English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Monochromatic ultra-slow (~0.1Hz) oscillations in the human electroencephalogram and their relation to hemodynamics

MPS-Authors
/persons/resource/persons19850

Mehnert,  Jan
Berlin Neuroimaging Center, Charité University Medicine Berlin, Germany;
Department of Machine Learning, TU Berlin, Germany;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Nikulin, V. V., Fedele, T., Mehnert, J., Lipp, A., Noack, C., Steinbrink, J., et al. (2014). Monochromatic ultra-slow (~0.1Hz) oscillations in the human electroencephalogram and their relation to hemodynamics. NeuroImage, 97, 71-80. doi:10.1016/j.neuroimage.2014.04.008.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0018-F030-8
Abstract
Previous studies demonstrated the presence of Monochromatic Ultra-Slow Oscillations (MUSO) in human EEG. In the present study we explored the biological origin of MUSO by simultaneous recordings of EEG, Near-Infrared Spectroscopy (NIRS), arterial blood pressure, respiration and laser Doppler flowmetry. We used a head-up tilt test in order to check whether MUSO might relate to Mayer waves in arterial blood pressure, known to be enhanced by the tilting procedure. MUSO were detected in 8 of 10 subjects during rest and showed a striking monochromatic spectrum (0.07–0.14Hz). The spatial topography of MUSO was complex, showing multiple foci variable across subjects. While the head-up tilt test increased the relative power of Mayer waves, it had no effect on MUSO. On the other hand, the relative spectral power of 0.1Hz oscillations in EEG, NIRS and blood pressure signals were positively correlated across subjects in the tilted condition. Eight subjects showed a coherence between MUSO and NIRS/arterial blood pressure. Moreover, MUSO at different electrode sites demonstrated coherence not reducible to volume conduction, thus indicating that MUSO are unlikely to be generated by one source. We related our experimental findings to known biological phenomena being generated at about 0.1Hz, i.e.: arterial blood pressure, cerebral and skin vasomotion, respiration and neuronal activity. While no definite conclusion can yet be drawn as to an exact physiological mechanism of MUSO, we suggest that these oscillations might be of a rather extraneuronal origin reflecting cerebral vasomotion.