English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dopamine modulates attentional control of auditory perception: DARPP-32 (PPP1R1B) genotype effects on behavior and cortical evoked potentials

MPS-Authors
/persons/resource/persons50445

Nietfeld,  W.
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

Schröder,  J.
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50098

Bertram,  Lars
Neuropsychiatric Genetics (Lars Bertram), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Li, S. C., Passow, S., Nietfeld, W., Schröder, J., Bertram, L., Heekeren, H. R., et al. (2013). Dopamine modulates attentional control of auditory perception: DARPP-32 (PPP1R1B) genotype effects on behavior and cortical evoked potentials. Neuropsychologia, 51(8), 1649-1661. doi:DOI 10.1016/j.neuropsychologia.2013.04.005.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-0217-6
Abstract
Using a specific variant of the dichotic listening paradigm, we studied the influence of dopamine on attentional modulation of auditory perception by assessing effects of allelic variation of a single-nucleotide polymorphism (SNP) rs907094 in the DARPP-32 gene (dopamine and adenosine 3', 5'-monophosphate-regulated phosphoprotein 32 kilodations; also known as PPP1R1B) on behavior and cortical evoked potentials. A frequent DARPP-32 haplotype that includes the A allele of this SNP is associated with higher mRNA expression of DARPP-32 protein isoforms, striatal dopamine receptor function, and frontal striatal connectivity. As we hypothesized, behaviorally the A homozygotes were more flexible in selectively attending to auditory inputs than any G carriers. Moreover, this genotype also affected auditory evoked cortical potentials that reflect early sensory and late attentional processes. Specifically, analyses of event-related potentials (ERPs) revealed that amplitudes of an early component of sensory selection (N1) and a late component (N450) reflecting attentional deployment for conflict resolution were larger in A homozygotes than in any G carriers. Taken together, our data lend support for dopamine's role in modulating auditory attention both during the early sensory selection and late conflict resolution stages. (C) 2013 Elsevier Ltd. All rights reserved.