Nanostructures in 1 Billon Tons: Interface Engineering in Complex Steels and Biological Nanocomposites

M. Herbig, S. Goto, Y. Li, P. Choi, S. Zaefferer, A. Nematollahi, R. Kirchheim, S. Nikolov, M. Friak, C. Borchers, J. Neugebauer, <u>D. Raabe</u>

Max-Planck Institut für Eisenforschung GmbH, Düsseldorf

Since 1971: Basic corporate budget financed by Max-Planck-Society (50%) and VDEh (50%)

Personnel: 250

100 years public-private partnership

steels: 1.4 billion tons / year

Pearlite: the limits of strength

Chitin-based biological nanocomposites

chitin: several billion tons / year (ca. 300 thousand tons commercial)

Towards the limits of strength and strain hardening

Scale: nm

 $(\epsilon = 6.5)$

Deformation-driven cementite dissolution - oversaturated ferrite

Ferrite

(~50 ppm C)

Cementite

(25 at.% C)

- Why does carbide dissolve?
- Where is the C?
- How stable is C in ferrite?
- What does that mean for the flow stress and strain hardening?

- Why does carbide dissolve?
- Where is the C?
- How stable is C in ferrite?
- What does that mean for the flow stress and strain hardening?

dataset by Xavier Sauvage

Characterization of GB segregation by correlative TEM / APT

ε=6.02 true strain, annealed for 2 min at 400°C, ~ 6 GPa

- Why does carbide dissolve?
- Where is the C?
- How stable is C in ferrite?
- What does that mean for the flow stress and strain hardening?

BF-STEM image of pearlitic atom probe tip, view along axis of columnar grains

Characterization of GB segregation by correlative TEM / APT

- Why does carbide dissolve?
- Where is the C?
- How stable is C in ferrite?
- What does that mean for the flow stress and strain hardening?

Pearlite: the limits of strength

Chitin-based biological nanocomposites

The materials science of chitin composites

Chitin: Exoskeleton component of >90% of all animals on earth:

Arthropods: insects; crustaceans (lobsters, crabs, shrimp); chelicerates (spiders, scorpions)

The materials science of chitin composites: motivation

Arthropods have adapted to every habitat on earth: adaptive material > candidate for bio-inspired material

Chitin basics unknown → ab initio

Common feature: hierarchical cuticle \rightarrow composite design

Good mechanical properties -> multiscale modeling and bioinspired carbonbased compounds

- Organic matrix in most parts of the cuticle
 - the organic material (chitin, proteins) is combined with inorganic nano-particles

- Inorganic nano-particles
 - consists of amorphous or crystalline (calcite) CaCO₃
 - CaCO₃ doped by Mg

Structure hierarchy of chitin-compounds

Al-Sawalmih et al.: Adv. Funct. Mater. 18 (2008) 3307

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Nikolov et al.: Adv. Mater. 22 (2010) p. 519;

Sachs et al.: J Structural Biology 161 (2008) 120

100 µm

The materials science of chitin composites

Compression tests (macroscopic), lobster

Mechanical properties (microscopic, nanoindentation)

J. Biochem Biophys. Cytol., 1957, 3, 669 - 683.

The crystal structure of $\boldsymbol{\alpha}$ -chitin

Carlstrom, D.

Polymer	Unit cell dimensions (Bohrradius)	Space group
	а b с ү	
α-Chitin	8.96 35.64 19.50 90°	P21

108 atoms / 52 unknown H-positions

Hierarchy of theoretical methods

Empirical Potentials

Geometry optimization
Molecular Dynamics
(universal force field)

Tight Binding

(SCC-DFTB)

Geometry optimization (SPHIngX)

DFT

(PWs, PBE-GGA)
Geometry Optimization
(SPHIngX)

Ab initio prediction of α -chitin elastic properties

Ab initio calculations: a = 4.98 Å; b = 19.32 Å; c = 10.45 Å(this study)

Exp. measured a = 4.74 Å; b = 18.86 Å; c = 10.32 Å (Minke & Blackwell J. Mol. Biol. 1978)

Hierarchical modeling of stiffness starting from ab initio

Scale	0.1 nm – 10 nm	10 nm – 100 nm	100 nm – 10 μm	10 μm – 1 mm
Hierarchical structure unit	a-chitin (H-bonded anti- parallel N-acetyl-glucosamine molecular chains)	Mineralized chitin-protein nanofibrils in a planar array	Twisted plywood stack of mineralized chitin-protein planes without pore canals	Twisted plywood stack of mineralized chitin-protein planes with pore canals
Experimental method	Transmission electron microscope	Field emission scanning electron microscope	Field emission scanning electron microscope	Field emission scanning electron microscope
Microstructure	SO min	200 reft	To pan	10 pm =
Schematic	100	Nan Jana	-10 μm	
Simulation method	Ab initio; density functional theory	Mori-Tanaka scheme (chitin- protein fiber); Torquato 3- point scheme (mineral- protein matrix)	Voigt estimate, tensor rotation	Torquato 3-point homogenization
Elastic behavior, 3D map of Young's modulus [GPa] a,b-axis: basal directions of chitin cell c-axis: longitudinal axis of molecule	100 80 60 40 20	12	8.5	4.3

Predictions and comparison to experiments

Hierarchical modeling of stiffness starting from ab initio

Model system: cuticular scales of Entimus imperialis

cuticular scales of *E. imperialis*

(cross section)

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

(cross section)

Structure-property relations of the *Entimus* photonic crystals

Naturally optimized optical properties: Largest band gaps at 35% vol.fraction cuticular material

Mechanochromic performance of native scales (I)

custom-built compression unit attached to the objective of a light microscope

- measure the optical response during compression of native scales
- correlate the structural change with the optical response

20μm 200nm

Spectral shift of scales after compression

Deformation of the photonic crystals in scales after compression

The Düsseldorf Max-Planck Team

