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Abstract. We discuss the possibility of quantum transitions from the string perturbative vacuum
to cosmological configurations characterized by isotropic contraction and decreasing dilaton.
When the dilaton potential preserves the sign of the Hubble factor throughout the evolution,
such transitions can be represented as an anti-tunnelling of the Wheeler–DeWitt wavefunction
in minisuperspace or, in third-quantization language, as the production of pairs of universes out
of the vacuum.

PACS numbers: 0460K, 9880C, 9880H

At very early times, according to the standard cosmological scenario, the universe is
expected to approach a Planckian, quantum gravity regime, where a classical description
of the spacetime manifold is no longer appropriate. A possible quantum description of the
universe, in that regime, is based on the Wheeler–DeWitt (WDW) wavefunction [1] (for a
recent review on quantum cosmology see [2]) generally defined on the superspace spanned
by all three-dimensional geometric configurations. In that context it becomes possible to
compute, with an appropriate model of (mini)superspace, the probability distribution of a
given cosmological configuration against an appropriate ‘state’ parameter (for instance the
cosmological constant3). The results, however, are in general affected by operator-ordering
ambiguities, and are also strongly dependent on the boundary conditions [3–5] imposed on
the solutions of the WDW equation.

String theory has recently motivated the study of a cosmological scenario in which the
universe starts from the string perturbative vacuum and evolves through an initial, ‘pre-big
bang’ phase [6], characterized by an accelerated growth of the curvature and of the gauge
couplingg = eφ/2 (φ is the dilaton field). In such a context, the WDW equation is obtained
from the low-energy string effective action [7–9], and has no operator-ordering ambiguities
[7], since the ordering is uniquely fixed by the duality symmetries of the action. Also, the
boundary conditions are determined by the choice of the perturbative vacuum as the initial
state for the cosmological evolution.

According to the lowest-order effective action, the classical evolution from the
perturbative vacuum necessarily leads the background to a singularity, and the transition to
the present decelerated ‘post-big bang’ configuration is impossible, for any realistic type of
(local) dilaton potential [10]. With an appropriate potential, however, the transition may
become allowed at the quantum level even if, for the same potential, it remains classically
forbidden. This effect was discussed in previous papers [7], in which the WDW equation
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was applied to compute the transition probability between two duality-related pre- and post-
big bang cosmological phases.

The string perturbative vacuum is, in general, a higher-dimensional state, and the initial
growth of the dilatonic couplingg requires, according to the lowest-order action, a large
enough number of expanding dimensions. For instance, in a Bianchi type I background with
d expanding andn contracting isotropic spatial dimensions, the growth ofg requires [6]
d +√d + n > n, which cannot be satisfied byd = 3, in particular, in the ten-dimensional
superstring vacuum. With a monotonic evolution of the scale factor, this represents another
obstruction to a smooth transition to our present, dimensionally reduced universe.

The aim of this letter is to show that the initial perturbative vacuum is not inconsistent, at
the quantum level, with a final contracting cosmological configuration, when we add to the
lowest-order action an appropriate dilaton potential (such as the simple one induced by an
effective cosmological constant). In particular, for a WDW potential which is translationally
invariant in minisuperspace, along the direction parametrized by the scale factor, and for
which the sign of the Hubble factor is classically conserved during the whole evolution, the
cosmological contraction corresponds to a pure quantum effect. It can be described as an
‘anti-tunnelling’ of the WDW wavefunction from the string perturbative vacuum or, in third
quantization [11] language, as a production of ‘pairs of universes’ (one expanding, the other
contracting) out of the third quantized vacuum. Such a process requires the identification
of the timelike coordinate in minisuperspace with the direction parametrized by the shifted
dilaton φ (see below), and is complementary to the process of spatial reflection of the
wavefunction, which describes transitions from pre- to post-big bang configurations [7].

We shall adopt, in this letter, the minisuperspace model already discussed in [7], based
on the tree-level, lowest-order inα′, string effective action, see for instance [12]. Working
in the simplifying assumption that only the metric and the dilaton contribute non-trivially to
the background, ind isotropic spatial dimensions, the corresponding action can be written
as

S = − 1

2λd−1
s

∫
dd+1x

√
|g| e−φ(R + ∂µφ∂µφ + V ). (1)

Hereλs = (α′)1/2 is the fundamental string length parameter governing the higher-derivative
expansion of the action, andV is a (possibly non-perturbative) dilaton potential. By using
the parametrization appropriate to an isotropic, spatially flat cosmological background:

gµν = diag
(
N2(t),−a2(t)δij

)
, a = exp

[
β(t)/

√
d
]
, φ = φ(t), (2)

and assuming spatial sections of finite volume, the action can be expressed in the convenient
form

S = λs

2

∫
dt

e−φ

N

(
β̇2− φ̇2−NV ) , (3)

whereφ is the shifted dilaton:

φ = φ − log
∫

ddx/λds −
√
d β . (4)

The variation with respect toN then leads to the Hamiltonian constraint

52
β −52

φ
+ λ2

s V (β, φ)e
−2φ = 0, (5)

where5β,5φ are the (dimensionless) canonical momenta (in the gaugeN = 1):

5β = δS

δβ̇
= λs β̇e−φ, 5φ =

δS

δφ̇
= −λs φ̇e−φ. (6)
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WhenV = 0, the classical solutions of the action (3) describing the phase of accelerated
pre-big bang evolution are characterized by two duality-related branches [6], defined in the
negative time range:

t < 0, a = a0(−t)∓1/
√
d , φ − φ0 = − ln(−t) = ±β,

5β = ±k = constant, 5φ = ∓5β < 0
(7)

(k, a0 andφ0 are integration constants). For the upper-sign branch, the metric is expanding
(5β > 0), and the curvature scalėβ2 and the string couplingg(t) are growing, starting

asymptotically from the perturbative vacuum, the state with flat metric (β̇ = 0 = φ̇) and
vanishing coupling constant (φ = −∞, g = 0). The lower-sign branch corresponds instead
to a contracting configuration (5β < 0), in which the couplingg(t) is decreasing. In the
presence of a constant dilaton potential,V = 3 = constant, the accelerated pre-big bang
solutions are again characterized by two branches [13]:

t < 0, a = a0
[

tanh(−t
√
3/2)

]∓1/
√
d
,

φ − φ0 = − ln sinh
(− t√3), 5φ < 0,

(8)

which are, respectively, expanding with growing dilaton (upper sign,5β > 0) and
contracting with decreasing dilaton (lower sign,5β < 0). In this case both branches are
dominated, in the low-curvature regime, by the contribution of a positive cosmological
constant3. The initial perturbative vacuum is replaced by a configuration with flat
metric and linearly evolving dilaton (̇β = 0, φ̇ = constant), another well known string
theory background [14] (the exact solution to all orders in theα′ expansion). Near the
singularity (t → 0−), however, the contribution of3 becomes negligible, and the solution
(8) asymptotically approaches that of (7).

In this letter we shall assume that an effective cosmological constant3 is generated
non-perturbatively in the strong coupling, Planckian regime, and we shall use the WDW
equation to discuss the possibility of transitions, induced by3, from the perturbative vacuum
to a final configuration with contracting metric and decreasing dilaton. We shall consider,
in particular, the case in which the effective dilaton potential can be approximated by the
Heaviside step functionθ asV (β, φ) = 3 θ(φ). The corresponding WDW equation, in
the minisuperspace spanned byβ andφ, is obtained from the Hamiltonian constraint (5)
through the differential representation5 = −i∇:[

∂2
φ
− ∂2

β + λ2
s 3 θ(φ)e

−2φ
]
9 = 0 . (9)

The momentum along theβ axis is conserved,

[5β,H ] = 0, 5β = λsβ̇e−φ = k = constant, (10)

and the general solution of the WDW equation can be factorized as9k(φ, β) = ψk(φ)eikβ .
Note that we have assumed a potentialV depending explicitly only onφ because

the classical evolution of the scale factor, in that case, is monotonic, and no contracting
configuration can be eventually obtained, classically, if we start from the isotropic
perturbative vacuum. From a quantum-mechanical point of view, however, the situation
is different. Indeed, if we assign toφ the role of timelike coordinate, (9) is formally
equivalent to a Klein–Gordon equation with time-dependent mass term. The solutionψk
is a linear combination of plane waves forφ < 0, and of Bessel functions [15]J±ν(z), of
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imaginary indexν = ik and argumentz = λs
√
3e−φ , for φ > 0. In particular, the functions

9
(±)
k =


eikβ

√
4πk

e∓ikφ φ < 0,

eikβ

√
4πk

(
z0

2

)∓ν
0(1± ν)J±ν(z) φ > 0 ,

(11)

wherez0 = λs
√
3 and0 is the Euler function, provide orthonormal sets of solutions with

respect to the Klein–Gordon scalar product

(91, 92) = −i
∫

dβ 91(β, φ)
↔
∂ φ 9

2∗(β, φ) . (12)

We shall fix the boundary conditions by imposing that, forφ < 0, the universe is
represented by the wavefunction

9Ik(β, φ < 0) = 1√
4πk

eik(β−φ), (13)

corresponding to a state of growing dilaton and accelerated pre-big bang expansion from the
perturbative vacuum, with5β = −5φ = k > 0 according to (7). The eigenvaluek of 5β

parametrizes the initial state in the space of all classical configurations (7). Forφ > 0, the
wavefunction is uniquely determined by the matching conditions for9 and∂φ9 at φ = 0,
in terms of the functions (11), as

9IIk(β, φ > 0) = A+k 9(+)
k + A−k 9(−)

k , (14)

where

A±k =
iz0

2k

(
z0

2

)±ik

0(1∓ ik)

[
± J ′∓ik(z0)∓ ik

z0
J∓ik(z0)

]
(15)

(a prime denotes differentiation of the Bessel functions with respect to their argument).
Given a pure initial state9(+)

I of ‘positive frequency’k, the final state is thus a mixture
of ‘positive’ and ‘negative’ frequency modes,9(+)

II and9(−)
II , satisfying asymptotically the

conditions

lim
φ→∞

9
(±)
II (β, φ) = 9(±)

∞ (β, φ) ∼ eik(β∓φ),

5β9
(±)
∞ = −i∂β9

(±)
∞ = k9(±)

∞ , 5φ9
(±)
∞ = −i∂φ9

(±)
∞ = ∓5β9

(±)
∞ .

(16)

The mixing is determined by the coefficientsA±k , satisfying the standard Bogoliubov
normalization condition|A+k |2 − |A−k |2 = 1. In a second quantization context, it is well
known that such a mixing describes a process of pair production, see for instance [16],
the negative energy mode being associated to an antiparticle state of positive energy and
opposite spatial momentum. It thus seems correct to interpret the above splitting of the
WDW wavefunction, in a third quantization context [11], as the production of a pair of
universes, with quantum numbers{5β,5φ}, corresponding to positive energy (5φ < 0)
and opposite momentum along the spacelike directionβ. One of the two universes is
isotropically expanding (5β > 0), with growing dilaton; the ‘anti-universe’ is isotropically
contracting (5β < 0), with decreasing dilaton. Both configurations evolve towards the
curvature singularity of the classical pre-big bang solution (8). However, while the growing
dilaton state corresponds to a continuous classical evolution from the perturbative vacuum,
no smooth connection to such vacuum is possible, classically, for the state with decreasing
dilaton.
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It is important to stress that, as long asV = V (φ) and, consequently,5β is conserved,
a third-quantized production of universes is only possible provided we assign the role of
timelike coordinate toφ, and the potential satisfiesV (φ)e−2φ → 0 for φ → +∞ (in order
to identify, asymptotically, positive and negative frequency modes). The pairs of universes
are produced in the limit of large positiveφ, so that we cannot describe in this context
a transition to post-big bang cosmological configurations, which are instead characterized
by φ < 0. A quantum description of the transition from pre- to post-big bang requires in
fact the interpretation ofβ as the timelike axis, as discussed in [7]. In that case, a third
quantized production of pairs becomes possible only if5β is not conserved, namely ifV
depends also onβ.

For the process considered in this letter, the probability is controlled by|A−k |2, which
determines the expectation value of the number of pairs of universes produced in the final
state. The production probability is negligible when|A−k | � 1; it has the typical probability
of a vacuum fluctuation effect when|A−k | ∼ |A+k | ∼ 1; finally, when |A−k | ∼ |A+k | � 1,
the initial wavefunction is parametrically amplified [17] and the probability is large. In
our case, the interesting parameter characterizing the process, besides3, is the portion of
proper spatial volume� = ad ∫ ddx undergoing the transition. Considering, in particular,
d = 3 spatial dimensions, and using the definitions ofk and φ, the initial momentumk
can be conveniently expressed ask = √3�sg−2

s λ
−3
s , wheregs = exp(φs/2) and�s are,

respectively, the value of the coupling and of the proper spatial volume evaluated at the
string scalet = ts , whenH ≡ β̇/

√
3 = λ−1

s . By exploiting the properties of the Bessel
functions, we can then express the asymptotic limits of the Bogoliubov coefficients (15) in
terms of the physical parameters�s and3. We obtain, at fixed�s/(g2

s λ
3
s ) = 1,

|A+|2− 1' |A−|2 ' 1
483

2 λ4
s , 3� λ−2

s , (17)

|A+|2 ' |A−|2 '
√
3λ2

s

cosh(
√

3π)− sin(2
√
3λ2

s )

4
√

3 sinh(
√

3π)
, 3� λ−2

s , (18)

and, at fixed3λ2
s = 1,

|A+|2 ' |A−|2 ' g4
s λ

6
s

12�2
s

|J ′0(1)|2 , |J ′0(1)| ' 0.44, �s � g2
s λ

3
s (19)

(the limit �s � g2
s λ

3
s cannot be performed because the quantum process is confined to the

region of largeφ).
The quantum production of universes in a state with non-vanishing cosmological

constant3 is thus strongly suppressed for small values of3, while it is favoured in
the opposite limit of large3 and of proper volumes that are small in string units, in
qualitative agreement with previous results [7], and also with the general approach to
quantum cosmology based on tunnelling boundary conditions [4, 5]. Instead of a ‘tunnelling
from nothing’, however, this quantum production of expanding and contracting universes
can be seen as an ‘anti-tunnelling from the string perturbative vacuum’ of the WDW
wavefunction. Indeed, the asymptotic expansion of the solution (13), (14),

φ→+∞, ψ ∼ Aine−ikφ + Aref eikφ,

φ→−∞, ψ ∼ Atre−ikφ,
(20)

describes formally a scattering process alongφ, in which the expanding universe corresponds
to the incident part of the wavefunction, the contracting anti-universe to the reflected part,
and the initial vacuum to the transmitted part. In the parametric amplification regime of
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(18) and (19), where|A+| ∼ |A−| � 1, the reflection coefficientR = |Aref |2/|Ain|2 is
approximately 1, and the Bogoliubov coefficient|A−|, which controls the probability of
pair production, becomes the inverse of the tunnelling coefficientT = |Atr |2/|Ain|2:

|A−|2 = |Aref |
2

|Atr |2 =
R

T
' 1

T
. (21)

In view of future applications, we have also computed numerically the Bogoliubov
coefficientsA± by discretizing the WDW equation with the explicit method [18], and using
the routine fast Fourier transform [19]. A computer simulation, in which the pair production
process is graphically represented by the scattering and reflection of an initial wavepacket,
has given results in complete agreement with the analytic computation (15).

In conclusion, we have shown in this letter that it is not impossible, in a quantum
cosmology context, to nucleate universes in a state characterized by isotropic contraction
and decreasing dilaton. The process can be described as the production from the vacuum of
universe–anti-universe pairs in the strong coupling regime, triggered by the presence of an
effective cosmological constant. WhenV = V (φ) and5β is conserved, the pair-production
process requires the identification ofφ as the timelike coordinate in minisuperspace, while
the transition from pre- to post-big bang configurations requires the complementary choice
of β as the timelike axis.

The validity of our analysis is limited by the very crude approximation (the step
potential) adopted to model the time evolution of the non-perturbative dilaton potential.
Also, an appropriate potential should depend onφ (not on φ as assumed in this letter);
in that case, however, the transition from expansion to contraction may also be allowed
classically (in an appropriate limit), and is represented in minisuperspace as a reflection
[20] (instead of an anti-tunnelling) of the wavefunction. In spite of these limitations, the
analysis of this letter confirms that the WDW approach provides an adequate framework
for a consistent formulation of quantum string cosmology, with the boundary conditions
uniquely prescribed by the choice of the initial perturbative vacuum.

We are grateful to Vittorio de Alfaro and Roberto Ricci for discussions and clarifying
comments. Special thanks are due to Gabriele Veneziano for a careful reading of the
manuscript and for helpful suggestions.
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