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Frame dragging and Eulerian frames in general relativity
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The physical interpretation of cold dark matter perturbations is clarified by associating Bertschinger’s
Poisson gauge with a Eulerian frame of reference. We obtain such an association by using a Lagrangian
approach to relativistic cosmological structure formation. Explicitly, we begin with the second-order
solution of the Einstein equations in a synchronous/comoving coordinate system, which defines the
Lagrangian frame, and transform it to a Poissonian coordinate system. The generating vector of this
coordinate/gauge transformation is found to be the relativistic displacement field. The metric
perturbations in the Poissonian coordinate system contain known results from standard/Eulerian
Newtonian perturbation theory but contain also purely relativistic corrections. On subhorizon scales,
these relativistic corrections are dominated by the Newtonian bulk part. These corrections, however, set
up nonlinear (initial) constraints for the density and for the velocity that become important on scales close
to the horizon. Furthermore, we report the occurrence of a transverse component in the displacement
field and find that it induces a nonlinear frame dragging as seen in the Eulerian frame, which is
subdominant at late times and subhorizon scales. Finally, we find two other gauges that can be associated
with a Eulerian frame. We argue that the Poisson gauge is to be preferred because it comes with the

simplest physical interpretation.
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I. INTRODUCTION

It is believed that the large-scale structure of the Universe
is the result of gravitational instability. The governing
evolution equations are provided by general relativity (GR),
although the simpler Newtonian theory yields reasonable
estimates at most scales of interest. Exact analytic sol-
utions, for generic initial conditions and without any
symmetry, in both GR and the Newton theory are not
possible, so one has to use either numerical approaches
(Newtonian N-body simulations) or analytical approxima-
tions [cosmological perturbation theory [1-7] (CPT)]. In
CPT, the equations of motion for cold dark matter (CDM)
are usually solved within the irrotational-fluid-dust
approximation, which restricts the validity of the approach
to sufficiently large scales. The (additional) use of the
Newtonian approximation, on the other hand, is assumed to
be valid only on interaction scales well below the causality
bound. To study the evolution of perturbations close to
the causality bound, a relativistic treatment becomes
mandatory.

We should seek for a relativistic treatment accompanied
with a direct correspondence to the Newtonian solutions.
Only such a treatment is capable to deliver straightforward
physical interpretations, since one can parametrize the
relativistic corrections as deviations from the Newtonian
bulk part. A close correspondence becomes increasingly
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important especially when studying “gauge-dependent”
(frame-dependent) quantities as we shall do in the
following.

Lagrangian perturbation theory (LPT) is a promising
avenue of the gravitational instability, mostly since it is an
intrinsically nonlinear approach to nonlinear structure
formation but also as it is required to set up initial
conditions for N-body simulations. Additionally, the
Lagrangian representation comes with a simple physical
interpretation as one follows simply the trajectories of fluid
elements. The only dynamical quantity in Newtonian LPT
is the displacement field ¥, which parametrizes the gravi-
tationally induced deviation of the fluid element from its
initial Lagrangian position ¢. The Newtonian coordinate
transformation to the Eulerian coordinate x is

x(t.q) =q+F(t.q). (1)

The Newtonian LPT has inspired hundreds of works since
Refs. [8—11]. Explicit solutions up to third order in LPT
were derived in Refs. [12,13]. The fourth-order scheme in
the LPT was derived in Ref. [14], and a general recursion
relation in LPT was reported in Ref. [15]. Important
improvements about the LPT related to convergence issues
were recently given in Refs. [16,17].

Significant efforts have been made to obtain a
general relativistic generalization of the LPT; see, e.g.,
Refs. [18-21]. Recently, we obtained a relativistic gener-
alization of LPT [22,23] from a somewhat different
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perspective than the aforementioned references; we iden-
tified LPT in terms of a coordinate transformation of a
perturbed synchronous metric, resulting from a relativistic
gradient expansion, transformed to a Eulerian/Newtonian
coordinate system. This perspective offers a unique inter-
pretation of gauge transformations in GR, a perspective
we shall further develop in the following. Furthermore,
by including not only scalar perturbations but also vector
and tensor perturbations, we generalize the findings of
Refs. [22,23].

Identifying and interpreting relativistic effects within
cosmological structure formation are the two key objectives
we shall study in this paper. We specifically focus on
relativistic effects of the density and the velocity field as
(would be) measured from (relativistic) N-body simula-
tions. To understand this paper, it is very helpful to recall
that the density and velocity fields are Eulerian fields,
although corresponding counterparts could be defined in
any other frame. Especially when considering observables
(e.g., correlators of the density/velocity field) from N-body
simulations, only the Eulerian density and the Eulerian
velocity, evaluated at the Eulerian position, are the objects
of interest." For example, as is well known from results of
the Newtonian perturbation theory, only N-point correla-
tors (or their counterparts in Fourier space) from the
Eulerian density/velocity field yield reasonable approxi-
mations especially when compared with results from
N-body simulations (e.g., Refs. [7,24,25]). Here, it is but
one essential task to show that we can draw similar
conclusions for relativistic cosmologies—keeping in mind,
however, that we do not yet have access to fully relativistic
N-body simulations (but see Ref. [26]), so an explicit
verification is not yet feasible.

That frame dependence affects not only Newtonian
cosmologies but also relativistic ones was recently shown
in Refs. [23,24,27]. In these, the authors derived the density
contrast § = (p — p)/p up to second order with the use of
the CPT or related techniques. The easiest way to make the
frame dependence explicit is to focus on the Newtonian part
of their relativistic density contrast. According to
Refs. [23,24,27], the (spatial part of the) density contrast
ilzzghe synchronous/comoving gauge reads at second order
O} agrangian (4) & F2 — @ ;P 1, plus relativistic corrections,
where the Newtonian bulk part F, is given in Eq. (A12),
and @ is the primordial potential. By transforming the

'Here and in the following, we neglect geometrical and
dynamical distortions coming from the propagation of the
photons in a clumpy and expanding Universe. We also neglect
biasing effects in this paper. We thus assume that the density/
velocity perturbations are directly observable. This view is
obviously not realistic for cosmological observations, but this
perspective is necessary to investigate in frame/gauge depend-
ence as we shall do in the following. Note, however, that the
density/velocity perturbations are indeed directly observable in
(relativistic) N-body simulations.
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density contrast to “some” Eulerian frame, however, we
have at second order 51(3211)lerian (x) & F, plus some relativistic
corrections. Apart from the relativistic corrections, pre-
cisely the same happens in the Newtonian Eulerian/
Lagrangian correspondence, and the disapperance of the
(2)

Lagrangian
also the Appendix).2

The interpretation of the density and velocity field is
inherently linked with the proper identification of the
Eulerian frame. In the Newtonian approximation, the iden-
tification of the Eulerian frame is trivial, and the connection
to the Lagrangian frame is given by the coordinate trans-
formation (1). This identification is, however, nontrivial in
the relativistic generalization (see Sec. VII); there is gen-
erally no preferred coordinate system in GR, and as a
consequence, there is no single frame that could be labeled
as Eulerian. As we shall see in the following, in GR, there
exists a class of coordinate systems that can be associated
with a Eulerian frame. The essential idea here is to use the
Newtonian correspondence from LPT to identify a Eulerian
frame in GR, preferably a Eulerian frame (which turns out to
be the one associated with the Poisson gauge) accompanied
with simple physical interpretations. Thus, fairly analogous
to the Newtonian coordinate transformation (1), we define its
relativistic counterpart to be

additional term in & is very well understood (see

x(t,q) = q" + F*(1.q), (2)

where p are the four space-time components (since it is the
four-dimensional line element that is invariant in GR);
x*=(r,x) and ¢"=(r,q) are the Eulerian and Lagrangian
coordinates, respectively; and F¥=(L, F) is the relativistic
displacement field. Thus, the displacement field now con-
sists not only of a spatial but also of a temporal part. This is
nothing but the statement that space and time are on an equal
footing in GR. Physically, it means that space and time will
mix due to the nonlinear clustering. The coordinate trans-
formation (2) is the central building block to formulate a
relativistic LPT. Our procedure to obtain a relativistic LPT
can be summarized as follows:
(1) Find a relativistic solution in a synchronous/
comoving coordinate system.
(2) Identity the corresponding frame to be Lagrangian.
(3) UseEq. (2) to find F* and the metric perturbations in
the “new” coordinate system with coordinates x*.
(4) Identify the very coordinate system to be a Eulerian
frame, if the metric potentials and the displacement
field agree with Newtonian results (at least) in the
weak-field limit.
We shall use this procedure to find all Eulerian frames. Note
that essentially the last point in the above list defines what

2Depending on the explicit (experimental) setup, however, also
OLagrangian (¢) could become relevant in relativistic cosmology.
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we mean as a Eulerian frame in GR. We call these coordinate
systems “Eulerian” since they yield the correct Newtonian
bulk part of the density and velocity.

One important application of this paper is certainly
related to generating initial conditions and about the
interpretation of N-body simulations from the perspective
of GR. Some investigations have been made about
Newtonian N-body simulations and their compatibility
with GR [28,41]. An explicit recipe to interpret N-body
results with respect to GR at linear order in the CPT was
first given in Refs. [29,30]. It is also known that GR yields
an initial constraint for the density field beyond leading
order [23,27,31,32], although its interpretation and prac-
tical implementation are still in their beginnings [23,33].
Here, we seek to gain further understanding of this
issue. Moreover, we report the occurrence of an additional
nonlinear constraint coming from GR, which affects
the velocity field—already at initial time. Specifically,
we obtain a nonzero transverse component in the
Lagrangian displacement field that is the result of the
nonlinear coordinate transformation. In the Eulerian
frame, this phenomenon appears as a nonlinear frame
dragging.

In general, the occurrence of a nonzero transverse
component in the relativistic Lagrangian displacement field
is expected to happen at some order in perturbation theory,
even within the restrictive class of an irrotational fluid
velocity—a restriction we also consider here. Indeed,
similar considerations within the Newtonian limit of the
LPT with equivalent initial conditions were studied in detail
(e.g., Refs. [12,13,34]), and a nonzero transverse displace-
ment field was found at third order in the Newtonian LPT.
This transverse displacement field can be interpreted as a
fictitious force, very similar to the Coriolis force, induced
through a noninertial motion of the fluid element [34]. The
transverse displacement field therefore corrects the motion
of the fluid element, and it is thus essential to include it in
the analysis—neglecting it would formally lead to wrong
results. Similar conclusions can be made for the general
relativistic treatment.

This paper is organized as follows. In Sec. I, we review
the metric up to second order in a synchronous/comoving
coordinate system, which was obtained in Refs. [21-23].
This metric serves as the starting point for the current
investigation and will define the Lagrangian frame. By the
coordinate transformation to a Poissonian coordinate sys-
tem, described in Sec. III, we shall obtain the Lagrangian
displacement field and a physical interpretation of the
perturbations in the Eulerian frame. In Sec. IV, we explain
how to solve the coordinate transformation with an iterative
technique, and we also define useful operators that are
needed in the latter. Then, we report the first-order and
second-order results of the transformation in Secs. V and
VI, respectively, and discuss them in detail. In Sec. VII, we
report a procedure to identify all possible Eulerian gauges.
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Explicitly, we find three (nontrivial) gauge choices that can
be associated with a Eulerian frame, and we clarify their
physical interpretations. We summarize and conclude
afterward in Sec. VIII. We also wish to highlight the
Appendix in which we relate our findings to the Newtonian
approximation.

For simplicity, we restrict our current investigation to a
Universe with only a CDM component (thus, we set the
cosmological constant A to zero). Our results hold for a
ACDM Universe to a fairly good approximation, since the
reported relativistic corrections become important only on
very large scales where the cosmological constant should
not have much influence [22].

II. METRIC PERTURBATIONS IN A
SYNCHRONOUS COORDINATE SYSTEM

In this section, we report the relativistic solution in a
synchronous/comoving coordinate system. Here, we only
introduce our conventions and report the final result for an
irrotational CDM component up to second order; explicit
calculations can be found in, e.g., Ref. [18] and, in
particular, Ref. [21] for the tetrad formalism and
Refs. [22,23] for the gradient expansion technique.

The corresponding  comoving/synchronous line
element is

ds? = —d® + a*(t)y;;(1,q)dg'd¢/, €)

where ¢t is the proper time of the fluid element and g are
comoving/Lagrangian coordinates, constant for each pres-
sureless and irrotational fluid element; in this paper, we
assume an Einstein-de Sitter (EAS) Universe with the
cosmological scale factor a(t) = (t/t,)*/?. Summation
over repeated indices is implied—for Latin indices from
1 to 3 and for Greek indices from O to 3. We define this
coordinate system to be the Lagrangian frame. This
definition is possible and unique, and the spatial part of
the synchronous coordinate g = const fixes the initial
position for the fluid element (CDM particle). Inflation
predicts at linear order the initial seed metric

10

kij = 6, {1 + ?‘P(‘I)] ; 4)

where ®(q) is the primordial Newtonian potential, given at
initial time #,. In our case, ®(q) is just a Gaussian field, and
it is directly related to Bardeen’s gauge-invariant potential
[1]. Here and in the following, a “,i” denotes a differ-
entiation with respect to Lagrangian coordinate g;.

Solving the Einstein equations with the use of the initial
seed metric k;; and some iterative technique, we obtain for
an EdS universe up to second order
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10
7ij(t.q) —5ij<1 +?‘I>>

10 5
+3a(t)t(2) |:@,l] (1 —?¢) —Sq)’l(b] +851](I>,I(I>,l:|
3\23
- <5> 7az(f)fg[4@,zz@,ij

- 51] ((p,ll(p,mm - q),lm(I),lm)]

3\219 ,
+ 5 7(1 (t)to@,li@,lj—i—)(ij(l‘,q), (5)

where we have retained only the fastest growing mode
solutions (see Ref. [23] for the inclusion of decaying
modes). The divergence-free and trace-free tensor
2ij(t.q) is of order ®, and it results from the magnetic
part of the Weyl tensor—its explicit form is not needed in
the following, but see, e.g., Refs. [18,21]. Note that
Xij is not determined by the gradient expansion of
Refs. [22,23,35]. The inclusion of y;; in the following
does not change our conclusions, and we just include it for
the sake of generality.

III. COORDINATE TRANSFORMATION

To obtain the relativistic displacement field, we
perform a coordinate transformation to the Poisson gauge.
We transform the result (5) written in the synchronous/
comoving gauge with coordinates (z, q),

ds* = g,,(1.q)dg"dg" = —dr* + a*(1)y;;(t.q)dq'dq’,

(6)

to the Poisson gauge with coordinates (z,x) and corre-
sponding metric (z is not the conformal time):

ds? = gz (7. x)dx"dx”
= —[1 4+ 2A(z,x)]d7> + 2a(z)w;(z, x)dzdx’
—+ 02(7){[1 — 2B(T,x)]5ij + S,](T,x)}dx’dxf (7)
A, B, w;, and §;; are supposed to be small perturbations.

The tensor §;; is traceless, i.e., S’ = 0. The Poisson gauge
is defined via [4,36,37]

8xfwi = 0,

D48, = 048], =0, (gauge conditions). (8)

These conditions hold also in the perturbative sense. The
two coordinate systems are related by the coordinate
transformation

x(t,q) = q" + F*(t.q), )

with
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x”—<;>, q"—(;), F”—(IL,>, (10)

where L(t,q) and F(t,q) are supposed to be small
perturbations. F is the spatial part of the relativistic
Lagrangian displacement field, and L 1is the time
perturbation—in the case of the Poisson gauge, L is the
velocity potential of the fluid element (i.e., this is generally
not true for other Eulerian gauges; see Sec. VII). Note
explicitly that L contains only the potential part of the
velocity of the fluid element; thus, the full 3-velocity field
is given by the time derivative of the 3-displacement field,
i.e., u = a0dF/0t. We decompose F into a curl-free and
divergence-free vector field,

F(t.q) = F'(t.q) + F-(1.q). (11)

and without loss of generality, we choose to decompose it
with respect to the Lagrangian coordinate system.

General covariance requires the invariance of the line
element ds2, and thus

Ox" Ox¥
9u(t.q) = 8—cﬂ‘8—cfgﬁﬂ(f’x)' (12)

We shall solve the above general coordinate transformation
perturbatively, while expanding all fields and dependences.

IV. ITERATIVE SOLUTION SCHEME AND
USEFUL PROJECTION OPERATORS

The general coordinate transformation (12) gives sepa-
rate equations for the space-space, space-time, and time-
time parts, which can be used to constrain the parameters
(A,B,w;,S;;,L,F;). We solve these equations order by
order. Formally, each small quantity is expanded in a series,
ie.,

A=eA) + 2A® 4 ... B=¢eBW +B® ...,

etc., where ¢ is supposed to be a small dimensionless
parameter. The primordial potential ® is of order e. For
convenience, we truncate the coordinate transformation of
the metrics, Eq. (12), up to second order and suppress the
perturbation parameter ¢ in the following. After some
manipulations, we find for Eq. (12)

L.L,

L Wi
rijltq) ===yt 4200

a

4L(t,q)  2L* 8BL
5;i[1—2B -
% [ (r.x) + 3t 92 3t

AL
+2F(i.j)(tvq)<1 —2B +§> + FiiFy;

—i—S,](T,x) +2F1(lSj)l’ (13)
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N oL ) 4L| OFi(t.q)
0= (1+2A+ 8t>L’i+a (t)[l 2B + 34 BT
OF,, oF
2 2 !
+a Szm (9 +a Fll 81
2L  OL
+ a(t)w;(r,x) [1 +§+E} +awFy;, (14)
_ OL(t,q) oL OL\?2
OF, , OF | OF,
+ 2aw,; o +a % o1 (15)

We have suppressed some dependences where there is
no confusion; i.e., dependences in second-order terms
can be interchanged, and the resulting error is only of
third order.

We solve Eqgs. (13)—(15) with an iterative technique. For
that purpose, the decomposition valid for any tensor T; is
useful [38],

=0+ (00,

where Q is the trace of T I T+ is a divergence-free vector;
and for the transverse traceless tensor, we have 8’TT =0.
It is then straightforward to define the correspondlng
projection operators

(16)

]

8ii o\ A
%W) T off ), + 17

A 300 11
Tl — T..__V2Q

o 1 .
k[z 1l kli [
vzvz Ti,l vz oo Tij’

(17)

where "/ is the Levi-Civita symbol and 1/V? is the inverse
Laplacian.

With the above, we can extract the relevant information
from Egs. (13)-(15) to obtain the following:

(1) The Lagrangian displacement field F = Fll + F*.
The operator 7! applied to Eq. (13) constrains the
longitudinal part of the displacement field FI,
whereas /T constrains its transverse part F*.

(2) The divergence of Eq. (14) constrains the time
perturbation L.

(3) The scalar perturbation B is obtained by the trace
part of Eq. (13).

(4) The curl of Eq. (14) constrains the vector perturba-
tion w.

(5) From Eq. (15), we obtain the scalar perturbation A.
In the following, we solve the coordinate transformation
with that procedure, order by order.

Before proceeding, it is worthwhile to compare this
procedure with other methods in the literature. One crucial
extension in this procedure compared to the one in
Refs. [22,23] is the consistent inclusion of the transverse
displacement field F- in the coordinate transformation. F*
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has to be included since 9'S; ; = 0, but the same is generally
not true for the divergence of Eq. (13). Thus, F* absorbs
the transverse part of Eq. (13) and relates it to w via
Eq. (14). Indeed, the following identity is valid at least up to
second order: w = —adF*/0t. In Refs. [22,23], the coor-
dinate transformation is performed from the synchronous
gauge to the Newtonian gauge—instead of the Poisson
gauge, which is the generalization of the Newtonian gauge.
In the Newtonian gauge, vector and tensor perturbations are
set to zero by hand; thus w:=0 and so is F = 0. This is,
however, rather accidental, and there is generally no reason
to discard the transverse component of the displace-
ment field.

V. SOLUTIONS UP TO FIRST ORDER
IN THE POISSON GAUGE

With the use of the above recipe and with the gauge
conditions (8), we obtain up to first order for Eq. (9)

(1) - L(l)
Fu'(t.q) = (F(l)“_'_F(l)J_ ; (18)
with
LU(1.q) = ©(q)1. (19)
3
FV(1.q) == a(1)30,,2(q), (20)
2
F' (1.q) =0, 1)
and for the scalar, vector, and tensor perturbations,
respectively,
A (z,x) = B (z,x) d(x),
wgl)(r,x) =0,
(1) _
s(z,x) =0 22)
F l(-l) is the displacement field in the Zel’dovich

approximation [8]; since it is purely longitudinal, the
trajectory of the fluid element is just along the overall
potential flow. L) is the peculiar velocity potential of the
fluid element, and the perturbations A()) and B(") in the
Poisson gauge, Eq. (22), are in agreement with the weak-
field limit of general relativity. Thus, we recover the
Newtonian approximation at linear order. Note that we
have interchanged in Eq. (22) the dependence of ® such
that ¢ — x, which is only valid up to first order. At second
order, we simply have to Taylor expand the dependence
®(q) = ®(x — F), in accordance with the coordinate
transformation (9).
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VI. SOLUTIONS UP TO SECOND ORDER IN THE
POISSON GAUGE

Similar considerations can be made up to second order.
We obtain the second-order quantities

(2) . L(Z)
F(t,q) = (F(z)u L p@L ) (23)
with

3 9 1
L (1,q) = 1 5547 0,10, — 7 34 vz
q

7
6 t®% 4 41C, (24)

@l _ 323 54l
Fi(t.q) —_<_> = a* ()15 5z Og, o
2) 7 Vi

—5a(1)t30, ®* + 6a(1)150, C,  (25)

FPY (1. q) = 6a(1) 2R, (26)

and the scalar, vector, and tensor perturbations, respec-
tively, up to second order (for convenience, we include the
first-order perturbations),

_ 8 _
A(T,x):¢N—4C, B(T,x):¢N +§C,

wir.x) =4 PRSP (ex) =7, @)

with
1
/’£2(t7 q) = 5 (‘b,llq),mm - CI),lnzq),lm)’ (28)
Clq) = s |20 1 o+ B g+~ D 1D
’ =22 |4 FJE mm m = 1lm o dm = Im |
AL 4
1 (29)
Ri(1.9) = 5rea
VaVa
X [(},ilq),mml - q),lliq),mm + (I).iq),llmm - q),mq),mlliL

¢N(T,x) = —(D(x) + Eatov—%

5 2
2 ?q)\ll(b\mm + (I)|Iq)|lmm + 7(I)Umq)\lm . (31)

The definitions of C, R;, etc., are identical to C, R;, etc., but
with dependences and derivatives interchanged to (z,x)
rather than (¢, ¢). We denote spatial derivatives with respect
to the Poissonian (Eulerian) coordinate x; with a slash. In A
and B, we have neglected terms proportional to ®? that are
not enhanced by spatial gradients.
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The first term in Eq. (25) contains the second-
order improvement from Newtonian LPT, whereas the
remnant terms are the same relativistic corrections as in
Refs. [22,23]. Equation (24) is the velocity potential of the
displacement field. The transverse part of the displacement
field, Eq. (26), together with the corresponding w is one of
our main results:

OF+
w=—a ETER (32)
This expression (which is generally nonzero already at
initial time; see the following section) clearly indicates the
gravitomagnetic origin of the frame dragging: The frame
dragging vector potential w is directly related to the
transverse part of the fluid’s Velocity.3

Since initial conditions are set within the linear regime,
where the transverse displacement field is (at least pertur-
batively) suppressed, the above shows that the frame
dragging will grow as soon as nonlinearities will form.
Therefore, the frame dragging gets enhanced by the non-
linearities in the gravitational evolution. This argument is
also valid for the linear frame dragging that we do not
consider here since we study only the evolution of irrota-
tional fluids.

Equations (27) contain the results in the Poissonian
coordinate system. The expression ¢y, Eq. (31), matches
exactly Newtonian Eulerian perturbation theory (see the
Appendix), whereas the remnant terms in A and B denote
relativistic corrections that are proportional to the nonlocal
kernel C, given in Eq. (29). These results agree with
the treatment of Ref. [23] in the Newtonian gauge and
therefore generalizes their results to the inclusion of
vector and tensor perturbations. The occurrence of known
results from Newtonian Eulerian perturbation theory in the
Poissonian coordinate system indicates that we can asso-
ciate the Poissonian coordinate system with a Eulerian
frame. We shall further specify the labeling Eulerian in
Sec. VII, but before that, we wish to analyze the conse-
quences (Sec. VIA) and the origin (Sec. VIB) of the
(transverse) perturbations and also discuss our results with
respect to known investigations in the literature (Sec. VI C).

A. Nonlinear initial constraints for the density
and the velocity field

In the previous section, we obtained the Lagrangian
displacement field F*, which does not only include the
known Newtonian part but also some relativistic correc-
tions. It is very important to note that these relativistic
corrections are only partly a result from the gravitational
evolution. The other part results from the nonlinear

*Note that the peculiar velocity of the fluid element is
u = adx/0t = adF/0t, where the last step follows from

x(t.q) =q+F(t,q).
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constraints of the velocity field. Crucially, we find that
these nonlinear constraints are already apparent at
initial time.

It is actually straightforward to understand these initial
constraints in terms of the displacement field. To do so, we
first have to restore the decaying modes, which we have
neglected before because of simplicity. We then obtain for
the 4-displacement field F¥=(L,F) up to second order

3\2 ,[DD 1
L(Z,q) = p® + (E) Cl2 |:T(I)’lq)'l +EV—§IM2:|

3 .. 5
—i—v[vH—l—ZazD——}(I)z

3
10
+ v 21)H+3CID+? C, (33)
3 3\2 0,
Fi(t,q) = =D®; + <> E sy —5D0, 9*
2 2) V2 7
v 2
+ [SD + (2> :|{aqu+R,-}, (34)

where H is the Hubble parameter [here, H = 2/(31)], and
we have defined

o) =2 aD. (35)

A dot denotes a partial differentiation with respect
to Lagrangian time 7, and the general growth functions
are [23]

D(1) :29—0/'%1@),

200 [+ df [K(F) 9
E(t)_g—l/az(t/)[ 2p

with
J(t) = 2a(1)]"! / "a()dr,
K1) = a(1) / "1 ()2 () 37)

Generally, one could specify initial data for two coefficient
functions out of three, namely, for the coefficients of the
displacement, of the velocity, and of the acceleration. To
disentangle the effects coming solely from the gravitational
evolution (which are unwanted for this demonstration),
however, it is useful to require the vanishing of the growth
functions at initial time: D(t)) = E(ty) = 0. Now, setting
the coefficient functions of the velocity field, D and E, to
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zero at initial time would be unphysical [20,23] (see also
the following paragraph). The precise settings for the
velocity coefficients do not matter here, so we just require
that D(zy) # 0 and E(7y) # 0. From that, it follows that
v(ty) # 0. Again, this means that the fluid element receives
an initial nonzero velocity. Thus, the spatial part of the
displacement field becomes at initial time

limF;(t,q) = v*(t){8, C + R;} # 0. (38)

t—ty

This has two important consequences. First, the first term is
purely longitudinal, so it feeds back to the relativistic
Poisson equation at initial time. It yields an initial density
perturbation [23]. Second, both terms in Eq. (38) yield
nonlinear initial constraints for the velocity field of the fluid
element, specifically for its longitudinal and transverse part,
respectively. To our knowledge, the latter has not been
reported in the literature.

Similarly, we find that the vector perturbation in the
Poisson gauge is initially nonzero because it is sourced by
the initial transverse velocity: w(ty) = OF*(ty)/0t # 0.
Explicitly, violating w(#,) # 0 would yield unphysical
initial conditions for the CDM fluid element. Another
way to understand the situation is the following. Assume
that one could set the transverse velocity to zero intitially.
Then, the vector perturbation w would be switched off at
initial time and then switched on during the gravitational
evolution. This is wrong since the vector perturbation is not
the result of the gravitational evolution but the result of the
nonlinear structure of Einstein’s equations. This argument
can be easily verified by studying the time derivative of the
transverse part in Eq. (34) at initial time.

B. Origin of the transverse displacement field

At second order, the spatial coordinate transformation is
not entirely longitudinal anymore; i.e., the Lagrangian
displacement field acquires a nonzero transverse part.
Physically, the transverse displacement field is needed to
correct for the actual direction of the fluid motion.
Technically, the occurrence of a transverse displacement
field is expected to happen at some order since the
coordinate transformation (and thus the fluid’s motion as
well) is nonlinear and noninertial.

The transverse displacement field is by definition a
vector perturbation. It is important to note that the vector
perturbation is not generated through the coordinate trans-
formation itself, but it is already nonzero in the synchro-
nous coordinate system. To see this, we apply the second
operator in Eq. (17) on the 3-metric y;; [see Eq. (5)],
ie., e"”(?f(‘)’y,»j = stk”f/fl.

Then, we find the divergenceless vector

3 2
7+ = —5atR; + (§> a’t30;, (39)
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with R; the same as in Eq. (30), and
1
=g
— D1y P jjji]- (40)

D@ 1i® imji — Limm @ 1jji + Lii® mmjj

Since 7 is given in a synchronous/comoving coordinate
system, where the velocity of the fluid element is by
definition zero, only the transformation to a Eulerian frame
leads to a physical interpretation of the divergenceless
vector. The physical interpretation is that the transverse
displacement field appears as a nonlinear frame dragging in
the Eulerian frame.

C. Comparison of our results with the literature

Despite different used techniques, similar results were
reported earlier in the literature [36,39]. In Ref. [36] (see
also Ref. [40]), authors obtained the second-order metric
perturbations for an EdS Universe in the synchronous/
comoving gauge by the use of CPT. They performed a
gauge transformation from the synchronous/comoving
gauge to the Poisson gauge. Although not directly apparent,
our results agree where possible (note that they use the
conformal time). Explicitly, by translating their time
evolution factor 7 according to 7 — 3a'/2, and noting that
their Wy =—(1/V?)u,, and their ©y=—3C, their
Egs. (6.6)—(6.8) deliver the correct gauge generator and
perturbations in the Poisson gauge up to second order, as
reported here (apart from factors of ®2).* However, they did
not recognize that this gauge generator is indeed the
Lagrangian displacement field, neither that it contains
the well-known Newtonian displacement field. Similarly,
the time component of the gauge generator, their Eq. (6.6),
is the Lagrangian velocity potential, but this identification
is missing, t0o. Additionally, they do not give initial data
for the displacement field and its velocity. So we think that
our approach is more suited if it comes to the physical
interpretation of the relativistic corrections.

In Ref. [39], the authors developed a post-Newtonian
approach to the LPT. Their longitudinal post-Newtonian
solution for the displacement is given in their Eq. (3.66).
Unfortunately, due to the complexity of their expression,
we cannot confirm whether their longitudinal solution
agrees with ours; we leave this issue for some future
investigation. For the transverse part of the displacement
field, their Eq. (3.88), we find agreement with our Eq. (26)
if we replace their redefined potential ¥(!) with our

*It is not so straightforward to see, e.g., that ©, = —%C. See
the Appendix for technical details.

Note that in Ref. [36] the gauge generator is given in terms of
the Poissonian spatial coordinate, i.e., x, whereas we evaluate it at
the spatial coordinate of the synchronous/comoving coordinate
system, i.e., g. This explains the occurrence of two additional
terms in their Egs. (6.6).
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potential ®. However, due to some restrictions of their
approach, they were not able to require any initial data for
the transverse displacement. So they had to assume some
initial data, and they set the initial transverse velocity to
zero. As thoroughly explained in Sec. VI A, this setting is
wrong as it “switches off” the vector perturbations at
initial time.

It is important to note that the partial agreement of our
results with the ones in Refs. [36,39] is highly nontrivial
since the reported results rely on entirely different tech-
niques (i.e., gradient expansion vs conventional CPT vs
post-Newtonian LPT). So we consider the mutual agree-
ment as a strength such that our reported relativistic
corrections for the longitudinal and transverse displacement
field do not depend on the used perturbative scheme. Note
that only our approach yields initial nonlinear constraints
for the density and for the (longitudinal and transverse)
velocity field.

VII. ARE THERE OTHER EULERIAN FRAMES?

Within the Newtonian approximation there exists only
one Eulerian frame. In GR, however, the situation is
generally more complicated, just because there are so
many possibilities from which to choose the coordinate
system (i.e., the gauge). One would naturally ask whether
other coordinate systems can be identified to be Eulerian
(we will also define what we consider as a Eulerian frame).
Indeed, we will show in the following that there are
three Eulerian coordinate systems, but we argue that
the Poissonian coordinate system is accompanied with
the easiest physical interpretation. Thus, the Poissonian
coordinate system is a preferred Eulerian frame.

For convenience, we restrict to first-order perturbations
in the following, and we leave a full second-order treatment
for future investigations. We can then neglect vector and
tensor perturbations because we assume them to be of
second order. As before, we define the synchronous/
comoving coordinate system with coordinates (7,q) to
be associated with the Lagrangian frame (g = const).
The metric perturbations in the Lagrangian frame read

ds? = —d#?
10

(41)

Consider the first-order coordinate transformation from the
unique Lagrangian frame to some Eulerian frame

x(t,q) = q" + F*(t,q), (42)

with
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- (8) ()

where the corresponding generic scalar metric of the
Eulerian frame, first without any gauge fixing, is |

o= (R0
(43)

PHYSICAL REVIEW D 89, 063509 (2014)
ds? = —[1 + 2A]d7* 4 2aw ;dzdx’

RY

(44)

We follow Ref. [41] and calculate the proper time between
two events along a worldline, which reads

dr dr

oy dx! dx’ dx/
/ —dS2 = /df\/l + 2A — 2aw,ia— az[(l + 23)5” + 2hz]]

di
2/d1<1—|—A—aw,~—x -
“dr

In the last steps, we only kept terms of (’)(g‘fj‘—;), where
g € {A.B,w, h,dx'/dr}. The proper time is only extremal
if the integrand L satisfies the Euler-Lagrange equation

d oL 0L
18(5) X
We then obtain up to first order [41]
d dx;
—aw; + 220 = —A; (nogaugefixing). (47)
dr ' dr '

This looks almost like Newton’s law of motion, which is at
first-order:

d 2dxi -

i ®; (Eulerequation). (48)

Again, we did not yet specify a gauge in Eq. (47). Our aims
at this stage are:
(1) to find all possible gauges that lead exactly to the
Euler equation (48) at linear order,
(2) to establish the weak-field limit between the
Lagrangian and Eulerian frames.
The former implies that we are only interested in trajecto-
ries that are Newtonian-like in the weak-field limit. The
latter implies that we have to encode the spatial information
of the trajectory in the Zel’dovich displacement field. Thus,
we set F\'"! =2a2® for the coordinate transformation
(42) but leave the temporal perturbation L first unfixed.
Studying the coordinate transformation for the Lagrangian
and Eulerian metrics

Ox# Ox?
9u(t.q) = 8—61,48—%9,;5@,36), (49)
we find only three nontrivial gauge choices that satisfy the
above conditions. We thus identify three Eulerian gauges:
(1) The Newtonian/longitudinal (NL) gauge [1,3] with
A#0,B#0,w=0,and h = 0.

a’® . dx'dx/ ~
S Ml Y P 45
2 %Vdr dT) / ! (45)

(2) The spatially flat (SF) gauge [2,6,41] with A # 0,
B=0,w#0,and h =0.

(3) The synchronous-shear (SS) gauge with A =0,
B#0,w#0,and h = 0.

Here, we summarize our findings for the perturbations

at first order and discuss them briefly. As mentioned

above, the spatial displacement field is for all of these

gauges the Zel’dovich displacement field, F El) = %at(z)@,i,

which immediately fixes dx;/dr = dF;/dr in the Euler—
Lagrange equation (47) as well.

A. Newtonian/longitudinal gauge

The perturbations in the NL gauge read Ay, =
By, = —P, and the temporal part of the 4-displacement
field is Ly, = ®1. As above, Ly is the velocity potential of
the fluid element, and thus yields a simple physical
interpretation of the time part of the 4-displacement
field. Since we have wy;, =0 in the NL gauge, the
Euler—Lagrange equation (47) yields the Euler equa-
tion (48), where the cosmological potential on the rhs is
solely given by the time perturbation Ay, = —®. Note that
the Poisson gauge reduces to the Newtonian gauge in the
scalar sector.

B. Spatially flat gauge

The SF gauge was recently discussed in Refs. [41,42]
(sometimes called spatially Euclidean gauge) and is in
particular interesting since it does not contain any pertur-
bations in the space-space part of the metric. Thus, the
3-geometry appears Euclidean. The nonzero perturbations
are Agg = —5/2®, wgg = 3/(2a)®z, and the temporal
perturbation is Lgp = 5/2®t. Plugging these values into
the Euler-Lagrange equation (47), we realize that Agg is not
entirely the cosmological potential but the combination
Agp + d%awSF = —®. Thus, the fluid elements still move
according to Newton’s law of motion, but the cosmological
potential receives a nonzero contribution from wgg. This
feature generally complicates the latter physical interpre-
tation because wgr sources (already at linear order) a
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perturbation in the expansion rate; additionally, wgp sources
the shear as well.®

C. Synchronous-shear gauge

In contrast to the SF gauge, where the perturbations in
the space-space part of the metric are zero, the perturbations
in the SS gauge are only zero in the temporal part of the
metric. The nonzero perturbations read Bgg =
—5/3® +2L(x)/(37), wss = [L(x) — ®1]/a, and Lgg =
L(x) is constant in time. The SS gauge has therefore a
residual gauge freedom. In Ref. [41], the constant Lgg was
fixed such that the density and velocity matched exactly
results from Newton theory at linear order; they called this
specific choice the Newtonian matter gauge. In Ref. [27],
the constant Lgg was set to zero, and they called it the
Eulerian gauge. Independently of the specific choice of
Lgg, the Euler-Lagrange equation (47) yields the Euler
equation within the SS gauge, where the cosmological
potential is entirely given in terms of %awss =—o.
Similarly to the SF gauge, the SS gauge is flawed with
difficulties in the physical interpretation since the nonzero
wgg distorts the Hubble diagrams and also sources the
cosmic shear. For recent discussions about such issues, see
Refs. [28,41].

VIII. SUMMARY AND CONCLUSIONS

We find a Eulerian—Lagrangian correspondence within
general relativity, which can be used to study the evolution
of scalar, vector, and tensor perturbations beyond leading
order. We restrict our analysis to an Einstein—de Sitter
Universe, although our results should approximately hold
for a ACDM Universe as well (see, e.g., Ref. [22]).
Furthermore, we neglect all secondary distortions resulting
from photons that propagate in a clumpy and expanding
Universe, and we neglect biasing effects. These restrictions
are obviously not realistic for cosmological observations,
and it is because of this that our results at this stage can be
only applied to studies on how to interpret [or setup (quasi)
relativistic] N-body simulations. We think, however, that
our findings could also serve as the starting point on how to
interpret cosmological observations (e.g., tracers of the
velocity/density field) beyond leading order in GR.

We identify the relativistic displacement field F* (¢, q) in
terms of the coordinate/gauge transformation

xX*(t,q) = q" + F*(t,q), (50)

where x*=(z(t,q),x(t,q)) are some Eulerian coordinates
(see the following) and ¢*=(t,q) are the Lagrangian
coordinates. Note that the Lagrangian ¢ (=const) labels
the initial position of an individual fluid element. Our

®The expansion rate and the shear can be defined as the trace
and the traceless parts of the extrinsic curvature, respectively
[1,41].
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starting point, see Sec. 11, is the second-order synchronous/
comoving metric with the line element

ds? = —d* 4 a*(t)y;;(t.q)dqg'dg’. (51)

The 3-metric y;;(¢.q) is given in Eq. (5) and describes the
gravitational evolution of an irrotational dust component in
an EdS Universe. The reported synchronous metric can be
obtained, e.g., from the gradient expansion technique
[22,23] or from the tetrad formalism [20,21].

We then first consider a specific coordinate transforma-
tion (step by step, in Secs. III-VI), where the above
coordinates x*=(z,x) denote a Poissonian coordinate
system with line element

ds? = —[1 + 2A]de? + 2aw;drdx’
+ az{[l — ZB}(S” + Sij}dxidxj, (52)

where the resulting perturbations A, B, w, and S,-j can be
found in Egs. (27)—(31). The 4-displacement field is

LM 12
Fr(t,q) = <F(1) LFO )

where the respective quantities on the rhs can be found in
Egs. (18) and (23). In the Poissonian coordinate system, we
identify the weak-field limit for the cosmological potential
and the occurrence of known results from Newtonian
Eulerian/standard perturbation theory up to second order
(cf. the Appendix) plus relativistic corrections, where the
latter become only important at scales close to the horizon.
The spatial part of F* is the displacement field from the
Newtonian LPT plus additional relativistic corrections,
which again do affect the trajectories only on scales close
to the horizon (for recent discussions, see also
Refs. [22,23]). We also find a transverse part in the spatial
displacement field (26), which does not have any
Newtonian counterpart (at that order). The temporal part
of F* is the velocity potential of the fluid element from the
Newtonian LPT plus additional relativistic corrections.
Since we identify known results from Eulerian pertur-
bation theory in the Poissonian coordinate system and since
we can relate these results to the synchronous-comoving
coordinate system via the Lagrangian displacement field,
we conclude that the Poissonian coordinate system can be
associated with a Eulerian frame of reference. This has two
important consequences. First, the density and velocity in
the Poissonian coordinate system have a physical signifi-
cance in the sense that the gauge-dependent nature of the
density and velocity can be associated with their frame-
dependent origins. Stated in another way, since we are able
to identify the Poissonian coordinate system with a
Eulerian frame of reference, we deduce that the relativistic
corrections of the density and velocity are not gauge
artifacts. These corrections are real and thus measurable

(53)
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for a hypothetical observer who is in the Eulerian frame at
rest.” Second, our results indicate that the generator of the
above coordinate transformation (50) has a direct physical
significance; i.e., the generator of the coordinate trans-
formation is the 4-displacement field, and ¢* + F* is the
4-trajectory field of the fluid element with Lagrangian
coordinate g. The Lagrangian and Eulerian frames are
separated in terms of the displacement field, and these
frames move apart from each other according to the fluid’s
4-velocity, which is given in terms of the time derivative of
the 4-trajectory field. The reported transverse part in the
spatial displacement field yields a nonlinear frame dragging
as seen in the Eulerian frame since the transverse displace-
ment field sources the frame-dragging vector potential w in
the Poissonian coordinate system (52).

Our results can be directly incorporated in Newtonian
N-body simulations. The reported relativistic correc-
tions appear as nonlinear constraints that influence the
(particle’s) trajectory at any time during the gravitational
evolution. Since these relativistic corrections are small with
respect to the Newtonian bulk part, we think that the
Newtonian approximation should be sufficient to model
weakly nonlinear scales. However, the relativistic correc-
tions influence (the initial statistics of) the density and
velocity field especially at scales close to the horizon. Thus,
the relativistic corrections should be included for generat-
ing initial conditions of Newtonian N-body simulations,
preferably in terms of the relativistic displacement field as
suggested here. Explicitly, the CDM particles are displaced
from their initial grid positions according to the spatial
displacement field F(z,q) (note that we use the Eulerian
time 7 to account for the initial time on the numerical grid
[23]). Similarly, the peculiar velocity of the CDM particle
at initial time is given by u(z,q) = a(r)0F(z,q)/0r, and F
contains the aforementioned longitudinal and transverse
components. The transverse displacement field does not
affect the (initial) density field at second order but does
affect the (initial) velocity field. Physically, the transverse
displacement field corrects for the direction of motion of
the CDM particle, and neglecting it would formally yield
wrong (initial and late-time) statistics for the velocity field.
Technically, its practical implementation for N-body sim-
ulations is straightforward, and existing schemes just have
to be complemented; explicit recipes to obtain initial
displacements and velocities for N-body simulations can
be found in Refs. [23,43].

Then, in Sec. VIA, we explicitly show that the
relativistic corrections in the displacement field have to
be already nonzero at initial time. Specifically, we show
that for realistic initial conditions, both the longitudinal and

"Note that a hypothetical observer who is at rest in the
Lagrangian frame cannot measure the Eulerian density/velocity
field. He/she only experiences/measures the Lagrangian density/
velocity change along the trajectory of a fluid element, which is
labeled with initial Lagrangian coordinate ¢ = const.
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transverse parts of the relativistic displacement field yield
initial non-linear constraints. These constraints are the
result of the nonlinear nature of the Einstein equations
(see also Sec. VI B) and therefore have to be included in the
analysis. To our knowledge, these initial constraints have
not yet been reported before in the literature.

In Sec. VIC, we compare our results with the one from
the literature [36,39]. Despite the fact that entirely different
techniques were used, we find agreement with our results
where possible. Formally, the transverse displacement field
has been derived (but not identified) in terms of a gauge
transformation with the use of the CPT in Ref. [36] (note
that they use the conformal time). In Ref. [39], the authors
developed a post-Newtonian approach to the LPT and also
obtained the transverse displacement. Because of the
complexity of their expression, we cannot confirm whether
their longitudinal displacement agrees with ours. We also
discuss some shortcomings related to the initial conditions
for [39] and about the physical interpretation for Ref. [36].

Finally, in Sec. VII, we formulate a procedure to find all
possible Eulerian gauges. For simplicity, we restrict this
part of our analysis to the scalar sector at linear order, and
we shall generalize our findings in a forthcoming project.
We find that only three gauges yield Newtonian-like
trajectories together with the Zel’dovich displacement field
(i.e., the weak field limit for the Eulerian and Lagrangian
frames). These Eulerian gauges are (1) the Newtonian/
longitudinal gauge [1,3] which corresponds to the scalar
sector of the Poisson gauge; (2) the spatially flat gauge
[2,6,41]; and (3) the synchronous-shear gauge. We argue
that option (1) is preferred since it comes with the easiest
interpretation. Options (2) and (3), on the other hand,
induce nontrivial perturbations in the trace part and the
traceless part of the extrinsic curvature and thus yield
significant distortions to the Hubble diagrams and to the
shear, respectively. Phenomenologically, such dominant
distortions to the Hubble diagrams can be associated with
the gravitational lensing [28]; hence, options (2) and (3)
might be preferred gauge choices in investigations that
involve ray-tracing techniques to account for the photon
propagation in a clumpy and expanding Universe.
Certainly, further investigations are necessary to explain
why some Eulerian gauges are more sensitive to geomet-
rical distortions than the others. Further understanding of
this issue could support current and forthcoming efforts to
interpret cosmological observations beyond leading order
in GR.
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APPENDIX: COMPARISON WITH THE
NEWTONIAN TREATMENT

In this appendix (which is based on Ref. [44]), we
wish to relate our results to the Newtonian approximation.
Let x denote the comoving coordinate defined by the
rescaling of the physical coordinate r by the cosmic scale
factor a (1) (=(t/t,)*? for an EdS universe), where ¢ is the
cosmic time. The Eulerian equations of motions for self-
gravitating dust are governed by momentum conservation,
mass conservation, and the Poisson equation, which are,
respectively,

0

O ooyl ) + lu(e.2) - Velulr.0) = ~Vag(s. ),
(A1)

o) 282 v (ks 0) =0, (A2)
V(1) = SH @000, (AY

where u = a0x /0t is the peculiar velocity of the fluid
particle, H = 2/(3¢) for an EdS universe, ¢ is the cosmo-
logical potential, and the density contrast 5(¢,x) separates
the local variation of the mass density p(z,x) from a global
background p(7): p(t,x) = p(t)[1 4+ 5(¢,x)]. Furthermore,
we demand an irrotational fluid motion: V, x u = 0.

A convenient way to solve the above set of equations is
to use the Newtonian LPT (e.g., Refs. [10,13,14] and
references in Ref. [7]). In the Newtonian LPT, the observer
follows the trajectories of the individual fluid elements,
where the dynamical information of the trajectory field is
encoded in the displacement field W. (To avoid confusion
with the relativistic displacement field, we label the
Newtonian one with W instead of F). The coordinate
mapping from the fluid particles’ initial position ¢ plus
its gravitationally induced displacement is then given by

x(1) = q+¥(t.q). (Ad)

The displacement field contains all the dynamical
information of the system, and the fluid displacement
automatically obeys mass conservation by the relation

1

Sltx) = ———
() dets;; + ¥,

—1, (A5)

with the Jacobian of the transformation J = det[5;; + ; /],
where “, j”” denotes a spatial differentiation with respect to
Lagrangian coordinate ¢;, and i, j, ... = 1...3. In the LPT,
the above relation replaces the mass conservation (A2),
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where the neglect of an integration constant §, can
always be justified in the Newtonian limit, i.e., by a proper
set of initial conditions, by using a different set of
Lagrangian coordinates, or by the assumption of an initial
quasihomogeneity; see Ref. [14].

In the Newtonian LPT, the system (A1)-(A3), together
with the irrotationality constraint is solved with a pertur-
bative ansatz for the displacement field W, which is
supposed to be a small quantity:

(S

¥(.q)=> ¥i(q).

i=1

(A6)

Usually, one utilizes the Newtonian LPT within a restricted
class of initial conditions where only one initial piece of
data has to be given [10] (this class is of the Zel’dovich type
[8]). Then, the initial data at time ¢, is given by the initial
gravitational potential ®(#,,q) (up to some arbitrary con-
stants) only, which is supposed to be smooth and of order
1073. Solving the above in Newtonian LPT up to second
order, one finds for the fastest growing solutions [14],

U,(t,q) = @) a(t)3® ;(t,q)

N3, 01 \
- (3) G0 ggmatng + 0@)

(AT)

where 1/V; is the inverse Laplacian and
ﬂz(to,q) = 1/2(®,ll®,mm — (I),lmq).lm)' NOW, what is the
effect on the Poisson equation; specifically, what is the
relation between the cosmological potential ¢(¢,x) and
the initial gravitational potential ®? To see this, we plug
Eq. (AS) into the Poisson equation (A3), i.e.,

_2d%(1)

1
—1),
5+, ] )

and with the use of the second-order displacement field
(A7), we Taylor expand the rhs. Then, we obtain

6
Vig(t.x) = =@ (ty.q) — 5“0)’%#2004)

3
+ Ea(f)f%q).zz(fo, 9P (t0.q) + O(P).
(A9)

Note that the lhs is a Eulerian quantity, whereas the
expressions on the rhs depend on Lagrangian coordinates
and Lagrangian derivatives. We expand the dependences
and interchange the derivatives (we denote “|;” for the
differentiation with respect to Eulerian coordinate x;) on the
rhs and finally multiply the whole equation with a 1/V2.
Then, we have

063509-12



FRAME DRAGGING AND EULERIAN FRAMES IN GENERAL ...

D1.x) = ~B(10.) + 5 al0)3y (10, ¥)) 1. )

15

1
+ = a(1)1g 5 a i, x), (A10)

7

with i1, (2, x) analogous to u,(t,,q), but the dependences
and derivatives are with respect to x. The above has been
obtained in Ref. [35] (though their approach differs from
ours; also, cf. the first bracketed term of Eq. (6.8) in
[36]). To see its connection to the “Newtonian literature,”
we expand the second term on the rhs with V2/V2,
which leads to

$(1.x) = —B(10.x) + 2 alD)B s Fa(tg.x), (ALl

2 \Y

where we have defined
5 2
Fy(t9,x) = 7‘1’|11‘I’|mm + @ Pymm + 7¢\1m¢’|zm- (A12)

This is nothing but the result expected from standard
perturbation theory (SPT) up to second order (see, for
example, Eq. (45) in Ref. [7]). Equation (A10) or
Eq. (All) can be interpreted as follows. At leading
order, the cosmological potential is just proportional to
the initial gravitational potential, whereas at second
order, the temporal extrapolation of the initial tidal
field leads to an “evolving” cosmological potential.
Note that expression (All) is identical with Eq. (31),
where the latter was obtained in the relativistic coor-
dinate transformation (12).

Similar considerations can be made for the peculiar fluid
velocity. We connect the fluid velocity to the initial
gravitational potential. Up to second order in the conven-
tional Newtonian LPT, the fluid motion is purely potential
in the Lagrangian frame [12,13], so we are allowed to
introduce a (peculiar) velocity potential S such that

u(rx) = 2S0X) _g g

a(0) (A13)
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and plug it into the Euler equation (A1). The very equation
can then be integrated with respect to x, and it yields the
Bernoulli equation [45-47] (it is equivalent to the non-
relativistic Hamilton—Jacobi equation; see, e.g., Ref. [35])

G S(16) 4 53 (VaS(00) = (%),

(Al14)
where ¢ is explicitly given in Eq. (A10) up to second order.
Here, we have set an integration constant c¢(¢) to zero since
it can always be absorbed into the velocity potential by
replacing S — S+ [¢(¢)dr; so it does not affect the
flow [47].

We solve the above differential equation with a recursive
technique, assuming the usual series hierarchy within the
SPT. Then, we obtain for the peculiar-velocity potential

3 9 1
S(t.x) = (1o x)t = 157 PPy — 27 0P oy

3 1
= B(ty, x)t —513/3#/3@@(:0,@, (A15)

X

with
3 4
Gz(t(),X) = 7q)\llq>\mm + q)|lq)|lmm + 7@“"1(1)”,”, (A16)

or interchanging the dependences and derivatives to be
Lagrangian,

3 9 1
S(t.q) = ®lty.q)t + 5110 1@ — ~ 1371 o3 M-
Z I

(A17)

Again, this is the second-order result for the velocity
potential from the SPT [7]. The expression (Al17) is
identical with the nonrelativistic part in the time perturba-
tion L; see Eq. (24).

In summary, we have calculated the nonrelativistic
perturbations ¢ and S, which agree exactly with their
counterparts in the Poissonian metric (see Sec. VIII).
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