameter vector 6 is high dimensional. The
phasing and amplitude of a waveform from a nonspinning
coalescing compact binary source is controlled by two
mass parameters, the chirp mass M = (m;my)>°/(m, +
m,)"/5 and symmetric mass ratio n = (m;my)/(m; +
m,)?, where m; and m, are the component masses of
the binary. In addition, a gravitational wave source with
respect to the Earth is specified by location dependent
parameters. These are the distance from the Earth D,
inclination ¢, right ascension «, declination &, polarization
phase ¢ and time and phase at coalescence, ¢, and ¢.. In

general, the CBC parameter vector 6 is nine dimensional
for circular binaries with nonspinning components.

One of the goals of gravitational-wave astronomy is
to estimate the PDF of the parameters of a candidate
gravitational wave source in order to assign a meaningful
probability to our measurements of the source properties
and demographics. To compute the right-hand side of (2.1),

we directly evaluate the likelihood, L£(d |5 ). Under the
hypothesis that the data, d, consists of Gaussian, stationary

noise 7 and a gravitational-wave signal h(é), the likelihood
is a Gaussian [10],

L(d|G, H) & e~ @d=h@)ld=h(@)/2, 2.2)
where (a|b) is the noise-weighted inner-product,
max d )5* )
(alb) = 4Re[ df(;[;(f)(f, (2.3)

and S, (f) is the detector’s power spectral density (PSD).
The limits of integration correspond to the bandwidth
of the detector. A significant computational cost of evalu-
ating the likelihood comes from computing the template
waveform h(é) at each point in the parameter space.

The full PDF is multidimensional and to get estimates on
individual parameters, we work with the marginalized PDF
of a single parmeter 6, € 6. Writing 6 = (6,, 0), the
marginalized one-dimensional PDF of 6, is thus
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p(0,4ld, H) = fé dO®p(6ld, ). (2.4)

To efficiently evaluate the likelihood we typically use a
stochastic sampling algorithm. Here we employ Markov-
chain Monte Carlo (MCMC), whose application to
gravitational-wave parameter estimation is described in [11].

We use the stationary phase approximation (SPA)
inspiral waveforms for both our simulated signal and
template model. This allows us to directly “inject” the
signal waveform into simulated frequency-domain noise
without performing an additional Fourier transformation,
which could introduce spurious artifacts related to the
abrupt in-band termination of the time-domain waveform.
For fixed «, &, ¢, and ¢, the post-Newtonian frequency-
domain waveform has the form

i(f) = AM, 7; /) A2mift—i A VML) (D 5)
D
where expressions for the amplitude A(M, n; f) and
phase W(M, n;f) can be found in [12] for TaylorF2
post-Newtonian waveforms at zeroth order in amplitude
and 3.5 post-Newtonian order in phase.

III. INTERPOLATING TEMPLATE
WAVEFORMS USING THE SVD

The interpolation scheme used in [9] is based on the
truncated SVD of a gravitational-wave template bank. The
SVD decomposes the template bank into a set of orthogo-
nal basis templates, the number of which equals the num-
ber of templates in the bank and projection coefficients.
Any template in the bank can be reconstructed from the
bases weighted by appropriate projection coefficients.
However, not all the bases are required to approximately
reconstruct the waveforms. Truncating the SVD reduces
the number of unique basis templates; we truncate so that
the norm of any reconstructed template is conserved to a
level of ~1073 (c.f. Egs. (27) and (28) in [8]). The coef-
ficients can be interpolated within the domain of the tem-
plate bank which takes us from a discrete description of the
bank to a continuous one. Any template waveform in this
domain is then approximately recovered by a linear com-
bination of the basis templates weighted by appropriate
interpolated projection coefficients.

Specifically, the SVD of a template bank of gravitational
waveforms allows them to be written as a linear combina-
tion of basis waveforms #* with projection coefficients
M, (M, n,), where the indices k and / enumerate a par-
ticular template in the bank. This implicitly assumes that
the template bank follows a rectangular grid in (M, 7).
The waveform can thus be written

h( My, m;) = ZMM(:M/« Nk, (3.1
I

The projection coefficients can be interpolated and we
employ the method of [9], using Chebyshev polynomials of
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the first kind (c.f. Egs. (7) and (8) in [9]). An “interpolated
waveform” can thus be constructed according to (3.1) from
a linear combination of interpolated coefficients and basis

waveforms. This forms a continuous representation of h
within the domain of the original template bank. In general
the accuracy of interpolated waveforms depends directly
on the density of the template bank. Below we illustrate the
application of the SVD to parameter estimation.

IV. PARAMETER ESTIMATION USING
INTERPOLATED WAVEFORMS

We will compare the marginalized one-dimensional
PDFs obtained using an interpolated template waveform
family to those generated using a standard, noninterpolated
template waveform family for the same data set. For illus-
tration we consider a toy example with five free parame-

ters. We generate a single-detector data set d, containing a

signal waveform h(é) and Gaussian stationary noise n with
a PSD roughly matching that of initial LIGO [13]. By only
having five free parameters, we effectively set the prior on
the other four to be delta functions centered on the signal
values. We fix the sky position (@, §) and the inclination
and polarization angle (¢, ¢) of the template waveforms
such that they are not searched over.

Because interpolation is carried out in the mass space
only, we study the effects of interpolation on mass parame-
ters and parameters known to be very strongly correlated
with masses (time and phase of coalescence and distance).
If the accuracy of the recovery of these parameters is
unaffected by interpolation, the angular parameters will
also be unaffected. However, it is important to realize that
the absolute accuracy with which some parameters, par-
ticularly distance, are estimated is improved by fixing sky
location and orientation parameters and lifting correspond-
ing degeneracies. Thus, the measurement uncertainties
inferred below should not be considered typical. Since
we demand that systematic biases from using interpolated
templates are smaller than statistical measurement uncer-
tainties, the improvement in the accuracy of distance mea-
surement means that we are being conservative in
evaluating the quality of SVD-interpolated parameter
estimation.

The signal contained in the data set has source para-
meters (M, n, D, 1., ¢.) = (7.45 My, 0.247, 33 Mpc, 0 s,
2.16), and we have omitted the others which are not
searched over. The signal has a signal-to-noise ratio
SNR = 14.8. The frequency-domain data is sampled at
Af = 1/32 Hz with a maximum frequency of 512 Hz.

The prior distributions are set as follows. We use a
uniform prior on logD and 7 with ranges D €
[1 Mpc, 100 Mpc] and 1 € [0.175, 0.250]. We use a prior
on M of the form P(M|FH) « M~'/¢ in the range
M € [7.20Mg, 7.60My]. We use flat priors on ¢, and
t. over the range 0 = ¢y =27 and —0.1s =1, =0.1 s,
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respectively. The prior on M corresponds to the Jeffreys
prior for the waveform family described by (2.5) [10]. We
have chosen to work within a relatively small range in M
and 7 because for the signal we have considered, there is no
appreciable posterior support outside this range. While this
information is not known a priori, the MCMC typically
locates the region with posterior support quickly during the
“burn-in” phase, regardless of the size of the initial prior
range on M and 7 [14]. Typically, the number of samples
of the burn-in is < 10*, which is significantly smaller than
the millions of samples required to complete the full
MCMC. Hence, for the purpose of parameter estimation
on a given data set, constructing a waveform interpolant
over a large range of M and 7 is unnecessary, and it is
sufficient to demonstrate the efficacy of our interpolated
waveforms in a small region of parameter space.

For the mock data set we ran a MCMC in order to
compute the PDF p(6 = (M, n, D, 1., ¢,)d, F). The
limits of integration of the likelihood, (2.2), are fixed to
Smin = 40 Hz, f...« = 512 Hz. For second-generation in-
terferometers, the low-frequency sensitivity cutoff f;,
will drop from 40 to 10 Hz, increasing the waveform
duration by a factor of ~40, with similar increases in
computational time. Thus, our estimates of improvements
due to interpolation are likely to be conservative. However,
this low-frequency sensitivity is unlikely to be reached in
early advanced detector data [15].

A. SVD Setup

The input to the SVD is a set of whitened time domain
waveforms [9]. The frequency-domain SPA waveforms are
whitened in the frequency domain with the PSD and trans-
formed into the time-domain for interpolation. By carrying
out the interpolation in the time domain, we show that the
technique can be applied to time-domain waveform fami-
lies. Time-domain waveforms are typically computation-
ally expensive for parameter estimation (see Sec. V), so
this approach allows us to assess the computational savings
associated with interpolating them. It is also consistent
with the work in [8,9], where time-domain waveforms
were interpolated.

We ensure that all templates are of the same length, equal
to the next highest power of two of the longest time-domain
waveform in the set, which in our case is 2 s. For the proof
of principle we apply the SVD to a small patch in M-n
space bounding the signal parameters. This region is set by
the prior range on M and 7 described above.

The number of computations for the SVD of a N X L
matrix with N =< L scales like O(LN?), where N corre-
sponds to the number of templates and L is the template
length. In constructing the SVD we have found it efficient to
split the M-7 space into four equally sized patches, with a
separate SVD applied to each patch. The density of wave-
forms in each patch’s bank is chosen such that the normal-
ized inner product between noninterpolated waveforms and
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interpolated waveforms generated on an evenly spaced grid
in each patch is at least 99.9%. Such normalized mismatches
of <0.001 between interpolated and noninterpolated wave-
forms should ensure that parameter-estimation accuracy is
not compromised as long as the the signal-to-noise ratio
does not exceed ~20 (so that twice the mismatch times the
square of the SNR is less than unity [16,17]), although
parameter estimation could remain accurate at even higher
SNRs. For the mass space in this example, we find that a
(16) X (16) grid of template waveforms in each patch is
sufficient for the required accuracy. Each waveform in the
template bank is generated at a fiducial distance of 1 Mpc.
We choose to truncate the SVD so that the norm of any
reconstructed template is conserved to a level of ~107.
The truncated SVD of the template bank in each patch uses
N’ = 20 basis waveforms.

Below we compare the results of parameter estimation
using interpolated and noninterpolated waveforms.

V. RESULTS: COMPARISON OF PARAMETER
ESTIMATES USING INTERPOLATED AND
NONINTERPOLATED WAVEFORMS

The marginalized PDFs for complete MCMC runs using
noninterpolated and interpolated waveforms are shown in
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Fig. 1. We have omitted the marginalized one-dimensional
PDF of the coalescence phase ¢, as it is of little physical
interest. Each run required around 1.5 X 10% waveform
computations. The mean posterior values of the distribu-
tions along with the signal values are shown in Table 1.

The chirp-mass distribution computed using interpo-
lated waveforms is clearly biased. This is corroborated
by a two-sample K-S test, which reveals that the two sets
of samples are not consistent with arising from the same
distribution with overwhelming odds. Nevertheless, the
systematic bias in the chirp mass is a factor of four smaller
than the statistical measurement uncertainty. Thus, we pass
a commonly used threshold for sufficient waveform-model
accuracy [e.g., [17]]. We note that the accuracy could be
increased by, for example, using a higher-density template
bank or using normalized waveforms as input to the SVD.
In general, the required accuracy can be estimated from the
detection trigger SNR [17].

The two-sample K-S test marginally fails for the
coalescence-time distribution, but there is no evidence of
a systematic bias on the scale of statistical measurement
errors. We find that the sets of posterior samples for the
other two PDFs in Fig. 1, symmetric mass ratio and dis-
tance, are consistent with arising from the same distribu-
tion as quantified by the K-S test.
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122002-4



TOWARDS RAPID PARAMETER ESTIMATION ON ...
TABLE 1.
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Maximum likelihood parameter estimates (and standard deviations) of the margi-

nalized PDFs using interpolated and noninterpolated waveforms (Fig. 1).

Param  Mean posterior value (interpolated SPA) Mean posterior value (SPA) Signal Value
M(M) 7.472 (2.5 X 1072) 7.467 (2.5 X 1072) 7.450

n 0.2457 (7.1 X 1073) 0.2457 (7.2 X 1073) 0.2473

D (Mpc) 3239 (2.11) 32.40 (2.13) 33.00
t.(s) 1L.OX 1073 (4 X 107%) 10X 1073 (4 X 107%) 0

A. Computational cost of template
waveform generation

Two commonly used time-domain waveform families
that are relevant for parameter estimation are the inspiral-
only post-Newtonian approximant TaylorT4 [12] and the
effective-one-body family calibrated to numerical relativity
(EOBNR, [12]) that includes inspiral, merger, and ring-
down phases. The latter are typically more computationally
intensive.

Our measure to compare the computational costs of
interpolated, TaylorT4 and EOBNR waveforms is the
time it takes to compute a single interpolated waveform.
While this does not estimate the theoretical minimum
number of FLOPs of the process, and is also hardware
dependent, it does provide a useful heuristic for comparing
the relative speed of each waveform family. Recall that the
interpolated waveforms are a time-domain approximant,
and hence the comparison is to determine the computa-
tional savings for time-domain waveforms. We restrict our
comparison to waveforms generated in the mass space used
in Sec. I'V. The length of TaylorT4 and EOBNR waveforms
will, in general, depend on the specific source masses.
For a fair comparison we compare waveforms that have
approximately the same number of data points. Because
EOBNR must be generated at a sampling rate of 4096 Hz,
we ensure that the interpolated and TaylorT4 waveforms
are sampled at this frequency. Each waveform is approxi-
mately 2 s in duration.

The results of the comparison are shown in Table II. For
reference we also show the computational time of standard

TABLE II. Computational time of template waveform genera-
tion in units of computational time of interpolated waveforms,
T. EOBNR, TaylorT4 and interpolated waveform families are
generated at a sampling rate of 4096 Hz and have a duration of
2 s. The interpolated waveforms consist of 20 precomputed basis
vectors. SPA waveforms are generated in the frequency domain;
to ensure the SPA waveforms contain the same number of sample
points, they are generated at a sampling frequency Af = 1/2 Hz
and have a maximum frequency of 2048 Hz.

Waveform Family Computational Time (7T

SPA 0.2
Interpolated 1

TaylorT4 10
EOBNR 15

SPA waveforms. We find that on average, the interpolated
waveforms are ten times faster to generate than TaylorT4
and fifteen times faster than EOBNR, a significant increase
in computational efficiency. However, for the waveform
parameters considered here, inspiral-only waveforms
could be generated at lower sampling rates than the
4096 Hz required for EOBNR waveforms; therefore, the
cost of constructing interpolated or TaylorT4 waveforms
can be around four times smaller relative to EOBNR than
the values quoted in Table II.

We also estimate the cost of precomputing the SVD
interpolation. We have previously noted that the computa-
tional cost of an SVD of an N X L matrix with (N = L)
scales like O(N?L). One also needs to compute the N X L
matrix of template waveforms as input to the SVD. The cost
of computing a waveform of length L is typically O(L),
possibly with a very large prefactor. Thus, the total cost of
precomputing interpolation coefficients will be less than
O(N?) times the cost of an individual waveform computa-
tion. For instance, in our example, N = 16 X 16 = 256, so
interpolation can reduce overall MCMC costs for any time-
domain waveform templates by an order of magnitude or
more when the typical MCMC chain length of = 10°
samples is taken into account.

VI. CONCLUSION AND DISCUSSION

We have provided a proof of principle that interpolated
waveforms can be used for parameter estimation without
unacceptable loss of accuracy. Our example was restricted
to a five-dimensional search over the source chirp mass M
and symmetric mass ratio 7, the distance to the source D
and the time and phase at coalescence 7. and ¢.. We
further restricted the prior ranges on M and n to M €
[7.20M,, 7.60M, ] and 5 € [0.175, 0.250], respectively.
The systematic biases observed when using interpolated
waveforms are demonstrated to be smaller than statistical
measurement uncertainties. Thus, SVD-interpolated wave-
forms satisfy the stringent waveform-model accuracy cri-
teria imposed by parameter-estimation requirements. This
should be true regardless of the waveform family being
interpolated.

The relative computational times of generating interpo-
lated waveforms and time-domain TaylorT4 and EOBNR
waveforms are shown in Table II. Interpolated waveforms
can be generated at around an order of magnitude more
cheaply than TaylorT4 or EOBNR. This suggests that the

122002-5



SMITH et al.

computational cost of parameter estimation can be signifi-
cantly reduced by employing SVD-interpolated wave-
forms for likelihood computation when the latter is
dominated by the cost of waveform generation.

In order for interpolated templates to be viable for
parameter estimation pipelines, we need to be able to
efficiently generate the waveform interpolant. We can,
however, use the burn-in phase of the MCMC to locate a
region in parameter space where the bulk of the posterior
support is contained, and only generate the interpolant over
this region, as we have done above. Alternatively, one could
extend the SVD-interpolation technique to a significantly
larger region of the CBC mass space than in the example
considered here. Searches of gravitational waves from low-
mass systems look for binaries with a maximum total mass
of 25M, and a minimum component mass of 1 Mg [18]
and high mass searches target binaries with total masses
between 25 Mg and 100 M, [19]. Applying this parameter
estimation technique to triggers from such searches in a
single step, without first determining the more limited mass
region where there is significant likelihood support, would
require efficient patching of the parameter space over a
large mass range in order to minimize the computational
cost of generating the SVD. However, the upfront computa-
tional cost of this is likely to be high.

Furthermore, we have to be able to extend the SVD to
generic waveform families. Particularly interesting is the
potential to extend the technique to EOBNR waveforms,
which are currently expensive to generate, and waveform
families which describe binaries with spinning compo-
nents. We have not used EOBNR waveforms here because
thoroughly sampling the parameter space with EOBNR is
currently very difficult [14] and we would not be able to
compare thoroughly sampled posteriors generated with
interpolated and noninterpolated EOBNR waveforms.

PHYSICAL REVIEW D 87, 122002 (2013)

However, we are confident that if the interpolant of
EOBNR could be computed with sufficient accuracy, pa-
rameter estimation biases would be as small those found
here. Another waveform class of interest describes binaries
with spinning, precessing components; these have an in-
trinsic parameter space with up to six more independent
parameters (two spin vectors) and the current technique of
interpolation within the intrinsic parameter space of wave-
forms may become costly in large-dimensional spaces.
However, it is interesting to consider the potential to apply
the technique to spin-aligned or antialigned waveforms
[e.g., [20,21]] as this class of waveforms has only one
extra parameter, the reduced spin of the binary.

The analysis of data from advanced LIGO and Virgo
detectors, which may have lower-frequency cutoffs close
to 10 Hz [4], will require template waveforms up to several
minutes in duration. The improvements in computational
time found here should therefore be considered conserva-
tive, and hence this technique is likely to be highly relevant
to parameter estimation in the context of advanced LIGO/
Virgo.
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