Microstructure Mechanics Crystal Mechanics

Dierk Raabe

d.raabe@mpie.de

Roters, Eisenlohr, Bieler, Raabe: Crystal Plasticity Finite Element Methods in Materials Science and Engineering, Wiley-VCH

- Displacements and rotations in crystals
- Single crystal yield surface
- Taylor model for the mechanics of polycrystals
- Examples

Plastic deformation of a single crystal by dislocation slip

Plastic deformation of a single crystal by dislocation slip

Boundary condition: determines lab frame constraints

Constraints lead to specific crystal rotations

Non-symmetric dislocation shear leads to rotation

Change in local constraints leads to heterogeneity

strain rates and displacement gradients in crystals

$$\dot{\varepsilon}_{ij}^{K} = D_{ij}^{K} = \frac{1}{2} \left(\dot{u}_{i,j}^{K} + \dot{u}_{j,i}^{K} \right) = \sum_{s=1}^{N} m_{ij}^{\text{sym},s} \dot{\gamma}^{s} \qquad \text{mit} \qquad m_{ij}^{\text{sym}} = m_{ji}^{\text{sym}} = \frac{1}{2} \left(n_{i} b_{j} + n_{j} b_{i} \right)$$

Single crystal plasticity: constructing the yield surface

{001}<100> Orientierung {110}<111> Gleitung

-2

 σ_{11} / τ_{mit}

slip system s

$$n_{\scriptscriptstyle i}^{\scriptscriptstyle g}$$
 , $b_{\scriptscriptstyle i}^{\scriptscriptstyle g}$

orientation factor for s

$$m^{\mathfrak s}_{ij} = n^{\mathfrak s}_i \, b^{\mathfrak s}_j$$

symmetric part

$$m_{ij}^{\text{sym,s}} = \frac{1}{2} (n_i^s b_j^s + n_j^s b_i^s)$$

rotate crystal into sample

$$m^{\mathfrak s}_{kl} = a^{\mathfrak c}_{ki} n^{\mathfrak s}_i \ a^{\mathfrak c}_{lj} b^{\mathfrak s}_j$$

 $\sigma_{33}/ au_{
m mit}$

symmetric part

$$m_{kl}^{\text{sym,s}} = \frac{1}{2} \left(a_{ki}^{c} n_{i}^{s} a_{lj}^{c} b_{j}^{s} + a_{lj}^{c} n_{j}^{s} a_{ki}^{c} b_{i}^{s} \right)$$

yield surface (active systems)

$$m_{ ext{kl}}^{ ext{sym,s=aktiv}} \sigma_{ ext{kl}} = \sigma_{ ext{aufg}}^{ ext{s}} = au_{ ext{krit,(+)}}^{ ext{s=aktiv}}$$

 $m_{ ext{kl}}^{ ext{sym,s=aktiv}}\sigma_{ ext{kl}}=\sigma_{ ext{aufg}}^{ ext{s}}= alla_{ ext{krit,(-)}}^{ ext{s=aktiv}}$

(non-active systems)

$$m_{
m kl}^{
m \, sym,s=inaktiv} \sigma_{
m kl} = \sigma_{
m \, aufg}^{
m s} < au_{
m krit,(\pm)}^{
m s=inaktiv}$$

Single crystal plasticity: constructing the yield surface

FCC, BCC 12 systems section

BCC 24 systems section

BCC 48 systems section

YIELD SURFACE, BCC

SINGLE CRYSTAL, BCC, (001)[100]

How does that work for bicrystals?

Two extreme cases :

iso-strain (Taylor)

iso-stress (Schmid)

$$\sigma = \sigma_s + \sigma_d$$

Displacement continuity across layers

$$\varepsilon = \varepsilon_s + \varepsilon_d$$

$$\sigma = \sigma_s = \sigma_d$$

Stress continuity across layers

Bounding Case - Isostrain

$$\begin{aligned}
& \epsilon_{1} = \epsilon_{2} = \epsilon_{tot} \\
& \sigma_{1} = E_{1} \epsilon_{1} = E_{1} \epsilon_{tot} ; \sigma_{2} = E_{2} \epsilon_{2} = E_{2} \epsilon_{tot} \\
& P_{1} = A_{1} \sigma_{1} = A_{1} E_{1} \epsilon_{tot} ; P_{2} = A_{2} \sigma_{2} = A_{2} E_{2} \epsilon_{tot} \\
& P_{tot} = P_{1} + P_{2} = \epsilon_{tot} (A_{1} E_{1} + A_{2} E_{2}) \\
& \sigma_{tot} = \frac{P_{tot}}{A_{1} + A_{2}} = \epsilon_{tot} \left(\frac{A_{1}}{A_{1} + A_{2}} E_{1} + \frac{A_{2}}{A_{1} + A_{2}} E_{2} \right) \\
& \sigma_{tot} = (f_{1} E_{1} + f_{2} E_{2}) \epsilon_{tot}
\end{aligned}$$

$$E_{tot} = f_{1} E_{1} + f_{2} E_{2}$$

P₁, P₂ are the loads on 1 and 2. f₁, f₂ are the volume fractions of 1 and 2.

Bounding Case - Isostress

$$\begin{split} &\sigma_{1} = \sigma_{2} = \sigma_{tot} \\ &\sigma_{1} = E_{1} \epsilon_{1} \quad ; \quad \sigma_{2} = E_{2} \epsilon_{2} \\ &\epsilon_{tot} = f_{1} \epsilon_{1} + f_{2} \epsilon_{2} = f_{1} \frac{\sigma_{tot}}{E_{1}} + f_{2} \frac{\sigma_{tot}}{E_{2}} \end{split}$$

$$E = \frac{\sigma_{tot}}{\epsilon_{tot}} = \frac{1}{\frac{f_1}{\epsilon_1} + \frac{f_2}{\epsilon_2}} = \frac{E_1 E_2}{f_1 E_2 + f_2 E_1}$$

iso-strain (Taylor-model)

iso-stress (Sachs-model)

Iso-stress and iso-strain for polycrystals

Sachs Model (previous lecture on single crystal):

- All grains with aggregate or polycrystal experience the same state of stress;
- Equilibrium condition across the grain boundaries satisfied;
- Compatibility conditions between the grains violated, thus, finite strains will lead to gaps and overlaps between grains;
- Generally most successful for single crystal deformation with stress boundary conditions on each grain.

Taylor Model (this lecture):

- All single-crystal grains within the aggregate experience the same state of deformation (strain);
- Equilibrium condition across the grain boundaries violated, because the vertex stress states required to activate multiple slip in each grain vary from grain to grain;
- Compatibility conditions between the grains satisfied;
- Generally most successful for polycrystals with strain boundary conditions on each grain.

Taylor model for the mechanics of polycrystals

The Taylor Model

$$\varepsilon_{ij} = \frac{1}{2} \sum_{s=1}^{5} \left(n_i^s b_j^s + n_j^s b_i^s \right) \gamma^s$$

$$\varepsilon_{ij} = \frac{1}{2} \sum_{s=1}^{5} \left(n_i^s b_j^s + n_j^s b_i^s \right) \gamma^s$$

plastic spin from polar decomposition

$$\dot{\omega}_{ij}^{K} = W_{ij}^{K} = \frac{1}{2} \left(\dot{u}_{i,j}^{K} - \dot{u}_{j,i}^{K} \right) = \sum_{s=1}^{N} m_{ij}^{\text{asym},s} \dot{\gamma}^{s}$$

Examples

Multiscale crystal plasticity FEM

Homogeneity and boundary conditions at grain scale

Raabe et al. Acta Mater. 49 (2001) 3433

Crystal Mechanics FEM, grain scale mechanics (2D)

Crystal plasticity FEM, grain scale mechanics (3D AI)

Crystal plasticity FEM for large scale forming predictions

Texture component crystal plasticity FEM for large scale forming

Texture component crystal plasticity FEM for large scale forming

Simulation result: Taylor model

Simulation result: RGC scheme

Multiscale crystal plasticity FEM for large scale forming

Numerical Laboratory: From CPFEM to yield surface (engineering)

DC04 study with Mercedes, Volkswagen, Audi, Inpro