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Answering societies' grand challenges with complex alloys 

Metals-related industries account for 46% of all EU manufacturing value and 11% 

of the EU’s total domestic product  

 

3.5 billion €  per day in the EU 
World Trade Organisation 

Link to Society: Complex Materials enable Innovative Manufacturing 3 

70% of all industrial innovations are associated with progress in 

materials science and engineering 

 

Metallic Materials occupy key roles  

(energy, transportation, health, safety, infrastructure) 
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Outline 

Examples of intrinsically nanostructured alloys 

steels: 1.4 billion tons / year 

chitin: several billion tons / year 

(ca. 300 thousand tons commercial) 



0.5 mm 0.5 mm 

Towards the limits of strength and strain hardening 

Acta Mater: 59 (2011) 3965;  60 (2012) 4005 5 

~7 GPa 



Towards the limits of strength: cold-drawn pearlitic steel 
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Scale:  nm 

Deformation-driven cementite dissolution  - oversaturated ferrite 

Acta Mater: 59 (2011) 3965;  60 (2012) 4005 



Towards the limits of strength: cold-drawn pearlitic steel 

 

Deformation-driven cementite dissolution  - oversaturated ferrite 7 

• Why does carbide dissolve? 

 

• Where is the C?  

 

• How stable is C in ferrite? 

 

• What does that mean for the flow 

stress and strain hardening ? 



Towards the limits of strength: cold-drawn pearlitic steel 

 

MRS Bull. 35 (2010) 982 8 

• Why does carbide dissolve? 

• Where is the C?  

• How stable is C in ferrite? 

• What does that mean for the flow 

stress and strain hardening ? 

dataset by Xavier Sauvage 



Characterization of GB segregation by correlative TEM / APT 

ε=6.02 true strain, annealed for 2 min at 400ºC, ~ 6 GPa 

BF-STEM image of pearlitic atom probe tip, view along axis of columnar grains 

• Why does carbide dissolve? 

• Where is the C?  

• How stable is C in ferrite? 

• What does that mean for the flow 

stress and strain hardening ? 

Acta Mater: 59 (2011) 3965;  60 (2012) 4005 



Carbon grain boundary 

 excess measured by APT   

Projection of 3DAPT reconstruction 

 carbon atoms 

Characterization of GB segregation by correlative TEM / APT 

Acta Mater: 59 (2011) 3965;  60 (2012) 4005 



Towards the limits of strength: cold-drawn pearlitic steel 

 

C solubility 

in Fe under 

stresses 
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• Why does carbide dissolve? 

• Where is the C?  

• How stable is C in ferrite? 

• What does that mean for the flow 

stress and strain hardening ? 

C solubility 

in Fe under 

stresses 

Acta Materialia 61 (2013) 1773 
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Outline 

Examples of intrinsically nanostructured alloys 
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The materials science of chitin composites 

Raabe, Sachs, Romano: Acta Mater. 53 (2005) 

Chitin: Exoskeleton component of >90% of all animals on earth:  

Arthropods: insects; crustaceans (lobsters, crabs, shrimp); chelicerates (spiders, scorpions) 



14 

Arthropods have adapted to every habitat on earth: adaptive material  
candidate for bio-inspired material 

Good mechanical properties  multiscale modeling and bioinspired carbon-

based compounds 

The materials science of chitin composites: motivation 

Chitin basics unknown  ab initio 

Common feature: hierarchical cuticle  composite design 

Nikolov et al. :Adv. Mater. 22 (2010) 519 



15 Sachs, Fabritius, Raabe: Journal of Structural Biology 161 (2008) 120 

• Organic matrix in most parts of the cuticle 
– the organic material (chitin, proteins) is combined with inorganic nano-particles  

 

 

 

• Inorganic nano-particles 
– consists of amorphous or crystalline (calcite) CaCO3  

– CaCO3  doped by Mg 

 

Building units 



16 Sachs et al.: J Structural Biology 161 (2008) 120 

Structure hierarchy of chitin-compounds 

Nikolov et al.: Adv. Mater. 22 (2010) p. 519;           Al-Sawalmih et al.: Adv. Funct. Mater. 18 (2008) 3307  
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The materials science of chitin composites 

Fabritius, Sachs,  Romano,  Raabe : Adv. Mater. 21 (2009) 391 17 
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Exocuticle 

Endocuticle 

Epicuticle 

Exocuticle and 

endocuticle have 

different stacking 

density of twisted 

plywood layers 

Cuticle hardened 

by mineralization 

with CaCO3 
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exocuticle 

endocuticle 

Nikolov et al.: Adv. Mater. 22 (2010) p. 519;           Al-Sawalmih et al.: Adv. Funct. Mater. 18 (2008) 3307  
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180° rotation 

of fiber planes 
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Normal 

direction 
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The materials science of chitin composites 

Fabritius, Sachs,  Romano,  Raabe : Adv. Mater. 21 (2009) 391 
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Compression tests (macroscopic), lobster 

P. Romano, H. Fabritius, D. Raabe: Acta Biomaterialia. 3 (2007) 301 



32 Sachs, Fabritius, Raabe: J Material Research  21 (2006) 1987 

Mechanical properties (microscopic, nanoindentation) 
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P218.96   35.64  19.50   90˚α-Chitin

Space group
Unit cell dimensions (Bohrradius) 

a         b         c        γ
Polymer

Carlstrom, D.

The crystal structure of α -chitin

J. Biochem Biophys. Cytol., 1957, 3, 669 - 683.

P218.96   35.64  19.50   90˚α-Chitin

Space group
Unit cell dimensions (Bohrradius) 

a         b         c        γ
Polymer

Carlstrom, D.

The crystal structure of α -chitin

J. Biochem Biophys. Cytol., 1957, 3, 669 - 683.

What is -chitin? 

Nikolov et al.  Adv. Mater. 22 (2010), 519 
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Hydrogen positions? 

H-bonding pattern ? 

two conformations  

of -chitin 

108 atoms / 52 unknown H-positions 

Minke and Blackwell, J. Mol. Biol. 120, (1978) 

What is -chitin? 
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CPU time Accuracy 

•Empirical Potentials  

   Geometry optimization 

    Molecular Dynamics 
     (universal force field) 

 

~10 min 

High 

Low 

~10000 min 

~500 min Medium 

Resulting  

structures 

~103 

~102 

~101 

 

•Tight Binding  
     (SCC-DFTB) 

    Geometry optimization 

     (SPHIngX) 

  

•DFT  
     (PWs, PBE-GGA)  

     Geometry Optimization  
      (SPHIngX) 

Hierarchy of theoretical methods 

C, C    N      H 

Nikolov et al.  Advanced Materials 22 (2010), 519 
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Ab initio prediction of α-chitin elastic properties 

C, C    N      H 

Ab initio calculations:  

a = 4.98 Å; b = 19.32 Å; c = 10.45 Å 

(this study) 

 

Exp. measured         

a = 4.74 Å; b = 18.86 Å; c = 10.32 Å 

(Minke & Blackwell J. Mol. Biol. 1978)  

Nikolov et al.  Advanced Materials 22 (2010), 519 
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Hierarchical modeling of stiffness starting from ab initio 

Nikolov et al.  Advanced Materials 22 (2010), 519 
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Predictions and comparison to experiments 

38 Nikolov et al.  Advanced Materials 22 (2010), 519 
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Hierarchical modeling of stiffness starting from ab initio 

Nikolov et al.  Advanced Materials 22 (2010), 519 



Model system: cuticular scales of Entimus imperialis 
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5mm 
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Insect cuticle  

(cross section) 

2µm 

Scale 

stem Endo. 

Exo. 

E. imperialis cuticle  

(cross section) 

cuticular scales of E. imperialis 

20µm 
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Wu, X., et al. (2013)  Advanced Functional Materials 



Yellow domain 

Green domain 

~ (1 1 1) Γ-L 

20µm 

a b 

Transparent domain 

c 

500nm 

500nm 

500nm 20µm 

~ (1 1 1) Γ-L 

Structure-property relations of the Entimus photonic crystals 

41 
~ (1 0 0) Γ-X 

d 

cuticle 

SiO2 

20µm 

Naturally optimized optical properties: 
Largest band gaps at 35% vol.fraction cuticular material 

20µm 

20µm 20µm 

41 Wu, X., et al. (2013)  Advanced Functional Materials 
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loading /  

observation 

cap 

bottom view of the cap sample stage 

100X objective with  

long working distance 

cover slip 
A B 

custom-built compression unit  

attached to the objective of a light microscope  

Spectral shift of scales after compression Deformation of the photonic crystals in scales after compression 

Mechanochromic performance of native scales (I) 

• measure the optical response 

     during compression of native scales 

• correlate the structural change 

     with the optical response 

42 Wu, X., et al. (2013)  Advanced Functional Materials 
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The Düsseldorf Max-Planck Team 

www.mpie.de 


