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I. INTRODUCTION

There is no reason to assume, and in general it is plainly false, that general relativity still pro-

vides a consistent kinematical and dynamical theory of spacetime once the matter fields inhabiting

the spacetime are no longer standard model fields. The simple reason for this is that the gravita-

tional dynamics must yield spacetime geometries to which the matter theories at hand can couple

without violating elementary physical principles. Indeed, even comparatively innocent-looking de-

viations from the dynamics of standard model matter require an entirely new kinematical and

dynamical theory of the underlying spacetime.

For instance, assume a phenomenologist discovers that some observed spinorial matter field Ψ

must be described by a classical field equation of motion of the form, say

(iγa +W a)DaΨ = 0 ,

which employs a geometric background that features a vector field W in addition to a metric

tensor field g (suitably restricted such that the spacetime Dirac matrices γ and the spin covariant

derivative D appearing in the field equation can be constructed). At first sight, such a modification

of the Dirac equation indeed seems innocent enough for one to be tempted to stipulate that the

dynamics governing the background be still provided by Einstein’s gravitational field equations

for g and maybe some abelian gauge field dynamics for the vector field W . However, we will see

that this particular choice of gravitational dynamics would have solutions that render the above

matter theory either non-predictive (thus not even classically acceptable), non-quantizable, or both.

With predictivity being an unconditional feature of any classical matter theory and quantizability

ensuring relevance beyond the classical domain, this result is clearly unacceptable. One may thus

either reject the above matter field dynamics as unphysical, or, if our phenomenologist insists

that this equation describes observable fundamental matter, we must instead provide another

gravity theory whose solutions render the matter theory predictive and quantizable. Are there

such gravitational dynamics that can underpin the viciously modified Dirac equation above?

This question has an intriguing—and even constructive—answer. Not only for the above exam-

ple, but indeed for any specific linear matter dynamics, one can derive the complete kinematical

and dynamical contents of the underpinning gravity theory directly from the matter field equations

it is supposed to carry; for the technical derivation see [1, 2]. The only construction principle is

that the resulting gravitational kinematics and dynamics must render the assumed matter field

equations both predictive and quantizable; everything else follows from mathematical theorems.
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Showing that these two basic assumptions already completely fix the kinematics—such as the

distinction of initial data surfaces, the construction of observer frames and thus the interpretation

of matter field components, massive and massless dispersion relations, the duality maps associating

momenta and velocities for massive and massless particles, and so forth—requires the employment

of an intricate interplay of real algebraic geometry, convex analysis and the theory of partial

differential equations [3]. The central result is that in order to enable predictivity, the principal

polynomial of the matter field equations must be hyperbolic, and in order to enable quantizability,

the associated dual polynomial must be hyperbolic as well. This bi-hyperbolicity imposes so severe

a constraint on the coefficients featuring in the matter field equations that the above kinematical

constructions are uniquely fixed.

With the kinematical structure of the theory determined, the coefficients featuring in the matter

field equations must then follow dynamics whose initial-value formulation is commensurate with the

kinematically determined projection of the spacetime geometry to initial data surfaces. In other

words, the dynamics must be such that it evolves geometric initial data between hypersurfaces

that also serve as initial data surfaces for the given matter field equations. Casting this idea into

tractable mathematical form, one proceeds principally along the same lines that were laid out four

decades ago by geometrodynamicists [4, 5], but with the technical scope vastly extended to any

bi-hyperbolic spacetime geometry. The final result of this effort, derived in [2] and explained in

great conceptual and technical detail in [6], are the master equations reproduced on page 10 of the

present paper. The master equations are a set of linear homogeneous partial differential equations,

whose coefficients are constructed directly from the coefficients featuring in the specified matter

field equations and whose solution provides (the collection of coefficients of a series expansion of)

the gravitational Lagrangian.

The present paper is concerned with cutting away the heavy technical baggage that comes with

the derivation of the above results, and instead manages to condense their practical implications

into an easily executable recipe, by which one constructs the master equations from any given

linear matter field dynamics in eight easy steps. The relevance of the such constructed master

equations is that

A solution to the master equations is

a gravity theory that can carry the specified matter dynamics.

Thus the master equations must be practically solved, in a ninth step, in order to obtain a concrete

gravitational Lagrangian. In cases where such a solution of the master equations is difficult to
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obtain, one may inject at this stage, as a tenth step, additional physical assumptions such as energy

conditions on the matter or (compact) symmetry assumptions on the spacetime geometry in order

to simplify the master equations. Such additional assumptions, however, are not fundamentally

needed and the master equations are already uniquely determined without them. Any additional

assumptions beyond predictivity and quantizability only serve as a possibly convenient means to

the end of extracting information from the full master equations, for specific physical situations

where the master equations simplify to a more tractable form.

Two completely worked case studies—namely the comparatively simple derivativation of the

Einstein-Hilbert Lagrangian as the unique solution to the master equations determined by Maxwell

electrodynamics in section III, on the one hand, and the more involved derivation of the gravita-

tional dynamics that underlie some prototypical non-standard model matter dynamics in section

IV on the other hand—present illustrations of the general ten-step procedure described in section

II. These case studies are indeed illustrate both the technicalities of the recipe and its significance

in three respects. First, they are an instance of the rule that an example sometimes says more than

a thousand words; having worked through the two case studies, the reader will have no difficulty in

applying the recipe to the matter model of his interest. Secondly, the first case study reveals that

the complete kinematics and dynamics of general relativity are simply a consequence of having

predictive and quantizable Maxwell (or other standard model) matter dynamics, while the second

case study presents an explicit example of non-standard model matter dynamics that are rendered

predictive and quantizable only if the underlying gravity is the one derived according to the recipe

summarized in this paper.

The revelance of the simple procedure described and illustrated in this paper—namely for deriv-

ing gravitational Lagrangians directly from the dynamics of matter populating the spacetime—of

course lies beyond the two specific examples provided here. For it allows to derive a suitable gravity

theory for any matter theory that one may be prompted to consider for phenomenological or the-

oretical reasons. But this possibility immediately implies an imperative: gravitational kinematics

and dynamics must never be postulated, since unless they accidentally coincide with the results

of the procedure described in this paper, any such postulates would generically be in contradic-

tion to the quantizability of the matter equations the resulting spacetime geometries must carry.

That, conversely, the gravity can instead be fully and quite easily constructed from this consistency

postulate is, of course, very good news.
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II. PRACTICAL GUIDE TO THE DERIVATION OF GRAVITY ACTIONS

The following ten-step procedure provides the simple practical recipe for the construction of

canonical gravitational dynamics from any previously specified quantizable classical matter dy-

namics. These rules follow from the results obtained in [1] and [2] and can be laid down without

any recourse to the heavy technical machinery that was needed for their derivation. To see the

abstract rules at work, the reader finds an illustration for each of the steps described here in the

two completely worked case studies provided in sections III and IV.

Step 1. Specify test matter dynamics: Provide classical dynamics for a ‘matter’ field Φ (or

a collection of such) on a smooth manifold M , by specifying partial differential equations

of motion whose coefficients are completely determined by some ‘geometry’ (described by a

tensor field G of a priori arbitrary type, or a collection of such), wherein the matter field Φ

takes values in some representation vector space V of the general linear group GL(dimM,R)

(or that of a group defined with recourse to G, see the second case study). Irrespective of

any chosen type of matter field or geometry, general coordinate covariance of the matter field

equations can be ensured by deriving them from a scalar action functional

Smatter[Φ, G]

by way of variation with respect to the matter field, which will result in field equations valued

in the dual space V ∗.

Test matter, in particular, is defined by any equation of motion (i) which is linear in the

matter field, i.e., takes the form

N∑

n=0

Qa1...an
AB ∂a1 · · · ∂anΦB = 0 ,

where A,B = 1, . . . ,dimV and ΦA are the components of the matter field with respect to

some basis of the representation space V—where the linearity ensures that every solution

can be scaled to arbitrarily small amplitudes in order to reduce back-reaction below any

desired bound—and (ii) whose coefficients Qa1...aN
AB of the highest order derivative term are

a function of the geometric tensor field G (but not of any of its derivatives)—which ensures

that the causal structure of the matter field dynamics is encoded in the spacetime geometry

at each point, see the next step.
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Step 2. Calculate the principal tensor field: If the matter field equations feature no gauge

ambiguity—meaning that all components of the tensor field Φ are uniquely determined by a

solution of the field equations—then the principal tensor associated with these field equations

is the totally symmetric contravariant tensor field which is constructed from the highest order

coefficients Qa1...aN of the N -th order field equations by virtue of letting

P (k) := ±ω det
A,B

[
Qa1...aN
AB ka1 · · · kaN

]
(cancel repeated factors)

for every covector field k, and where the instruction to cancel repeated factors refers to not

further reducible factors whose product P(1)(k) · · ·P(f)(k) = P (k). If the field equations do

contain a gauge ambiguity, first fix the latter by either imposing an explicit gauge condition

or transferring to gauge-independent variables. The rank of the totally symmetric tensor P

that results from polarization from the above definition will appear explicitly in a number

of places and be denoted degP throughout. The above construction of the principal tensor

is unique up to choice of a scalar density ω of the appropriate weight in order to render the

P a tensor and an overall sign ± to be chosen later. The choice of density amounts to a

choice of volume on the spacetime and would have been used already in the formulation of

the matter action if the field equations have been derived from such.

Step 3. Calculate the dual tensor field: Let P(1), . . . , P(f) be the mutually distinct irre-

ducible factors (i.e., tensors that themselves cannot be written as the tensor product of

two tensors of non-vanishing rank) of the principal tensor field P and consider for each such

P(i) the map DP(i) that maps every covector field k with P(i)(k) = 0 to the vector field with

components

(DP(i)(k))
a := (degP(i))P

a a2...adeg P(i)

(i) ka2 . . . kaN ,

where degP(i) denotes the rank of the irreducible factor field P(i). The field P#
(i) dual to

the factor field P(i) is then the totally symmetric contravariant tensor field of lowest rank

degP#
(i) (which may differ from degP(i)) defined by the condition to vanish precisely on the

images of the P(i)-null covectors,

P#
(i)(DP(i)(k)) = 0 precisely for all k with P(i)(k) = 0 .

The dual tensor field is then defined as the product of the duals of all the irreducible factors,

P#(X) := P#
(1)(X) · · ·P#

(f)(X)
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for all vector fields X, and thus satisfies the duality condition P#(DP (k)) = 0 for all k

that are P -null. The dual tensor always exists (if the tensor field P is hyperbolic, see the

next step) and can be constructively obtained by Buchberger’s algorithm [7], which however

quickly becomes expensive with increasing rank degP of the principal tensor field.

Step 4. Restrict to bi-hyperbolic geometries: A necessary condition for the matter equa-

tions of motion to be predictive is that the principal tensor field P is hyperbolic [8]. This

amounts to the simple algebraic condition that there exists an covector field h such that (i)

P (h) is an everywhere non-vanishing function and (ii) for every covector field q the equation

P (h+ λq) = 0

admits only everywhere real-valued functions λ as solutions. Any covector field h with this

property is called a hyperbolic covector field.

A necessary condition that the matter equations be canonically quantizable is that the dual

tensor field P# is hyperbolic [3], where hyperbolicity is defined exactly as above, but now

with vector fields H and Q taking the role previously played by the covectors fields h and

q. Any vector field with that property is called a hyperbolic vector field. The overall sign of

P can then always be chosen such that every hyperbolic covector field h is P -positive, i.e.,

P (h) > 0, and we choose to impose this sign convention for definiteness.

Since both the principal and the dual tensor field are defined in terms of the tensor field G

providing the spacetime geometry, the hyperbolicity of the former two tensor fields imposes

corresponding algebraic conditions on the latter, which immediately exclude certain algebraic

classes of geometries.

Step 5. Determine the geometric degrees of freedom: While suitable initial data surfaces

do not need to be constructed explicitly in order to derive the gravitational dynamics, we

assume that such an embedded initial data surface has been chosen and gives rise to linearly

independent vector fields e1, . . . , edimM−1 along the hypersurface that are tangent to it as

well as a covector field n along the hypersurface that annihilates each of the said tangent

vector fields and that is hyperbolic (see the previous step) and normalized in the sense that

P (n) = 1.

Then bases for all spacetime tangent and cotangent spaces along the initial data hypersurface
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X(Σ) are provided by

e0 :=
DP (n)

degP
, e1, . . . , edimM−1 and ǫ0 := n, ǫ1, . . . , ǫdimM−1 ,

respectively, satisfying the usual duality condition ǫa(eb) = δab . Note that the principal

tensor field P thus enters explicitly into the definition of e0 and thus implicitly into that of

the ǫ1, . . . , ǫdimM−1.

Now consider a collection of hypersurface fields GÂ, where the hatted index Â runs over all

hypersurface index combinations that are required to reconstruct the geometric tensor field

G everywhere along the initial data hypersurface from the GÂ and the above-listed bases.

For instance, if G is a (1, 1)-tensor field, then

G = G(ǫa, eb) ea ⊗ ǫb

= G(ǫ0, e0)︸ ︷︷ ︸
=:G0

0

e0 ⊗ ǫ0 +G(ǫ0, eβ)︸ ︷︷ ︸
=:G0

β

e0 ⊗ ǫβ +G(ǫα, e0)︸ ︷︷ ︸
=:Gα

0

eα ⊗ ǫ0 +G(ǫα, eβ)︸ ︷︷ ︸
=:Gα

β

eα ⊗ ǫβ

and thus GÂ = (G0
0, G

0
β, G

α
0, G

α
β) consists of one hypersurface scalar, one hypersurface

covector, one hypersurface vector and one hypersurface endomorphism field. The hatted

index Â would thus range, in this case, over the values

Â ∈
{
0
0 ,

0
β ,

α
0 ,

α
β

}
.

For any other valence of the geometric tensor field G, one proceeds in exactly analogous

fashion.

But now since the hypersurface fields GÂ determine the geometric tensor field G, which

in turn determines the principal tensor field P , the above duality conditions between the

tangent and cotangent space bases amount to precisely dimM conditions

P (ǫ0) = 1 and L(ǫ0)(ǫα) = 0

relating the hypersurface fields GÂ.

Thus only an unconstrained subset GA (for a suitable range of the unhatted index A) of the

above hypersurface fields ĜÂ, whose choice automatically implements the above conditions,

presents independent geometric degrees of freedom (see, for instance, the first case study).

However, in some cases it may be convenient or even necessary to make suitable field redefi-

nitions at this point in order to find a workable set of unconstrained degrees of freedom (see,

for instance, our second case study).
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Step 6. Calculate the coefficients of the master equations: For each independent geomet-

ric hypersurface field GA that has been obtained directly by projection of the spacetime

geometry G as described in the previous step, construct the coefficient functions

MAγ :=





for each G...0...
... include a summand −G...γ...

...

for each G...
...0... include a summand −(degP−1)G...

...α...P
αγ

for each G...α...
... include a summand (degP−1)G...0...

...P
αγ

for each G...
...α... include a summand −G...

...0...δ
γ
α

where the dots represent indices that are kept unchanged, and similarly,

UAρχ :=





for each G...α...
... include a summand −PχαG...ρ...

...

for each G...
...α... include a summand PχξδραG...

...ξ...

as well as

V Aχ := Pχξ∂ξG
A +





for each G...α...
... include a summand Pχα∂λG

...λ...
...

for each G...
...α... include a summand −Pχλ∂αG

...
...λ...

Note that in case some field redefinitions have been performed after projecting the spacetime

geometry G to the hypersurface, the redefined fields will be some function of the originial

projections, and in this case, the coefficients MAγ , UAρχ and V Aχ associated with the

redefined fields are to be calculated from the respective coefficients associated with the

original projected fields by virtue of product and chain rules (for an illustration, see the

second case study).

Finally, in terms of the above coefficient functions calculate

QA
B γ := −∂MB γ

∂ĜA
,

TA [µν] := −QB
A [µM |B| ν] + UA [µν] ,

SAγ := ∂βQ
A(β|

B MB|γ) −Q
A[β|

B ∂βM
B|γ] − ∂βU

A (βγ) − V Aγ ,

which completes the calculation of all coefficients needed to set up the master equations.

Step 7: Set up the master equations: The coefficient functions calculated in Step 6 already

completely determine the gravitational master equations displayed on the next page. The

master equations are equations for the weight-one tensor densities

C = C(GA, ∂GA, ∂∂GA, ∂∂∂GA) and CB1...BN
= CB1...BN

(GA, ∂GA, ∂∂GA) ,

to which we will refer as the ‘scalar potential’ and the ‘tensor potentials’, respectively.
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MASTER EQUATIONS DETERMINING THE GRAVITATIONAL LAGRANGIAN

for the weight-one tensor densities C = (ĜA, ∂ĜA, ∂∂ĜA, ∂∂∂ĜA) and CB1...BN≥1
= (ĜA, ∂ĜA, ∂∂ĜA) are the

SIX EQUATIONS

(1) 0 =
∂CB1

∂ ∂2
(β1β2|

ĜA
MA |β3) + ∂C

∂ ∂3
β1β2β3

ĜB1

(2) 0 = 2CAB1U
A (αβ) − ∂CB1

∂∂(β|Ĝ
A
MA |α) − 2

∂CB1

∂∂2
(β|γ

ĜA
∂γM

A |α) + ∂C

∂∂2
αβ

ĜBN
− 3 ∂γ

∂C

∂ ∂3
αβγ

ĜB1

(3) 0 = 2CAB1(S
Aα + 2 ∂µT

A [µα]) + 2 ∂µCAB1T
A [µα] − QB1

M α CM +
CB1

∂ĜA
MAα +

∂CB1

∂∂γ ĜA
∂γM

Aα +
∂CB1

∂∂2
γδ

ĜA
∂2
γδM

Aα + ∂C

∂∂αĜB1
− 2 ∂γ

∂C

∂∂2
αγĜ

B1
+ 3 ∂2

βγ
∂C

∂ ∂3
αβγ

ĜB1

(4) 0 = 2∂µ(CAU
A (βµ)) + 2CAS

Aβ + 2∂νCAT
A [νβ] + 2 ∂C

∂ĜA
MAβ + 2 ∂C

∂∂µĜA
∂µM

Aβ + 2 ∂C

∂∂2
µνĜ

A
∂2
µνM

Aβ + 2 ∂C

∂∂3
µνρĜ

A
∂2
µνρM

Aβ

−∂µ

(
2 ∂C

∂∂(µ|Ĝ
A
MA |β) + 4 ∂C

∂∂2
(µ|ν

ĜA
∂νM

A |β) + 6 ∂C

∂∂3
(µ|νρ

ĜA
∂2
νρM

A |β)

)
+ ∂2

µν

(
3 ∂C

∂ ∂2
(µν|

ĜA
MA |β) + 9 ∂C

∂ ∂2
(µν|ρ

ĜA
∂ρM

A |β)

)
− 4∂3

µνρ

(
∂C

∂ ∂3
(µνρ|

ĜA
MA |β)

)

(5) 0 = ∂α

(
∂C

∂ ∂2
(β1|α

ĜA
MA |β2) + 4 ∂C

∂ ∂3
(β1 |αγ

ĜA
∂γM

A |β2) − 2∂δ

{
∂C

∂ ∂3
αδ(β1

ĜA
MA |β2)

})

(6) 0 = 2 ∂C

∂ ∂2
(β1β2|

ĜA
MA |β3) + 6 ∂C

∂ ∂3
(β1β2|γ

ĜA
∂γM

A |β3) − 4 ∂γ

(
∂C

∂ ∂3
(β1β2|γ

ĜA
MA |β3)

)

FIVE SEQUENCES (N ≥ 2)

(7N ) 0 =
∂CB1...BN

∂∂2
(αβ|

ĜA
MA |γ)

(8N ) 0 = CAB1...BN
TA [µν]

(9N ) 0 =
∂C

B1...B̃i...BN

∂∂2
µν Ĝ

Ba
− ∂CB1......BN−1

∂∂2
µν Ĝ

BN

(10N ) 0 = (N + 1)!CAB1...BN
UA (αβ) −N !

∂CB1...BN

∂∂(β|Ĝ
A

MA |α) − 2N !
∂CB1...BN

∂∂2
(β|γ

ĜA
∂γM

A |α) − (N − 2)(N − 1)!
∂CB1...BN−1

∂∂2
αβ

GBN

(11N ) 0 = (N + 1)!CAB1...BN
(SAα + 2 ∂µT

A [µα]) + (N + 1)! ∂µCAB1...BN
TA [µα] −NN !Q(B1

M α CB2...BN )M

+N !
CB1...BN

∂ĜA
MAα +N !

∂CB1...BN

∂∂γ ĜA
∂γM

Aα +N !
∂CB1...BN

∂∂2
γδ

ĜA
∂2
γδM

Aα + (N − 1)!
∑N

a=1

∂C
B1...B̃a...BN

∂∂αĜBa
− 2(N − 1)!∂γ

∂CB1...BN−1

∂∂2
αγĜ

BN

whose coefficient functions UAµν , V Aγ ,MAγ , QA
Bγ , TAµν and SAγ are determined by the matter action S[Φ, G], according to Steps 1 to 6.
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The significance of these potentials is that they completely define the gravitational La-

grangian density

L[G](K) =

∞∑

N=0

CB1...BN
[G]KB1 . . . KBN

in terms of the geometric hypersurface fields GA and their velocities KA, such that the

Euler-Lagrange equations for the geometry are

∂

∂t

(
∂L(z)

∂KA(z)

)
=

∫

Σ
dx

[
N(x)

δL(x)

δGA(z)

]
+ L ~N

(
∂L(z)

∂KB(z)

)
+ ∂β

(
N(z)QA

B β(z)
) δL(z)

δKB(z)
,

where the integral is over the hypersurface, supplemented by the kinematical relation

ĠA(z) = N(z)KA(z) + ∂γN(z)MAγ(z) + L ~NG
A(z) ,

where N is a freely specifiable lapse function and ~N is a freely specifiable shift vector field

on the initial data hypersurface. Note that while the scalar density C may depend on up to

third derivatives of the geometric tensor fields, the tensor densities CB1...BN
depend on at

most second derivatives.

Step 8. Supplement the master equations with covariance equations: In order to find

the scalar and tensor potentials satisfying the master equations, it is immensely useful to

enforce the tensor-densital character of these objects by adding further linear homogeneous

partial differential equations. As it will turn out, the appropriate partial differential equa-

tions contain terms that also appear in the master equations and may thus be used to great

advantage. Most importantly these additonal equations will relieve us from having to worry

about the tensor-densital character of the potentials when solving the master equations,

since the enforcement of the corresponding transformation behaviour of the potentials under

coordinate transformations will be taken care of precisely by these covariance equations.

The form of the covariance equations heavily depends on the index structure of the inde-

pendent geometric tensor fields GA, and hence must be derived on a case by case basis.

Conceptually, their derivation is straightforward. The key idea [9] is to start from the re-

quired transformation behaviour of some particular hypersurface field and to derive it with

respect to the highest (and then second highest, and so on, down to the zeroth) derivative

of the Jacobian of an arbitary coordinate transformation, all to be evaluated at the identity

transformation. The resulting linear homogeneous differential equations for the hypersur-

face field then encode the postulated transformation behaviour. This procedure is most

transparently explained by way of a simple example, which is given in Appendix A.
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The partial differential equations encoding the tensor-densital character of the scalar and

tensor potentials are derived in precisely analogous fashion to the example given in the

appendix, namely starting from the algebraic covariance equation for the scalar potential

C(TAMGM , ∂(TAMGM ), ∂∂(TAMGM ), ∂∂∂(TAMGM )) = det(T )C(GA, ∂GA, ∂∂GA, ∂∂∂GA) ,

where TAM denotes the representation of the Jacobian as it acts on the geometric fields GM ,

and the algebraic covariance equations for the tensor potentials

CB1...BN
(TAMGM , ∂(TAMGM ), ∂∂(TAMGM )) = det(T )TC1

B1
. . . TCN

BN
CC1...CN

(GA, ∂GA, ∂∂GA) ,

by calculation of the derivatives of the above algebraic covariance equations for the potentials

with respect to all appearing orders of derivatives of the Jacobian. There are four sets of

covariance equations for the scalar potential C (since this field depends on up to the third

derivative ofG) and three sets of covariance equations for the tensor potentials CB1...BN
(since

these all depend on at most the second derivative of G). The combined system of differential

equations provided by these covariance equations together with the master equations then

automatically selects all solutions that are tensor densities of weight one.

Step 9. Solve the master and covariance equations: The problem of finding gravitational

dynamics for the coefficients of the matter equations we started from amounts to nothing

more, but also nothing less, than finding solutions to the master equations combined with

the covariance equations for the potentials C and CB1...BN
. Indeed, the physical question of

whether there exist any gravitational dynamics at all which do not contradict the predictivity

and quantizability of the specified matter equations reduces to the mathematical question of

existence of solutions to the said linear homogeneous system of partial differential equations;

likewise, the physical question of whether there are several such gravity theories reduces to

the mathematical question of the uniqueness of solutions; finally the most interesting physical

question, namely what the precise form of suitable gravitational dynamics are, reduces to

the mathematical problem of finding a concrete solution.

Our first case study shows that the master equations following from Maxwell electrody-

namics feature as their unique solution the Einstein-Hilbert Lagrangian with undetermined

gravitational and cosmological constants emerging as integration constants. The second case

study then shows that other (non-standard model) matter requires a different gravitational

theory.
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Step 10. Impose judicious choices of energy conditions and symmetry reductions: Be-

yond the physically non-negotiable conditions that the matter equations be predictive and

quantizable, one may impose further conditions on the matter dynamics, such as (strong,

dominant, . . . ) energy conditions on the Gotay-Marsden energy-momentum tensor density

T ab := JA a
b
δSmatter

δGA
,

where A stands for the indices carried by the spacetime geometric tensor G and the inter-

twiners JA a
b are read off the Lie derivative

(LξG)A = JA
b ξ

b + JA a
b ξ

a
,b

for an arbitrary spacetime vector field ξ. While such additional conditions can have no

bearing on the above form of the master equations (since the latter follow already from the

predictivity and quantizability of the matter dynamics), they may serve to further restrict

the geometric degrees of freedom, and thus reduce the equations correspondingly.

Another strategy to simplify the master and covariance equations is to derive actions for

spacetimes (M,G) with Killing vector fields K1, . . . ,Kn,

(LKi
G)A = 0 for i = 1, . . . , n ,

whose algebra [Ki,Kj ] = fkijKk gives rise to a negative definite Killing form

Kij := fmnif
n
mj ,

since in that case the corresponding symmetry group is compact, which suffices [10] to

ensures that the symmetry-reduced action yields the same equations of motion as would

have been obtained by a symmetry-reduction of the field equations following from the full,

not symmetry-reduced action.. Thus this strategy works for, e.g., spherical symmetry, but

unfortunately not for homogeneous and isotropic spacetimes modelling simple cosmologies.

With the above procedure to derive gravitational actions from specified matter actions in place,

we turn to two concrete case studies in order to illustrate its application in vivo.
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III. FIRST CASE STUDY:

GRAVITY UNDERLYING MAXWELL THEORY

The following application of the practical rules laid down in the previous section, to the case of

Maxwell theory as the prescribed matter inhabiting the spacetime, serves as a warm-up exercise to

the more ambitious case study presented in the next section. But since the result is the standard

textbook Einstein-Hilbert action, with only the gravitational and cosmological constant left to be

determined by experiment, this simplest possible case already illustrates the power of the master

equations.

Step 1. Test matter: On a smooth four-dimensional manifold M , we consider matter described

by a covector field A obeying dynamics encoded in the Maxwell action

SMaxwell[A, g] := −1

4

∫
d4xdet(g)−1/2gacgbdFabFcd ,

where some non-degenerate symmetric (2, 0)-tensor field g, employed to construct a scalar

density from the field strength F = dA, provides an additional structure onM . Following the

philosophy of this article, we make no further a priori assumptions about this tensor field g,

neither technically nor concrning its physical role, since all physically required properties can

be derived and thus must not be stipulated. According to the general parlance agreed upon

in Step 1 of the general recipe, we refer to g as the ‘geometry’ on M , but without meaning

anything more by this than that the geometry completely determines the coefficients of the

matter field equations, as is manifest from the above action.

Step 2. Principal tensor field: The field equations for the covector field A one derives from

the above action features a gauge ambiguity that we choose to fix by imposing the gauge

∂a(det(g)
−1/2gabAb) = 0 ,

which yields the gauge-fixed equations of motion

0 = det(g)1/2gcd∂a1

[
det(g)−1/2ga1a2∂a2Ad

]
= gcdga1a2∂a1∂a2Ad + lower derivative terms .

From the coefficient of the highest derivative term one reads off the principal tensor

P (k) = ±ω det
c,d

[
gcdga1a2ka1ka2

]
= ±ω det(g) (ga1a2ka1ka2)

4 ,

which is de-densitized by letting ω = det(g)−1, and upon removal of repeated factors simply

becomes

P (k) = ±ga1a2ka1ka2 .
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Step 3. Dual tensor field: Since the principal tensor field is irreducible, we only need to con-

sider one map

(DP (k))a := ±2gamkm

and observe that

P#(X) := gb1b2X
b1Xb2

satisfies the duality requirement for any covector k with P (k) = 0,

P#(DP (k)) = 4gb1b2g
b1mgb2nkmkn = 4gmnkmkn = 4P (k) = 0 .

Obviously, multiplying the above-defined dual tensor field with a real function on the mani-

foldM again provides a dual tensor field. This is of course a generic feature of the dual tensor,

independent of the case presently studied, and all further constructions are independent of

this ambiguity.

Step 4. Bi-hyperbolicity: The principal tensor field P is easily shown to be hyperbolic and

to satisfy the sign convention if and only if the (2, 0)-tensor g has Lorentzian signature

(+− · · · −).

This can be seen as follows. If P is hyperbolic, then there exists a hyperbolic h with P (h) > 0,

so that the equation

P (q + λh) = λ2gabhahb + 2λgabhaqb + gabqaqb = 0

has only real roots λ. But then the discriminant (gabhaqb)
2− gabhahbg

cdqcqd of this equation

is positive. Choosing a cotangent basis with ǫ0 := h such that gabǫ0aǫ
α
b = 0, one sees that

gabǫ0aǫ
0
b > 0 and can further write the discriminant as qαqβg

abǫαa ǫ
β
b < 0 for all qα, which proves

that gab has mainly minus Lorentzian signature. Conversely, if g is of the said signature, it

is immediate that P is hyperbolic, as one quickly sees in any g-orthonormal cotangent basis.

Hyperbolicity of the dual tensor field is automatic in this case, since a metric has the same

signature as its inverse.

Step 5. Geometric degrees of freedom: We assume to be given a hypersurface in M with

an everywhere hyperbolic covector field n normalized to P (n) = 1 that annihilates any of
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three linearly independent tangent vector fields e1, e2, e3, such that we construct complete

spacetime tangent and co-tangent space bases

ea0 := gabnb, e1, e2, e3 and ǫ0 := n, ǫ1, ǫ2, ǫ3

dual to each other, giving rise to independent geometric hypersurface tensor fields

g00 := g(ǫ0, ǫ0), g0α := g(ǫ0, ǫα), gαβ = g(ǫα, ǫβ)

for α, β = 1, 2, 3, which by the normalization and annihilation properties are however con-

strained by g00 = 1 and g0α = 0, so that we identify as the independent geometric degrees

of freedom the symmetric non-degenerate hypersurface tensor field

GA := (gαβ) .

Step 6. Coefficients: According to the general rules, one calculates the coefficients

Mα1α2 γ = g0α2Pα1γ + gα10Pα2γ = 0 ,

Uα1α2 ρχ = −Pχα1gρα2 − Pχα2gα1ρ = −2gχ(α1gα2)ρ ,

V α1α2 χ = Pχλ∂λg
α1α2 + Pχα1∂λg

λα2 + Pχα2∂λg
α1λ = gχλ∂λg

α1α2 + 2gχ(α1∂λg
α2)λ

and thus obtains the further coefficients

Qα1α2
β1β2 γ = 0 ,

Tα1α2 [µν] = −2g[ν|(α1gα2)|µ] = 0 ,

Sα1α2 γ = −gγλ∂λg
α1α2 + 2∂λg

γ(α1gα2)λ .

Step 7. Master equations: With the coefficients calculated above, the first master equation

takes the form

∂C

∂∂β1β2β3g
α1α2

= 0 ,

so that we immediately learn that, in the present case, even the scalar potential C depends

only on g, ∂g and ∂∂g, but not the third derivative ∂∂∂g. Further, the master equations (5)

and (6) are identically satisfied, and so are the two sequences of master equations (7N ) and

(8N ) for all N ≥ 1. The remaining equations are
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(4’) 0 = 2∂µ(CAU
A (βµ)) + 2CAS

Aβ ,

(9′N ) 0 =
∂C

B1...B̃i...BN

∂∂2µνG
Bi

− ∂CB1......BN−1

∂∂2µνG
BN

with the index B̃i removed for i = 1, . . . , N ,

(10′N ) 0 = (N + 1)!CAB1...BN
UA (αβ) − (N − 2)(N − 1)!

∂CB1...BN−1

∂∂2
αβ
GBN

,

(11′N ) 0 = (N + 1)!CAB1...BN
SAα + (N − 1)!

∑N
a=1

∂C
B1...B̃a...BN

∂∂αĜBa
− 2(N − 1)!∂γ

∂CB1...BN−1

∂∂2αγĜ
BN

,

for N ≥ 1. Note that the master equations (2) and (3) are contained in the last two sequences

as the special case N = 1.

Step 8. Covariance equations: Since in the present case both the scalar and the tensor poten-

tials depend on at most second derivatives of the geometric hypersurface tensor field, the

covariance equations take the same form for all N ≥ 0, namely

(Cov2) 0 = gα(σ
∂CB1...BN

∂∂2
µν)

gαρ ,

(Cov1) 0 = 2 gα(µ
∂CB1...BN

∂∂ν)gαρ − ∂ρg
αβ ∂CB1...BN

∂∂2µνg
αβ + 4 ∂σg

α(µ ∂CB1...BN

∂∂2
ν)σ

gαρ ,

which are obtained from deriving the algebraic transformation law for the weight-one tensor

densities CB1...BN
for N ≥ 0 with respect to the second and first derivatives of the Jacobian

of a coordinate transformation. The third covariance equation (Cov0) is not displayed since

in the present case it is not required for a solution of the master equations.

Step 9. Solution of the master and covariance equations: Now we can solve the master

equations step by step. First, we observe that equation (10′N ) for N = 2 simply reads

0 = Cρσα1β1α2β2U
ρσ µν ,

which may be solved to yield Cρσα1β1α2β2 = 0. Inserting this result back into equation (10′N ),

first for N = 4 and then repeating the procedure for all even N , we see that all potentials

with an odd number of index pairs already vanish, except for the first one, Cαβ. For our

next conclusion, we temporarily change variables in favour of the metric gαβ . Changing the

partial deriviatives of gαβ accordingly, the covariance equation (Cov2) becomes

0 =
∂Cα1β1...αNβN

∂gα(β,γδ)
,

where we denote partial derivatives by a comma. Moreover, the divergence term in equation

(11′N ) implies

0 =
∂2Cα1β1...αNβN

∂gαβ,(µν| ∂gρσ,|γ)δ
.
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But the last two equations already yield

0 =
∂2Cα1β1...αNβN

∂gαβ,µν ∂gρσ,γδ
(without symmetrization) ,

implying that all remaining potentials Cα1β1...αNβN can only depend at most linearly on

the second derivatives of the field gαβ and similarly of gαβ . Since, in particular, the scalar

potential C depends only linearly on the second derivatives of gαβ , we conclude from equation

(10′N ) for N = 1 that the potential Cα1β1α2β2 must in fact be independent of the second

derivatives of gαβ . Using this result in equation (10′N ) for N = 3, and iterating on all odd

N , we find that also all even potentials Cα1β1...αNβN for N ≥ 4 vanish. Hence, it only remains

to determine the potentials C, Cαβ and Cαβγδ .

As described in Appendix B, we may now perform a change from the arguments (gαβ , ∂µg
αβ , ∂µ∂νg

αβ),

on which the tensor and scalar potentials depend, to a set of arguments (gαβ , Rαβγδ), where

Rαβγδ is the Riemann-Christoffel tensor of gαβ , such that the covariance equations are au-

tomatically solved if and only if CB1...BN
= CB1...BN

(gαβ , Rαβγδ) for all N ≥ 0. In three

dimensions, we know that the Riemann tensor can be expressed in terms of the Ricci tensor

Rαβ and the metric gαβ so that, actually, CB1...BN
= CB1...BN

(gαβ , Rαβ). The only such

scalar density of weight one that is linear in the Ricci tensor (recall that the at most linear

dependence of the potentials on the Riemann tensor did not follow from the covariance

equations alone, but involved one of the master equations) is (− det g)−1/2R, with the Ricci

scalar R = Rαβg
αβ , and the minus sign under the square root accounts for the fact that gαβ

must be negative definite. Thus we arrive at

C = −(2κ)−1(− det g)−1/2 (R− 2λ),

with constants κ and λ, as the only scalar potential that meets all the requirements.

Then we can immediately calculate, from equation (10′N ) for N = 1, that

Cαβµν = (16κ)−1(− det g)−1/2 [gαµgβν + gβµgαν − 2gαβgµν ] .

In terms of the (gαβ ,Γαβγ , Rαβγδ), the coefficient Sαβ γ can be rewritten as

Sαβ γ = Uαβ µνΓγµν ,

which makes it easy to see that equation (4′) takes the form

0 = gµρgσν∇νCρσ ,
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where ∇γ denotes the covariant derivative with respect to the Levi-Civita connection. Using

the well-known theorem due to Lovelock [11], which also for the case of three dimensions

asserts that the only divergence-free second rank tensor depending only on the metric and

its first and second derivatives is the Einstein tensor, and the fact that again Cρσ can only

depend linearly on the Ricci tensor, we immediately conclude that

Cαβ = β1(− det g)−1/2 (Rαβ −
1

2
gαβ R) + β2(− det g)−1/2 gαβ .

The remaining master equations (9′) and (11′N ) are then identically satisfied.

The potentials C, Cαβ and Cαβγδ derived above completely determine the Lagrangian by

virtue of

L = CαβγδK
αβKγδ + CαβK

αβ + C

and thus we have found the gravitational dynamics of the geometry gαβ . However, one may

simplify this result a little further. We immediately realize that the potential Cρσ can be

written as the functional derivative of the scalar density

Λ = β1(− det g)−1/2 R− 2β2 (− det g)−1/2

with respect to gαβ . This has severe consequences for the relevance of this potential in the

equations of motion displayed in the general description of Step 7. The part of the Lagrangian

involving Λ satisfies the equations of motion identically and is thus dynamically irrelevant

[5]. This can be seen as follows. The kinematical relation supplementing the Lagrangian

equations of course remains untouched because it is independent of the Lagrangian, so we

have that

ġαβ(z) = N(z)Kαβ(z) + (L ~Ng)
αβ(z) .

The actual Lagrangian equation of motion reads

∂

∂t

(
∂L(z)

∂Kαβ(z)

)
=

∫

Σ
dx

[
N(x)

δL(x)

δgαβ(z)

]
+ L ~N

(
∂L(z)

∂Kαβ(z)

)

in this case, because there is no contribution from the coefficients QA
B γ . We may now

insert the part Llin(z) := δΛ(z)/δP̂αβ (z)K̂αβ(z) of the Lagrangian that is linear in the

velocities Kαβ into the left hand side of this equation in order to find, taking into account

the kinematical supplement, that

Llin(z) =

∫

Σ
dx

δ2Λ(z)

δgρσ(x)δgαβ(z)

(
N(x)Kρσ(x) + (L ~Ng)

ρσ(x)
)
.
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It is then straightforward to see that these are terms of precisely the form as those appearing

on the right hand side of the previous equation. The respective first terms cancel because the

functional derivatives commute. That also the second terms cancel, one can see by writing

out the Lie derivative on both sides and using the chain rule and an integration by parts on

the left hand side of the equation.

It is instructive to convert the thus obtained Lagrangian to a Hamiltonian, to which end we

calculate the canonical momenta as the Legendre dual variables of the velocities,

παβ =
∂L

∂Kαβ
= 2CαβγδK

γδ +
δΛ

δgαβ
,

where we again included the term Λ discarded above, just in order to see how that it can be

discarded in the canonical picture equally well, since the Poisson brackets on the geometric

phase space spanned by (gαβ , παβ) do not change if we add to the canonical momenta the

functional derivative of a weight-one scalar density with respect to the configuration variables

GA. Thus, we can redefine the canonical momenta,

παβ → π̃αβ = παβ −
δΛ

δgαβ

and invert the second last equation to get the velocities

Kαβ =
1

2
Cαβγδπ̃αβ ,

where Cαβγδ is the inverse of the potential Cαβγδ and explicitly reads

Cαβγδ = 4κ (− det g)1/2 (gαγgβδ + gβγgαδ − gαβgγδ) ,

which is known as the DeWitt tensor density. The local superhamiltonian then automatically

becomes

Hlocal = Kαβπ̃αβ − CαβγδK
αβKγδ − C

=
1

4
Cαβγδπ̃αβπ̃γδ + (2κ)−1(− det g)−1/2 (R− 2λ) ,

which is the famous Arnowitt-Deser-Misner Hamiltonian [12] of Einstein-Hilbert dynamics

with a cosmological term,

Sgrav[g] =
1

2κ

∫

M
d4x

√
− det g (R− 2λ) ,

where g is the spacetime metric and R the associated spacetime Ricci scalar.
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Step 10. Additional energy or symmetry conditions: were not needed to obtain an ana-

lytic solution of the master equations in this case.

In summary, we arrived at the interesting conclusion that the unique gravitational dynam-

ics for a four-dimensional metric spacetime (M,g) carrying predictive and quantizable Maxwell

electrodynamics is given by the familiar Einstein-Hilbert dynamics for a Lorentzian metric, with

undetermined gravitational and cosmological constants appearing as integration constants when

solving the master equations. This result directly extends to matter dynamics SSM[g,Φ] including

all fields of the standard model of particle physics, because their equations of motion all share

the same principal tensor fields, which by deliberate construction of the standard model (taking

particles to be the irreducible representations of the local Lorentz group) is precisely the principal

tensor field of Maxwell electrodynamics.
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IV. SECOND CASE STUDY:

GRAVITY UNDERLYING SO(p, q)-VIOLATING FERMIONIC MATTER

In order to see the machinery to derive gravitational dynamics underpinning particular mat-

ter dynamics working at full capacity, we will now consider a vector-tensor geometry (M,g,W ),

constituted by a metric and a vector field W , and find gravitational dynamics for it such that

an SO(p, q)-violating extension of Dirac dynamics is predictive and quantizable on that geome-

try. While we are of course not proposing either this particular geometry nor this particular type

of matter equations as a model for any observable physics, but rather as a deliberately brutal—

but nevertheless causally fully consistent—deviation from standard model physics, this case well

illustrates that even such matter dynamics can be underpinned by suitable gravitational dynamics.

Step 1. Test matter: As test matter dynamics we now directly stipulate SO(p, q)-violating field

equations

(iγa +W a)DaΨ = 0

for a spinor field Ψ on a four-dimensional smooth manifold equipped with a geometry (g,W )

consisting of a spacetime metric g (of a so far arbitrary but fixed signature (p, q), which will be

considerably restricted by the bi-hyperbolicity condition in Step 4) together with a spacetime

vector field W . The spacetime γ-matrices γa = γIEa
I are constructed with the help of local

frame fields EI satisfying gab = ηIJEa
IE

b
J and the flat spacetime γ-matrices γI satisfying the

Clifford algebra {γI , γJ} = 2ηIJ , where ηIJ = diag(1, . . . , 1,−1, . . . ,−1)IJ with the same

signature as g. We assume that the spacetime admits a spin structure (whose existence

is of course still equivalent to the vanishing of the second Stiefel-Whitney class associated

with the g-orthonormal frame bundle over M) such that the spin covariant derivative Da is

induced from the torsion-free spin connection by virtue of

SΓIaJ = −Eb
J(∂aθ

I
b − Γcab , θ

I
c )

where Γcab are the Christoffel symbols of the metric gab, and θIb denote the coframe fields

dual to the frame fields Ea
I . The spin connection is antisymmetric with respect to ηIJ , and

Da = ∂a −
i

4
SΓIaJ ηIK [γK , γJ ]

if the covariant derivative acts on spinors Ψ. Here and in the following, we will suppress all

spinor indices.
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Step 2. Principal tensor field: By acting on the equations of motion with the differential op-

erator (iγJEb
J −W b)Db from the left, we obtain the equation

−(γJγIEb
JE

a
I +W aW b − iγJEb

JW
a + iγIEa

IW
b)DbDaΨ+ iγJEb

JDbW
aDaΨ = 0 ,

from whose highest order derivative terms we obtain, using the Clifford algebra relation

{γI , γJ} = 2ηIJ and the fact that partial derivatives commute, the principal tensor field

P ab = (gab +W aW b) .

Step 3. Dual tensor field: Since the principal tensor has rank two, it is again simple to calculate

a dual tensor field P#(x, v) in terms of the inverse of the matrix gab +W aW b. Indeed, one

quickly finds the dual tensor

P#(x, v) =

(
gab −

1

1 +W rW sgrs
WmW ngmagnb

)
vavb

with respect to the principal tensor P .

Step 4. Bi-hyperbolicity: The hyperbolicity and signature condition on the principal tensor

now simply amount to the algebraic requirement that the matrix gab +W aW b have mainly

minus Lorentzian signature at every point of the manifold. However, this does of course by no

means imply that the metric g itself has to be of Lorentzian signature. In fact, the principal

tensor is hyperbolic in two different cases: either the metric g has signature (+ − −−) and

the vector field W is timelike, or null, or of spacelike length −g(W,W ) < 1 with respect to

g, or the metric has signature (− − −−) and the vector field has length −g(W,W ) > 1.

Interestingly, the two cases differ in the way hyperbolicity is encoded in the geometry. In

the first case, hyperbolicity is ensured by the metric, whereas in the second case, it is the

vector field which renders the combination gab +W aW b hyperbolic.

The hyperbolicity of the dual polynomial is in this case again equivalent to the hyperbolicity

of the principal polynomial so that, also here, bi-hyperbolicity does not enforce further alge-

braic constraints on the values of g and W beyond what is already enforced by hyperbolicity.

Step 5. Geometric degrees of freedom: We assume to be given a hypersurface in M with

an everywhere hyperbolic covector field n normalized to P (n) = 1 that annihilates any of

three linearly independent tangent vector fields e1, e2, e3, such that we construct complete

spacetime tangent and co-tangent space bases

ea0 := (gab +W aW b)nb, e1, e2, e3 and ǫ0 := n, ǫ1, ǫ2, ǫ3
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dual to each other, giving rise to independent geometric hypersurface tensor fields

gαβ := g(ǫα, ǫβ) , g0α := g(ǫ0, ǫα) , g := g(ǫ0, ǫ0) , Wα := ǫα(W ) , W 0 := ǫ0(W ) .

However, not all of these hypersurface tensors can be independent since the frame conditions

P (n) = 1 and e0(ǫ
α) = 0 can be used to express W and Wα in terms of the projections

g and gα. Thus, the hypersurface tensor fields g, gα and gαβ already constitute a pos-

sible parametrization of the spacetime geometry (g,W ). Indeed, one can check that the

completeness relations

gab = g ea0e
b
0 + 2gα e

(a
0 eb)α + gαβ eaαe

b
β and

W a = ±(1− g)1/2 ea0 ∓
1

(1− g)1/2
gα eaα

allow for a reconstruction of the spacetime geometry on the hypersurface, and in particular

of the hypersurface tensor field

Pαβ = gαβ +
1

1− g
gαgβ .

In principle, one could now choose GA := (gαβ , gα, g) as the independent degrees of freedom

and press on to the next step and determine the coefficients for the master equations. In

particular, one would obtain the coefficients

Mαβ γ = 2g(αgβ)γ +
2

1− g
gαgβgγ

M0αγ =
g

1− g
gαgγ − (1− g)gαγ

M00 γ = −2gγ ,

which produce correct, but unnecessarily complicated master equations. A more advan-

tageous choice of configuration variables (as we will see when calculating the associated

coefficients in the next step) is obtained by the field redefinitions





Pαβ := gαβ + 1
1−gg

αgβ ,

gα := − 1
1−gPαγ g

γ ,

φ := 1− g +
gαgβgαβ

1−g−gαgβgαβ





recovering





gαβ = Pαβ − φ
1+P ρσgρgσ

PαγgγP
βδgδ ,

gα = − φ
1+P γδgγgδ

Pαρgρ ,

g = 1− 1
2φ−

√
φ2

4 − φ2 Pαβgαgβ
1+P γδgγgδ

.





We thus choose as the unscontrained geometric hypersurface tensor fields

GA
redef := (Pα, gα, φ) .
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Step 6. Coefficients: The coefficients associated with the redefined fields GA
redef, which are now

functions of the original hypersurface fields GA obtained by projection from spacetime ten-

sors, must be calculated from the coefficients of the projected fields according to product

and chain rules, as explained in the general rules. In particular, we obtain

Mredef
αβ γ = Mαβ γ − (−1)

(1− g)2
M00 γgαgβ +

2

1− g
g(αM |0|β) γ = · · · = 0

Mredef α
γ =

1

(1− g)2
M00 γPαδg

δ +
1

1− g
PασPδρM

σρ γ
redef g

δ − 1

1− g
PαδM

0δ γ = · · · = P γµgµgα + δγα ,

Mredef
γ = · · · = 0 .

The vanishing of the first and third set of coefficients and the simple form of the second set

were the rationale behind the field redefinition made in the previous step. Also according to

the product and chain rule, one determines the coefficients

Uredef
αβ ρχ = Uαβ ρχ +

1

(1− g)2
U00 ρχ +

2

1− g
g(αU |0|β) ρχ = −2Pχ(αP β)ρ ,

Uredefα
ρχ =

1

(1− g)2
U00 ρχPαδg

δ +
1

1− g
PαµPδνU

µν ρχgδ − 1

1− g
PαδU

0δ ρχ = δραP
χµgµ ,

Uredef
ρχ = · · · = 0

and the coefficients

Vredef
αβ χ = PχγPαβ

,γ + 2Pχ(αP̂ β)γ
,γ ,

Vredef α
χ = P γχgα,γ − Pχγgγ,α ,

Vredef
χ = Pχγφ ,γ .

From the above nine sets of coefficients one then obtains directly, as the only non-vanishing

coefficients Q,

Qredef ρσ α
γ = −∂Mredef α

γ

∂P ρσ
= −δγ(ρgσ)gα

Qredef
ρ
α
γ = −∂Mredef α

γ

∂gρ
= −P γρgα − P γµgµδ

ρ
α ,

only vanishing coefficients Tredef
A [µν] = 0, and finally the coefficients

Sredef
αβ µ = −PµγPαβ

,γ + 2P γ(αP β)µ
,γ ,

Sredef
0µ = −Pµγφ,γ ,

Sredef α
µ = −2 δ(µα P νσ)

,νgσ − 2 δ(µα P νσ)gσ,ν − gαg
µ(P νβgβ,ν + 2gβP

νβ
,ν)

−gα,ν(P
µσP ντgσgτ + 2Pµν) + Pµνgν,α − gαP

µν
,ν .
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Step 7. Master equations: Insertion of the coefficients calculated in the previous step into the

master equations almost immediately leads to a number of drastic simplifications, which we

will derive in the following three paragraphs, before writing down, in a fourth paragraph,

the resulting reduced master equations that remain in the present case.

a. Vanishing of the potentials Cµ. The master equations defined by the coefficients cal-

culated above imply that the scalar potential C only depends on at most the second partial

derivatives of the geometric degrees of freedom. The simplest way to see this is to trade

in the first and second partial derivatives of the fields Pαβ , φ and gα (which appear in

the tensor potentials CB1...BN≥1
) for covariant derivatives with respect to the Levi-Civita

connection Γαβγ of the inverse metric Pαβ as well as the Riemann tensor Rµνρσ and the non-

tensorial quantity Sµνρσ introduced in appendix B. The new fields Γαβγ , Rαβγδ and Sαβγδ

are then given in terms of Pαβ and its partial derivatives by equations (B3)-(B5) and the

corresponding inverse transformations by (B11) and (B12), while the symmetrized first and

second covariant derivatives of the fields φ and gα are given in terms of the respective partial

derivatives by equations (B15)-(B17) and the inverse transformations by (B20)-(B22).

In order to see that the potential C in the present case does not depend on the third partial

derivatives of the fields GA, it is sufficient to rewrite the third partial derivatives of only the

field gα in covariant form. The corresponding transformation formula is given by

gα;(βγδ) = gα,βγδ + gµ,νλ(−3δλ(δδ
ν
γΓ

µ
β)α

− 3δµαδ
ν
(βΓ

λ
γδ)) + lower order terms ,

where, as we will see, it will not be necessary for our calculation to write out all terms of

lower derivative order in gα. The third partial derivatives of gα can be recovered from the

previous expression by employing the

useful identity Γαβµ,ν = Γα(βµ,ν) −
2

3
Rα

(βµ)ν +
2

3
Γαρ(βΓ

ρ
µ)ν −

2

3
ΓανρΓ

ρ
βµ .

We can now rewrite the master equations in covariant form. We begin with the master

equations (4)-(6) containing the potential C and the potential CA. Master equation (6) can

be straightforwardly rewritten covariantly, but the chain rule in the first term in conjunction

with the above expression for the symmetrized third covariant derivatives of gα, the derivative

of the coefficient Mα
β in the second term and the divergence in the last term all produce

terms that are proportional to the variable Γǫκλ. Since none of the rewritten terms can



27

depend explicitly on this variable in the new covariant arguments, we must conclude that

0 = 2
∂C

∂gρ;γµ(β1|
Mρ

|β2δβ3)ǫ δκγδ
λ
µ − 2

∂C

∂gρ;γ(β1β2|
δ|β3)ǫ Mρ

νδ(κν δλ)γ .

Contracting the indices ǫ and κ then leads to the equation

0 =
∂C

∂gρ;λ(β1β2|
Mρ

|β3) − ∂C

∂gρ;β1β2β3
Mρ

λ .

The same logic can now be applied to master equation (5). This time, however, rewriting

this equation using the chain rule, and the useful identity above, produces terms which are

purely covariant and terms that are proportional to the non-covariant variables Γα(βµ,ν) as

well as terms that are quadratic in Γαβγ . Again the latter must vanish individually. Carefully

extracting all information that can be deduced from the vanishing of these terms one finds

that

0 =
∂C

∂gρ;λκ(β1|
Mρ

|β2) .

The last two equations and the fact that the coefficient Mρ
α is invertible imply that the

potential cannot depend on gρ;αβγ . Reducing the master equations (5) and (6) accordingly,

one repeats these steps to conclude that the potential C cannot not depend on gρ;αβ either.

Now one sees that one may rewrite master equation (4) in the form

0 = (covariant terms)β + Zµνβ
σΓ

σ
µν

for some coefficients Zµνβ
σ, which however must vanish, since the first part cannot explicitly

depend on the variables Γαβγ . Thus also the partial trace Zµνβ
µ vanishes, which amounts to

a simple relation for the single potential Cµ (which is the potential CB with B = µ),

Cα (4δµαg
τ + δταg

µ(1− gρgρ) + 7Pµτgα + 9gαg
µgτ ) = 0 ,

which upon contraction with gµgτ , reinsertion of the result (namely that Cαgα = 0) into the

original equation and a further contraction with gτ yields

Cµ = 0 .

But then master equations (9N ) and (1) imply that the potential C cannot depend on any of

the third derivatives of the fields Pαβ, gα, φ. Hence, from here on, we can treat the potential

C and the tensor potentials on the same footing.
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b. Vanishing of the potentials Cµ
B1...BN

. A similar argument like the one employed before

can be applied to master equations (10N ) and (11N ), whose validity now extends to N = 1,

since the scalar potential C depends on at most second derivatives of the geometric fields. In

particular, master equation (10N ) can straightforwardly be rewritten in the covariant form

V νβ
B1...BN

= 0 for N ≥ 1 ,

while master equation (11N ) again contains terms proportional to Γαβγ ,

0 = (covariant terms)βB1...BN
+ Zµνβ

σB1...BN
Γσµν for N ≥ 1

for some coefficients Zµνβ
σB1...BN

, which must again vanish, and with them the partial trace

Zµνβ
µB1...BN

. Suprisingly, taking the difference of the two tensorial quantities V νβ
B1...BN

and Zµνβ
µB1...BN

for the same N yields

Cα
B1...BN

(
4δναg

β + δβαg
ν(1− gρgρ) + 7P νβgα + 9gαg

νgβ
)
= 0 for N ≥ 1 ,

and, thus, using the same argument as above, we conclude that

Cµ
B1...BN

= 0 for N ≥ 1.

This is an important result that simplifies the master equations considerably. We have thus

learned, in combination with the previous paragraph, that all potentials CB1...BN
for which

at least one of the capital indices takes the value ‘α’ vanish. In other words, the series

expansion of the Lagrangian (see Step 7 of the general recipe) cannot contain any of the

velocities Kα belonging to the variable gα.

c. Potentials do not depend on derivatives of gα. Finally we switch back, for a moment,

to the master equations as expressed in the partial, rather than covariant, derivatives of the

geometric hypersurface fields and show that the remaining potentials CB1...BN
with Bi

=

(αβ , 0) and the potential C cannot depend on the first and second partial derivatives of the

variable gα at all. Setting BN
= ρ in the symmetry condition (9N ), we learn that none of

the potentials CB1...BN
(for N ≥ 1) can depend on gα,βγ . For the potential C, we already

concluded this from the master equations (5) and (6). Thus, the second partial derivatives of

gα cannot appear in any of the potentials. The same holds true for the first partial derivatives

gα,β . This can be seen from master equations (11N ) and (3) setting B1 = ρ, which yields

∂CB2...BN

∂gρ,α
= 0 for N ≥ 1 .
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Finally, we can even show that potentials CB1...BN
for which at least one of the capital

indices is the symmetric pair αβ, cannot depend on the variable gα at all. Writing out the

divergence in master equations (11N ) and (3), and using the fact that now nothing in both

equations depends on gα,γ , we obtain

∂2CB1...BN−1

∂GBN ,αγ∂gµ
= 0 for N ≥ 1.

This result can be used right away when taking the derivative of master equations (10N )

and (2) with respect to gσ, noticing that we can invert the coefficient Uαβ µν . This yields

∂CB1...BN

∂gσ
= 0 if at least one Bi

= αβ

at first for any N ≥ 2, which however can be extended to hold for N ≥ 1, as one see by

evaluating the divergence in the first term in equation (4). Thus none of the potentials

CB1...BN
(for N ≥ 1 and some Bi

= αβ) depends on gα. It is, however, not possible to extend

this result to all potentials. The potentials C0...0 (where all capital indices take the value

‘0’) and the potential C can still depend on gα.

d. Maximally simplified master equations. Taking all of the above findings into account,

the remaining master equations (with all others being identically satisfied) are

(4′′) 0 = ∇µ(Cρσ U
ρσ βµ)− C0 ∇βφ+ ∂C

∂gρ
Mρ

β ,

(9′′N≥2)
∂CB1...BN−1

∂GBN ,γδ
=

∂C(B1...BN−1|

∂G|BN )
,γδ

,

(10′′N≥1) 0 = (N + 1)!CµνB1...BN
Uµν αβ − (N − 2)(N − 1)!

∂CB1...BN−1

∂GBN ,αβ
,

(11′′N≥1) 0 = −(N + 1)!C0B1...BN
∇βφ+ q(N − 1)!

∂CB1...Bq−1Bq+1...BN

∂φ;β

−(N − q)(N − 1)!
∂CB1...Bq(Bq+1...BN−1|

∂φ;ρσ
PΓτβρσ|BN )φ;τ

−2(N − 1)!∇γ
∂CB1...BN−1

∂GBN ,γβ
+N !

∂CB1...BN

∂gρ
Mρ

β ,

where the indicator q denotes the number of capital indices taking the value ‘0’, whereas

N − q is the number of capital indices Bi being symmetric pairs ‘αiβi’, and the coefficients

PΓ are defined in (B6). In order to not make the equations appear too complicated, we have

not written out the chain rule for derivatives with respect to the second partial derivatives

of the fields GA.

Step 8. Covariance equations: Since the scalar potential C can depend on at most the second

partial derivatives of the fields, exactly like the the tensor potentials CB1...BN
, the covariance

equations take the same form for all N ≥ 0. The first covariance equation (obtained by
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differentiation with respect to the second derivatives of the Jacobian) reads

0 = 2Pµ(α| ∂CB1...BN

∂Pµρ
,|βγ)

− gρ
∂CB1...BN

∂g(α,βγ)
,

while the second one (obtained by differentiation with respect to the first derivatives of the

Jacobian) takes the form

0 =2Pµ(α| ∂CB1...BN

∂Pµρ
,|β)

+ 4Pµ(α|
,ν
∂CB1...BN

∂Pµρ
,|β)ν

− Pµν
,ρ
∂CB1...BN

∂Pµν
,αβ

−gρ
∂CB1...BN

∂g(α,β)
− gµ,ρ

∂CB1...BN

∂gµ,αβ
− 2 gρ,µ

∂CB1...BN

∂g(α,β)µ
− φ,ρ

∂CB1...BN

∂φ,αβ
.

The third covariance equation (obtained by differentiation with respect to the Jacobian) will

not be needed.

Step 9. Solution of the master and covariance equations: When solving the master equa-

tions arrived at in Step 7, we have to keep in mind that only the potentials C0...0 and the

potential C may depend on the variable gα. In general, all unknowns CB1...BN
can, in addi-

tion, only depend on the variables (Pαβ , Rαβ , φ, φ;α, φ;αβ) because of the covariance equations

(B13) and (B14), and we already used the fact that the Riemann tensor in three dimensions

can be expressed by the Ricci tensor Rαβ .

It is a general result that the potentials CB1...BN
for N ≥ 1 can depend on the second

derivatives of the fields GA only up to cubic order [6], and since here additionally the second

derivative of the scalar field φ does not appear in the first covariance equation obtained in

Step 8, we can conclude that the Ricci tensor Rαβ can only appear linearly. Moreover, mixed

terms, which contain the second derivatives of φ and the Ricci tensor, can only be linear in

both, as one observes by combining the first covariance equation in the original arguments

with the symmetry condition one obtains from writing out the divergence term in equation

(11′′N ) as the

symmetry condition
∂2CB1...BN

∂GM
,α(β∂GN

,γδ)
for N ≥ 0 .

Next, we derive an equation that only involves the potential C. To this end, we consider

the master equation (10′′N ) for N = 1 and q = 1, and solve it for the potential Cαβ 0, which

yields

Cαβ 0 =
1

4
Pγ(αPβ)δ

∂C

∂φ;γδ
.
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On the other hand, considering equation (11′′N ) for N = 1 and q = 0, we have that

0 = 2Cαβ 0∇βφ− ∂C

∂φ;ρσ

PΓτγρσαβφ;τ − 2∇γ
∂C

∂Pαβ
,µβ

,

because Cαβ does not depend on gρ. Combining both equations, using the explicit form (B6)

of PΓ, we obtain

0 =
∂C

∂φ;ρσ

(
δτ(ρPσ)(αδ

γ
β) − Pρ(αPβ)σP

τγ
)
∇τφ− 2∇µ

∂C

∂Pαβ
,µγ

(∗)

which constrains the dependence of the potential C on the second derivatives of the fields P

and φ. Knowing the polynomial dependencies of the potential C on the second derivatives

of φ and the Ricci tensor Rαβ , we may now derive the form of the terms that contain the

latter. First, we observe that because of the symmetry condition displayed further above,

the last term of the previous equation drops out, as one sees by expanding the divergence

∇µ
∂C

∂Pαβ
,µγ

=
∂2C

∂φ∂Pαβ
,µγ

∇µφ+
∂2C

∂φ;ρ ∂Pαβ
,µγ

∇µ∇ρφ+
∂2C

∂φ;ρσ ∂Pαβ
,µγ

∇µ∇ρ∇σφ

and rewriting

∇µ∇ρ∇σφ = −2

3

(
Pν[µδ

(κ
ρ] δ

τ)
σ − Pσ[µδ

(κ
ρ] δ

τ)
ν + Pν[µδ

(κ
σ] δ

τ)
ρ − Pρ[µδ

(κ
σ] δ

τ)
ν

)
Rκτ∇νφ

+
1

3
(Pν[µPρ]σ + Pν[µPσ]ρ)P

κτRκτ∇νφ+∇(µ∇ρ∇σ)φ .

We can then use the resulting equation to compare the different powers of the second deriva-

tives of φ and the Ricci tensor Rαβ appearing in the potential C. Note that none of these

terms can depend explicitly on gα, because of the second last equation derived in paragraph

c. of Step 7 above, which simplifies matters significantly. It follows, for example, that the

coefficient in the cubic part Cρσµνκǫ
cubic φ;ρσ φ;µν φ;κǫ of C has to satisfy

0 = Cρσµνκǫ
cubic

(
δτ(ρPσ)(αδ

γ
β) − Pρ(αPβ)σP

τγ
)
∇τφ .

However, it is easy to see that the term in brackets can be inverted, which implies that there

cannot be such a cubic term in C. For the mixed term Cαβγδ
mixedRαβ φ;γδ, only the last term

in (∗) is relevant. A brute-force calculation then shows that also this term has to vanish.

The remaining terms can then be investigated by making the exhaustive ansatz

C =
√

− detPαβ

[
Cf (φ,∇αφ∇αφ, gα∇αφ, g

αgα) +Rαβ(a1 P
αβ + a2∇αφ∇βφ)

+∇α∇βφ(a3 P
αβ + a4∇αφ∇βφ) +∇α∇βφ∇γ∇δφ (a5 P

αβP γδ

+a6 P
αγP βδ + a7 P

αβ∇γφ∇δφ+ a8 P
αγ∇βφ∇δφ

+a9 ∇αφ∇βφ∇γφ∇δφ)
]



32

where the scalar functions ai may depend on φ and ∇αφ∇αφ and the free function Cf

depends on all scalars indicated in brackets. Thus extracting all information in equation (∗),
one is led to a system of linear differential equations for the functions ai, which can be solved

uniquely to yield the most general form of the potential C allowed by the master equations:

C =
√

− detPαβ

[
a1(φ)R − 2

da1(φ)

dφ
Pαβφ;αβ + Cf (φ,∇αφ∇αφ, gα∇αφ, g

αgα)

]
.

A similar procedure can be applied to determine the potential Cρσ, which, as we know,

cannot depend on gα. We can even derive two independent equations for Cρσ. The first of

these is given by equation (11′′N ) for N = 2 and q = 0, i.e.,

0 = −
∂C{ρσ|

∂φ;µν

PΓτβµν|ǫκ}∇τφ−∇γ
∂Cρσ

∂P ǫκ
,γβ

,

where the symmetrization brackets {. . . } are to be understood as symmetrizing the pairs

ρσ and ǫκ, but not the individual indices. Here, we made use of the facts that Cαβ 0 does

not depend on gα either, and that, from equation (10′′N ) with N = 2, we may conclude that

Cαβ B1B2 = 0. The second equation can be derived from equation (11′′N ) with N = 2 and

q = 1 using the same reasoning, which leads to

0 =
Cρσ
∂φ;β

− ∂C0

∂φ;µν

PΓτβµνρσ∇τφ−∇γ
∂Cρσ
∂φ;γβ

,

where we have already used the master equation (9′′N ) in the last term. The potential C0,

which still appears in this equation, can be eliminated by solving equation (4′′), so that

C0 =
1

∇ρφ∇ρφ

[
∇βφ∇µ(CκτU

κτ βµ) +
∂C̃f
∂gρ

Mρ
β∇βφ

]

with C̃f =
√

− detPαβ Cf . Inserting this back into the second last equation, the second

term in brackets vanishes because of the most general form for the scalar potential obtained

above, and hence we obtain

0 =
Cρσ
∂φ;β

− 1

∇ρφ∇ρφ
PΓτβµνρσ U

ξδ ψζ ∇τφ∇ψφ∇ζCξδ −∇γ
∂Cρσ
∂φ;γβ

.

Using equation the above two equations for the potential Cρσ, we can now constrain the

form of the latter the same way we did for the potential C. First of all, writing out the

divergence in equation (4′′), one can conclude that Cρσ can be at most linear in Rαβ and

at most quadratic in φ;αβ . This is the case because the resulting symmetry condition also

involves the symmetric pair of indices of Cρσ, and, thus, strengthens the two symmetry
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conditions we already used for the potential C. There cannot be any terms mixing Rαβ and

φ;αβ for the same reason. Evaluating all information contained in the two equations for Cρσ,

one obtains, as a preliminary result, that

Cρσ =
√

− detPαβ

[
(b1φ+ b2)(Rρσ −

1

2
PρσR) + b3RPρσ

+
1

2
b1(P

αβφ;αβ Pρσ − φ;ρσ) + a2(φ)Pρσ

]
,

with constants b1, b2, b3 and a new unknown function a2(φ). From the above expression for

the potential C0, however, we can then directly conclude that b3 = 0, since this equation

cannot contain third partial derivatives of Pαβ; a straightforward calculation yields

C0 =
√

− detPαβ

[
− b1

∇ρφ∇ρφ
∇αφ∇βφ(Rαβ − PαβR)

−2
da2(φ)

dφ
+

1

∇αφ∇αφ

∂Cf
∂gρ

Mρ
β∇βφ

]
.

Now consider equation (11′′N ) for N = 2 and q = 2, which amounts to

0 = −3!C000∇βφ+ 2!
∂C00

∂gρ
Mρ

β + 2
∂C0

∂φ;β
.

Since we know that Cαβ 00 = 0, the master equation (9′′N ) implies that the potential C000 can-

not depend on Rρσ. Moreover, since ∂C00/∂gρ cannot contain Rρσ either, the last equation

implies that b1 = 0. Thus, we arrive at

Cρσ =
√

− detPαβ

[
b2(Rρσ −

1

2
PρσR) + a2(φ)Pρσ

]
and

C0 =
√

− detPαβ

[
−2

da2(φ)

dφ
+

1

∇αφ∇αφ

∂Cf
∂gρ

Mρ
β∇βφ

]
.

We can now determine the remaining potentials recursively. Using equation the second

equation derived in Step 9, we get

Cαβ 0 = −
√
− detPαβ

1

2

da1(φ)

dφ
Pαβ .

From equation (10′′N ) with N = 1 and q = 0, we then find the potential

Cαβγδ =
1

8
[PαγPβδ + PβγPαδ − 2PαβPγδ ] .

It is then clear that all other potentials containing at least one index pair αβ vanish. This

can be seen recursively from equation (10′′N ) and the fact that all potentials with more than

two capital indices do not depend on second derivatives of the fields.
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Thus, only the potentials with ‘0’ indices remain to be determined. Denoting the potentials

C(N) := C0. . . 0︸ ︷︷ ︸
N zeroes

for N ≥ 1

and using equation (11′′N ), we get the

recursion C(N+1) =
1

∇ρφ∇ρφ

N !

(N + 1)!

[
∂C(N)

∂gγ
Mγ

β∇βφ+
∂C(N−1)

∂∇βφ
∇βφ

]
.

for all potentials C(N+1) with N ≥ 1.

One thus obtains (omitting two additional summands linear in the velocities Kαβ and K,

which have no impact on the resulting equations of motion) the most general gravitational

Lagrangian that can underlie the SO(p, q)-violating Dirac dynamics ,

L =
√

− detPαβ

[
2
d2a1(φ)

dφ2
K2 − 1

2

da1(φ)

dφ
K PαβK

αβ

−a1(φ)CαβγδK
αβKγδ + a1(φ)R − 2

da1(φ)

dφ
Pαβ∇α∇βφ

+

∞∑

N=1

C(N)K
N + C(0)(φ,∇αφ∇αφ, g

α∇αφ, gαg
α)
]
,

with a freely specifiable function a1(φ) (mediating the derivative coupling between the scalar

field φ and the metric Pαβ—a non-derivative coupling thus obviously requires a1(φ) = const)

and a freely specifiable function C(0)(φ,∇αφ∇αφ, g
α∇αφ, gαg

α), in terms of which, however,

all potentials C(N) are determined by virtue of the

recursion start C(1) =
1

∇αφ∇αφ

∂C(0)

∂gρ
Mρ

β∇βφ

and the recursion formula further above.

A striking feature of the above dynamics is that while the field gα appears in the potentials

C(N), for N ≥ 0, the corresponding velocity Kα does not appear in the Lagrangian at all. But

although the geometric field gα thus does not have its own ‘dynamical’ equations of motion,

it can nevertheless be fully determined by the dynamics of the other variables Pαβ and φ

once the recursion is employed. Indeed, in appendix C, we will illustrate this mechanism

explicitly, in order to show that the absence of velocity terms Kα does not imply dynamically

undeteremined geometrical degrees of freedom.

Step 10. Additional energy or symmetry conditions: were not needed to obtain an ana-

lytic solution of the master equations in this case.
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In summary, we found the complete family of canonical gravitational dynamics for the vector-

tensorial spacetime geometry defined by the metric g and the vector field W that can support the

deformed Dirac equation we started from, and which indeed presented our example for a decidely

non-standard model type matter action in the introduction. We emphasize again that we did not

propose these specific matter equations as phenomenologically relevant matter dynamics, but as

an instructive example that shows how to proceed for any matter dynamics the reader may wish

to consider for her own phenomenological or theoretical reasons.

Kinematically, we found that, in this specific case, predictivity and quantizability of the matter

field equations amount to the condition that depending on the vector field, the metric part of the

tensor-vector geometry may have either Lorentzian or Riemannian signature, with the resulting

SO(1, 3) or SO(4) symmetry however being directly broken by the vector field part of the geometry.

More precisely, if the vector field has g-norm less than −1, the metric must have Riemannian

signature in order to render the matter theory predictive and quantizable, whereas a Lorentzian

signature of the metric is enforced in all other cases. While a Riemannian signature for the metric

may appear non-physical, it should be noted that this is not the case, since it is the hyperbolicity of

the principal tensor that is physically relevant, and that the intuition that the metric should have

Lorentzian signature merely stems from the case of Maxwell theory, where the principal tensor

indeed is identical with the (inverse) metric, and where this intuition is therefore correct. But only

there.

The comparatively high effort required to solve the master equations for the matter dynamics

considered in this second case study indicates how hard it is, in general, to construct an appropriate

kinematical and dynamical theory of spacetime that can underpin specific phenomenological models

of matter. But at the same time, we saw that it can be done. The complexity of the gravitational

Lagrangian obtained in this case further makes it pretty obvious how hopeless it would be to try

to arrive at appropriate gravitational dynamics by mere guessing, without having constructed the

pertinent master equations.
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V. CONCLUSIONS

Any set of matter field equations—whether considered for phenomenological reasons, theoretical

considerations, or the mere heck of it—must be supplemented by dynamics for their coefficients

in order to be completed into a closed theory. Physically, we like to call the degrees of freedom

making up the coefficients of matter field equations the geometry of spacetime, and then refer to the

dynamics of these degrees of freedom as gravitational dynamics. Using this parlance, in this paper

we presented the ten-step recipe for the practical derivation of gravitational dynamics—namely the

derivation of the gravitational Lagrangian as the solution of a set of master equations, which in

turn are constructed directly from prescribed matter field dynamics—which underpin the matter

field equations of choice such that the latter can be both predictive and quantizable. From this

point of view, gravity emerges as a mere auxiliary science.

The general recipe for the extraction of these master equations from the matter field dynamics

comes as ten straightforward rules, and presents the remarkably simple practical essence of a num-

ber of combined results, whose conceptual spirit is that of geometrodynamics developed more than

five decades ago but whose technical derivation in the broad context considered here required sev-

eral pieces of decidely more modern mathematical machinery. Now the central point of the present

paper is that, once the rules are derived, their application to concrete matter models no longer

requires any more sophisticated mathematical techniques than those taught in any introductory

course on general relativity.

We then demonstrated the concrete application of this so properly founded recipe to two com-

pletely worked, instructive case studies. The first one considered Maxwell matter, but goes through

in completely unaltered fashion for any standard model matter dynamics and yields, as the unique

solution to the master equations, the Einstein-Hilbert action with a cosmological term. The second

case study then considered a particular example of a matter model beyond the standard model,

for which we also constructed and then solved the master equations explicitly and thus derived the

appropriate gravitational dynamics. By these examples we were able to show, in technical detail,

what is needed on the gravitational side in order to make a given linear matter model work. All

one has to do is to determine suitable underlying gravitational dynamics according to the general

rules we provided. Given that only about four percent of the matter-energy in the universe appears

to be of standard model origin, having such a recipe at one’s disposal is hardly a luxury.
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The scope of the recipe given here is not restricted to field theoric matter. For one may, instead,

start from a particular dispersion relation for massive or massless point matter. Remarkably, it

turns out that in order for such dispersion relations to arise as a primary constraint from some

point particle action, they must have a covariant formulation in terms of an again bi-hyperbolic

tensor which must then be used in lieu of the principal tensor one derives for field matter, and

which consequently doubles as both the principal tensor and the fundamental geometric tensor, at

which point the recipe can be applied to extract the associated master equations, see [2]. Thus by a

different physical mechanism than in the case of field matter, but with precisely the same physical

inevitability and the same central technical condition of bi-hyperbolicity, any postulated dispersion

relation for point particle matter is suitably constrained and supplemented with a dynamical law

by solving the pertinent master equations.

A pleasant feature of the presented method to obtain gravitational dynamics from prescribed

matter dynamics is that the latter contain the entire physical input into the master equations.

In other words, the gravitational theory is precisely as physically relevant as the matter model it

is extracted from. In case there are various matter fields whose dynamics do not yield the same

principal tensor, the principal tensor of the entire theory is quickly seen to be the product of the

principal tensors of the individual theories. Thus the remarkable consequence, and wider lesson,

is that any new discovery about matter immediately translates into an appropriate gravity theory.

Depending on the newly discovered matter dynamics, this could still be standard general relativity

or not. The observed matter, and only the observed matter, suffices as an input and will be the

judge.
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Appendix A: Illustration of the derivation of differential covariance equations

It suffices to describe the method for one case, which is even simpler than the simplest case that

can arise in our context. Assume that there is only one hypersurface field Gα and we are aiming

at phrasing the condition for some (0, 2)-tensor field Cµν to be constructed from only ∂G in terms

of a partial differential equation. This of course amounts to the condition that

Cµ̄ν̄

(
∂yα

∂ȳᾱ
∂

∂yα

(
∂yβ

∂ȳβ̄
Gβ

))
=

∂yµ

∂ȳµ̄
∂yν

∂ȳν̄
Cµν(∂αGβ) ,

which simply expresses that the tensor components constructed from the transformed field com-

ponents are the tensorially transformed components construced from the untransformed field com-

ponents.

The first step to convert this algebraic condition on Cµν into two partial differential equations for

Cµν , is to rewrite the algebraic condition in terms of the Jacobian of the coordinate transformation

and all its derivatives, i.e., in our example, in terms of

Tαᾱ =
∂yα

∂ȳᾱ
and T βᾱβ̄ =

∂2yβ

∂ȳᾱ∂ȳβ̄
,

such that it takes the form

Cµ̄ν̄

(
TαᾱT

β
β̄

∂

∂yα
Gβ + T βᾱβ̄Gβ

)
= T µµ̄T

ν
ν̄Cµν(∂αGβ) .

Note that Tαᾱβ̄ is symmetric in its lower indices due to the Schwarz rule, but only because they

refer to the same (the barred) set of coordinates — if the tensor Cµν depended, other than in our

current example, on the first partial derivative of a hypersurface vector field Gα, rather than a

covector field Gα, one could however still arrange for the then appearing derivative of the Jacobian

to be with respect to coordinates from the same (then the unbarred) set of coordinates, by inserting

appropriate factors of the Jacobian or its inverse; similarly one proceeds where higher than second

derivatives appear.

The second step towards converting the algebraic covariance condition into partial differential

equations is to derive the former first with respect to the highest derivative of the Jacobian and to

evaluate the result at the identity transformation, and then to repeat this with respect to all lower

order derivatives of the Jacobian, up to and including the zeroth derivative, i.e., with respect to

the Jacobian itself. For the present case, the derivative with respect to T σρ̄σ̄ yields

∂ᾱβ̄Cµν δ
β
σδ

ρ̄
(ᾱδ

σ̄
β̄)Gβ = 0
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and the derivative with respect to T σσ̄ yields

∂ᾱβ̄Cµ̄ν̄(δ
α
σ δ

σ̄
ᾱδ

β

β̄
+ δαᾱδ

β
σδ

σ̄
β̄ )

∂

∂yα
Gβ = (δµσδ

σ̄
µ̄δ

ν
ν̄ + δµµ̄δ

ν
σδ
σ̄
ν̄ )Cµν

which simplify to

∂(ᾱβ̄)Cµ̄ν̄ = 0 and ∂σ̄βCµ̄ν̄Gβ,σ + ∂ασ̄Cµ̄ν̄Gσ,α = δσ̄µ̄Cσν̄ + δσ̄ν̄Cµ̄σ .

These two differential equations encode the entire information about Cµν being a second rank

covariant tensor constructed from the first derivatives of a covector field Gα. (In this case one

can solve the covariance equations all by themselves by first observing that the first covariance

condition implies that Cµν at most depends on the antisymmetric part ∂[αGβ] of ∂αGβ and then

considering the contraction of the second equation with respect to σ̄ and σ, i.e., ∂σ̄τ̄Cµ̄ν̄Gτ̄ ,σ̄ = Cµ̄ν̄

which, using the insight from the first covariance equation, becomes ∂[σ̄τ̄ ]Cµ̄ν̄G[τ̄ ,σ̄] = Cµ̄ν̄ which

yields the final result that Cµν must be proportional to ∂[µGν]. This is the well-known result that

without further structure, the only second rank tensor that can be built from the first derivatives

of a covector field is the exterior derivative of the latter.)

Appendix B: Field redefinitions suggested by covariance equations

We now discuss what can be extracted from the covariance equations for the case where one of

the geometric hypersurface tensor fields GA can be formally employed as a hypersurface metric.

As discussed in appendix A, covariance equations reflect the tensor-density nature of the potentials

CB1...BN
for N ≥ 1, which are functions of the form CB1...BN

(GA, ∂GA, ∂2GA). The partial deriva-

tives of the tensor fields GA are of course not tensor fields, and hence the covariance equations

encode how those non-tensorial fields have to be combined in order to produce the weight-one

tensor densities CB1...BN
.

A fruitful idea is to simplify the covariance equations by replacing the arguments GA, ∂γG
A,

∂2
γδG

A, on which the scalar and tensor potentials depend, by a set of arguments that simplifies

the covariance equations. In particular, this is possible if one of the fields GA can be employed as

a hypersurface metric. Thus, let us assume that the hypersurface geometry is only given by an

inverse metric, so that GA = (Pαβ). For simplicity, we discuss this particular case first, and then

generalize it to all cases where, apart from a hypersurface metric, we have an arbitrary number

of additional hypersurface tensor fields, GA = (Pαβ, . . . ). The covariance equations for the simple
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case are

0 = Pα(σ ∂CB1...BN

∂∂2
µν)P

αρ
(B1)

and

0 = 2Pα(µ ∂CB1...BN

∂∂ν)Pαρ
− ∂ρP

αβ ∂CB1...BN

∂∂2
µνP

αβ
+ 4 ∂σP

α(µ ∂CB1...BN

∂∂2
ν)σP

αρ
. (B2)

Since the field Pαβ can be employed as a hypersurface metric, we can now perform a change of

arguments from (Pαβ , ∂γP
αβ , ∂2

γδP
αβ) to a new set of arguments (Pαβ,Γαβγ , Rαβγδ , Sαβγδ), trading

the first partial derivatives of the field Pαβ for the Levi-Civita connection coefficients Γ of Pαβ,

and its second partial derivatives for the corresponding Riemann-Christoffel tensor R and another

variable S. Explicitly this transformation is given by

Γαβγ = PΓαρβγλκP
λκ
,ρ (B3)

Rαβγδ = R1
µν
κταβγδ P

κτ
,µν +R2

στ
µνκǫαβγδ P

µν
,σP

κǫ
,τ (B4)

Sαβγδ = S1
µν
κταβγδ P

κτ
,µν + S2

στ
µνκǫαβγδ P

µν
,σP

κǫ
,τ , (B5)

where for brevity we used a comma to denote partial derivatives. The coefficients in the above

expressions are

PΓαρβγκτ :=
1

2
Pβ(κPτ)γP

αρ − δα(κPτ)(βδ
ρ
γ) , (B6)

R1
µν
κταβγδ := 2δ

(µ
[β Pα](κPτ)[γδ

ν)
δ] , (B7)

R2
στ
µνκǫαβγδ := δτ(νPµ)[αPβ](κPǫ)[δδ

σ
γ] + δτ(νPµ)[δPγ](κPǫ)[αδ

σ
β] + δσ[αPβ](κPǫ)(µPν)[γδ

τ
δ]

+2 δσ[αPβ](µPν)(κPǫ)[γδ
τ
δ] +

1

2
P(µ|[αPβ](κPǫ)|ν)δ

σ
[δδ

τ
γ]

+
1

2
P(µ|[δPγ](κPǫ)|ν)δ

σ
[αδ

τ
β] +

1

2
P στP(µ|[αPβ](κPǫ)[γPδ]|ν) , (B8)

S1
µν
κταβγδ := −Pα(κPτ)(βδ

(µ
γ δ

ν)
δ) +

1

2
P(κ|(βδ

(µ
γ Pδ)|τ)δ

ν)
α and (B9)

S2
στ
µνκǫαβγδ := 2Pα(µPκ)(βδ

σ
γ δ

τ
δ)Pνǫ − P(β|(µPκ)|γδ

σ
δ)Pνǫδ

τ
α . (B10)

The variable Sαβγδ is needed since the Riemann tensor does not contain all the second partial deriva-

tives of the field Pαβ. Without this variable, the change of arguments is not invertible. We note

that the variables Sαβγδ are not components of a tensor and feature the symmetry Sαβγδ = Sα(βγδ).

In order to express the original covariance equations now with respect to the new arguments, we
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also need the inverse transformation:

Pαβ
,γ = −2Pµ(αΓβ)µγ (B11)

Pµν
,γδ =

1

3
PµαP νβ (Rαγβδ +Rβγαδ)− PµαP νβ (Sαβγδ + Sβαγδ)

+
1

3
PρσP

µαP νβ
(
Γρβ(γΓ

σ
δ)α + 2ΓργδΓ

σ
αβ

)
+ 2P ρ(µΓ

ν)
σ(γΓ

σ
δ)ρ + P ρσΓµρ(γΓ

ν
δ)σ .

(B12)

With the help of the transformation formulae, we can then cast the first covariance equation (B1)

into the form

∂CB1...BN

∂Sαβγδ
= 0 , (B13)

and the second covariance equation (B2) can be rewritten in terms of the new arguments as

∂CB1...BN

∂Γαβγ
= 0 . (B14)

In other words, the potentials CB1...BN
cannot explicitly depend on the new non-tensorial variables

Γαβγ and Sαβγδ, but we have that CB1...BN
= CB1...BN

(Pαβ, Rαβγδ). This is of course what one

would expect according to the well-known theorem that the Riemann tensor is the only tensor that

can be formed from a metric and its first and second derivatives.

This procedure of changing the arguments on which the potentials depend can be generalized to

all cases where, in addition to a metric, one has an arbitrary set of other hypersurface tensor fields

GA. The first and second partial derivatives of the additional fields GA can then be replaced by

the first and the symmetrized second covariant derivatives of GA using the torsion-free and metric

compatible Levi-Civita connection of the metric at hand.

For instance, if one has, in addition to Pαβ also scalar and covector hypersurface fields φ and

gα, the symmetrized covariant derivatives of the fields φ and gα are given by

φ;ρσ = φ,ρσ − Γµρσφ,µ , (B15)

gα;β = gα,β − gµΓ
µ
αβ , (B16)

gα;(βγ) = gα,βγ − 2 gµ,(γΓ
µ
β)α − gα,µΓ

µ
βγ

−gµ

(
Γµα(β,γ) − ΓµανΓ

ν
βγ − Γµν(βΓ

ν
γ)α

)
, (B17)
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from which the partial derivatives of the variables φ and gα are recovered by virtue of

φ,ρσ = φ;ρσ + Γµρσφ;µ , (B18)

gα,β = gα;β + Γµαβgµ (B19)

gα,βγ = gα;(βγ) + gµ;ν

[
2Γνα(γδ

µ
β) + Γµγβδ

ν
α

]
(B20)

+
1

6
gµ

[
Sµαβγ −Rαβµγ −Rαγµβ (B21)

−2Pρσ(Γ
ρ
βγΓ

σ
αµ + ΓρµβΓ

σ
γα + ΓρµγΓ

σ
βγ)

]
. (B22)

The antisymmetric part of the second covariant derivatives of the fields GA does not have to

be considered, because it can always be expressed by the Riemann tensor and the undifferentiated

fields GA. After rewriting the respective covariance equations, one again ends up with equations

(B13) and (B14). In particular, this can be done for all hypersurface point particle geometries of

arbitrary degree by formally employing the particular field Pαβ := P (ǫα, ǫβ, n, . . . , n) as a metric,

and treating all other tensor fields Pα1...αI := P (ǫα1 , . . . , ǫαI , n . . . , n), for I = 3, . . . ,degP , as

additional fields. It can also be done for area metric geometry by employing the tensor field

Gαβ as a metric, with respect to which one defines the Levi-Civita connection and the Riemann

tensor. However, although we are always guaranteed—by the bi-hyperbolicity and the energy-

distinguishing properties—that the tensor field Pαβ, which is distinguished by the matter field

equations one employs, can be formally used as a metric tensor on a given hypersurface in M , it

might not be possible to find an invertible transformation of arguments from GA, ∂GA, ∂∂GA, . . .

to a new set of arguments, which contains Pαβ. Nevertheless, if such a transformation exists, one

can proceed to rewrite the master equations with respect to these new arguments.

Appendix C: Explicit mechanism determining the fields gα in the second case study

The most general gravitational dynamics that can underly the predictive and quantizable

SO(p, q)-violating Dirac dynamics considered in the second case study were found to be unique up

to two freely specifiable functions, a1(φ) and C(0)(φ,∇αφ∇αφ, g
α∇αφ, gαg

α). While the function

a1(φ) merely mediates the derivative coupling between the metric Pαβ and the scalar field φ, the

role of the function C(0) can only be revealed by an explicit solution of the recursion relation de-

rived in Step 9 of the second case study. Since, apart from the specific set of arguments it depends

on, the potential C(0) is completely undetermined by the master equations, we can freely prescribe

any additional condition that is compatible with the master equations and at the same time allows

to determine C(0). The additional assumption we would like to introduce here, for definiteness, is
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that the Lagrangian depends at most quadratically on the velocities K. Since the most general

solution of the recursion relation can be obtained rather straightforwardly under this assumption,

a sketch of the derivation shall suffice. First of all, we can ignore the dependence of the functions

C(N) on the scalar field φ itself. There is no way to constrain this dependence in any way. We

simply need to keep in mind that any integration constants, which arise when solving the recursion

relations, must be turned into arbitrary functions of φ at the end. Introducing the shorthand

notations Ω = ∇αφ∇αφ, Ψ = gα∇αφ and ξ = gαg
α for the arguments of the functions C(N), the

general recursion relation takes the form

CN+1 =
1

Ω

N !

(N + 1)!

[
∂C(N)

∂Ψ
(Ω + Ψ2) + 2

∂C(N)

∂ξ
(Ψ + ξΨ) + 2Ω

∂CN−1

∂Ω
+Ψ

∂CN−1

∂Ψ

]
.

Now, assuming that C(N) = 0 for all N ≥ 3, we can immediately integrate this equation for N = 3,

which yields

C(2) = A(ξ)Ω2nΨ−n +B(ξ)

for some constant n and, up to now, freely specifiable functions A(ξ) and B(ξ). Reinserting this

result into the same equation for N = 2 determines C(1), and reinserting both into the equation

for N = 1 yields C(0). All additional unknown functions, which arise in this process, can then be

determined by inserting C(1) and C(0) into the formula for the recursion start. This leads to the

condition n(n + 1)(n + 2)A(ξ) = 0 and we may then determine all possible solutions for which

any of these factors vanish. After a fair amount of algebra, one observes that the cases A(ξ) = 0,

n = −1 and n = −2 are actually equivalent. Finally, the most general solution for the second part

L2 (determined by the recursion formula and that for the recursion start) of the full gravitational

Lagrangian, under the condition that it is at most quadratic in the velocities K, is

L2 =
√

− detPαβ

[ a3(φ)

1 + gαgα
K2 +

a4(φ)

(1 + gαgα)1/2
K2 + a5(φ)K

2

+
2a3(φ)

1 + gαgα
gβ∇βφK +

a4(φ)

(1 + gαgα)1/2
gβ∇βφK +

a6(φ)

(1 + gαgα)1/2
gβ∇βφK

+
a3(φ)

1 + gαgα
(gβ∇βφ)

2 − a4(φ)

(1 + gαgα)1/2
∇βφ∇βφ+

a6(φ)

(1 + gαgα)1/2
gβ∇βφ

+ a5(φ)∇βφ∇βφ+ a7(φ)
]
.

The last two lines denote the most general form for the potential C(0) that leads to a Lagrangian

that is at most quadratic in the scalar velocities K. As we have mentioned already, the free

functions a3(φ), . . . , a7(φ) cannot be further constrained, so that there is a sizable class of possible
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gravitational theories that can underlie the matter field equations employed in the second case

study.

In order to understand the fate of the geometric variable gα, we first investigate a special

case of such a theory. For definiteness, we will specialise to a particularly simple solution for the

Lagrangian in order to study the dynamical properties of the derived gravitational theory. We set

a1(φ) ≡ −κ = const, a3(φ) ≡ µ = const, and all other a4, . . . , a7 ≡ 0. Then the Lagrangian reads

L =
√

− detPαβ

[
κCαβγδK

αβKγδ − κR+ µ
K2

1 + gαgα
+ 2µ

K

1 + gαgα
+ µ

(gβ∇βφ)
2

1 + gαgα

]
.

It is easy to analyse the dynamics of this theory in the canonical spacetime picture. To this end,

one performs the inverse Legendre transformation of the above Lagrangian with respect to the

velocities KA. Since the Lagrangian is singular in the velocity Kα, one picks up additional La-

grange multipliers Λα in the process. After performing the Legendre transformation, the complete

Hamiltonian for our particular gravity theory becomes

H =

∫

Σ
dy

[
N(y)

{ 1

4κ
√
−P

Cαβγδπαβπγδ + κ
√
−PR+

1

4µ
√
−P

π2(1 + gαg
α)

−πgα∇αφ−
√
−P

(µ− 1)2

µ

(gβ∇βφ)
2

(1 + gαgα)
+ Λαπ

α − ∂γ(π
γ + gγgαπ

α)
}
(y)

+
{
παβ L ~NP

αβ + π L ~Nφ+ πα L ~Ngα

}
(y)

]
,

with the potential Cαβγδ = 4Pα(γP δ)β−2PαβP γδ, and we used the shorthand
√
−P :=

√
− detPαβ .

For further analysis, we simplify matters by setting µ = 1. The Lagrange multiplier Λα enforces

πα(y) ≡ 0 as an additional constraint. Since πα(y) ≡ 0 has to hold for all values of the evolution

parameter t, this also implies that π̇α(y) = 0. However, Hamilton’s equations for the variable gα

using the above Hamiltonian yield

π̇α(y) ≈ −N(y)

[
1

2
√
−P

π2gα − π∇αφ

]
(y) ,

where the weak equality ‘≈’ means that we already made use of the constraint πα = 0. Hence,

the variable gα is completely determined by the solutions of the equations of motion for the scalar

field φ and the metric Pαβ by

gα(y) = 2

[√
−P

∇αφ

π

]
(y).

Hamilton’s equations for the variable πα can be used to determine the Lagrange multiplier Λα, and

to eliminate the variable gα and the momentum πα altogether. From the remaining equations of
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motion, it can then be checked that the effective Hamiltonian for the dynamics of the scalar field

φ and the metric Pαβ is given by

H =

∫

Σ
dy

[
N

{ 1

4κ
√
−P

Cαβγδπαβπγδ + κ
√
−PR+

1

4
√
−P

π2 −
√
−P∇αφ∇αφ

}

+
{
παβ L ~NP

αβ + π L ~Nφ
}]

(y) ,

which is mathematically equivalent to a massless scalar field non-derivatively coupled to Einstein

gravity.

Our considerations show that, although the variable gα is not dynamical in the sense that it

satisfies its own dynamical equations of motion, it is nevertheless completely determined by the

dynamics of the other degrees of freedom of the theory.
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