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Abstract 

A reduced nonlinear model of a planar molten carbonate fuel cell is presented. The 

model is derived from a spatially distributed dynamic model of the cell by applying 

the Karhunen Loève Galerkin procedure. The reduced model is of considerably lower 

order than the original one and requires much less computation time. The comparison 

between the two models shows that the reduced model can describe the dynamic of 

the temperature field with sufficient accuracy and has good extrapolation qualities 

with respect to changes in the model parameters. 
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1. Introduction 

The molten carbonate fuel cell (MCFC) is a high-temperature fuel cell operated at 

600°C - 700°C. Due to its high operation temperature, the MCFC offers advantages 

for the co-generation of heat and electricity. Furthermore, the high operation 

temperature enables internal reforming and makes the MCFC flexible with respect to 

the sorts of fuel that can be used. On the other hand, the operation temperatures and 

consequently the demands of the MCFC on thermal stability of the used materials are 

below those of solid oxide fuel cells [1]. Those properties make the MCFC an 

attractive candidate for decentralized power generation. The first commercial MCFC 

systems are now close to market [2]. 

Currently, the development and operation of MCFCs as of other high temperature fuel 

cells is mainly based on experimental and empirical knowledge. However, an intuitive 

process understanding is difficult in this case, as an MCFC system is an highly 

integrated process whose behavior depends on numerous interactions between the 

electrochemical reaction steps, the internal reforming, mass transport processes, and 

the heat transfer inside a cell or stack. A deeper understanding of the 

physico-chemical processes in an MCFC can be obtained from mathematical models 

based on physical conservation principles. Model based process control and process 

design strategies can lead to a much better use of the fuel cells' capacities and increase 

the efficiency of the system, but require suitable dynamic process models. Such 

models should offer good extrapolation qualities on the one hand, but must also be 



solvable in the framework of a real-time process control environment or an 

optimization algorithm. Today, the majority of MCFC models available in open 

literature are steady state models and therefore not suitable for process control (a 

survey is given in [3]). Only very few detailed dynamic MCFC models have been 

published [4,5,6]. Those models consist of systems of algebraic and nonlinear partial 

differential equations in several space coordinates, which are too complex for many 

process control purposes. As a consequence, most control studies of the MCFC have 

to rely on rather simple dynamical models, black-box type input output models, or 

qualitative knowledge-based approaches [7,8,9,10].  

The purpose of this contribution is to derive a reduced nonlinear dynamic model of an 

MCFC that approximates a detailed spatially distributed model with good accuracy, 

but whose solution requires less computation time. In the next section, the detailed 

two-dimensional spatially distributed model of a planar MCFC with cross flow is 

derived from energy, mass, and charge balances. This model is used as a starting-point 

and reference for the reduced model. A reduced set of model equations is developed 

by applying the Karhunen-Loève Galerkin to the reference model. Finally, the 

reduced model is validated in test simulations by comparison with the reference 

model. 



 

2. The Spatially distributed MCFC model 

For the development of a spatially distributed reference model, a planar MCFC as 

shown in Fig. 1 is considered. The flows an anode and on cathode side are orthogonal 

to each other, thereby inducing a cross flow. At the anode, a reaction between H2 and 

carbonate ions 2
3CO −  takes place that releases two electrons. The carbonate ions are 

produced at the cathode in a reaction of carbon dioxide and oxygen under 

consumption of two electrons. The transport of carbonate ions through the electrolyte  

 

Figure 1: Basic MCFC Structure with internal reforming. 

closes the internal electrical circuit. The hydrogen consumed on the anode side is 

generated in a steam reforming reaction. The MCFC offers different possibilities of 



external reforming, direct internal reforming inside the cell, and indirect internal 

reforming in connection pipes between different cells [11]. In this work, a 

combination of external reforming in a pre-reformer and of direct internal reforming 

is considered. The pre-reformer is fed with steam and methane. 

In the following, a dynamic two-dimensional model of the process will be developed, 

which includes energy, mass, and charge balances. The main purpose of the model is 

to serve as a basis for the temperature control of the cell. As the dynamics of the 

temperature equations is much slower than that of the mass and charge balances, only 

the temperature equations is considered to be dynamic, the mass and charge balances 

are assumed to be at steady state. 

 

2.1 Pre-reformer 

In the pre-reformer, the following two reactions take place: 

 The reforming reaction 

Rr
4 2 2CH H O CO 3H→+ +←    (1) 

 The water-gas shift reaction 

Wr
2 2 2CO H O CO H→+ +←   (2) 

For the description of the reformer, several assumptions are made: 

 The temperature is constant, no energy balance is considered. 

 The reactants behave like ideal gases. 

 The following reaction kinetics from [12] is used. 
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and iP  stands for the partial pressure of component i  

 The pre-reformer is assumed to be one-dimensional. 

The following component material balances result: 

( ),i r
Ri R wi w

nX
r r 0

z
n n

∂
− + + =

∂


 ,       , , , ,4 2 2 2i CH H O CO CO H=  (3) 

In the above equation, ,i rX  is the molar fraction of the gas components in the 

pre-reformer; n  is the molar flow rate, Riν  and wiν  are the stoichiometric 

coefficients. 

For the total material balance, one obtains: 

R
n 2r 0
z
∂

− + =
∂
   (4) 

 

2.2 Model of the MCFC 

The model of the MCFC is based on the following assumptions: 

• The electrodes’ area is described through a y-z plane. The gas flow on anode side 

is in z direction, and the gas flow on the cathode side is in y direction.  

• Spatial gradients of the concentrations and the temperature in solely y or z 



direction are considered. Gradients perpendicular to the y – z plane are neglected. 

• For the sake of simplicity, a pseudo-homogeneous energy balance is derived, i.e. 

temperature differences between the gases and the solid parts of the cell are 

neglected. 

• The anodic reaction  

2
2 3 2 2H CO H O CO 2e− −+ → + +   (5) 

and the cathodic reaction  

2
2 2 3

1 O CO 2e CO
2

− −+ + →   (6) 

are taken into account. To calculate their reaction rates, the Butler-Volmer 

approach is used. For the reforming and the shift reaction (1) and (2),  the 

kinetics by [12] is used, as in the pre-reformer model. 

• The potentials of the electrodes are assumed to be spatially independent. Ohmic 

losses are modeled by an average Ohmic resistance for the cell. 

• The mass and charge balances are assumed to be quasi-stationary, as their time 

constants are very small compared with the time constant of energy balance. 

The above assumptions lead to the balance equations summarized in the following. 

 

2.2.1 Energy balance of the MCFC 

The energy balance in the form of a parabolic partial differential equation of the 

temperature has the following structure:     
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The boundary conditions read: 
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In the above equations, pcρ  is the total thermal capacity of the system; d is a 

geometrical constant comprising the thickness of anode, cathode, and membrane; An , 

Cn are the molar flow rates of anode, and cathode gas flow, respectively; A
PC , C

PC  

are molar heat capacities of anode, and cathode gas flow, respectively; λ  is the heat 

conductivity; Ai , Ci  are the electrical current densities of anode, and cathode; A
Rh∆ , 

C
Rh∆ , R

Rh∆ , W
Rh∆  are the heats of reaction of reaction (5), (6), (1) and (2), 

respectively; ACΦ , CCΦ  are the electrical potentials of the anode and the cathode; 

AMΦ , CMΦ  are the electrical potentials of the electrolyte membrane on anode side and 

on cathode side; CellI  is the total cell current; yL , zL  are the lengths of the 

electrodes in y and z directions; F  is the Faraday constant. 

2.2.2 Reaction kinetics 

 Anode side 
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 Cathode side 
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The over-potential Aη  and Cη  are given by: 
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( )AC AM

ref
ΦΦ −  and ( )CC CM

ref
ΦΦ −  are the equilibrium potentials of the anode 

reaction and the cathode reaction, respectively. 

 

2.2.3 Material balances 

 Component and total material balances on the anode side 
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 Component and total material balances on the cathode side 

( )
,

C C c
i

C i

n x i0
y 2F

n
∂

= − −
∂


  (12) 

C cn 3i0
y 4F

∂
= − −

∂


  (14) 

2.2.4 Charge balances 

The current densities on anode and on cathode side must sum up to the cell current 

ICell : 

0 0

Y ZL L
A

cellI i dydz= ∫ ∫               (15)    
0 0

Y ZL L
C

cellI i dydz= ∫ ∫               (16) 



The total cell voltage is given by: 

( ) ( ) ( )CC AC AM AC CM CC A C cell M
Mref ref

Y Z

I d
L L

ΦΦΦΦΦΦ      η η
σ

− = − − − − + − , (17) 

where dM is the thickness of the electrolyte membrane, and Mσ  is the electrolyte’s 

conductivity. 

 

2.3 Simulation results 

Typical simulation results for the temperature and current density profiles are shown 

in Fig.2 and Fig.3. Fig. 2 shows steady state results for a MCFC fed with hydrogen. 

No internal reforming takes place. The exothermic electrochemical reaction causes a 

temperature increase in the cell. As the cell is cooled only by the incoming gas flows, 

the temperature maximum lies in the corner opposite to the anode and cathode gas 

inlet - the upper right corner of the temperature diagram in Fig.2 (a). The reaction 

rates increase with increasing temperature, but decrease with increasing consumption 

of the reactants. Therefore, the maximum of the current density is shifted to the left 

with respect to the temperature maximum. 

The temperature and current density profiles change if the cell is fed with methane 

and water instead of hydrogen. In this case, which is shown in Fig. 3, the endothermic 

internal reforming leads to an additional cooling of the cell. The composition of the 

gas flow leaving the pre-former and entering the anode side is close to the equilibrium 

of the steam reforming reaction. Therefore, the cooling influence of the internal 

reforming step is only weak in the inlet area of the anode gas channels. The influence 

becomes stronger towards the anode outlet, because hydrogen is consumed along the 



anode gas channels and is reproduced by the reforming reaction. Consequently, the 

temperature gradients in the cell are smaller than they are for a cell without internal 

reforming. 

The two examples show that spatial dependencies have an important impact on the 

over-all behavior of the MCFC and have to be taken into account when modeling the 

system. On the other hand, the numerical solution of a dynamic spatially distributed 

system is difficult and time consuming. Spatially distributed models often are too 

complex for real-time applications like model-based control strategies or online 

optimization. This motivates the development of reduced models that are able to 

approximate the behavior of the distributed model with good quality, but require less 

computation time. 

 

     (a)          (b) 

Figure 2: Steady state temperature (a) and current density profiles (b) of the model 

without the pre-reformer for a cell current of CellI 200A= ; z-coordinate = direction 

of the anode gas flow, z 0=  being the anode gas inlet; y-coordinate = direction of 

the cathode gas flow, y 0=  being the cathode gas inlet. 



 

     (a)          (b) 

Figure 3: Steady state temperature (a) and current density profiles (b) of the model 

with a pre-reformer for a cell current of CellI 200A= ; z-coordinate = direction of the 

anode gas flow, z 0=  being the anode gas inlet; y-coordinate = direction of the 

cathode gas flow, y 0=  being the cathode gas inlet. 

 

3. Derivation of the reduced MCFC model 

 

3.1 Galerkin procedure   

For model reduction of parabolic partial differential equations (PDEs) like (7), 

orthogonal projection methods have become a frequently used technique [13,14,15].  

The basic idea is to represent the unknown variable, e.g. the temperature T , by an 

infinite sum of products. 
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In (18), ( ),T
i y zφ  are orthonormal basis functions with the following property: 
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The model reduction is achieved by approximating the infinite sum by a series with a 

finite number of elements and neglecting the higher order terms:1 
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In general, the approach (18) will not solve the equation (7) exactly, but a nonzero 

residual Re s  will remain. The Galerkin method of weighted residuals requires that 

the residual Re s  in  (7)  must vanish, if weighted by a basis function, i.e 

!
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y zL L
T
i
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s dydz 0φ
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=∫ ∫               , , Ti 1 N=   (20) 

This approach leads to TN conditions for the time dependent functions ( )iT t . 

Consequently, the partial differential equation (7) is replaced by TN  ordinary 

differential equations in the reduced model.  

For the model reduction of the MCFC model, not only the profile of the temperature, 

but also those of the molar fractions in the anode and in the cathode gas channels, as 

well as the profiles of the total molar flow rates have to be approximated by basis 

functions. Using the notation 
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1 A more accurate approximation can be obtained by using the method of approximate inertial 
manifolds for the higher order terms instead of neglecting them completely [16]. However, this is not 
considered here. 
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one obtains the following set of reduced model equations by applying the weighted 

residual condition to the energy and material balances: 
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The charge balances (15) and (16) complete the reduced model. In summary, the 

reduced model is a differential algebraic system of differential index one for the 

unknowns iT , ,
A
j ix , C

jix , A
in , C

in , Aφ∆ , Cφ∆ . The quality of the reduced model, i.e. 



its deviation from the original model, mainly depends on two factors. The first one is 

the number of terms considered in the approximations (19), (21)-(24) . The second is 

the choice of the basis functions. A good approximation of the complete model by a 

low order reduced model is achievable, if suitable problem-specific basis functions 

are chosen. One possibility would be to linearize the original spatially distributed 

system and to use the eigenfunctions of the linearized problem as basis functions [13].  

In this contribution, another approach, the Karhunen-Loève decomposition method is 

applied, because by that method it is also possible to incorporate the nonlinear 

behavior of the system in the basis functions. 

 

3.2 The Karhunen- Loève decomposition 

The Karhunen-Loève decomposition (K-L decomposition) was originally developed 

for the description of stochastic data [17]. By applying the K-L decomposition to a 

given stochastic field, eigenfunction are obtained that can reproduce the data with a 

certain accuracy and with a minimum number of degrees of freedom. 

For the solution of partial differential equation, the K-L decomposition method can be 

used to generate basis function for the Galerkin procedure [18].  

The key issue in this approach is to determine suitable basis functions from the 

simulation results with the original model, taken at discrete time points ti, i=1,...,N. 

The simulation results are called snapshots and are denoted as ( ),i y zυ . By the K-L 

decomposition, it is possible to extract the most typical or characteristic structure 

from these snapshots in the form of empirical eigenfunctions ( ),i y zφ .   



As is shown in [18], the basis functions ( ),i y zφ  can be written as: 
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In (29), iα  is the eigenvector of an N×N matrix C whose elements are given by: 
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For the eigenvalue iλ , the following correlation holds [16]:  
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Therefore, iλ  may be interpreted as a measure of how well an eigenfunction iφ  is 

able to approximate the time average of the snapshots. In this sense, the eigenfunction 

1φ  corresponding to the largest eigenvalue 1λ  is the most typical structure of the 

snapshots.  

In order to determine suitable basis functions for the MCFC model, the response of 

the complete model to a increase of the cell current from 200A to 250A and 

subsequent decrease to 200A is computed numerically by using the method of lines. 

The basis functions for the reduced model are computed from the transient solution of 

the complete model. For the temperature profile, between TN 1=  and TN 5=  basis 

functions are chosen. For the other variables of the reduced model,  two basis 

function for each gas are found to be sufficient.  

 



3.4 Numerical solution of the reduced model equations 

Due to the nonlinearity of the reference model and as the basis functions of the 

reduced model are given as data arrays,  the evaluation of the integrals on the 

right-hand sides of Eqn. (25)-(29) requires numerical quadrature. For the MCFC 

model, the very simple approach to approximate the integrands by piecewise constant 

functions on an equidistant grid brought satisfactory results. A more crucial point for 

the success of the model reduction seems to be the way how the boundary conditions 

of the original model are included in the reduced model. Park and Cho [18] used 

integration in parts in order to substitute the boundary conditions into the reduced 

model equations. In our case, it proved to be more successful to incorporate the 

boundary conditions in the finite difference approximations of the temperature and 

concentration gradients.  

 

4. Simulation results of the reduced MCFC model 

Test simulations are made in order to validate the reduced model by comparson with 

the original model. Special emphasis is laid on the extrapolation qualities of the 

reduced model. The first test consists in the simulation of a randomly varying cell 

current. The results for a cell without internal reforming are shown in Fig. 4 It is 

found that already the approximation of the temperature profile by a single basis 

function leads to a quite satisfactory behavior of the reduced model. The temperature 

error becomes very small, if 5 basis functions are used for the temperature. In all 

simulations shown in Fig. 4, the cell voltage of the reduced model matches the result 



of the complete model nearly perfectly. The corresponding simulation for the case 

with internal reforming (Fig. 5) leads to similar results. Compared with Fig. 4, the 

temperature error of the reduced model is even smaller, mainly because the 

temperature gradients of the model with internal reforming are not as big as in the 

case without internal reforming. 

A second test is the response of the reduced model to a change of the steam-to-carbon 

ratio in the feed. This test is more challenging than the first one, because the basis 

functions for the reduced model were obtained from simulations with a fixed 

steam-to-carbon ratio. Nevertheless, the agreement between the reduced and the 

complete model is still very good, as can be seen in Fig. 6. The extrapolation qualities 

of the reduced model could be confirmed in further tests, where the kinetic parameters 

of the anodic and the cathodic reaction were varied. An example is given in Fig. 7, 

which contains steady state results for different kinetic parameters of the anodic 

reaction. Although the parameters are varied over a large interval, the error of the 

reduced model hardly changes. 

The K-L decomposition technique leads to a considerable reduction in terms of the 

order of the system as well as in terms of the computation time. This is illustrated for 

the test simulation in Fig. 5: After a spatial discretization, the complete model consists 

of about 12,000 equations. Its numerical solution requires about 43,000s of a CPU 

time on a PC. In comparison, the reduced model consists of 25 equations, if 5 

temperature basis functions are used. Its numerical solution takes about 380s of CPU 

time on the same PC. The decrease of the computational time achieved by the model 



reduction is not quite as strong as the decrease of the order of the system. The reason 

is that the evaluation of the reduced model equations is more complicated as it 

requires a numerical quadrature. 

(a) 

 

Figure 4: Validation of the reduced 

model by a test simulation with 

randomly varying cell current – 

case without internal reforming; 

(a) cell current used as input 

signal; (b) maximum temperature 

error of the reduced model; (c) 

cell voltage of reduced and 

complete model. 

 

(b) 

  

(c) 

 

 

 



 

      (a)                (b)  

Figure 5: Validation of the reduced model by a test simulation with randomly varying 

cell current – case with internal reforming; cell current as in Fig. 4 (a); (a) 

maximum temperature error of the reduced model; (b) cell voltage of reduced and 

complete model. 

 

(a) 

 

Figure 6: Validation of the reduced 

model by a test simulation with a 

varying steam-to-carbon ratio; 

(a) ratio of the water and 

methane concentration in the 

feed; (b) temperature error of the 

reduced model; (c) cell voltage 

of the reduced and the complete 

model. 

 

(b) 

 



(c) 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

Figure 7: Validation of the reduced model by comparison of steady state results for 

different values of the anodic kinetic parameters; (a), (b) variation of Ak0 ; (c), (d) 

variation of AE . 



5. Conclusions 

A reduced model of an MCFC was obtained by applying the Karhunen-Loève 

Galerkin method to a two-dimensional spatially distributed cross-flow model of the 

cell. The basic idea of the method is to approximate the profiles of the spatially 

distributed variables by basis functions obtained from test simulations with a detailed 

reference model. For the MCFC model considered here, this technique proves to be 

successful. The reduced model produces results that are very close to those of the 

original model, but it reduces the computation time by a factor of more than 100.  

It may be regarded as a certain drawback of the K-L decomposition method, that the 

resulting eigenfunctions depend on the choice of the numerical test simulations or 

snapshots. However, the results of the previous section indicate satisfactory 

extrapolation qualities of the reduced model of the MCFC. That may be explained by 

the fact, that only the basis functions of the reduced model are obtained numerically. 

The reduced model itself is given in an analytical form and still contains the 

information on the physical correlations in the original model.  

Due to its properties, the reduced model seems to be suitable for applications in the 

field of model based process control. An example are model based measuring 

techniques, where the reduced model can be used in the framework of a Luenberger 

observer or a Kalman filter in order to estimate quantities of a fuel cell that are not 

accessible to direct measurements. 
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