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Abstract

We derive the effective action for classical strings coupled to dilatonic, gravitational, and axionic fields. We show how to
use this effective action for: (i) renormalizing the string tension, (ii) linking ultraviolet divergences to the infrared
(long-range) interaction between strings, (iii) bringing additional light on the special cancellations that occur for fundamental
strings, and (iv) pointing out the limitations of Dirac’s celebrated field-energy approach to renormalization. © 1998 Elsevier

Science B.V. All rights reserved.

PACS 98.80.Cq

In many elementary particle models cosmic strings
are expected to form abundantly at phase transitions
in the early universe [1,2]. Oscillating loops of cos-
mic string might be a copious source of the various
fields or quanta to which they are coupled. They
might generate observationally significant stochastic
backgrounds of: gravitational waves [3], massless
Goldstone bosons [4], light axions [5,6], or light
dilatons [7] (for recent references on stochastic back-
grounds generated by cosmic strings, see the reviews
[1,2]D. An oscillating loop which emits outgoing
gravitational, axionic or dilatonic waves, will aso
self-interact with the corresponding fields it has gen-
erated. This self-interaction is formally infinite if the
string is modelled as being infinitely thin. Such
infinite self-field situations are well known in the
context of self-interacting particles. It was empha
sized long ago by Dirac [8], in the case of a classical

point-like electron moving in its own electromag-
netic field, that the infinite self interaction problem is
cured by renormalizing the mass:
2

m(8) =mg— -, ©)
where m(§) is the (ultraviolet divergent) bare mass
of the electron, my the renormalized mass and 6 a
cutoff radius around the electron. The anaogous
problem for self-interacting cosmic strings has been
studied in Refs. [9-11] for the coupling to the axion
field, in Ref. [12] for the coupling to the gravitational
field, and in Ref. [13] for the coupling to the gravita-
tional, dilatonic and axionic fields. See also Ref. [14]
for the coupling to the electromagnetic field, in the
case of superconducting strings. Related work by
Dabholkar et al. [15,16] pointed out the remarkable
cancellations, between the dilatonic, gravitational,
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and axionic self-field effects, which take place for
(macroscopic) fundamental strings. Though these
cancellations can be derived for superstrings by ap-
pealing to supersymmetry (and the existence of
string-like BPS states [16]), they also take place for
bosonic strings. It seems therefore useful to deepen
their understanding without appealing to supersym-
metry.

The analog of the linearly-divergent renormaliza-
tion (1) of the mass of a point particle is, for a string
(in four-dimensional spacetime), a logarithmically-
divergent renormalization of the string tension w, of
the general form

A
,u(8)=,uR+CIog(?R), C=C,+C,+Cs.
(2)

The renormalization coefficient C is a sum of contri-
butions due to each (irreducible) field with which the
string interacts. As above & denotes the ultraviolet
cutoff length, while Ay denotes an arbitrary renor-
malization length which must be introduced because
of the logarithmic nature of the ultraviolet diver-
gence.

In this paper, we revisit the problem of the deter-
mination of the renormalization coefficient C (which,
as we shall see, has been heretofore uncorrectly
treated in the literature) with special emphasis on: (i)
the streamlined extraction of C from the one-loop
(quantum and classical) effective action for self-in-
teracting strings, namely (o and A denoting, respec-
tively, the scalar and axionic coupling parameters;
see Eq. (13) below)

Cgffective-action = + 4a2 GM2 , (3&)
Cgffective-action =0, (3b)
Cgffective-action = —4 G/\2 , (3C)

(i) the link between the ultraviolet divergence (2)
and the infrared (long-range) interaction between
strings, (iii) the specia cancellations that occur in C
for fundamental (super)-strings [15,16], and (iv) the
fact that the seemingly ‘‘clear’” connection, pointed
out by Dirac, between renormalization and field
energy is valid only for electromagnetic and axionic
fields but fails to give the correct sign and magnitude
of C for gravitational and scalar fields.

In an independent paper, based on a quite differ-
ent tensorial formalism [17,18], Carter and Battye
[19], have reached conclusions consistent with ours
for what concerns the vanishing of the gravitational
contribution C,. [We shal not consider here the
finite ‘‘reactive’’ contributions to the equations of
motion which remain after renormalization of the
tension (see [10,11,20]).]

The present work has been motivated by severa
puzzles concerning the various contributions to the
renormalization coefficient C. First, Ref. [15] worked
out the three contributions to the classical field en-
ergy around a straight (infinite) fundamental string
and found a cancellation between two positive and
equal contributions due to ¢ and B and a doubled
negative contribution from gravity. We recall that
Dirac emphasized that the cutoff dependence of the
bare electron mass m(6) (for a fixed observable
mass mg) was compatible with the idea that m(8)
represents the total mass-energy of the particle plus
that of the electromagnetic field contained within the
radius &, so that

82
m(5,) —m(d;) = +f5 d*xTigq - (4)

with Ty = E?/(87) = €? /(8w r*). If we were to
apply Dirac’s seemingly general result (4), the work
of Ref. [15] (generalized to arbitrary couplings a, A)
would be trandated into the following *‘field-en-
ergy’’ values of the renormalization coefficients:

CLEEp - —4a* G o
Cletmey — 4 8Gu?, (50)
Ch apaad = —4GA%, (%)

Only Cgeld—energy agrees with Cgffective-action above.
The sign of C[**“% js wrong, as well as the
value of C{4<"™%_Yet, the three partia C's cor-
rectly cancel in the case of fundamental strings! (See
Eg. (15) below). A second (related) aspect of Egs.
(3a)—(3c) which needs to be understood concerns the
vanishing of the gravitational contribution
Cglfective-action | this an accident or is there a simple
understanding of it? A further puzzle is raised by the
fact that the (nonvanishing) value (5b) for C, was
reproduced by the dynamical calculation of Ref. [13].
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To answer these puzzles we have computed the
effective action obtained by eliminating to first order
(in a weak field expansion) the fields in the total
action. To clarify the physical meaning of this effec-
tive action (at both the quantum and classical levels)
let us consider a generic action of the form

Sl 2. A] = %[ 2] - ;APT'A+JA, (6)

where P! is the inverse of the propagator of the
field A (after suitable gauge fixing), and where J[ z]
is the source of A (which depends on the dynamical
system described by the variables z). We use here a
compact notation which suppresses both integration
over spacetime and any (Lorentz or internal) labels
on the fields: e.g. JA= [d"xJ'(x) A.(x). The quan-
tum effective action for the dynamical system z
arises when one considers processes where no real
field quanta are emitted [21]. It is defined by inte-
grating out the A field with trivial boundary condi-
tions at infinity, namely

expiST'[ z] = (0"I0)),
- ngexp(i[SfJ —ZAP'A+ JA])

= expi[ S, + 3P ], (7)

where the integration (being Gaussian) is equivalent
to estimating the integrand at the saddle-point,
8S/0A, = —P'A,+ J=0, and where, asis well
known [21,22], the trivial euclidean boundary condi-
tions (or the vacuum-to-vacuum prescription) trans-
late into the appearance of the Feynman propagator.
For massless fields in Feynman-like gauges, we can
write

P(x,y) = [dpe™* ™ (8)

where dp=d"p/(2m)" and R (the residue of the
propagator) is a momentum-independent matrix R;;,
when the field comes equipped with a (Lorentz or
internal) label: A,. The red part of the quantum
effective action, Re[ S z]] = [ z], reads

Szl =*"[z] + sl 2],

S[z]=33[2]PynJ[ 2], )

Pym=Re[ P ] =f¢pei”(x’y) PP(EZ), (10)

p

with PP denoting the principal part. S corresponds
to a phase difference between the in-A-vacuum [0")
and the out-A-vacuum [03"). On the other hand,
twice the imaginary part of S'[z] gives the proba-
bility for the vacuum to remain vacuum: [(OS0in)|?
= exp(—2im&"), and is equal to the mean number
of A-quanta emitted,

Na=2msS = 7 [dps(p?)I(~p)RI(p), (11)

where J(p) = [d"xe™'P*J(x) [23].

It is easily checked that Py, is nothing but the
classical symmetric, half-retarded—half-advanced
propagator. This shows that Re[ST'] is the classical
effective action, obtained by eliminating the field A
in (6) by using the field equations written in the
context of a classical non-dissipative system, i.e. a
system interacting via half-retarded—half-advanced
potentials. [In the case of interacting point charges
' is the Fokker-(Wheeler-Feynman) action.] Writ-
ten more explicitly, the ‘‘one-classical-loop’’ (i.e.
one classical self-interaction) contribution S in Eq.
(9) reads

Slz] =3/ [dxd"yd'(x) RY™(x,y) JI( y)

= %ffd"xd"szym(x,y) J'(X)R;I(y),
(12)

where we used, from Eq. (10), Pi?/m( X,y) =
Ri;Gym(X,Y), Gy, being the symmetric scalar Green
function: O Gy (x,y) = —8"(x—y). It is easily
checked (a posteriori) that varying with respect to
the system variables z the classical effective action
Szl + S[z] reproduces the correct equations of
motion 8S[z Ay,l/8z=0 with A =P,.J
being the classical half-retarded—half-advanced po-
tential.

Let us now apply this genera formalism to string
dynamics. We consider a closed Nambu-Goto string
z"(o ) (with o2 = (o % 0b)) interacting with gravi-
tational g, (x") =m,,+h,, (x"), dilatonic ¢(x)
and axionic (Kalb-Ramond) B, (x) fields. The ac-
tion for thissystem is S, = S, + S, where a generic
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action for the string coupled to g,,, ¢ and B,,
reads

A
S.= —Mfezw\/?ol2 —EfBW dz* A dz?,
(13)

with y= —dety,, (v, =0,, d,2"9,2"), and where
the action for the fields is

1
S~ 6w /IO

x[#(9) —2VHeV,o— e “IH,, HH
(14)

with H,, =4, B, + 3B, +9 B, g=
—det(g,,) (we use the **mostly plus’ signature).
Note that g,, is the "‘Einstein”” metric (with a
¢-decoupled kinetic term /g.%(g)), while the **
string’”’ metric (or o-model metric) to which the
string is directly coupled is g}, =e**¢g,,. The
dimensionless quantity o parametrizes the strength
of the coupling of the dilaton ¢ to string matter,
while the quantity A (with same dimension as the
string tension ) parametrizes the coupling of B,
to the string. The values of these parameters for
fundamental (super)-strings are, in n dimensiona
spacetime (see, e.g., [16)),

afsz\/z/(n_z) ) /\fszﬂ" (15)

Unless otherwise specified we shall, for definiteness,
work in n=4 dimensions, so that «,=1. The
additional coupling o e 4*¢ in Eq. (14) between ¢
and the kinetic term of the B-field is uniquely fixed
by the requirement that ¢ be a ‘‘dilaton’’ in the
sense that a shift ¢ — ¢ + ¢ be classically reab-
sorbable in arescaling of the (length and mass) units,
i.e. of g,, and the (Einstein-frame) gravitational
constant G.

In the present string case the spacetime sources
J(x) of the previous generic formalism are world-
sheet distributed

[ S
’ (X) - [SAi(X)}A=O

=[d2m/y°(z(o)) s
X(x=2(a))J(2), (16)

with y°= —dety} and y3 = Ny 052" 0, 2", Insert-
ing this representation into Eq. (12) leads (z{* =
ZM(U';L),ZZ = ZM(O'z)y')’](_) = '}’O( Zl)) to

Sl[z]=%ffd20'1 dz"z\/?’_f\/y_g

X(47T Gsym( Zl*ZZ))CA( 21’22)’ (17)

CA(Zlazz)=4_17Tji(21)Rijjj(zz)- (18)

The very general formula (17) will be our main tool
for clarifying the paradoxes raised above. First, in 4
dimensional spacetime, the integral (17) diverges
logarithmically as o5 — o 2. There are several ways
to regularize this divergence. A simple, formal pro-
cedure, used in the previous literature [13,11], is to
use the explicit expression of the 4-dimensional sym-
metric Green function Gg,.(z,,2,) =1/(47) 6((z,
—2,)?) to perform the o, integration in Eq. (17),
and then to regularize the o} integration by exclud-
ing the segment —§.< o) — o < 8. Here, the
conformal-coordinate-dependent quantity 6. is linked
to the invariant cutoff &= (y%)Y*§, =y §..
Other procedures are to use the regularized Green
function Gf3(z,2,) = 1/(47) 8((z — 2,)* + 67)
[24,9], or dimensional continuation [20]. We have
checked that these different procedures lead to the
same results. By comparing (17) to the zeroth-order
string action §fz] = —,u(ﬁ)fdza'l\/y_f, it is easily
seen that the coincidence-limit-divergent contribu-
tion from (17) generates the term
+log(1/8) [d%,\/yY Ca(z;,2,) which renormalizes
Sl z] when C,(z 2) is independent of z, as it will
be. In this case, we have the very simple link that the
A-contribution to the renormalization coefficient C
of Eq. (2) is simply equal to the coincidence limit of
Eq. (18):

CA=CA(z,z)=ij‘(z)Rijjj(z). (19)
47

This result alows one to compute in a few lines the
various C,’s. The worldsheet-densities J,(2),
J(2), J§"(2), of the sources for ¢, g,, and B,
(linearized around the trivial background (0,7,,,0))
are easily obtained by varying Eq. (13) (e.g. J,(x) =
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[6S./8¢(x)]e=0 = [d%ryy° J.(2) 8(x — 2).
They read

j¢(z)=—2au=—au'yA’\, (20a)
W(z) = —zmy*”, (20b)
I (2) = —3rer”, (20c)
where

Y = ygb d,z* oz, et'= € a,z*a,z", (21)

(e®=—€"=1//y%) are the worldsheet metric
and the Levi-Civita tensor, viewed from the external
(background) spacetime. The residue-matrices R i
are also simply obtained by writing the (linearized)
field equations 6S,/86A=0 in the foom O A=
—RJ. Thisyields

R?J,=47GJ,, (22a)

- - 1 -
RY,e 3§ =32mG| I3, — 75 T 3, (22b)

RS, J§7=327GJ?,. (22c)

wvpo

Applying Eq. (19) yields, in any dimension n! our
main results

C,=(Ga2u?)(-2)" = +4Ga? 2, (23a)
A\2
(y/\) n—4
C,=2Gu? w22 4G ——
g M VY n—2 I n—2
(23b)
Cp=2GA%¢,, e’ = —4G A2, (23c)

In the four dimensional case this yields Egs. (3a)—
(3c). Note that C, vanishes only in 4 dimensions.
Note also that the sum C,,, = C, + C, + C; vanishes
for fundamental strings (non renormalization [15,16]),
Eqg. (15), in any dimension, but that for n+ 4 it is
crucia to include the non-vanishing gravitational
contribution. The special nature of the coincidence-
limit cancellations taking place for fundamental
strings is clarified by using, instead of conformal

YIn n> 4 dimensions the leadi ng ultraviolet divergences are
o C 64" which poses the problem of studying also the sublead-
ing ones.

coordinates (% 0%, null worldsheet coordinates
o*=0%+ o Indeed, in terms of such coordinates
one finds the simple left-right factorized form (typi-
ca of closed-string amplitudes)

\/7_f \/V_g Col z1,2)

=32Gu? (0,2} (0.2,) (0-2) (3_2,,) ,
(24)

where 9, z# = dz*/do *. In the coincidence limit,
z, = 7, = z, the right-hand side of Eq. (24) vanishes
because d,z* are null vectors (the Virasoro con-
straints reading (0, z#)? = 0).

Using our general result (17) we can now exhibit
the link between the ultraviolet object C=C(z,2)
and infrared, i.e. long-range, effects. Indeed, let us
consider a system made of two straight and parallel
(infinite) strings (with the same orientation of the
axionic source €*”), which are, at some initial time,
at rest with respect to each other. The condition for
this initial state of relative rest to persist is that the
interaction energy between the two parallel strings
be zero, or at least independent of their distance. But
the interaction energy is just (modulo a factor —2
and the omission of a time integration) the effective
action (17) in which z, runs on the first string, while
z, runs on the second one. As, in the case of two
straight and parallel strings, C(z,,z,) is independent
of z and z,, we see that the vanishing of the
tension-renormalization coefficient C = C(z,2) (ini-
tially defined as an ultraviolet object) is equivaent,
through the general formula (17), to the absence of
long-range forces between two parallel strings (which
is an infrared phenomenon). This result allows us not
only to make the link with the infrared-based argu-
ments of Refs. [15,16] and notably with the no-long-
range force condition discussed in Ref. [16] (where
they find, in 4-dimensions, a compensation between
attractive scalar forces and repulsive axial ones), but
also to understand in simple terms why the gravita-
tional contribution to C vanishes: this is simply
related to the fact that, in 4 dimensions, straight
strings exert no gravitational forces on externa
masses.

Summarizing in symbols, we have shown that
Ceffective—action — ilr?fr:gr—édange—force. We have also inde-

ultraviolet

pendently verified, by a direct calculation of the
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string equations of motion, that there were errors in
the dynamical calculations of Ref. [13] and that the
correct result was indeed given by Egs. (23a)—(23c)
[20], s that, in symbols, Camed — Cgffectve action,
As is discussed in detail in Ref. [20], the main
problem with the dynamical calculations of Ref. [13]
(besides some computational errors for the dilaton
force) is that the equations of motion for self-inter-
acting strings, without external forces, are sufficient
to prove renormalizability, but do not contain enough
information for extracting the value of the tension
renormalization. To determine unambiguously the
renormalization of u one needs, either to explicitly
couple the string to external (say, axionic) fields, or
to work only with the strictly variational equations of
motion 6S,/6z*.

There remains, however, to understand the dis-
crepancy between the dynamica C's and the ex-
pected field-energy ones, Egs. (5a)—(5¢). This puzzle
is resolved by noting that the coupling of a string to
B,, (aswell as the coupling of a point particleto A,
considered by Dirac) is the only one to be metric-in-
dependent, Si"= — ;A /B,, dz* Adz’, and there-
fore the only one not to contribute to the total
stress-energy tensor TA'=2g '/?8S/8g,,. By
contrast, for the fields ¢ and g, the total interac-
tion energy cannot be unambiguously localized only
in the field, there are also interaction-energy contri-
butions which are localized on the sources. These
(divergent) source-localized interaction-energies are
included in the effective action S[ z] but are missed
IN Teeg-energys thereby explaining the discrepancies
for C;leld—energy and Cgeld-energy.

To conclude, let us summarize the new results of
this work. We have derived the ‘** one-classical-loop’’
(i.e. one classical sdlf-interaction) effective action for
Nambu-Goto strings interacting via dilatonic, gravi-
tational and axionic fields. Its explicit form, obtained
by inserting Egs. (208)—(20c) and Egs. (22a)—(22c)
into Eg. (17) and Eq. (18), reads in any spacetime
dimension n,

Sl2]= - u(8) [doyy!
+%f[d20'1 dza'z\/y—f\/y—g

X (477 Gwm( 217 22)) Ctot( Zl’ ZZ) ! (25)

where Gg,(2,2,) is the symmetric scalar Green
function and

Ciot(21,2,) =C,+Cy(2,2,) + Cg(21,2,), (26)
with
C(P=4Goz2,u,2, (27a)

Cy(271,2,) =2Gu?

Yur(2Z0) Y*"(2;)

n—2 'y/uﬂ( Zl) 'YVV(Zz)} , (27b)

Cs(2,2,) =2GN%¢,, (7)) €*(2,) . (27c)

Here y**(z) and €**(z) are the worldsheet metric
and the Levi-Civita tensor, viewed from the external
(Minkowski) spacetime, Eq. (21). In the special case
of fundamenta strings, Eqg. (15), the integrand of the
first order contribution to the effective action simpli-
fies to the left-right factorized form (24), when
written in terms of null worldsheet coordinates. In 4
dimensions, the coincidence limit (z; — z,) gener-
ates logarithmic divergences in the first-order contri-
bution to S which can be absorbed in a renormal-
ization of the bare string tension u(8). The explicit
value of this renormalization is given by Eq. (2) and
Egs. (3a)—(3c). A simple understanding of the physi-
cal meaning of the various field-contributions to the
renormalization of w has been reached: (i) the values
and signs of the various contributions are directly
related to the worldsheet sources and the propagators
of the various fields, Eq. (18); (ii) the effective
action approach alows one to relate the long-range
interaction energy, and thereby the long-range force,
between two straight and parallel strings to the coef-
ficient C of the logarithmic divergence in the string
tension. [In particular, this explains in simple terms
why the gravitational contribution to C vanishes (in
4 dimensions)]; (iii) the previously emphasized van-
ishing of the tension renormalization coefficient C in
the case of fundamental strings [15,16] is clarified in
two ways. (&) by relating it (following (ii)) to the
absence of long-range force between parallel funda-
mental strings [a fact interpretable in terms of super-
symmetric (BPS) states], and (b) by exhibiting the
new, explicit, left-right factorized form (24), which
clearly vanishes in the coincidence limit because of
the Virasoro constraints [a fact valid for the bosonic
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string, independently of any supersymmetry argu-
ment]; (iv) finally, a puzzling discrepancy between
the signs of the renormalization coefficients expected
from Dirac’s field-energy approach to renormaliza-
tion, Eg. (4) and Egs. (5a)—(5¢), and the (correct)
signs obtained by the effective action approach has
been clarified by emphasizing the necessary exis
tence of source-localized interaction energies for
fields which are not p-forms.
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