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Abstract: In this paper, we consider very rough solutions to the Cauchy problem for
the Einstein vacuum equations in CMC spatial harmonic gauge, and obtain the local
well-posedness result in Hs, s > 2. The novelty of our approach lies in that, without
resorting to the standard paradifferential regularization over the rough, Einstein metric
g, we manage to implement the commuting vector field approach to prove Strichartz
estimate for geometric wave equation �gφ = 0 directly.

1. Introduction

In mathematical relativity, a fundamental question is to find a four dimensional Lorentz
metric g that satisfies the vacuum Einstein equations

Ric(g) = 0. (1.1)

Since the equation is diffeomorphic invariant, certain gauges should be fixed before
solving it. There exist extensive works on (1.1) under the wave coordinates gauge or the
constant mean curvature gauge.

In [2] Andersson and Moncrief consider the vacuum Einstein equation (1.1) under
the so-called constant mean curvature and spatial harmonic coordinate (CMCSH) gauge
condition. To set up the framework, let Σ be a 3-dimensional compact, connected and
orientable smooth manifold, and let M := R × Σ . Let t : M → R be the projection
on the first component and let Σt := {t} × Σ be the level sets of t . One may construct
solutions of (1.1) by considering Lorentz metrics g of the form

g = −n2dt ⊗ dt + gi j (dxi + Y i dt) ⊗ (dx j + Y j dt)

with suitable determination of the scalar function n, the vector field Y := Y j∂ j and
the Riemannian metric g := gi j dxi ⊗ dx j on Σ . In order for ∂t to be time-like, it is
necessary to have n2 − gi j Y i Y j > 0. Let T be the time-like unit normal to Σt , then
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∂t = nT + Y.

We call n the lapse function and Y the shift vector field.
Let ĝ be a fixed smooth Riemannian metric on Σ with Levi-Civita connection ̂∇ and

Christoffel symbol �̂k
i j . Let Γ k

i j denote the Christoffel symbol with respect to g. We may

introduce the vector field U = Ul∂l with

Ul := gi j (Γ l
i j − Γ̂ l

i j ).

Let k be the second fundamental form of Σt in M, i.e. ki j = − 1
2LTgi j . The solution

of (1.1) constructed in [2] is to find the pair (g, k) such that they satisfy the CMCSH
condition

Trk := gi j ki j = t and U j = 0 (1.2)

and the vacuum Einstein evolution equations

∂t gi j = −2nki j + LY gi j (1.3)

∂t ki j = −∇i∇ j n + n(Ri j + Trkki j − 2kimkm
j ) + LY ki j (1.4)

with the constraint equations

R − |k|2 + (Trk)2 = 0 and ∇i Trk − ∇ j ki j = 0. (1.5)

It has been shown in [2] that for initial data (g0, k0) ∈ Hs × Hs−1 with s > 5/2
satisfying the constraint equation (1.5) with t0 := Trk0 < 0, the Cauchy problem
for the system (1.2)–(1.5) is locally well-posed. In particular, there is a time T∗ >

0 depending on ‖g0‖Hs and ‖k0‖Hs−1 such that the Cauchy problem has a unique
solution defined on [t0 − T∗, t0 + T∗] × Σ . We should mention that, for the solution
constructed in this way, the lapse function n and the shift vector field Y satisfy the elliptic
equations

−Δn + |k|2n = 1 (1.6)

and

ΔY i + Ri
j Y

j =
(

−2nk jl + 2∇ j Y l
)

Ui
jl + 2∇ j nki

j − ∇ i nk j
j , (1.7)

where Ui
jl is the tensor defined by

Ui
jl := Γ i

jl − Γ̂ i
jl . (1.8)

It is natural to ask under what minimal regularity on the initial data the CMCSH Cauchy
problem (1.2)–(1.5) is locally well-posed. In this paper we prove the following result
which shows the well-posedness1 of the problem when the initial data is in Hs × Hs−1

with s > 2.

Theorem 1 (Main Theorem). For any s > 2, t0 < 0 and M0 > 0, there exist positive
constants T∗, M1 and M2 such that the following properties hold true:

1 The result of Theorem 1 requires that the initial data can be approximated by a smooth sequence of data
satisfying the constraint equation. The issue was settled in [6,7] by using a conformal method.
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(i) For any initial data set (g0, k0) satisfying (1.5) with t0 := Trk0 < 0 and
‖g0‖Hs (Σt0 )

+ ‖k0‖Hs−1(Σt0 )
≤ M0, there exists a unique solution (g, k) ∈

C(I∗, Hs × Hs−1) × C1(I∗, Hs−1 × Hs−2) to the problem (1.2)–(1.5);
(ii) There holds

‖̂∇g, k‖L2
I∗ L∞

x
+ ‖̂∇g, k‖L∞

I∗ Hs−1 ≤ M1;

(iii) For 2 < r ≤ s, and for each τ ∈ I∗ the linear equation
{

�gψ = 0, (t, x) ∈ I∗ × Σ

ψ(τ, ·) = ψ0 ∈ Hr (Σ), ∂tψ(τ, ·) = ψ1 ∈ Hr−1(Σ)

admits a unique solution ψ ∈ C(I∗, Hr ) × C1(I∗, Hr−1) satisfying the estimates

‖ψ‖L∞
t Hr + ‖∂tψ‖L∞

t Hr−1 ≤ M2‖(ψ0, ψ1)‖Hr ×Hr−1

and

‖Dψ‖L2
t L∞

x
≤ M2‖(ψ0, ψ1)‖Hr ×Hr−1;

where I∗ := [t0 − T∗, t0 + T∗].
We actually obtain a stronger result than Theorem 1, which is contained in Theorem 2.

1.1. Review and motivation. Since the pioneer work of Choquet-Bruhat [5], there has
been extensive work on the well-posedness of quasilinear wave equation

{

�g(φ)φ := ∂2
t φ − gi j (φ)∂i∂ jφ = N (φ, ∂φ),

φ|t=0 = φ0, ∂tφ|t=0 = φ1
(1.9)

in R
n+1, where the symmetric matrix gi j (φ) is positive definite and smooth as a function

of φ, and the function N (φ, ∂φ) is smooth in its arguments and is quadratic in ∂φ. In
view of the energy estimate

‖∂φ(t)‖Hs−1 � ‖∂φ(0)‖Hs−1 · exp

(∫ t

0
‖∂φ(τ)‖L∞

x
dτ

)

, (1.10)

the Sobolev embedding and a standard iteration argument, the classical result of Hughes–
Kato–Marsden [9] of well-posedness in the Sobolev space Hs follows for any s > n

2 +1,
where the estimate of ‖∂φ‖L∞

t L∞
x

is heavily relied on. To improve the classical result,
it is crucial to get a good estimate on ‖∂φ‖L1

t L∞
x

. This is naturally reduced to deriving
the Strichartz estimate for the wave operator �g(φ) which has rough coefficients since
gi j (φ) depend on the solution φ and thus at most have as much regularity as φ. The
first important breakthrough was achieved by Bahouri–Chemin [3,4] and by Tataru [21]
using parametrix constructions. They obtained the well-posedness of (1.9) in Hs with
s > n

2 + 1
2 + 1

4 by establishing a Strichartz estimate for solutions to linearized equations
of the form

‖∂φ‖L2
I L∞

x
≤ c(‖φ0‖

H
n
2 + 1

2 +σ + ‖φ1‖
H

n
2 − 1

2 +σ )
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with a loss of σ > 1
4 . This well-posedness result was later improved to s > n

2 + 1
2 + 1

6
in [23].

The next important progress was made by Klainerman in [10] where a vector field
approach was developed to establish the Strichartz estimate. This approach was further
developed by Klainerman–Rodnianski in [12] where they successfully improved the local

well-posedness of (1.9) in R
3+1 to the Sobolev space Hs with s > 2 + 2−√

3
2 . Due to the

limited regularity of the coefficients, the paradifferential localization procedure in [4,
22,23] was adopted in [12] to consider the Strichartz estimate for solutions of linearized
wave equation �g≤λa ψ = 0 for some 0 < a ≤ 1, where g≤λa := Sλa (g(Sλa (φ))) is
the truncation of g(φ) at the frequency level λa . Here Sλ := ∑

μ≤λ Pμ and Pλ is the

Littlewood-Paley projector with frequency λ = 2k defined for any function f by

Pλ f (x) = fλ(x) =
∫

eix ·ξ ζ(λ−1ξ) f̂ (ξ)dξ (1.11)

with ζ being a smooth function supported in the shell {ξ : 1
2 ≤ |ξ | ≤ 2} satisfying

∑

k∈Z
ζ(2kξ) = 1 for ξ �= 0. We refer to [17,20] for detailed properties of Littlewood-

Paley decompositions. With the help of a T T ∗ argument, such Strichartz estimate was
reduced to the dispersive estimate for solutions of �g≤λa ψ = 0 with frequency localized
initial data. It was then further reduced to deriving the boundedness of Morewatz type
energy for ∂ψ and its higher derivatives. To derive these energy estimates requires the
control of the deformation tensor of Morawetz vector field, which involves the Ricci
coefficients relative to the Lorentzian metric −dt2 + (g≤λa )i j dxi ⊗ dx j . Since Ric of
the smoothed metric appears crucially in the structure equations for Ricci coefficients,
new characteristics techniques were developed to take advantage of the observation that
R44, the tangential component of Ric along null hypersurfaces, has better structure and
the fact that the coefficients g themselves verify equations of the form (1.9). For the
Einstein vacuum equation under the wave coordinates gauge, the local well-posedness
were obtained in Hs for any s > 2 in [13–15]. The core progress which enables the

improvement from s > 2 + 2−√
3

2 to s > 2 was made in [15] by showing that the Ricci
tensor relative to the frequency-truncated metric h := g≤λ does not deviate from 0 to a
harmful level; the decay rate of Ric(h) and its derivatives were proven to be sufficiently
strong in terms of λ. However, similar estimates for Ric(h) can hardly be obtained for
(1.9). The sharp local well-posedness for type (1.9) in Hs with s > 2 was achieved
by Smith and Tataru in [19] based on a parametrix construction of a solution by using
wave packet. The particular structure of R44 observed in [12] also played an important
role to control the geometry of null surface. The local well-posedness with s = 2 for
Einstein vacuum equation was conjectured by Klainerman in [11]. Recently we learned
that significant progress has been achieved for this so-called L2 curvature conjecture
[18].

A reduction to consider �g≤λa ψ = 0, with 0 < a ≤ 1 appeared in almost all
the above mentioned work. This regularization on metric is used to phase-localize the
solution, and in most of the works, to balance the differentiability on coefficients required
either by parametrix construction or by energy method. Such a regularization on metric,
nevertheless, poses major technical baggage, in particular, in carrying out the vector field
approach in Einstein vacuum spacetime, since Ric(g≤λ) no longer vanishes. The analysis
in [15] on the defected Ricci tensor and its derivatives is a very delicate procedure, which
relies crucially on full force of ∂h, hence, on their non-smoothed counter part ∂g as well.
One particular issue tied to CMCSH gauge itself arises due to the lack of control on DTY ,
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the time derivative of the shift vector field. By differentiating (1.7), we can obtain an
elliptic equation for DTY . However, the elliptic equation does not provide a valid control
on DTY even in terms of L2-norm, since the kernel of this elliptic operator is not expected
to be trivial. The loss of control over some components of ∂g becomes a serious hurdle
in recovering the decay for Ric(h) and its derivatives. The potential issue on Ricci defect
forces us to abandon the frequency truncation on metric.

The important aspect of our analysis is to implement the vector field approach directly
in the non-smoothed Einstein spacetime (M, g) to establish the Strichartz estimate with
an arbitrarily small loss for the linearized problem �gψ = 0. This confirms that, due to
the better behavior of Ric, the Einstein metric is in nature “smooth” enough to implement
the vector field approach without the truncation on g in Fourier space, and leads to the
Hs well-posedness result with s > 2 for Einstein equation.

Compared with the classical approach in [2,9], the risk of carrying out a more direct
analysis is expected to arise from lack of 1

2 -derivative. In the heart of the regime of
Strichartz estimates contained in [12–15], the main building block is to obtain the dis-
persive estimate for Pλ∂tψ by deriving the bounded Morawetz type energy of derivatives
ofψ , with �g≤λa ψ = 0. This procedure relies on Hσ , σ > 1

2 norm of curvature, which is
1/2 more derivative than the rough Einstein metric could offer. To conquer this difficulty,
we firstly manage to derive the dispersive estimate merely by using the Morawetz type
energy for ψ itself. The analysis to control such energy is then accomplished based on
Proposition 12. The main technical baggage is then reduced to proving (5.179) in Propo-
sition 12, a Strichartz type control over the Ricci coefficients χ̂ , ζ relative to Einstein
metric.

The control of Ricci coefficients consistent with H2 Einstein metrics has been studied
in [16,24,26], where a set of estimates concerning trχ, χ̂, ζ, ζ was achieved in terms of
curvature flux, combined with flux of k if null hypersurface is foliated by level sets of
t . Bearing the flavor of these works, in the situation when H2+ε estimates for g can be
established, we manage to obtain stronger set of estimates on Ricci coefficients in terms
of the L2+ type flux. This enables us to carry out delicate analysis such as Calderon-
Zygmund inequality on null hypersurfaces under rough metric. In this procedure, thanks
to working directly in vacuum spacetime, we no longer encounter the technical difficulty
in [13–15] posed by the defected Ric(h). Nevertheless, this set of estimates is much
weaker than (5.179). The crucial estimates for χ̂ and ζ will be based on the Hodge
systems of χ̂ and ζ , Strichartz estimates on k,̂∇g via a bootstrap argument and Calderon-
Zygmund theory. The standard L∞

x Calderson-Zygmund inequality ([14, Propositoin
6.20]) would involve the bound of Hσ , σ > 1/2 for ̂∇k and ̂∇2g. One advantage offered
by the smoothed metric g≤λ lies in that such a loss of derivative is quantitized to be a log-
loss in terms of frequency. Instead of smoothing, we solve this problem by modifying
the Calderon-Zygmund inequality and squeezing out an extra bit of differentiability for
̂∇g, k through Strichartz estimates.

The difficulty coming from DTY still penetrates in key steps in our vector fields
approach, where all components of ∂g were typically involved. We exclude such term
by introducing a modified energy current, and by refining T T ∗ argument and curvature
decomposition ([27]) into more invariant fashion.

We will divide our work into two parts. In this paper, we establish the Strichartz
estimates and close the proof of the main theorem by assuming the estimates of Ricci
coefficients contained in Proposition 12. In [27], we will prove Proposition 12.

We emphasize that our approach can be directly applied for reproducing H2+ε result
for Einstein equations in wave coordinates gauge. It actually works better under wave
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coordinates since DTY can be well controlled in this situation. Steps which are involved
with getting around this term in CMCSH gauge take simpler and more straightforward
form in wave coordinate gauge. The delicate procedures of deforming the actual space-
time and controlling the defected Ricci no longer appear in our approach. Our approach
gives a vast simplification over the methodology in [13–15].

1.2. Outline of the proof. According to [14,19], in order to complete the proof of The-
orem 1 it suffices to show that for any s > 2 there exist two positive constants C and T
depending on ‖g‖Hs (Σ0) and ‖k‖Hs−1(Σ0)

such that

‖g‖L∞
t Hs (I×Σ) + ‖k‖L∞

t Hs−1(I×Σ) ≤ C, (1.12)

where I := [t0 − T, t0 + T ]. We achieve this by a bootstrap argument. That is, we first
make the bootstrap assumption

∫ t0+T

t0−T
‖̂∇g, k, ̂∇Y, ̂∇n‖L∞(Σt )dt ≤ B1, (BA1)

where, for any Σ-tangent tensor F , we will use ‖F‖L∞(Σt ) to denote its L∞-norm
with respect to the Riemannian metric g on Σt . We then show that (BA1) and some
auxiliary bootstrap assumptions imply (1.12). We prove these bootstrap assumptions
can be improved for small but universal T > 0.

We will only work on the time interval [t0, t0 + T ] since the same procedure applies to
the time interval [t0 − T, t0] by simply reversing the time. In view of (BA1) and elliptic
estimates, we derive in Sect. 2 better estimates for ̂∇Y and ̂∇n. That is, we show that,
for any 1 < b < 2, there holds

‖̂∇Y,̂∇n‖Lb[t0,t0+T ]L∞
x

≤ C

which improves the estimates for̂∇n and̂∇Y in (BA1) with T sufficiently small. In order
to improve the estimates for ̂∇g and k, we establish the core estimates in Theorem 1(ii)
by showing that

‖̂∇g, k‖L2[t0,t0+T ]L∞
x

≤ CT δ,

for some δ > 0. Here we briefly describe the ideas behind the proof.

1.2.1. Step 1. Energy estimates and flux. In Sects. 2 and 3, we derive (1.12) under
bootstrap assumptions. We also derive for the scalar solution of homogeneous geometric
wave equation �gφ = 0, the energy estimate

‖∂φ‖Hs−1 � ‖φ(0)‖Hs + ‖∂φ(0)‖Hs−1 .

To obtain (1.12), the typical energy argument is based on considering �gg with bootstrap
assumptions on ‖∂g‖L1

t L∞
x

. The second order equations �gg = · · · contain terms of
DTY . In view of (1.7), DTY satisfies the elliptic equation

Δ∇nTY i + Ri
j∇nTY j − 2U i

mp∇m∇nTY p = −n(curl H)i
j Y

j + g · ∇π̃ · π̃ ,

where π̃ denotes components of ∂g excluding ∂t Y . Due to the appearance of the term
Ri

j∇nTY j , in general, one cannot show the kernel of the elliptic operator is trivial since
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the lower bound of R j
i is not expected to be controlled. This equation is not good enough

to provide valid control for DTY . The same issue occurs when one considers the elliptic
equation ̂ΔDTY = · · · . In order to avoid the difficulty coming from DTY , we manage
to employ equations not containing this term at all. In Sects. 2.1 and 3 we derive the
energy estimate by considering the first order hyperbolic system,

{

∂t u − ̂∇Y u = nv + Fu

∂tv − ̂∇Y v = nΔ̂u + Fv
(1.13)

for the pairs (u, v) = (g,−2k), (k, E) and (φ, e0φ)with corresponding remainder terms
(Fu, Fv), where, for any Σ tangent tensor F ,

Δ̂F := gi j
̂∇î∇ j F. (1.14)

Consistent with these energy estimates, we also obtain the L∞
t Hs− 1

2 and L1
t Hs estimates

of ̂∇n,̂∇Y,DTn with the help of elliptic Eqs. (1.6) and (1.7).
However, to derive the flux estimate for ̂∇g, k, Pμk, and Pμ

̂∇g, we still have to rely
on the second order hyperbolic system of ψ = k or ̂∇g, both of which contain the time
derivative of the shift vector field. With a careful manipulation of terms, we observe that
the sum of �gψ with the remainder term DT(n−1 Fψ) which contains DTY no longer
involves this bad term. In Sect. 3.2, we introduce a modified current P̃α to cope with the
sum, instead of merely �gψ via the standard current Pα = QαβTβ . This successfully
yields the control on flux by divergence theorem. Note that terms of PαTα are almost
the same with those in P̃αTα , except that the term (DTψ)2 becomes (DTψ − n−1 Fψ)2

in the latter. P̃αTα does not give the full energy density, which is not good enough
for the purpose of controlling energy. Due to such limitation, the modified current P̃α

is developed to control flux after the full set of energy estimates on ψ , i.e., (1.12), is
established by using the first order system.

As the major technicality to carry out energy estimates in fractional Sobolev space and
estimates of dyadic flux, a series of more delicate commutator estimates are established in
Appendix (Sect. 6) on the Littlewood Paley projection and the rough metric, particularly
to handle the decreased differentiability of coefficients.

1.2.2. Step 2. Reduction to dyadic Strichartz estimates on frequency dependent time
intervals. By using the Littlewood-Paley decomposition, it is easy to reduce the proof
of Theorem 1 to establishing for sufficiently large λ the estimates

‖Pλ
̂∇g, Pλk‖L2

I L∞
x

� λ−δ|I | 1
2 − 1

q ‖̂∇g, k‖Hs−1(Σ0)
(1.15)

and

‖Pλ∂φ‖L2
I L∞

x
� λ−δ|I | 1

2 − 1
q ‖̂∇φ, e0φ‖Hs−1(Σ0)

(1.16)

for any solution φ of the equation �gφ = 0, where I = [t0, t0 + T ], q > 2 is sufficiently
close to 2, and δ > 0 is sufficiently close to 0.

We reduce the proof of (1.15) and (1.16) to Strichartz estimates on small time inter-
vals. We pick a sufficiently small ε0 > 0 and partition [t0, t0 + T ] into disjoint union of
subintervals Ik := [tk−1, tk] of total number � λ8ε0 with the properties that

|Ik | � λ−8ε0 T and ‖k,̂∇g,̂∇Y,̂∇n‖L2
Ik

L∞
x

≤ λ−4ε0 . (1.17)
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To explain our approach, we take the derivation of (1.16) as an example. We consider on
each Ik the Strichartz norm for Pλ∂φ. By commuting Pλ with �g we have �g Pλφ = Fλ,

where Fλ = [�g, Pλ]φ can be treated as phase-localized at level of λ in certain sense
although it is not frequency-localized. We use W (t, s) to denote the operator that sends
( f0, f1) to the solution of �gψ = 0 satisfying the initial conditions ψ(s) = f0 and
∂tψ(s) = f1 at the time s. Using Duhamel principle followed by differentiation, we can
represent Pλ∂φ as

Pλ∂φ(t) = ∂W (t, tk−1)Pλφ[tk−1] +
∫ t

s
∂W (t, s)(0, Fλ(s))ds, (1.18)

where we used the convention φ[t] := (φ(t), ∂tφ(t)). Running a T T ∗ argument leads
to Strichartz estimate for one dyadic piece of ∂ψ ,

‖Pλ∂ψ‖Lq
Ik

L∞
x

� λ
3
2 − 1

q ‖ψ[0]‖H1 , (1.19)

where q > 2 is sufficiently close to 2.
A similar procedure was used in [13] for �g≤λφ = 0. Observe that the solution of

this homogeneous wave equation is frequency-localized at the level of λ if the data is
localized in Fourier space at the dyadic shell {ξ : λ

2 ≤ |ξ | ≤ 2λ}. Therefore, the dyadic
Strichartz estimates (1.19) can be applied directly to the representation of Pλ∂φ. Since
we will work for the metric g without frequency truncation, the corresponding operator
W (t, s) does not preserve the frequency-localized feature of data. The Strichartz estimate
for ∂W (t, tk−1)Pλφ[tk−1] is no longer expected to be obtained directly from (1.19). We
solve this problem in Sect. 4 by modifying (1.18) with the help of the reproducing
property of the Littlewood-Paley projections, i.e., Pλ = P̃λ P̃λ, as follows,

Pλ∂φ(t) = P̃λ∂W (t, tk−1)P̃λφ[tk−1] +
∫ t

s
P̃λ∂W (t, s)(0, Fλ(s))ds. (1.20)

This makes it possible to apply (1.19). The effort then goes into piecing together the
result of dyadic Strichartz estimates over intervals Ik with the help of (1.17). This trick
would have successfully reduced the main estimates to dyadic strichartz estimate for the
solution of �gφ = 0 on one sub-interval Ik , had the term of DTY not appeared in Fλ.
We then refine (1.20) further by modifying the application of Duhamel principle.

1.2.3. Step 3. Reduction to dispersive estimates and boundedness theorem. By rescaling
coordinates as (t, x) → ((t − tk−1)/λ, x/λ), we need only to consider (1.19) on [0, t∗]×
Σ with t∗ ≤ λ1−8ε0 T . In view of a T T ∗ argument, this essentially relies on the dispersive
estimate

‖PDTW (t, s)I [s]‖L∞
x

�
(

(1 + |t − s|)− 2
q + d(t)

)
m
∑

k=0

‖̂∇k I [s]‖L1
x

(1.21)

with initial data I [s] = (ψ(s),DTψ(s)) for all 0 < s ≤ t∗, where m is a positive integer,
d(t) is a function satisfying ‖d‖

L
q
2

� 1 for q > 2 sufficiently close to 2, and P denotes
the Littlewood Paley projection Pλ=1.

Let {χJ } be a suitable partition of unity onΣ supported on balls of radius 1 in rescaled
coordinates. We localize the solution of �gψ = 0 by writing ψ(t, x) = ∑

J ψJ (t, x),
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where ψJ (t, x) is the solution of �gψJ = 0 with the initial data ψJ [τ0] = χJ · ψ[τ0].
We then reduce the derivation of (1.21) to proving that

‖PDTφ(t)‖L∞
x

≤
(

1

(1 + |t − τ0|)
2
q

+ d(t)

)

m−2
∑

k=0

‖̂∇kφ[τ0]‖L2 , (1.22)

with φ the solution of �gφ = 0 and with data supported within a unit ball at Στ0 .
It then suffices to consider (1.22) on J +

0 , the causal future of the support of χJ from
t = τ0 ≈ 1, where one can introduce optical function u whose level sets are null cones
Cu . Thus J +

0 can be foliated by St,u := Cu ∩ Σt and a null frame {L , L, e1, e2} can
be naturally defined, where eA, A = 1, 2, are tangent to St,u . Using these vector fields
and u = 2t − u, one can introduce the Morawetz vector field K = 1

2 n(u2L + u2L).
Consequently, for any function f , one can introduce the generalized energy

Q̃[ f ](t) :=
∫

Σ

Q̄(K ,T)[ f ],

where Q̄(K ,T)[ f ] is defined by applying X = K ,Y = T,Ω = 4t to

Q̄(X,Y )[ f ] = Q(X,Y )[ f ] +
1

2
Ω f Y ( f ) − 1

4
f 2Y (Ω) (1.23)

with Qμν being the standard energy momentum tensor

Qμν := Q[ f ]μν = ∂μ f ∂ν f − 1

2
gμν(gαβ∂α f ∂β f ).

The typical energy method gives

Q̃[ f ](t) − Q̃[ f ](τ0) = −1

2

∫

J +
0

(K )π̄αβ Q[ f ]αβ +
∫

Σ×I
�g f · K f + l.o.t, (1.24)

where, for any vector field X , the deformation tensor (X)παβ := LX gαβ and (K )π̄αβ :=
(K )παβ − 4tgαβ . By applying (1.24) to f = DTφ, we consider bounding general-
ized energy Q̃[DTφ] in terms of their initial values at t = τ0 ≈ 1. Due to one “bad”
term contained in �gDTφ = [�g,DT]φ, the estimate of Q̃[DTφ] has to be coupled
with Q̃[DZφ] with Z either L or eA, for which we need to control ‖D(Z)π‖L1

t L∞
x

and
∫ t∗

0 supu ‖D(Z)π‖L2(St,u)
dt . Since D(Z)π contains curvature terms, such estimates rel-

ative to non-smoothed metric can only be obtained under the assumption of H
5
2 +ε on

data. A similar regularity issue occurs for the estimates required for D(T)π due to the
integration by part argument employed to handle the aforementioned bad term. There-
fore, we no longer expect to obtain the boundedness of the conformal energy for any
derivative of φ, including the one for DTφ.

Our strategy is to control ‖PDTφ(t)‖L∞
x

merely in terms of Q̃[φ](t), with certain loss
of decay rate and with error incorporated into d(t) in (1.22). With � a cut-off function
whose support is essentially in a so-called exterior region, our treatment concerning the
harder part, P(�DTφ), starts with writing it as P(�DTφ) = P(� Lφ) − P(� Nφ)

with N the unit outward normal vector fields on St,u ⊂ Σ . The first term is controlled
by the Bernstein inequality and Q̃[φ](t). The second term is treated in view of

P(� Nφ) = � Nl∂l Pφ + [P,� Nl ]∂lφ. (1.25)
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The first term of (1.25) is then related to Q̃[φ] with the help of Sobolev embedding and
commutator estimates. By using the machinery developed in Sect. 6, the treatment on
the commutators involved in both terms in (1.25) is reduced to estimating ‖∂(� N )‖L∞

x
.

Note that ∂N can be expressed as g · (χ, ζ,̂∇g, k), thus we need to establish estimates

on L
q
2
t L∞

x , q > 2 of Ricci coefficients χ̂ , ζ and L∞ estimate on trχ . The components
of (K )π̄αβ in (1.24) involve (T)π , χ , ζ and other Ricci coefficients as well. By assuming
suitable control on Ricci coefficients, the proof of boundedness theorem is given in
Sect. 5. We accomplish this step by showing that (1.22) holds true with m = 3.

2. H2 Estimates

We first derive some preliminary consequences of (BA1) that will be used throughout
this paper.

Let X be an arbitrary vector field on Σ . We use |X |g and |X |ĝ to denote the lengths
of X measured by g and ĝ respectively. It then follows from (1.3) that

∂t (|X |2g) = Y m
̂∇m gi j Xi X j − 2nki j Xi X j + (gim̂∇ j Y

m + gmĵ∇i Y
m)Xi X j .

Therefore
∣

∣

∣∂t |X |2g
∣

∣

∣ ≤ (

2|̂∇Y | + |Y |g|̂∇g| + 2n|k|) |X |2g.
In view of (1.6) and the maximum principle, we can derive that 0 < n ≤ C , where C is
a constant depending only on t0; see [25, Section 2]. Recall that |Y |g ≤ n. We thus have

∣

∣

∣∂t |X |2g
∣

∣

∣ ≤ C
(|̂∇Y | + |̂∇g| + |k|) |X |2g.

This together with the bootstrap assumption (BA1) implies C−1|X |g(t0) ≤ |X |g(t) ≤
C |X |g(t0). Since g(t0) and ĝ are always equivalent on compact Σ , we therefore have

C−1ĝ ≤ g ≤ Cĝ, on [t0, t0 + T ] × Σ (2.26)

for some universal constant C > 0.2 This equivalence between g and ĝ on each Σt gives
us the freedom to use g or ĝ to measure the length of any Σ-tangent tensor.

Using (2.26) and (BA1), we can follow the arguments in [25, Sections 2 and 3] to
derive that

C−1 < n < C, Q(t) ≤ C, ‖H, E,Ric‖L2
x

≤ C, ‖π,DnTn‖H1 ≤ C (2.27)

‖∇3n‖L2
x

+ ‖∇2DnTn‖L2
x

� ‖k‖L∞
x
, (2.28)

where π is the deformation tensor of T with components k and ∇ log n, E and H are
the electric and magnetic parts of spacetime curvature defined by Ei j = R0i0 j and
Hi j = �R0i0 j respectively, and Q(t) is the Bel-Robinson energy defined by

Q(t) =
∫

Σ

(

|E |2g + |H |2g
)

dμg.

2 We will always use C to denote a universal constant that depends only on the constant in the bootstrap
assumptions, information on g(t0), |Σt0 | and ‖(g, k)‖Hs×Hs−1(Σt0 )

. For two quantities Φ and Ψ we will

use Φ � Ψ to mean that Φ ≤ CΨ for some universal constant C .
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As a consequence of (2.28), we have

‖∇n,DnTn‖L∞
x

� 1 + ‖k‖
3
2 − 3

p
L∞

x
, 3 < p ≤ 6. (2.29)

Let us fix the convention that F ∗ G denotes contraction by g and · denotes either usual
multiplication or contraction by ĝ.

Lemma 1. Under the spatial harmonic gauge, the shift vector field Y satisfies the equa-
tion

Δ̂Y = π ∗ U + π ∗ π + g · ̂∇g · ̂∇g · Y + g3 · R̂ · Y (2.30)

where Δ̂ is defined in (1.14), U is defined in (1.8), and R̂ is the Riemannian curvature
with respect to ĝ.

Proof. Straightforward calculation shows for any vector field Y and tensor F that

∇ j Y
i = ̂∇ j Y

i + Ui
jqY q , ∇ j Fi

m = ̂∇ j Fi
m + Ui

jp F p
m − U p

jm Fi
p.

In view of the spatial harmonic gauge condition Ui := g jlU i
jl = 0, we obtain

gmj∇m∇ j Y
i = gmj

̂∇m̂∇ j Y
i + gmj

̂∇mUi
jqY q + 2gmjUi

jq
̂∇mY q + gmjUi

mpU p
jqY q .

Recall the identity

R jl = R̂ jl + ̂∇iU
i
jl − ̂∇ jU

i
il + U p

jlU
i
pi − U p

il U i
pj , (2.31)

which can be checked directly. We can obtain that

ΔY i + Ri
pY p = Δ̂Y i + Ω i

pY p + 2gmjUi
jq
̂∇mY q

+ gmjUi
mpU p

jqY q + U · U · g · Y + R̂ · g · Y.

where Ω i
p = gmj

̂∇mUi
jp + (̂∇mU m

pk − ̂∇pU m
mk)g

ki .

By using the expression of U , the commutation formula and U p = gi jU p
i j = 0 we

have

Ω i
p = g · ̂∇g · ̂∇g +

1

2
gki gml (

̂∇m̂∇pgkl − ̂∇p̂∇m gkl
)

+
1

2
gki gml (

̂∇m̂∇pgkl + ̂∇p̂∇l gmk − ̂∇p̂∇k gml
)

= g · ̂∇g · ̂∇g + g · g · g · R̂.

Thus

ΔY i + Ri
pY p = Δ̂Y i + (g · ̂∇g · ̂∇g + g3 · R̂) · Y + 2gmjUi

jq
̂∇mY q + gmjUi

mpU p
jqY q .

Combining this with (1.7) gives

Δ̂Y i + 2gmjUi
jq
̂∇mY q + gmjUi

mpU p
jqY q

= −2nkmjUi
mj + 2∇mY jUi

mj + 2∇mnki
m − ∇ i nkm

m + g · ̂∇g · ̂∇g · Y + g3 · R̂ · Y.

In view of ∇mY lUi
ml = gmj∇ j Y lU i

ml = gmj
̂∇ j Y lU i

ml + gmjU p
jqUi

mpY q , we can obtain
the desired equation. ��
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Lemma 2. For any Σ-tangent tensor field F, on each Σt there holds

‖̂∇2 F‖L2
x

� ‖Δ̂F‖L2
x

+ ‖̂∇g · ̂∇F‖L2
x

+ ‖̂∇F‖L2
x

+ ‖F‖L2
x
.

Proof. Let dμg denote the volume form induced by g on Σt . Then, under the spacial
harmonic gauge, there holds ̂∇i (gi j dμg) = 0 (see [2, Page 3]). Thus, by integration by
part, we have

∫

Σ

|̂∇2 F |2gdμg =
∫

Σ

gi j g pq
̂∇î∇p Fl

̂∇ ĵ∇q Fldμg

= −
∫

Σ

(

̂∇p FlΔ̂̂∇q Fl g
pq + gi j

̂∇i g
pq
̂∇p Fl

̂∇ ĵ∇q Fl

)

dμg.

Here and throughout the paper we will use ĝ to raise and lower the indices in tensors. It
is easy to check the following commutator formula

Δ̂̂∇q Fl − ̂∇qΔ̂Fl = g · ̂∇g · ̂∇2 F + g · R̂ · ̂∇F + g · ̂∇ R̂ · F. (2.32)

Therefore we can derive that
∫

Σ

|̂∇2 F |2gdμg

=
∫

Σ

(

−g pq
̂∇p Fl

̂∇qΔ̂Fl + ĝ∇g · ̂∇F · ̂∇2 F + (g · R̂ · ̂∇F + ĝ∇ R̂ · F)̂∇F
)

dμg

where the first term is
∫

Σ
Δ̂FlΔ̂Fldμg by integration by part. ��

Lemma 3. On each Σt there hold

‖̂∇Y‖L2 � ‖̂∇g‖L2 + 1, (2.33)

‖̂∇2Y‖L2 � ‖(π,̂∇Y,̂∇g) · ̂∇g‖L2 + ‖̂∇g‖L2 + 1, (2.34)

‖̂∇3Y‖L2 � (‖̂∇Y,̂∇g‖H1 + 1)(‖̂∇g‖
4
3
L∞‖̂∇g‖

2
3
L2 + ‖̂∇g‖L∞)

+ (‖̂∇2g‖L2 + 1) · ‖̂∇g, π‖L∞ + ‖̂∇g‖L2 + 1. (2.35)

Proof. Consider (2.33) first. By using (2.30) and ̂∇ j (gi j dμg) = 0, we have

‖̂∇Y‖2
L2 ≈

∫

gi j
̂∇i Y

l
̂∇ j Yldμg

=
∫

−Δ̂Y l · Yldμg � ‖π · π‖L1 + ‖̂∇g · (̂∇g, π)‖L1 + 1.

In view of (2.27), we thus obtain (2.33).
Next, by using (2.30) we have

‖Δ̂Y‖L2 � ‖(π,̂∇g) · ̂∇g‖L2 + ‖π‖2
L4 + 1.

It then follows from Lemma 2 that

‖̂∇2Y‖L2 � ‖(π,̂∇Y,̂∇g) · ̂∇g‖L2 + ‖̂∇Y‖L2 + 1.

We thus obtain (2.34) in view of (2.33).
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Finally, by writing Δ̂̂∇Y = ̂∇Δ̂Y + [Δ̂,̂∇]Y , we have from (2.30) and (2.32) that

Δ̂̂∇Y = ̂∇π · ̂∇g + π · ̂∇2g + π · ̂∇g · ̂∇g + π · ̂∇π + π · π · ̂∇g

+ ̂∇g · ̂∇2g · Y + ̂∇g · ̂∇g · ̂∇g · Y + ̂∇g · ̂∇g · ̂∇Y + g · ̂∇g · ̂∇2Y

+ g · R̂ · ̂∇Y + g · ̂∇ R̂ · Y + ̂∇(g3 · R̂ · Y ). (2.36)

It is easy to see that L2 norm of the last three terms involving R̂ can be bounded by
1 + ‖̂∇g‖L2 . Note that

‖π · π · ̂∇g‖L2 � ‖̂∇g‖L∞‖π‖2
L4 � ‖̂∇g‖L∞,

‖(̂∇Y,̂∇g, π) · ̂∇g · ̂∇g‖L2 � (‖̂∇g,̂∇Y‖H1 + ‖π‖L6)‖̂∇g‖
2
3
L2‖̂∇g‖

4
3
L∞ .

Thus, using Lemma 2, we can obtain (2.35). ��

2.1. Energy estimate for ̂∇g. In order to proceed further, besides (BA1) we also need
the following bootstrap assumption

‖̂∇g‖L2[t0−T,t0+T ]L∞
x

+ ‖k‖L2[t0−T,t0+T ]L∞
x

≤ B0. (BA2)

which is a stronger version for the corresponding part in (BA1). The verification of
(BA1) and (BA2) will be carried out in Sect. 4.

We first introduce some conventions. For any 2-tensors u and v we define

〈u, v〉 := ĝik ĝ jlui jvkl and 〈̂∇u,̂∇v〉g := gi j 〈̂∇i u,̂∇ jv〉.
We will use |u|2 := 〈u, u〉 and |̂∇u|2g := 〈̂∇u,̂∇u〉g .

In the following we will derive some estimates on ̂∇g and the derivatives on Y . By
using the formula

LY ui j = ̂∇Y ui j + uim̂∇ j Y
m + umĵ∇i Y

m

for any 2-tensor u and the formula under the spatial harmonic gauge,

Ri j = −1

2
Δ̂gi j +̂Ri j + g · ̂∇g · ̂∇g (2.37)

we can derive from (1.3) and (1.4) that the 2-tensors u := g and v := −2k satisfy the
hyperbolic system (1.13) with Fu and Fv given symbolically by

Fu = u · ̂∇Y and Fv = 2∇2n + n · k ∗ k + k ∗ ̂∇Y. (2.38)

From (1.13) and the commutation formula (2.32), we can derive that

∂t̂∇u − ̂∇Ŷ∇u = n̂∇v + F
̂∇u and ∂t̂∇v − ̂∇Ŷ∇v = nΔ̂̂∇u + F

̂∇v, (2.39)

where

F
̂∇u = ̂∇Y · ̂∇u + Y · R̂ · u + ̂∇n · v + ̂∇Fu,

F
̂∇v = ̂∇Y · ̂∇v + Y · R̂ · v+̂∇nΔ̂u + ̂∇Fv+n(g · ̂∇g · ̂∇2u + g · R̂ · ̂∇u+g · ̂∇ R̂ · u).
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It is straightforward to derive that
{

̂∇2 Fu = ̂∇2Y · ̂∇g + g · ̂∇3Y + ̂∇Y · ̂∇2g,
̂∇Fv = g · ̂∇2Y · k + 2∇3n + g · ̂∇k · ̂∇Y + ̂∇(ng · k · k)

and

|̂∇F
̂∇u, F

̂∇v| ≤ |̂∇2Y · (k,̂∇g)| + |∇3n,̂∇3Y | + |(̂∇Y,∇n, k,̂∇g) · ̂∇(̂∇g, k)|
+ |̂∇n · k · (̂∇g, k)| + |̂∇g · k · ̂∇Y | + |̂∇g · k · k| + |∇2n · k|
+ |k| + |̂∇Y | + |̂∇g| + 1. (2.40)

In order to derive the estimates, we use the energy introduced in [2, Section 2]

E (0)(t) = E (0)(u, v)(t) := 1

2

∫

Σ

(

|u|2 + |̂∇u|2g + |v|2
)

dμg (2.41)

with u = g and v = −2k.

Proposition 1. Under the bootstrap assumption (BA1), there holds

sup
[t0,t0+T ]

‖̂∇g‖L2(Σt )
≤ C.

Proof. Recall that for any vector fields Z tangent to Σt and any scalar function f there
holds

∫

Σt
LZ ( f dμg) = ∫

Σt
div( f Z)dμg = 0. Therefore

∂tE (0)(t) = 1

2

∫

Σt

(∂t − LY )
{

(|u|2 + |̂∇u|2g + |v|2)dμg

}

=
∫

Σt

[

〈u, ∂t u − ̂∇Y u〉 + 〈v, ∂tv − ̂∇Y v〉 + gi j 〈̂∇i u, (∂t − ̂∇Y )̂∇ j u〉
]

dμg

+
1

2

∫

Σt

(∂t g
i j − LY gi j )〈̂∇i u,̂∇ j u〉dμg

+
1

2

∫

Σt

(|u|2 + |̂∇u|2g + |v|2)(∂t − LY )(dμg).

By using (1.3) we have ∂t gi j − LY gi j = 2nki j and (∂t − LY )(dμg) = −nTrkdμg .
These two identities together with (1.13) and (2.39) give

∂tE (0)(t) =
∫

Σt

(

n〈u, v〉 + 〈u, Fu〉 + 〈v, Fv〉 + nki j
̂∇i û∇ j u

)

dμg

+
∫

Σt

g ·
(

̂∇Fu · ̂∇u + Y · R̂ · u · ̂∇u + ̂∇Y · ̂∇u · ̂∇u
)

dμg

− 1

2

∫

Σt

nTrk(|u|2 + |̂∇u|2g + |v|2)dμg.

In view of the bounds on n, |Y | and g, we can derive that

∂tE (0)(t) �
(‖k,̂∇Y‖L∞ + 1

)

E (0)(t) + ‖̂∇Fu‖L2‖̂∇u‖L2 + ‖v‖L2‖Fv‖L2 . (2.42)
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By using (2.27) and Lemma 3 we have

‖̂∇Fu‖L2 ≤ ‖̂∇Y‖L∞‖̂∇g‖L2 + ‖̂∇2Y‖L2 � (‖̂∇Y,̂∇g, π‖L∞ + 1)‖̂∇g‖L2 + 1.

and

‖Fv‖L2 � ‖∇2n‖L2 + ‖k‖2
L4 + ‖k‖L6‖̂∇Y‖L3 � 1 + ‖̂∇2Y‖L2 + ‖̂∇Y‖L2

� (‖π,̂∇Y,̂∇g‖L∞ + 1)‖̂∇g‖L2 + 1.

Therefore

∂tE (0)(t) �
(‖π,̂∇Y,̂∇g‖L∞(Σt ) + 1

)

E (0)(t) + 1.

This together with the bootstrap assumption (BA1) gives E (0)(t) ≤ E (0)(t0) + 1 for all
t ∈ [t0, t0 + T ]. The proof is thus complete. ��
We now consider the energy E (1)(t) = E (0)(̂∇u,̂∇v). From (2.42) it follows easily that

∂tE (1)(t) �
(‖k,̂∇Y‖L∞

x
+ 1

)

E (1)(t) +
(‖̂∇F

̂∇u‖L2 + ‖F
̂∇v‖L2

)
√

E (1)(t).

By taking L2-norm of (2.40), we can obtain, using (2.27), (2.28), Proposition 1, and
(2.33) and (2.35) in Lemma 3, that

‖̂∇F
̂∇u, F

̂∇v‖L2 �
(

‖̂∇g, k,̂∇Y,̂∇n‖L∞ + ‖|̂∇g‖
4
3
L∞

)

(

‖̂∇2g‖L2 + 1
)

+ ‖̂∇Y‖H1

(

‖̂∇g, k‖L∞ + ‖̂∇g‖
4
3
L∞ + 1

)

+ 1.

Using this estimate, ‖̂∇2g‖L2 ≤ √

E (1)(t), and the Young’s inequality, we obtain

∂tE (1)(t) �
(

1 + ‖k,̂∇n,̂∇g,̂∇Y‖L∞ + ‖k,̂∇g‖2
L∞

)

E (1)(t)

+ ‖k,̂∇n,̂∇g,̂∇Y‖L∞ + ‖̂∇g‖2
L∞ + ‖̂∇2Y‖3

L2
x

+ 1.

In view of (BA1) and (BA2), it follows easily that E (1)(t) � E (1)(t0) + 1 + ‖̂∇2Y‖3
L3

t L2
x
.

This in particular implies that

‖̂∇2g‖L2(Σt )
� 1 + ‖̂∇2Y‖3/2

L3
t L2

x
. (2.43)

On the other hand, it follows from (2.34), (2.27), and Proposition 1 that

‖̂∇2Y‖L2
x

� ‖̂∇Y · ̂∇g‖L2 + ‖̂∇g‖2
L4 + ‖π‖2

L4 + 1

� ‖̂∇Y‖
1
2
L6‖̂∇Y‖

1
2
L2‖̂∇g‖L6 + ‖̂∇g‖2

L4 + 1.

Using ‖̂∇Y‖L6 � ‖̂∇2Y‖L2 + 1 and (2.33) we can obtain ‖̂∇2Y‖L2 � ‖̂∇g‖2
L6 + 1 �

‖̂∇2g‖2
L2 + 1. This together with (2.43) gives

‖̂∇2Y‖L2
x

� 1 + ‖̂∇2Y‖3
L3

t L2
x
. (2.44)
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Integrating with respect t over [t0, t0 + T ] yields

‖̂∇2Y‖L3[t0,t0+T ]L2
x

� T
1
3

(

1 + ‖̂∇2Y‖3
L3[t0,t0+T ]L2

x

)

.

Therefore we can choose a small but universal T > 0 such that ‖̂∇2Y‖L3[t0,t0+T ]L2
x

≤ C

for some universal constant C . Consequently, by using (2.43) and (2.44) we can obtain
(2.45) and (2.46) in the following result.

Proposition 2. Under the bootstrap assumption (BA1) and (BA2), there hold

‖g‖H2(Σt )
+ ‖̂∇k‖L2(Σt )

≤ C, (2.45)

‖̂∇2Y‖L2(Σt )
+ ‖̂∇Y‖L2(Σt )

≤ C, (2.46)

‖e0(̂∇g)‖L2(Σt )
+ ‖∂t̂∇g‖L2(Σt )

≤ C (2.47)

for all t ∈ [t0, t0 + T ] with T > 0 being a universal number, where, for any Σt -tangent
tensor field F, we use the notation e0(F) := n−1(∂t F − ̂∇Y F).

Proof. It remains only to prove (2.47). We use (2.39), (2.45) and (2.46) to deduce that

‖e0(̂∇g)‖L2 � ‖̂∇k‖L2 + ‖̂∇Y‖L6‖̂∇g‖L3 + ‖̂∇2Y‖L2 + ‖̂∇n‖L4‖k‖L4

+ ‖Y‖L∞‖g‖L2 � 1.

Finally, in view of (2.45) we obtain ‖∂t̂∇g‖L2 � ‖e0(̂∇g)‖L2 + ‖̂∇2g‖L2 � 1. ��
Lemma 4. Under the bootstrap assumptions (BA1) and (BA2), for 3 < p ≤ 6 there
hold

‖̂∇3Y‖L2 � ‖̂∇g, k‖L∞ + 1, (2.48)

‖̂∇Y‖L∞ � ‖k,̂∇g‖3/2−3/p
L∞ + 1. (2.49)

Proof. In view of Proposition 2, (2.27), and Lemma 2, we obtain from (2.36) that

‖̂∇3Y‖L2 � ‖̂∇π,̂∇2g‖L2
x
‖̂∇g, π‖L∞

x
+ ‖̂∇2Y · ̂∇g‖L2 + ‖̂∇g, k‖L∞

x
+ 1.

We may write

‖̂∇2Y · ̂∇g‖L2 � ‖̂∇2Y‖L3‖̂∇g‖L6 � ‖̂∇2Y‖L3(‖̂∇2g‖L2 + 1).

Applying the Sobolev type inequality ([25, Lemma 2.5]) to ‖̂∇2Y‖L3 , and using (2.27),
(2.28), (2.45) and (2.46), we can obtain (2.48). Finally we can use the Sobolev embedding
given in [25, Lemma 2.6] to conclude (2.49). ��

3. H2+ε Estimates

In this section, under the bootstrap assumptions (BA1) and (BA2), we will establish H1+ε

type energy estimates for k,̂∇g and Dφ with φ being solutions of homogeneous wave
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equation �gφ = 0. We will also obtain the H
3
2 +ε and H2+ε estimates for̂∇n,̂∇Y, ne0(n)

simultaneously. As the main building block of this section, established in Appendix are
a series of product estimates in fractional Sobolev spaces and estimates for commutators
between the Littlewood-Paley projections Pμ and the rough coefficients.

For simplicity of exposition, we fix some conventions. We will use π̃ to denote any
term from the set ̂∇Y , ̂∇n, k, ̂∇g and e0(n), where e0(n) = n−1(∂t n −̂∇Y n) as defined
before. It follows from Proposition 2 and (2.27) that ‖π̃‖H1 ≤ C . We also introduce the
error terms

err1 = g · π̃ · ̂∇π̃ , err2 = g · π̃ · π̃ · π̃ , (3.50)

where g denotes any product of the components of n, g and Y . We denote by err(R̂)

any term involving R̂ and its derivatives, and satisfying ‖err(R̂)‖H1(Σt )
≤ C for all

t ∈ [t0, t0 + T ].
Proposition 3. For 0 < ε < 1/2 there hold

‖Λ1/2+ε(
̂∇2n,̂∇(ne0(n)),̂∇2Y

)‖L2 � ‖̂∇g, k‖H1+ε + 1, (3.51)

‖Λε
(

̂∇3n,̂∇2(ne0(n)),̂∇3Y
)‖L2 � ‖̂∇g, k‖L∞‖̂∇g, k‖H1+ε + 1 (3.52)

and, for the error type terms defined in (3.50), there hold

‖Λεerr1‖L2 � ‖k,̂∇g‖L∞(‖̂∇g, k‖H1+ε + 1) + 1, (3.53)

‖Λεerr2‖L2 � ‖̂∇g, k‖H1+ε + 1. (3.54)

Proof. For any scalar function f it is easy to derive the commutation formula

[Δ,∇nT] f = −2nkl
i ∇l∇ i f − ∇ i nkl

i ∇l f. (3.55)

To obtain the estimates of ̂∇n and ne0(n), we first use (1.6) and (3.55) to derive the
identities

Δ̂̂∇n = ̂∇(n|k|2g) + gR̂ · ̂∇n, (3.56)

Δ̂
(

ne0(n)
) = ne0(n|k|2g) − 2nkl

a∇l∇an − ∇an∇lnkl
a . (3.57)

In view of (3.56), we have

Δ̂̂∇n = n̂∇k · k · g + (̂∇n, k,̂∇g)3 · (n, g) + err(R̂). (3.58)

It then follows from (6.189) that

‖Λ−1/2+εΔ̂̂∇n‖L2 � ‖̂∇k‖H ε‖ng · k‖H1 + ‖(̂∇n, k,̂∇g)3 · (n, g)‖L2 + ‖err(R̂)‖L2 .

By using (6.212) and ‖π̃‖H1 ≤ C , we can conclude that

‖Λ1/2+ε
̂∇2n‖L2 � ‖̂∇k‖H ε + 1. (3.59)

In view of (3.57) and (1.13), we have

Δ̂
(

ne0(n)
) = (nΔ̂g + ∇2n)ng · k + g · π̃ · π̃ · π̃ . (3.60)
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Thus, with the help of (6.189) and (3.59), it follows

‖Λ−1/2+εΔ̂(ne0(n))‖L2 � ‖̂∇2g,̂∇2n‖H ε‖g · k‖H1 + ‖g|π̃ |3‖L2 � ‖̂∇2g,̂∇k‖H ε + 1

which implies, in view of (6.212) and ‖π̃‖H1 ≤ C , that

‖Λ1/2+ε
̂∇(

ne0(n)
)‖L2 � ‖̂∇2g,̂∇k‖H ε + 1. (3.61)

Next we use (2.36) and (6.189) to obtain

‖Λ−1/2+εΔ̂̂∇Y‖L2 � ‖̂∇(π,̂∇g,̂∇Y )‖H ε + ‖err(R̂)‖L2 .

This together with (3.59), (6.212), ‖π̃‖H1 ≤ C and the interpolation inequality gives

‖Λ1/2+ε
̂∇2Y‖L2 � ‖̂∇2Y‖H ε + ‖̂∇2g,̂∇k‖H ε + 1 � ‖̂∇2g,̂∇k‖H ε + 1. (3.62)

Combining the estimates (3.59), (3.61) and (3.62), we therefore complete the proof
of (3.51).

As a byproduct of (3.51), we have

‖Λε
̂∇π̃‖L2 � ‖k,̂∇g‖H1+ε + 1. (3.63)

It then follows from (6.190) and (3.63) that

‖Λε(π̃ · ̂∇π̃)‖L2 � ‖π̃‖L∞‖π̃‖H1+ε � (‖k,̂∇g‖H1+ε + 1)‖π̃‖L∞ . (3.64)

By Lemma 18 and (3.63), we have

‖Λε(π̃ · π̃ · π̃)‖L2
x

� ‖π̃‖2
H1‖π̃‖H1+ε � ‖k,̂∇g‖H1+ε + 1. (3.65)

To treat the factor g in the definition (3.50), in view of ‖g‖H2 ≤ C in Proposition 2,
using Lemma 21, and (3.64) and (3.65), we thus obtain (3.53) and (3.54).

Finally, we consider (3.52) with the help of (6.211). Let F = ne0(n),̂∇n,̂∇Y . Then
it follows from (2.27) and (2.46) that ‖F‖H1 � 1. Moreover, the elliptic equations
(3.58), (3.60) and (2.36) can be written symbolically as Δ̂F = err1 + err2 + err(R̂). In
view of (3.53), (3.54), and the definition of err(R̂), we thus obtain (3.52). ��

3.1. First order hyperbolic systems.

3.1.1. Energy estimates. We consider a pair of tensors (u, v) satisfying the first order
hyperbolic system

{

∂t u − ̂∇Y u = nv + Fu

∂tv − ̂∇Y v = nΔ̂u + Fv.
(3.66)

Note that for (u, v) satisfying (3.66), the pair (U1, V1) = (̂∇u,̂∇v) satisfies a system
of the form (3.66) with
{

FU1 = ̂∇Y m
̂∇mu + ̂∇n · v + ̂∇Fu + Y · R̂ · u

FV1 = ̂∇Y m
̂∇mv + ̂∇n · Δ̂u + ̂∇Fv + n̂∇g · ̂∇2u + n R̂ · ̂∇u + (R̂Yv + n̂∇(R̂ · u))

(3.67)
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where the last term in FU1 and FV1 can be dropped in case (u, v) is a pair of scalar
functions.

We also can check that the pair of functions (Uμ, V μ) := (Pμu, Pμv) satisfies (3.66)
with FUμ and FV μ given by3

{

FUμ = [Pμ,Y m]∂mu + [Pμ, n]v + PμFu,

FV μ = [Pμ, ng]̂∇2
i j u + PμFv + [Pμ,Y m]∂mv.

(3.68)

Thus, it is easy to check that (Uμ
1 , V μ

1 ) := (Pμ
̂∇u, Pμ

̂∇v) satisfies (3.66) with FUμ
1

and
FV μ

1
given by

{

FUμ
1

= [Pμ,Y m]∂m̂∇u + [Pμ, n]̂∇v + PμFU1 ,

FV μ
1

= [Pμ, ng]̂∇2
i j
̂∇u + [Pμ,Y m]∂m̂∇v + PμFV1 .

(3.69)

Lemma 5. Let 0 < ε < 1/2. Then for FUμ and FV μ defined by (3.68) there hold the
estimates

‖μ 1
2 +ε FUμ‖l2

μL2
x

+ ‖μ− 1
2 +ε

̂∇FUμ‖l2
μL2

x

� ‖̂∇n,̂∇Y‖H1‖̂∇u, v‖H ε + ‖μ 1
2 +ε PμFu‖l2

μL2
x
, (3.70)

‖με
̂∇FUμ‖l2

μL2
x

+ ‖μ1+ε FUμ‖l2
μL2

x

� ‖̂∇2Y,̂∇2n‖
H

1
2 +ε‖̂∇u, v‖L2

x
+ ‖̂∇n,̂∇Y‖L∞

x
‖̂∇u, v‖H ε + ‖με

̂∇ PμFu‖l2
μL2

x
,

(3.71)

and

‖με FV μ‖l2
μL2

x
� ‖̂∇(ng),̂∇Y‖L∞

x
‖̂∇u, v‖H ε + ‖με PμFv‖l2

μL2
x
. (3.72)

Proof. (3.71) follows from (6.203), (3.72) follows from (6.196), and (3.70) follows from
(6.197). ��
Lemma 6. For 0 < ε < 1/2, there hold

‖μ1+ε
̂∇FUμ‖l2

μL2
x

+ ‖με
̂∇FUμ

1
‖l2

μL2
x

� ‖̂∇2 Fu‖H ε + I(ε, u, v), (3.73)

‖με FV μ
1
‖l2

μL2
x

� (‖̂∇g‖L∞
x

+ 1)‖̂∇2u‖H ε + ‖̂∇Fv‖H ε + ‖̂∇u‖L∞‖n̂∇g‖H1+ε

+ I(ε, u, v) + ‖̂∇u, v‖H ε , (3.74)

where

I(ε, u, v) = ‖̂∇2Y,̂∇2n‖
H

1
2 +ε‖̂∇2u,̂∇v‖L2

x
+ ‖̂∇Y,̂∇n‖L∞

x
‖̂∇u, v‖H1+ε .

Proof. The first part of (3.73) follows from (6.205) and (3.68). In order to prove the
second part of (3.73), we may use the same argument for deriving (3.71) to obtain

3 We remark that the precise form of the first term in FVμ should be [Pμ, nĝ∇2]u which consists of
[Pμ, ng]̂∇2u and ng[Pμ, Γ̂ ]∂u. The latter is of much lower order, which not only can be treated similar to
the first term, but also can be done in a much easier way since Γ̂ is smooth. Thus, we will omit this term for
ease of exposition.



1294 Q. Wang

‖με
̂∇FUμ

1
‖l2

μL2
x

� I(ε, u, v) + ‖με
̂∇ PμFU1‖l2

μL2
x
.

In view of (3.67), we apply (6.208) to obtain

‖με
̂∇ PμFU1‖l2

μL2
x

� I(ε, u, v) + ‖με
̂∇ Pμ

̂∇Fu‖l2
μL2

x
+ ‖Λε

̂∇(Y · R̂ · u)‖L2

� I(ε, u, v) + ‖με
̂∇ Pμ

̂∇Fu‖l2
μL2

x
.

Combining the above two estimates, we therefore obtain the second part of (3.73).
Next we prove (3.74). We first apply Lemma 22 to derive that

‖με FV μ
1
‖l2

μL2
x

� ‖̂∇(ng)‖L∞‖̂∇2u‖H ε + ‖̂∇Y‖L∞‖̂∇v‖H ε + ‖με PμFV1‖l2
μL2

x
.

(3.75)

By using Lemma 21 and 19 we have

‖με PμFV1‖l2
μL2

x
� ‖̂∇2Y‖

H
1
2 +ε‖̂∇v‖L2

x
+ ‖̂∇u‖L∞‖n̂∇g‖H1+ε + ‖̂∇Fv‖H ε

+ ‖̂∇2n‖
H

1
2 +ε‖Δ̂u‖L2

x
+ ‖n R̂ · ̂∇u‖H ε + ‖Y R̂ · v‖H ε .

With the help of Lemma 21 and ‖π̃‖H1 ≤ C , we obtain

‖Δ̂u‖H ε � ‖μεgi j Pμ
̂∇2

i j u‖l2
μL2

x
+ ‖με[Pμ, gi j ]̂∇2

i j u‖l2
μL2

x
� ‖̂∇2u‖H ε ,

‖n R̂ · ̂∇u‖H ε � ‖με[Pμ, n R̂]̂∇u‖l2
μL2

x
+ ‖̂∇u‖H ε � ‖̂∇u‖H ε

Similarly, we have with the help of ‖̂∇Y‖H1 ≤ C that ‖Y · R̂ ·v‖H ε � ‖v‖H ε . Therefore

‖με PμFV1‖l2
μL2

x
� ‖̂∇u‖L∞‖n̂∇g‖H1+ε + ‖̂∇Fv‖H ε + I(ε, u, v) + ‖̂∇u, v‖H ε .

Combining this estimate with (3.75) we thus obtain (3.74). ��
In the following we will derive the estimates on ‖̂∇2g‖H ε and ‖̂∇k‖H ε . Recall the

energy E (0)(u, v) defined in (2.41). Let Pμ be the Littlewood-Paley projection with
frequency size μ, we can introduce

E (1)
μ (t) = E (1)

μ (u, v) := E (0)(Pμ
̂∇u, Pμ

̂∇v),

and the energy

E (1+ε)(u, v)(t) :=
∑

μ>1

μ2εE (1)
μ (u, v)(t) +

1
∑

i=0

E (i)(u, v)(t). (3.76)

In view of (2.42) we can derive that

∂tE (1)
μ (t) ≤ (‖k,̂∇Y‖L∞ + 1

)

E (1)
μ (t) + ‖̂∇FUμ

1
‖L2‖̂∇Uμ

1 ‖L2 + ‖V μ
1 ‖L2‖FV μ

1
‖L2 .

(3.77)
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Hence, by the Cauchy-Schwartz inequality, we obtain

∂t

(

∑

μ

μ2εE (1)
μ (t)

)

≤ (‖k,̂∇Y‖L∞ + 1
)
∑

μ

μ2εE (1)
μ (t)

+ ‖με
̂∇FUμ

1
‖l2

μL2‖με
̂∇Uμ

1 ‖l2
μL2 + ‖μεV μ

1 ‖l2
μL2‖με FV μ

1
‖l2

μL2 .

(3.78)

We will apply (3.78) with (u, v) = (g,−2k) and (2.38) to derive energy estimates.
Lemma 6 will be used to estimate the terms ‖με

̂∇FUμ
1
‖l2

μL2 and ‖με FV μ
1
‖l2

μL2 which
involve terms related to Fu and Fv . The following result gives such estimates.

Lemma 7. For 0 < ε < 1/2 there hold

‖Λε
̂∇2 Fu‖L2

x
+ ‖Λε

̂∇Fv‖L2
x

� (‖̂∇g,̂∇Y, k,̂∇n‖L∞
x

+ 1)‖̂∇g, k‖H1+ε , (3.79)

‖Λ 1
2 +ε

̂∇Fu‖L2
x

� ‖̂∇g, k‖H1+ε + 1. (3.80)

Proof. Recall Fu and Fv from (2.38). By straightforward calculation, symbolically we
have

̂∇2 Fu = g · ̂∇3Y + err1 + err2, ̂∇Fv = ̂∇∇2n + err1 + err2.

where err1 and err2 denote the terms introduced in (3.50). Then (3.79) follows from
Proposition 3. Applying (6.208) to F = g and G = ̂∇Y , and using (3.51) and (2.46) we
obtain

‖Λε+ 1
2 ̂∇(g · ̂∇Y )‖L2

x
� ‖̂∇g‖H1+ε‖̂∇Y‖H1 + ‖g‖L∞‖̂∇2Y‖

H
1
2 +ε � ‖̂∇g, k‖H1+ε + 1

which gives (3.80). ��
Proposition 4. For 0 < ε ≤ s − 2 there holds

‖̂∇2g(t)‖H ε + ‖̂∇k(t)‖H ε ≤ C (3.81)

and for any pair (u, v) satisfying (3.66) there holds

E (1+ε)(t)
1
2 � E (1+ε)(t0)

1
2 +

∫ t

t0

(‖̂∇u‖L∞ + ‖̂∇Fu‖H1+ε + ‖Fv‖H1+ε
)

. (3.82)

Proof. Now we consider the energy defined by (3.76) for the pair (u, v) = (g,−2k) by
using (3.78). In view of (2.28), Propositions 1 and Proposition 2, we have E (1)+E (0) ≤ C .
Combining this fact with (3.51), we have

I(ε, u, v) �
(‖̂∇Y,̂∇n‖L∞ + 1

)
√

E (1+ε)(u, v).

This together with Lemma 6, Lemma 7 and (3.78) implies

∂t

(
∑

μ

μ2εE (1)
μ (t)

)

≤ (‖k,̂∇Y‖L∞ + 1
)
∑

μ

μ2εE (1)
μ (t)

+
(‖k,̂∇g,̂∇Y,̂∇n‖L∞ + 1

)

E (1+ε)(u, v).
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which, together with the fact E (1) + E (0) ≤ C , gives

∂t

(
∑

μ

μ2εE (1)
μ (t)

)

�
(‖k,̂∇g,̂∇Y,̂∇n‖L∞ + 1

)

(
∑

μ

μ2εE (1)
μ (t) + 1

)

. (3.83)

By the bootstrap assumption (BA1), we obtain E (1+ε)(u, v)(t) � E (1+ε)(u, v)(t0)+ 1 for
t0 ≤ t ≤ t0 + T which implies (3.81).

From (3.81), (3.51) and Sobolev embedding, it follows that

‖̂∇Y,̂∇n, ne0(n)‖L∞ + ‖Λ1/2+ε(̂∇2Y,̂∇2n,̂∇(ne0(n)))‖L2 � ‖̂∇(̂∇g, k)(t0)‖H ε + 1.
(3.84)

Thus for any pair (u, v) satisfying (3.66) there holds I(ε, u, v) � ‖̂∇u, v‖H1+ε on Σt .
Now we prove (3.82). We will rely on Lemma 6 to treat‖με

̂∇FUμ
1
‖l2

μL2 and‖με FV μ
1
‖l2

μL2

in (3.78). Note that by using (6.208) we can derive ‖n̂∇g‖H1+ε � ‖̂∇g‖H1+ε � 1. We
then obtain from (3.78) that

∂t

(
∑

μ

μ2εE (1)
μ (t)

)

≤ (‖k,̂∇Y,̂∇g‖L∞ + 1
)
∑

μ

μ2εE (1)
μ (t)

+ (‖̂∇(̂∇Fu, Fv)‖H ε +‖̂∇u‖L∞ +‖̂∇u, v‖H1)
(
∑

μ

μ2εE (1)
μ (t)

) 1
2
.

(3.85)

Now we consider lower order energyE (1)(u, v), by using (3.67) for (U1, V1) = (̂∇u,̂∇v)

and

‖̂∇FU 1, FV 1‖L2
x

� ‖̂∇(̂∇Fu, Fv)‖L2
x

+ ‖̂∇g‖L∞‖̂∇2u‖L2 + ‖̂∇u, v‖H1 + ‖u‖L2
x

which can be derived by using Sobolev embedding and (3.84). By (2.42), we obtain

∂tE (1)(u, v)(t) �
(‖k,̂∇Y,̂∇g‖L∞ + 1

)

E (1)(u, v)(t)

+ ‖̂∇2u,̂∇v‖L2
x
(‖̂∇(̂∇Fu, Fv)‖L2 + ‖̂∇u, v‖H1 + ‖u‖L2

x
). (3.86)

For E (0)(u, v)(t), we employ (2.42) again. Combining (3.85), (3.86), (2.42), Lemma 6
and the Gronwall inequality gives (3.82). ��

3.1.2. Geometric wave operator. For the pair (u, v) satisfying (3.66), we can show that
u satisfies the geometric wave equation

n2�gu = −(nFv + ne0(Fu)) + e0(n)Fu − n2π0a∇au + n2Trk e0(u). (3.87)

Indeed, relative to an orthonormal frame e0 := T, e j , j = 1, 2, 3, by straightforward
calculation we have

gi j D2
i j u = Δu + TrkDTu, DTDTu = e0(e0(u)) + π0 j∇ j u.

Since �gu = −DTDTu + gi j D2
i j u, we obtain

n2�gu = −n2e0(e0(u)) + n2Δ̂u − n2π0 j∇ j u + n2Trk DTu. (3.88)
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In view of (3.66) we have

ne0(ne0(u)) = ne0(n) · v + n2Δ̂u + nFv + ne0(Fu).

Combining this with (3.88) and using (3.66) we obtain (3.87) as desired.
Therefore, if ψ is a solution of the geometric wave equation

�gψ = W, (3.89)

we can check by (3.87) that (u, v) := (ψ, e0(ψ)) satisfies the hyperbolic system

e0(u) = v, ne0(v) = nΔ̂u + Fv,

Fu = 0, Fv = −nW − nπ0 j∇ j u + nvTrk.
(3.90)

Lemma 8. Let ψ be a scalar function satisfying the geometric wave equation �gψ = 0.
Then for 0 < ε ≤ s − 2 there holds

‖̂∇Fv‖H ε � ‖̂∇(̂∇ψ, e0(ψ))‖H ε . (3.91)

Proof. Indeed, in view of (6.208) and Trk = t we have

‖̂∇Fv‖H ε � ‖̂∇2n‖
H

1
2 +ε‖̂∇2u‖L2

x
+ ‖̂∇n‖L∞

x
‖̂∇2u‖H ε + ‖̂∇v‖H ε .

Since 0 < ε ≤ s − 2, we have from (3.84) that ‖̂∇Fv‖H ε � ‖̂∇2u‖L2
x

+ ‖̂∇(̂∇u, v)‖H ε

which gives the estimate. ��
It is standard to derive for ψ satisfying �gψ = 0 that

‖Dψ(t)‖L2 � ‖Dψ(t1)‖L2 , t0 ≤ t1 ≤ t ≤ t0 + T . (3.92)

We now give the following energy estimate.

Proposition 5. Let ψ be a scalar function satisfying the geometric wave equation
�gψ = 0. Then for any 0 < ε < 1/2 and t0 ≤ t1 ≤ t ≤ t0 + T there hold the
energy estimates

E (i)(ψ, e0(ψ))(t) �
∑

0≤ j≤i

E ( j)(ψ, e0(ψ))(t1), i = 0, 1. (3.93)

Under the assumption that

‖̂∇ψ‖L1[t0,t0+T ]L∞ ≤ B0
(

E1+ε(ψ, e0ψ)(t0)
) 1

2 (BA4)

there holds

E (1+ε)(ψ, e0(ψ))(t) ≤ C(B2
0 + 1)E (1+ε)(ψ, e0(ψ))(0).

Proof. Since (u, v) = (ψ, e0(ψ)) satisfies (3.90) with W = 0, we can easily derive that

‖Fv‖L2
x

� (‖̂∇n‖L∞
x

+ ‖Trk‖L∞
x
)
(

E (0)(u, v)
) 1

2
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Recall that Fu = 0, an application of (2.42) gives (3.93) with i = 0. The case i = 1 can
be proved by employing (2.42) with (U 1, V 1) := (̂∇ψ,̂∇(e0(ψ))). Indeed, in view of
(3.67) and (3.84), we have

‖FV 1 ,̂∇FU 1‖L2
x

� ‖̂∇Fv‖L2
x

+ (E (1)(u, v))
1
2 (1 + ‖̂∇g‖L∞

x
) + E (0)(u, v)

1
2 ,

and

‖̂∇Fv‖L2
x

� (‖̂∇∇n‖L3
x

+ ‖̂∇n‖L∞
x
)‖̂∇u‖H1 + (‖̂∇v‖L2

x
+ ‖̂∇n‖L∞

x
‖v‖L2

x
)‖Trk‖L∞

x

�
(

E (1)(u, v)(t)
) 1

2
+
(

E (0)(u, v)(t)
) 1

2
.

By substituting to (2.42), we can complete the proof of (3.93). Using (3.82), (3.91) and
the Gronwall inequality, we can complete the proof of Proposition 5. ��

3.2. Flux. In view of (2.39), we can see that (u, v) := (̂∇g,−2̂∇k) satisfies (3.66) with
⎧

⎨

⎩

Fu = ĝ∇2Y + ̂∇Y · ̂∇g + Y · R̂ · g + ̂∇n · k,
Fv = ̂∇(2∇2n + nk ∗ k + k ∗ ̂∇Y ) + ̂∇nΔ̂g + ̂∇Y · ̂∇k + Y · R̂ · k

+n(g · ̂∇g · ̂∇2g + g · R̂ · ̂∇g + g · ̂∇ R̂ · g).
(3.94)

By straightforward calculation we have

̂∇Fu = g · ̂∇3Y + err1 + err2 + err(R̂) and Fv = ̂∇3n + err1 + err2 + err(R̂).

Next we give the first order hyperbolic system for the pair (k, E). Recall that (see
[1, (3.11a)])

n−1(∂t − LY )Ei j = curl Hi j − n−1(∇n ∧ H)i j − 5

2
(E × k)i j

− 2

3
(E ∗ k)gi j − 1

2
Trk Ei j , (3.95)

where curl Fab = 1
2 (ε

cd
a ∇d Fcb + ε cd

b ∇d Fca), for any symmetric 2-tensor F , with ε cd
a

denoting the components of the volume form of (Σt , g). When div F = 0 and TrF = t ,
symbolically we can obtain the identity

curl curl F = −Δ̂F + Ric ∗ F + ̂∇g · ̂∇g · g · F + g · R̂ · F + g · ̂∇g · ̂∇F (3.96)

In view of curl k = −H , we can use (3.96) with F = k to treat the term curl H in (3.95).
Consequently we obtain

n−1(∂t − LY )Ei j = Δ̂k + Ric ∗ k + ̂∇g · ̂∇g · k · g + n−1∇n ∗ H + k ∗ k ∗ k. (3.97)

By coupling (3.97) with (1.4), we can see that the pair (u, v) := (k, E) satisfies the first
order hyperbolic system (3.66) with

⎧

⎨

⎩

Fu = ∇2
i j n + nk ∗ k + k · ̂∇Y,

Fv = nRic ∗ k + ng · ̂∇g · ̂∇k + ∇n ∗ H + E · ̂∇Y
+ ng · k3 + ng · (̂∇g)2 · k + ng · R̂ · k.

(3.98)

Using the Gauss equation E = Ric + k ∗ k and (2.37) to treat E , we have

̂∇Fu = ̂∇3n + err1 + err2 + err(R̂) and Fv = err1 + err2 + err(R̂).

In view of Proposition 3, we obtain
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Proposition 6 (Remainder estimates). Let (Fu, Fv) be defined by either (3.94) or (3.98).
Then for any 0 < ε < 1/2 there hold

{ ‖̂∇Fu‖H ε + ‖Fv‖H ε � (‖̂∇g, k‖L∞ + 1)‖̂∇g, k‖H1+ε ,

‖Fu‖H1/2+ε � ‖Λε
̂∇(k,̂∇g)‖L2

(3.99)

and

‖̂∇Fu‖L2 + ‖Fv‖L2 � (‖̂∇g, k‖L∞ + 1)‖̂∇g, k‖H1 . (3.100)

We now fix a point p in Σ × I and use Γ + to denote the time integral curve through p
of the forward unit normal T withΓ +(tp) = p. We useΓt to denote the intersection point
of Γ + with Σt . Let u be the outgoing solution of the eikonal equation gαβ∂αu∂βu = 0
satisfying the initial condition u(Γt ) = t − tp on the time axis. We call this u an optical
function. We denote by Cu the level sets of u which are the outgoing null cones with
vertex on Γ +. Let St,u = Cu ∩ Σt and let {e1, e2} be an orthonormal frame on St,u . Let
N be the outward unit normal along Σt to the surface St,u . We define

b−1 := T(u), L := T + N , L := T − N = 2T − L (3.101)

and call L , L the canonical null pair. Then {e1, e2, e3 := L, e4 := L} forms a null frame.
For 0 < u ≤ t0 +T − tp and tp ≤ t1 ≤ t2 ≤ t0 +T , we introduce the null hypersurface

H := ∪t1≤t≤t2 St,u . We will use D+ to denote the region enclosed by H, Σt1 and Σt2 .
For any scalar function ψ we introduce the flux

F[ψ] =
∫

H

(

|Lψ |2 + γ AB /∇ Aψ /∇Bψ
)

,

whereγ is the induced metric on St,u and /∇ is the corresponding covariant differentiation.
For any scalar functions φ and ψ we introduce the energy-momentum tensor

Q[φ,ψ]μν = 1

2
(DμφDνψ + DνφDμψ) − 1

2
gμν(gαβDαφDβψ). (3.102)

Let Q[ψ] := Q[ψ,ψ] and define the energy

Q(ψ)(t) :=
∫

Σt

Q[ψ](T,T)dμg.

It is straightforward to check F[ψ] = 2
∫

Cu
Q[ψ](T, L).

For any Σ-tangent tensor field Fμ, we set

∇L Fi = eμi LνDν Fμ, /∇ A Fi = eμi ∇A Fμ (3.103)

and introduce the norms

|∇L F |2g := gi j DL Fi DL Fj , | /∇F |2g := γ AB gi j /∇ A Fi /∇B Fj .

We will drop the subscript g in the definition of norms whenever there occurs no confu-
sion.

Following the same proof in [25, Section 5], we can obtain the following result on
tensorial k-flux.
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Proposition 7. Under the bootstrap assumption (BA1), for the tensorial k-flux there
holds on the null cone Cu the estimate

∫

Cu

(

| /∇k|2g + |∇Lk|2g
)

≤ C.

The following estimate is the main result of this subsection.

Proposition 8. Let the bootstrap assumptions (BA1) and (BA2) hold. Let f be the scalar
components of ̂∇g and k. Then for 0 < ε ≤ s − 2 there holds

F 1
2 [ f ] + ‖μεF 1

2 [Pμ f ]‖l2
μ

≤ C.

In the following we will give the proof of Proposition 8. By the standard energy estimate
we have

F[ψ] ≤ |Q(ψ)(t2) − Q(ψ)(t1)|
+
∫ t2

t1
Q

1
2 (ψ)(t ′)‖�gψ‖L2

x
+
∫ t2

t1
C(‖π‖L∞

x
+ 1)Q(ψ)(t ′)dt ′. (3.104)

Recall that (̂∇g,−2̂∇k) and (k, E) satisfy the first order hyperbolic system (3.66). Thus,
for ψ = ̂∇g or k, the expression of �gψ derived from (3.87) contains time derivatives
of the shift vector field Y since Fu contains the term ψ ·̂∇Y and other terms involving Y .
The lack of control on DTY makes it impractical to apply (3.104) directly to ψ = ̂∇g, k.

To get around the difficulty, we consider the following modified energy current

P̃μ = −n−1 FuDμu + QμνTν +
1

2
(n−1 Fu)

2nDμ(t).

When (u, v) satisfies the system (3.66), u must satisfy (3.87). We claim that

Dμ P̃μ =
(

−π0a∇au + Trke0(u) − n−1 Fv

)

v − Di (n−1 Fu)Di u + Qμν
(T)πμν.

(3.105)

Indeed, since (3.66) implies −n−1 Fu + DTu = v, we have from the definition of P̃μ that

Dμ P̃μ = −Dμ(n−1 Fu)Dμu − n−1 Fu�gu + DμQμνTν + Qμν
(T)πμν

+ (n−1 Fu)Dμ(n−1 Fu)nDμt

= D0(n
−1 Fu)D0u − Di (n−1 Fu)Di u − n−1 Fu�gu + �guDTu + Qμν

(T)πμν

+ (n−1 Fu)Dμ(n−1 Fu)nDμt

= (−n−1 Fu + DTu)(�gu + D0(n
−1 Fu)) − Di (n−1 Fu)Di u + Qμν

(T)πμν

=
(

�gu + D0(n
−1 Fu)

)

v − Di (n−1 Fu)Di u + Qμν
(T)πμν.

In view of (3.87), we obtain (3.105).
By the divergence theorem we have for P̃μ that

∫

H
Lμ P̃μ =

∫

Σt2 ∩D+
P̃μTμ −

∫

Σt1∩D+
P̃μTμ −

∫

D+
Dμ P̃μ. (3.106)
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Note that
∫

H
Lμ P̃μ =

∫

H
1

2
(|DLu|2 + | /∇u|2 + (n−1 Fu)

2) − n−1 FuDLu

=
∫

H
1

2
(
1

2
|DLu|2 + | /∇u|2 − (n−1 Fu)

2) + (
1

2
DLu − n−1 Fu)

2.

Thus
∫

H
1

2
(
1

2
|DLu|2 + | /∇u|2) ≤

∫

H
Lμ P̃μ +

1

2
(n−1 Fu)

2.

Also using (3.106), we obtain

F[u](H) �
∫

H
1

2
(n−1 Fu)

2 +

∣

∣

∣

∣

∣

∫

Σt2 ∩D+
P̃μTμ −

∫

Σt1∩D+
P̃μTμ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

D+
Dμ P̃μ

∣

∣

∣

∣

.

(3.107)

Now consider the terms on the right of (3.107). By trace inequality,
∫

H
(n−1 Fu)

2 �
∫ t2

t1
‖Fu‖H1‖Fu‖L2

x
. (3.108)

By definition of P̃μ and C−1 < n < C , for any 0 < t ′ ≤ T ,
∣

∣

∣

∣

∣

∫

Σt ′∩D+
Tμ P̃μ

∣

∣

∣

∣

∣

� ‖Du‖2
L2

x
+ ‖Fu‖2

L2
x
. (3.109)

For the third term, by (3.105), there holds
∣

∣

∣

∣

∫

D+
Dμ P̃μ

∣

∣

∣

∣

≤
∫ t

t0
‖(T)π‖L∞

x
‖Du‖L2

x
(‖v‖L2

x
+ ‖Du‖L2

x
)

+
∫

D+

∣

∣

∣n−1vFv + Di (n−1 Fu)Di u
∣

∣

∣ . (3.110)

Proof (Proof of Proposition 8). We first apply (3.110) to the modified energy current
P̃μ corresponding to (u, v) = (̂∇g,−2̂∇k) or (k, E). In view of (3.100), we obtain

∣

∣

∣

∣

∫

D+
Dμ P̃μ

∣

∣

∣

∣

� ‖̂∇g, k‖L1
t L∞

x
‖̂∇g, k‖2

L∞
t H1 .

By Proposition 2 and (3.100) we have
∣

∣

∣

∣

∣

∫

Σt ′∩D+
Tμ P̃μ

∣

∣

∣

∣

∣

≤ C and
∫

H
(n−1 Fu)

2 ≤ C.

Therefore we can conclude that F[̂∇g, k] ≤ C .
Recall again that (u, v) = (̂∇g,−2̂∇k) and (k, E) satisfy (3.66) with (Fu, Fv) given

by (3.94) and (3.98) respectively. Then the pair (Uμ, V μ) = (Pμu, Pμv) satisfies (3.66)
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with (FUμ, FV μ) given by in (3.68). In view of (3.70)–(3.72), (3.81), and Proposition 6,
we have

‖μ 1
2 +ε FUμ‖l2

μL2 + ‖μ− 1
2 +ε

̂∇FUμ‖l2
μL2

x
� ‖̂∇(̂∇g, k)‖H ε � 1, (3.111)

‖με
̂∇FUμ‖l2

μL2 �
(‖k,̂∇g‖L∞

x
+ 1

) ‖̂∇(̂∇g, k)‖H ε � ‖k,̂∇g‖L∞
x

+ 1, (3.112)

‖με FV μ‖l2
μL2 �

(‖k,̂∇g‖L∞
x

+ 1
) ‖̂∇(̂∇g, k)‖H ε � ‖k,̂∇g‖L∞

x
+ 1. (3.113)

Define

B(1)
μ = μ2ε‖FUμ‖H1‖FUμ‖L2

x
. (3.114)

Similar to (3.108), we have
∫

H μ2ε(n−1 FUμ)2 �
∫ t2

t1
B(1)
μ . Using (3.111), it yields

∑

μ>1

B(1)
μ � ‖με− 1

2 FUμ‖l2
μH1‖με+ 1

2 FUμ‖l2
μL2

x
≤ C (3.115)

In view of (3.110), it follows that

∑

μ>1

∣

∣

∣

∣

∫

D+
μ2εDα P̃α

∣

∣

∣

∣

�
∫ t2

t1

⎛

⎝‖(T)π‖L∞
x

∑

μ>1

‖με(Pμ∂u, Pμv)‖2
L2

x

+
∑

μ>1

‖με FV μ‖L2
x
‖με Pμv‖L2

x
+
∑

μ>1

‖με FUμ‖H1
x
‖μεDi Pμu‖L2

x

⎞

⎠.

Using (3.111)–(3.113), we obtain

∑

μ>1

∣

∣

∣

∣

∫

D+
μ2εDα P̃α

∣

∣

∣

∣

� ‖(T)π,̂∇g,̂∇Y‖L1
t L∞

x
‖̂∇(̂∇g, k)‖2

H ε ≤ C. (3.116)

In view of (3.109), (3.111) and (3.81),

∑

μ>1

∣

∣

∣

∣

∣

∫

Σt ′∩D+
μ2εTα P̃α

∣

∣

∣

∣

∣

�
∑

μ>1

μ2ε(‖DPμu‖2
L2

x
+ ‖FUμ‖2

L2
x
) ≤ C. (3.117)

We conclude in view of (3.115), (3.116) and (3.117) that
∑

μ>1

μ2ε(F[Pμ
̂∇g] + F[Pμk]) ≤ C.

The proof is thus complete. ��

4. Strichartz Estimate and Main Estimates

In this section we will show that (BA1) and (BA2) can be improved. For ease of exposi-
tion, we shift the origin of time coordinate to t0 and consider [0, T ]×Σ . Now we make
the following additional bootstrap assumption: there is a constant B0 such that
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‖μδ Pμ
̂∇g‖l2

μL2[0,T ]L∞
x

+ ‖μδ Pμk‖l2
μL2[0,T ]L∞

x
≤ B0, (BA3)

where 0 < δ < s − 2 is a sufficiently small number. As an immediate consequence of
(BA2), (BA3), and (6.209), there holds

‖μδ Pμ(ĝ∇g)‖l2
μL2[0,T ]L∞

x
� B0.

This estimate will always be used together with (BA3). Our goal is to show that the
estimates in (BA1), (BA2) and (BA3) can be improved by shrinking the time interval if
necessary. We will achieve this by establishing the following main estimates.

Theorem 2 (Main estimates). Let (BA2) and (BA3) hold for some sufficiently small
number 0 < δ < s − 2. Then for any number q > 2 that is sufficiently close to 2 there
holds

‖̂∇g, k‖L2[0,T ]L∞
x

+ ‖μδ Pμ(̂∇g, k)‖l2
μL2[0,T ]L∞

x
� T

1
2 − 1

q .

If φ is a function satisfying �gφ = 0 then there holds

‖∂φ‖2
L2

I L∞
x

+ ‖μδ Pμ∂φ‖2
l2
μL2

I L∞
x

≤ CT 1− 2
q ‖̂∇φ, e0φ‖2

H1+ε (0).

4.1. Decay estimate ⇒ Strichartz estimates. Let us rescale the coordinate (t, x) →
( t
λ
, x
λ
) for some positive constant λ. We first prove Strichartz estimate by assuming the

following decay estimate.

Theorem 3 (Decay estimate). Let 0 < ε0 < s − 2 be a given number. There exists a
large number Λ such that for any λ ≥ Λ and any solution ψ of the equation

�gψ = 0 (4.118)

on the time interval I∗ = [0, t∗] with t∗ ≤ λ1−8ε0 T there is a function d(t) satisfying

‖d‖
L

q
2

� 1, for q > 2 sufficiently close to 2 (4.119)

such that for any 0 ≤ t ≤ t∗ there holds

‖Pe0ψ(t)‖L∞
x

≤
(

1

(1 + t)
2
q

+ d(t)

)

3
∑

m=0

‖̂∇mψ̃[0]‖L1
x
, (4.120)

where ψ̃[0] := (ψ(0), n−2∂tψ(0)) and ‖̂∇mψ̃[0]‖L1 := ‖̂∇mψ(0)‖L1 + ‖̂∇m−1

(n−2∂tψ(0))‖L1 .

Using Theorem 3, we can prove the following result.

Theorem 4 (Dyadic Strichartz estimate). There is a large universal constant C0 such
that if on the time interval I∗ := [0, t∗] there holds

C0‖π,̂∇g,̂∇Y‖L1
I∗ L∞

x
≤ 1, (4.121)

then for any φ satisfying the wave equation �gφ = 0 and q > 2 sufficiently close to 2,
there holds

‖P∂φ‖Lq
I∗ L∞

x
� ‖φ[0]‖H1 , (4.122)

where P denote the Littlewood-Paley projection on the frequency domain {1/2≤|ξ |≤2}.
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We will prove Theorem 4 by adapting a T T ∗ argument from [12,13]. Applying the
T T ∗ argument therein directly to our setting requires the control over ∂g including the
undesired quantity DTY . To get around this difficulty, we give a careful refinement.

Definition 1. Let ω := (ω0, ω1) ∈ H1(Σ) × L2(Σ). We denote by φ(t; s, ω) the
unique solution of the homogeneous geometric wave equation �gφ = 0 satisfying
the initial condition φ(s; s, ω) = ω0 and D0φ(s; s, ω) = ω1. We set Φ(t; s, ω) :=
(φ(t; s, ω),D0φ(t; s, ω)). By uniqueness we have Φ (t; s, Φ(s; t0, ω)) = Φ(t; t0, ω).

We first show that

‖P(e0φ)‖Lq
I∗ L∞

x
� ‖φ[0]‖H1 . (4.123)

To this end, we let H := H1(Σ) × L2(Σ) endowed with the inner product

〈ω, v〉 =
∫

Σ

(

ω1 · v1 + δi j Diω0 · D jv0
)

relative to the orthornormal frame {e0 = T, ei = 1, 2, 3}. Let I = [t ′, t∗] with 0 ≤ t ′ ≤
t∗ and let X = Lq

I L∞
x . Then the dual of X is X ′ = Lq ′

I L1
x , where 1/q ′ + 1/q = 1. Let

T (t ′) : H → X be the linear operator defined by

T (t ′)ω := PD0φ(t; t ′, ω), (4.124)

where φ := φ(t; t ′, ω) is the unique solution of �gφ = 0 satisfying φ(t ′) = ω0 and
D0φ(t ′) = ω1 with ω := (ω0, ω1).

By using the Bernstein inequality for LP projections and the energy estimate it is
easy to see that T (t ′) : H → X is a bounded linear operator, i.e.

‖T (t ′)ω‖X = ‖P(e0φ)‖Lq
I L∞

x
≤ C(λ)‖Dφ(t ′)‖L2

x
(4.125)

for some constant C(λ) possibly depending on λ. Let M(t ′) := ‖T (t ′)‖H→X . Then
M(t ′) < ∞, and for the adjoint T (t ′)∗ : X ′ → H we have

‖T (t ′)∗‖X ′→H = M(t ′), ‖T (t ′)T (t ′)∗‖X ′→X = M(t ′)2.

Note that M(·) is a continuous function on I∗, whose maximum, denoted by M , is
achieved at certain t0 ∈ [0, t∗). Our goal is to show that M is independent of λ. Our
strategy is to show that

M2 ≤ C +
1

2
M2 (4.126)

for some universal positive constant C independent of λ. Let us set I0 = [t0, t∗] and con-

sider X = Lq
I0

L∞
x , X ′ = Lq ′

I0
L1

x , and the operators T (t0) and T (t0)∗. For convenience,
we drop the t0 in the notation for operators.

We first calculate T ∗ : X ′ → H. For any f ∈ X ′ and ω ∈ H we have

〈T ∗ f, ω〉H = 〈 f, T ω〉X ′,X =
∫

I0×Σ

f PD0φ =
∫

I0×Σ

(P f )D0φ(t, t0, ω).

We introduce the function ψ to be the solution of the initial value problem
{

�gψ = −P f, in [t0, t∗) × Σ,

ψ(t∗) = ∂tψ(t∗) = 0. (4.127)
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Recall the energy momentum tensor Q[φ,ψ] introduced in (3.102). For any vector field
Z we set Pμ := Q[φ,ψ]μν Zν . In view of �gφ = 0, it is easy to check that

Dβ Pβ = 1

2

(

(Zφ)�gψ + Q[φ,ψ]αβ(Z)παβ
)

.

By the divergence theorem we have
∫

Σt∗
Q[φ,ψ]μν ZμTν −

∫

Σt0

Q[φ,ψ]μν ZμTν =
∫

I0×Σ

Dβ Pβ (4.128)

which together with the initial conditions in (4.127) implies that
∫

I0×Σ

−(Zφ)�gψ = 2
∫

Σt0

Tα Pα +
∫

I0×Σ

Q[φ,ψ]αβ(Z)παβ. (4.129)

Now we take Z = T. Then it follows from (4.129) that
∫

I0×Σ

−D0φ�gψ =
∫

Σt0

D0φD0ψ + δi j DiφD jψ +
∫

I0×Σ

Q[φ,ψ]αβ(T)παβ.

(4.130)

Therefore

〈T ∗ f, ω〉H = 〈ψ[t0], ω〉H + l(ω), (4.131)

where l(·) is a linear functional on H defined by

l(ω) :=
∫

I0×Σ

Q[φ,ψ]αβ(T)παβ.

We claim that l(·) is a bounded linear functional on H. To see this, let ω ∈ H with
‖ω‖H ≤ 1. Then by the energy estimate we have ‖Dφ‖L∞

t L2
x

≤ ‖ω‖H � 1. Thus

|l(ω)| ≤ ‖π‖L1
t L∞

x
‖Dφ‖L∞

I0
L2

x
‖Dψ‖L∞

I0
L2

x
� ‖π‖L1

t L∞
x

‖Dψ‖L∞
I0

L2
x
.

Hence, by the Riesz representation theorem we have l(ω) = 〈R( f ), ω〉H for some
R( f ) ∈ H and there is a universal constant C1 such that

‖R( f )‖H ≤ C1‖π‖L1
t L∞

x
‖Dψ‖L∞

I0
L2

x
.

Moreover, we have from (4.131) that T ∗ f = ψ[t0] + R( f ) and hence

T T ∗ f = T ψ[t0] + T R( f ). (4.132)

We claim that there is a universal constant C2 such that

‖Dψ‖L∞
I0

L2
x

≤ C2 M‖ f ‖
Lq′

I0
L1

x
. (4.133)

Assuming this claim for a moment, it follows from the definition of M that

‖T R( f )‖Lq
I0

L∞
x

≤ C1C2 M2‖π‖L1
t L∞

x
‖ f ‖

Lq′
I0

L1
x
.
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Thus, if (4.121) holds with C0 ≥ 2C1C2, then

‖T R( f )‖Lq
I0

L∞
x

≤ 1

2
M2‖ f ‖

Lq′
I0

L1
x
. (4.134)

Next we will estimate ‖T ψ[t0]‖Lq
I0

L∞
x

. We set F := (0,−n P f ). By the Duhamel

principle we have

ψ[t] =
∫ t

t∗
Φ(t; s, F(s))ds.

Then ψ[t0] = − ∫ t∗
t0

Φ(t0; s, F(s))ds and thus

T ψ[t0] = P

[

e0φ

(

t; t0,−
∫ t∗

t0
Φ(t0; s, F(s))

)]

= −P

[

e0

(∫ t∗

t0
Φ(t, s, F(s))ds

)]

= −
∫ t∗

t0
P [e0Φ(t, s, F(s))] ds.

It follows from Theorem 3 that

‖P [e0Φ(t, s, F(s))] ‖L∞
x

≤C
(

(1+|t−s|)− 2
q +d(|t−s|)

)
2
∑

m=0

‖̂∇m P f (s)‖L1
x
�‖ f ‖L1

x
.

Thus, in view of the Hardy–Littlewood–Sobolev inequality, (4.119) and Hausdorff Young
inequality we obtain

‖T ψ[t0]‖Lq
I0

L∞
x

� ‖ f ‖
Lq′

I0
L1

x
+

∥

∥

∥

∥

∫ t∗

t0
d(|t − s|)‖ f (s)‖L1

x
ds

∥

∥

∥

∥

Lq
I0

� ‖ f ‖
Lq′

I0
L1

x
. (4.135)

Combining (4.132), (4.134) and (4.135), we therefore obtain (4.126).
It remains to prove (4.133). Let φ̃ be a solution of �gφ̃ = 0 in I∗. Then for any t0 ∈

[0, t∗] there holds the energy estimate ‖Dφ̃(t)‖L2(Σ) � ‖Dφ̃(t0)‖L2(Σ) for t ∈ [t0, t∗].
Let t0 ≤ t ′ < t∗. Similar to the derivation of (4.130), we have on I = [t ′, t∗] that

∫

I×Σ

−D0φ̃�gψ =
∫

Σt ′
D0φD0ψ + δi j DiφD jψ +

∫

I×Σ

Q[φ,ψ]αβ(T)παβ,

(4.136)

which together with �gψ = −P f gives

〈Dψ,Dφ̃〉(t ′) ≤ ‖Pe0φ̃‖Lq
I L∞

x
‖ f ‖

Lq′
I L1

x
+ ‖(T)π‖L1

I L∞
x

‖Dψ‖L∞
t L2

x
‖Dφ̃‖L∞

I L2
x

According to definition of M , we can obtain ‖Pe0φ̃‖Lq
I L∞

x
≤ M‖Dφ̃(t ′)‖L2

x
. Thus

〈Dψ,Dφ̃〉(t ′) �
(

M‖ f ‖
Lq′

I L1
x

+ ‖(T)π‖L1
I L∞

x
‖Dψ‖L∞

t L2
x

)

‖Dφ̃(t ′)‖L2
x
.

Since Dφ̃(t ′) can be arbitrary, there is a universal constant C3 such that

‖Dψ(t ′)‖L2
x

≤ C3 M‖ f ‖
Lq′

I L1
x

+ C3‖(T)π‖L1
I L∞

x
‖Dψ‖L∞

I L2
x
.
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Recall that t ′ ∈ [t0, t∗) is arbitrary. Thus, if (4.121) holds with C0 ≥ 2C3 then

‖Dψ‖L∞[t0,t∗)L2
x

≤ C3 M‖ f ‖
Lq′

[t0,t∗)L1
x

+
1

2
‖Dψ‖L∞[t0,t∗)L2

x
.

This implies claim (4.133) with C2 = 2C3. The proof of (4.123) is thus completed. We
also have proved for any t ∈ I∗

‖Dψ‖L∞[t,t∗)L2
x

≤ C2 M‖ f ‖
Lq′

[t,t∗)L1
x
. (4.137)

Now we consider ‖P(∂mφ)‖Lq
I∗ L∞

x
. It suffices to estimate

I =
∫

I∗×Σ

f P(∂mφ) =
∫

I∗×Σ

∂mφP f

for any function f satisfying ‖ f ‖
Lq′

I∗ L1
x

≤ 1. Let ψ be the solution of (4.127), then

I =
∫

I∗×Σ

−∂mφ�gψ.

In view of (4.129), we have with Z = ∂m that
∫

I∗×Σ

−Zφ�gψ = 2
∫

Σ0

Tα Pα +
∫

I∗×Σ

Q[φ,ψ]αβ(Z)παβ.

By direct calculation we can see that (Z)π = g · π̃ . Thus it follows from the energy
estimate (4.137) and (4.121) that
∣

∣

∣

∣

∫

I∗×Σ

Q[φ,ψ]αβ(Z)παβ

∣

∣

∣

∣

� ‖π̃‖L1
I∗ L∞

x
‖Dψ‖L∞

I∗ L2
x
‖Dφ‖L∞

I∗ L2
x

� ‖Dφ(0)‖L2
x
‖ f ‖

Lq′
I∗ L1

x

and
∣

∣

∣

∣

∫

Σ0

Tα Pα

∣

∣

∣

∣

� ‖Dφ(0)‖L2‖Dψ‖L∞
I∗ L2

x
� ‖Dφ(0)‖L2‖ f ‖

Lq′
I∗ L1

x
.

Therefore |I| � ‖Dφ(0)‖L2
x
‖ f ‖

Lq′
I∗ L1

x
. Hence we can conclude that

‖P∂mφ‖Lq
I∗ L∞

x
≤ C‖Dφ(0)‖L2

x
. (4.138)

Finally we prove (4.122) for the case that ∂ = ∂t , i.e.

‖P∂tφ‖Lq
I∗ L∞

x
≤ C‖Dφ(0)‖L2

x
. (4.139)

Note that ∂t f = ne0( f ) + Y m∂m f . We can write

P∂tφ = n Pe0(φ) + Y m P∂mφ + [P, n]e0φ + [P,Y m]∂mφ.

By using (6.195), the Bernstein inequality and the finite band property for the Littlewood-
Paley projections, we obtain
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‖[P, n]e0φ‖Lq
I∗ L∞

x
� ‖̂∇n‖Lq

I∗ L∞
x

‖(e0φ)≤1‖L∞ +
∑

�>1

‖P(n� · (e0φ)�)‖Lq
I∗ L∞

x

� ‖̂∇n‖Lq
I∗ L∞

x
‖e0φ‖L∞

I∗ L2
x
.

By using (2.29) and (BA2) under the rescaling coordinates ‖̂∇n‖Lq
I∗ L∞

x
� λ−1+1/q , also

using the energy estimate for φ, we can obtain

‖[P, n]e0φ‖Lq
I∗ L∞

x
� ‖Dφ(0)‖L2

x
.

Similarly, we have ‖̂∇Y‖Lq
I∗ L∞

x
� λ

−1+ 1
q and

‖[P,Y m]∂mφ‖Lq
I∗ L∞

x
� ‖Dφ(0)‖L2

x
.

Combining the above two estimates with (4.123) and (4.138) we therefore obtain (4.139).
The proof is thus complete.

4.2. Strichartz estimates ⇒ main estimates. In this section we will use Theorem 4 to
prove Theorem 2. According to the properties of Littlewood-Paley projections, it is easy
to derive the desired estimates for the low frequency part. Therefore, to complete the
proof of Theorem 2, it suffices to establish the following result.

Proposition 9. There exists a large number Λ ≥ 1 such that for any q > 2 sufficiently
close to 2 and any δ > 0 sufficiently close to 0 there holds on I = [0, T ]

∑

μ>Λ

{

‖μδ Pμ∂m g‖2
L2

I L∞
x

+ ‖μδ Pμ∂t g‖2
L2

I L∞
x

}

� T 1− 2
q .

Moreover for any solution of �gφ = 0, there holds

∑

μ>Λ

‖μδ Pμ∂φ‖2
L2

I L∞
x

� T 1− 2
q ‖̂∇φ, e0φ‖2

H1+ε (0).

In order to carry out the proof of Proposition 9, we pick a sufficiently small ε0 > 0
and for each μ > 1 we partition the interval [0, T ] into disjoint union of subintervals
Ik = [tk−1, tk) with the properties that

|Ik | � μ−8ε0 T and ‖k,̂∇g,̂∇Y,Dn‖L2
Ik

L∞
x

≤ μ−4ε0 . (4.140)

Such partition is always possible. Let κμ denote the total number of subintervals in the
partition. It is even possible to make κμ � μ8ε0 .

We first consider any pair (u, v) satisfying (3.66). Then (Uμ, V μ) := (Pμu, Pμv)

also satisfies the system (3.66) with FUμ and FV μ given by (3.68), i.e.

FUμ = [Pμ,Y m]∂mu + [Pμ, n]v + PμFu, (4.141)

FV μ = [Pμ, ng]̂∇2u + PμFv + [Pμ,Y m]∂mv. (4.142)

Consequently, it follows from (3.87) that

n2�g Pμu = −nDT FUμ + n(−FV μ − nπ0a∇aUμ + e0(ln n)FUμ + nTrke0Uμ).
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Now we will use the Duhamel principle to represent Pμu. To simplify the notation, we
use W (t, s) to denote the operator defined on H such that, for each ω := (ω0, ω1) ∈ H,
φ := W (t, s)(ω) is the unique solution of the initial value problem

�gφ = 0, φ(t; s, x) = ω0, ∂tφ(t; s, x) = ω1. (4.143)

Then, by the Duhamel principle, we have for t ∈ Ik = [tk−1, tk] that

Pμu(t) = W (t, tk−1)
(

Pμu(tk−1), ∂t Pμu(tk−1) − FUμ(tk−1)
)

+
∫ t

tk−1

W (t, s)(0,−Rμ(s)) + W (t, s)(FUμ(s), 0)ds. (4.144)

Now we apply Pμ to the both sides and take the spatial derivative. Writing P2
μ = Pμ by

a little abuse of notation, we have

Pμ∂mu(t) =
∫ t

tk−1

{

∂m PμW (t, s)(0,−Rμ(s)) + ∂m PμW (t, s)(FUμ(s), 0)
}

ds

+ ∂m PμW (t, tk−1)
(

Pμu(tk−1), ∂t Pμu(tk−1) − FUμ(tk−1)
)

, (4.145)

where

Rμ = n(−FV μ − nπ0a∇aUμ + e0(ln n)FUμ + nTrke0Uμ) − Y i∂i FUμ.

By using (4.122) in Theorem 4 with suitable change of coordinates, we have for any
one-parameter family of data ω(s) := (ω0(s), ω1(s)) ∈ H with s ∈ Ik := [tk−1, tk] that

μ
−1+ 1

q ‖Pμ∂W (t, s)(ω(s))‖Lq
[s,tk ]L∞

x
� μ

1
2 ‖ω(s)‖H.

In view of the Minkowski inequality we then obtain
∥

∥

∥

∥

∫ t

tk−1

Pμ∂W (t, s)(ω(s))ds

∥

∥

∥

∥

L2
Ik

L∞
x

�
∫ tk

tk−1

‖Pμ∂W (t, s)(ω(s))‖L2[s,tk ]L∞
x

ds

� |Ik |
1
2 − 1

q μ
3
2 − 1

q

∫

Ik

‖ω(s)‖Hds.

Since |Ik | � Tμ−8ε0 , it follows that
∥

∥

∥

∥

∫ t

tk−1

Pμ∂W (t, s)(ω(s))ds

∥

∥

∥

∥

L2
Ik

L∞
x

� T
1
2 − 1

q μ
( 1

2 − 1
q )(1−8ε0)

∫

Ik

μ‖ω(s)‖Hds.

Applying the above inequality to (4.145) gives, with δ0 := ( 1
2 − 1

q )(1 − 8ε0), that

‖Pμ∂mu‖L2
Ik

L∞
x

� T
1
2 − 1

q μδ0

(

‖μ(0, Rμ)‖L1
Ik

H + ‖μ(FUμ, 0)‖L1
Ik

H
)

+ T
1
2 − 1

q
(

Bμ(tk−1) + Cμ(tk−1)
)

, (4.146)

where

Bμ(t) := μδ0‖μ (

Pμu(t), ∂t Pμu(t)
) ‖H, Cμ(t) := μδ0‖μ(0,−FUμ(t))‖H.

In the following we will give the estimates on Rμ, FUμ , Bμ(tk−1) and Cμ(tk−1) sepa-
rately. Positive indices ε0, q, δ are chosen such that 4ε0 +δ0 +δ < s −2, and δ0 +δ < 4ε0.



1310 Q. Wang

4.2.1. Estimates for Rμ, FUμ .

Lemma 9. For any δ1 > δ > 0 satisfying b := δ0 + δ1 < 4ε0, there holds

⎛

⎝

∑

μ>Λ

κμ
∑

k=1

‖μ1+δ0+δ Rμ‖2
L1

Ik
L2

x

⎞

⎠

1
2

≤ T ‖̂∇u, v‖L∞
t H1+b + ‖μ1+b PμFu‖L1

I l2
μH1

+ ‖μ1+b PμFv‖L1
I l2

μL2
x

+ ‖̂∇2u‖L∞
I L2

x
. (4.147)

∑

μ>Λ

κμ
∑

k=1

‖μ1+δ0+δ(FUμ(s), 0)‖2
L1

Ik
H �

(

‖∂u, v‖L1
I H1+b + ‖μ1+b Pμ∂Fu‖L1

I l2
μL2

x

)2

(4.148)

Proof. We first write Rμ = −n[Pμ, ng]̂∇2u − Y i∂i FUμ + Řμ, where

Řμ := n
(−PμFv − [Pμ,Y m]∂mv − nπ0a∇aUμ + e0(ln n)FUμ + nTrke0Uμ

)

.

Let us set

I1 :=
∑

μ>Λ

κμ
∑

k=1

‖μ1+δ0+δ[Pμ, ng]̂∇2u‖2
L1

Ik
L2

x
, I2 :=

∑

μ>Λ

κμ
∑

k=1

‖μ1+δ0+δ Řμ‖2
L1

Ik
L2

x
.

It suffices to show that

I
1
2

1 � ‖̂∇2u‖L∞
I L2

x
, (4.149)

I
1
2

2 � ‖̂∇u, v‖L∞
t H1+b T + ‖μ1+b PμFu‖L1

I l2
μL2

x
+ ‖μ1+b PμFv‖L1

I l2
μL2

x
, (4.150)

∑

μ>Λ

κμ
∑

k=1

‖μ1+δ0+δ
̂∇FUμ(s)‖2

L1
Ik

L2
x

�
(

‖∂u, v‖L1
I H1+b + ‖μ1+b Pμ∂Fu‖L1

I l2
μL2

x

)2
.

(4.151)

By (4.140), we have ‖̂∇(ng)‖L1
Ik

L∞
x

� μ−8ε0 . We can apply Corollary 1 to obtain

‖μ1+δ+δ0 [Pμ, ng]̂∇2u‖L1
Ik

L2
x

� μδ+δ0‖̂∇(ng)‖L1
Ik

L∞
x

‖̂∇2u‖L∞
t L2

x

� μδ+δ0−8ε0‖̂∇2u‖L∞
t L2

x
.

Recall also that κμ � μ8ε0 . We can obtain

κμ
∑

k=1

‖μ1+δ+δ0 [Pμ, ng]̂∇2u‖2
L1

Ik
L2

x
≤ Cμ2(δ+δ0−4ε0)‖̂∇2u‖2

L∞
t L2

x
.

Since 0 < δ < δ1 and b := δ0 + δ1 < 4ε0, we have

I1 � Λ2(b−4ε0)‖̂∇2u‖L∞
t L2

x
� ‖̂∇2u‖2

L∞
t L2

x

which gives (4.149).
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Next we prove (4.150). Since 0 < δ < δ1, we observe that for any function aμ there
holds

∑

μ>Λ

κμ
∑

k=1

‖μδaμ‖2
L1

Ik
L2

x
≤

∑

μ>Λ

‖μδaμ‖2
L1

I L2
x

≤
⎛

⎝

∫

I

∑

μ>Λ

‖μδaμ‖L2
x

⎞

⎠

2

�
(∫

I
‖μδ1aμ‖l2

μL2
x

)2

. (4.152)

(4.151) and (4.148) can be derived immediately by using (4.152) and (3.73).
In view of (4.152), it suffices to estimate

∫

I ‖μ1+b Řμ‖l2
μL2

x
. From (6.203) it follows

that

‖μ1+b[Pμ,Y m]∂mv‖l2
μL2

x
� ‖̂∇Y‖L∞

x
‖̂∇v‖Hb + ‖̂∇2Y‖

H
1
2 +b‖̂∇v‖L2

x
.

In view of (4.141), (3.71) and (3.84) we have

‖μ1+be0 ln nFUμ‖l2
μL2

x
� ‖e0(ln n)‖L∞

(‖̂∇Y,̂∇n‖L∞
x

‖∂u, v‖Hb

+‖̂∇2Y,̂∇2n‖
H

1
2 +b‖∂u, v‖L2

x
+ ‖μ1+b PμFu‖l2

μL2
x

)

� ‖∂u, v‖Hb + ‖μ1+b PμFu‖l2
μL2

x
.

Recall that ‖∇n,Trk‖L∞
I L∞ ≤ C , we can derive that

‖μ1+b(|Trk e0(U
μ)| + |∇i nDiUμ|)‖l2

μL2
x

� ‖∇n,Trk‖L∞
x

‖Λb
̂∇(̂∇u, v)‖L2

x

� ‖Λb
̂∇(̂∇u, v)‖L2

x

Combining the above three estimates we thus obtain (4.150). ��

4.2.2. Estimates for Bμ(tk−1) and Cμ(tk−1).

Lemma 10. For any δ > 0 satisfying α := 4ε0 + δ0 + δ < s − 2, there holds

∑

μ>Λ

κμ
∑

k=1

μ2δ Bμ(tk−1)
2

�
∑

μ>Λ

μ2α sup
t∈I

E (1)
μ (t) + sup

t

(

‖̂∇u, v‖2

H
1
2 +α

+ ‖μ 3
2 +α PμFu‖2

l2
μL2

x

)

.

Proof. Since κμ � μ8ε0 , we have from the expression of Bμ(t) that

∑

μ>Λ

κμ
∑

k=1

μ2δ Bμ(tk−1)
2 �

∑

μ>Λ

sup
t∈I

(μ4ε0+δ Bμ(t))
2

�
∑

μ>Λ

μ2(1+α) sup
t∈I

‖(Pμu(t), ∂t Pμu(t))‖2
H.

According to the definition of E (1)
μ (t) := E (1)

μ (u(t), v(t)) and the equation for ∂t Pμu we
obtain
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∑

μ>Λ

κμ
∑

k=1

μ2δ Bμ(tk−1)
2 �

∑

μ>Λ

μ2α sup
t∈I

E (1)
μ (t) +

∑

μ>Λ

sup
t∈I

‖μ1+α FUμ(t)‖2
L2

x
.

With the help of (6.204) we have

‖μ1+α FUμ‖2
L2

x
≤ μ−1

∑

λ

‖λ 3
2 +α FUλ(t)‖2

L2
x

� μ−1(‖̂∇u, v‖2

H
1
2 +α

+ ‖λ 3
2 +α PλFu‖2

l2
λL2

x
).

Plugging this into the above inequality and summing over μ > Λ gives the desired
estimate. ��
Lemma 11. For any δ1 > δ > 0 satisfying b := δ0 + δ1 < 4ε0 there hold

∑

μ>Λ

κμ
∑

k=1

(

μδCμ(tk−1)
)2 ≤ ‖∂mu, v‖2

L∞
t H4ε0+b + sup

t∈I

∑

μ>1

‖μ1+4ε0+b PμFu‖2
L2

x
.

Proof. Since
∑κμ

k=1

(

μδCμ(tk−1)
)2 ≤ supt∈I ‖μ4ε0+δ0+δ+1 FUμ(t)‖2

L2
x
, with 0 < δ < δ1,

we have

∑

μ>Λ

κμ
∑

k=1

(

μδCμ(tk−1)
)2 ≤ sup

t
‖μ4ε0+δ0+δ1+1 FUμ(t)‖2

l2
μL2

x
.

In view of (6.204) and (3.84), we complete the proof of Lemma 11. ��
In view of (4.146), Lemma 9, Lemma 11, Lemma 10 and writing

∑

μ>Λ

‖μδ Pμ∂mu‖2
L2

I L∞
x

=
∑

μ>Λ

κμ
∑

k=1

‖μδ Pμ∂mu‖2
L2

Ik
L∞

x
,

we can obtain the following result.

Proposition 10. For any q > 2 sufficiently close to 2 and any δ > 0 sufficiently small
such that α := 4ε0 + δ0 + δ < s − 2, where δ0 := ( 1

2 − 1
q )(1 − 8ε0). Then for any pair

(u, v) satisfying (3.66) there holds with α < α+ ≤ s − 2 that
∑

μ>Λ

‖μδ Pμ∂mu‖2
L2

I L∞
x

� T 1− 2
q

(

‖μ2+α PμFu‖2
L1

I l2
μL2

x
+ ‖μ1+α PμFv‖2

L1
I l2

μL2
x

+ ‖μ 1
2 +α Pμ

̂∇Fu‖2
L∞

I l2
μL2

x

)

+ T 1− 2
q sup

t∈I
E (1+α+)(u, v)(t).

Now we are ready to derive the estimates on the spatial derivative part in Proposition
9. Recall that (u, v) := (g,−2k) satisfies (1.13). With the help of (3.79), (3.80), (3.81)

and (BA1), it follows that ‖μ 1
2 +α Pμ

̂∇Fu‖L∞
I l2

μL2
x

� 1 and then

‖μ1+α PμFu‖L1
I l2

μL2
x

+ ‖μ1+α PμFv‖L1
I l2

μL2
x

� ‖̂∇g, k,̂∇Y,̂∇n‖L1
I L∞

x
+ 1 � 1.
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Therefore we can obtain from Proposition 10 and (3.81) that

‖∂m g‖2
L2

I L∞
x

+
∑

μ>Λ

‖μδ Pμ∂m g‖2
L2

I L∞
x

≤ CT 1− 2
q .

For a solution φ of the equation �gφ = 0, we recall that (u, v) = (φ, e0φ) satisfies
(3.90) with W = 0. We make the bootstrap assumption (BA4) for φ. In view of (3.91)
and Fu = 0, and E (1+α+)(u, v)(t) � E (1+α+)(u, v)(0) in Proposition 5, we may use the
same argument as above to conclude that

‖∂mφ‖2
L2

I L∞
x

+
∑

μ>Λ

‖μδ Pμ∂mφ‖2
L2

I L∞
x

≤ CT 1− 2
q (1 + B2

0 )‖̂∇φ, e0φ‖2
H1+α+ (0),

which improves assumption of (BA4) for φ since T can be chosen sufficiently small and
universal.

4.2.3. Estimate for Pμ∂t u. From (4.144) it follows that.

Pμ∂t u(t) = PμFUμ(t) + Pμ∂t W (t, tk−1)
(

Pμu(tk−1), ∂t Pμu(tk−1) − FUμ(tk−1)
)

+
∫ t

tk−1

Pμ{∂t W (t, s)(0,−Rμ(s)) + ∂t W (t, s)(FUμ(s), 0)}ds. (4.153)

We can use the same argument for dealing with Pμ∂mu to estimate the terms on the right
hand side except the first term PμFUμ(t).

Lemma 12. For sufficiently small δ > 0 there holds
∑

μ>Λ

‖μδ PμFUμ‖2
L2

I L∞
x

�
∑

μ>Λ

‖μδ PμFu‖2
L2

I L∞
x

+ T ‖̂∇2u,̂∇v‖2
L∞

t H δ .

Proof. From (6.210), for 0 < η < 1/2 there holds

μδ‖[Pμ,Y m]∂mu‖L∞
x

+ μδ‖[Pμ, n]v‖L∞
x

� μ−η‖̂∇Y,̂∇n‖L∞
x

‖̂∇2u,̂∇v‖H δ .

This together with (4.141) implies that
∑

μ>Λ

‖μδ PμFUμ‖2
L2

I L∞
x

�
∑

μ>Λ

‖μδ PμFu‖2
L2

I L∞
x

+ T ‖̂∇Y,̂∇n‖2
L∞

I L∞
x

‖̂∇2u,̂∇v‖2
L∞

I H δ .

In view of Proposition 3, we therefore obtain the desired estimate. ��
By using (4.153), Lemma 12 and Proposition 5 for the solution φ of �gφ = 0, in

view of Fu = 0 we derive that

‖∂tφ‖2
L2

I L∞
x

+
∑

μ>Λ

‖μδ Pμ∂tφ‖2
L2

I L∞
x

≤ CT 1− 2
q ‖̂∇φ, e0φ‖2

H1+ε (0).

Next we consider (u, v) = (g,−2k) which satisfies (1.13). Recall that Fu = ̂∇Y · g in
(1.13), we have

‖μδ PμFu‖L2
I L∞

x
� ‖μδ[Pμ, g]̂∇Y‖L2

t L∞
x

+ ‖μδ Pμ
̂∇Y‖L2

t L∞
x
.
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By using (6.209) we have with 0 < η < 1/2 that

‖μδ[Pμ, g]̂∇Y‖L∞
x

� μ−η‖̂∇Y‖L∞
x

‖̂∇2g‖H δ .

Therefore

∑

μ>Λ

‖μδ PμFu‖2
L2

I L∞
x

� T

(

‖̂∇2Y‖2

L∞
t H

1
2 +δ

+ ‖̂∇2g,̂∇k‖2
L∞

t H δ

)

From this, (4.153), (3.81) and (3.84), we conclude that
∑

μ>Λ ‖μδ Pμ∂t g‖2
L2

I L∞
x

≤
CT 1− 2

q .

4.3. Boundedness theorem ⇒ decay estimates. In this subsection we give the proof
of Theorem 3 under the rescaled coordinates. A time interval I = [0, T ] becomes
I∗ = [0, λT ] after rescaling. Let τ∗ denote a number such that t∗ ≤ τ∗ ≤ λT and let
t0 be certain number satisfying 1 ≈ t0 < τ∗. We may take a sequence of balls {BJ }
of radius 1/2 such that their union covers Σt0 and any ball in this collection intersect
at most 10 other balls. Let {χJ } be a partition of unity subordinate to the cover {BJ }.
We may assume that

∑3
m=1 |̂∇mχJ |L∞

x
≤ C1 uniformly in J . By using this partition of

unity and a standard argument we can reduce the proof of Theorem 3 by establishing the
following dispersive estimate result with initial data supported on a ball of radius 1/2.

Proposition 11. There exists a large constant Λ such that for any λ ≥ Λ and any
solution ψ of

�gψ = 0

on the time interval [0, τ∗] with τ∗ ≤ λT , with certain t0 ∈ [1,C] and any initial data
ψ[t0] = (ψ(t0), ∂tψ(t0)) supported in the geodesic ball B1/2 of radius 1

2 , there is a
function d(t) satisfying

‖d‖
L

q
2 [0,τ∗]

� 1, for q > 2 sufficiently close to 2 (4.154)

such that for all t0 ≤ t ≤ τ∗,

‖Pe0ψ(t)‖L∞
x

≤
(

1

(1 + |t − t0|)
2
q

+ d(t)

)

(‖ψ[t0]‖H1 + ‖ψ(t0)‖L2). (4.155)

where ‖ψ[t0]‖H1 := ‖̂∇ψ(t0)‖L2 + ‖∂tψ(t0)‖L2 .

Proof (Proof of Theorem 3). To derive Theorem 3, we apply the above result to ψI ,

�gψI = 0, ψI (0) = χI · ψ(0), ∂tψI (0) = χI · ∂tψ(0),

where ψ is the solution of (4.118) with initial data ψ[0] := (ψ(0), ∂tψ(0)). For 0 <

t < t0, it follows immediately from Bernstein inequality and (3.92) that

‖Pe0ψ(t)‖L∞
x

� ‖e0ψ(t)‖L2
x
. (4.156)
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By (4.155), we have for t0 ≤ t ≤ τ∗

‖Pe0ψI (t)‖L∞
x

≤
(

1

(1 + |t − t0|)
2
q

+ d(t)

)

(‖ψI [t0]‖H1 + ‖ψI (t0)‖L2). (4.157)

By applying (3.93) to the solution ψI

‖ψI [t]‖H1 + ‖ψI (t)‖L2 � ‖ψI [0]‖H1 + ‖ψI (0)‖L2 .

Then by combining (4.157) with (4.156) and using the above energy estimate, we have

‖Pe0ψI (t)‖L∞
x

≤
(

1

(1 + |t − t0|)
2
q

+ d(t)

)

(‖ψ̃I [0]‖H1 + ‖ψI (0)‖L2). (4.158)

where ψ̃[0] = (ψ(0), n−2∂tψ(0)) and we employed the fact that there exists C > 0
such that C−1 < n < C . (4.120) then follows by applying Sobolev embedding also in
view of ψ(t, x) = ∑

I ψI (t, x). ��
We will prove Proposition 11 by establishing boundedness theorem for conformal

energy. For this purpose, we introduce the setup and notation. We denote by Γ + the
portion in [0, λT ] of the integral curve of T passing through the center of B 1

2
. We define

the optical function u to be the solution of eikonal equation gαβ∂αu∂βu = 0 with u =
t on Γ +. We denote the outgoing null cone initiating from Γ + by Cu with 0 ≤ u ≤ λT .
Let St,u = Cu∩Σt . Let us set D+

0 = ∪{t∈[t0,τ∗],0≤u≤t}St,u and D+ = ∪{t∈[0,τ∗],0≤u≤t}St,u .
We denote the exterior region on Σt , t ≥ t0 by Extt = {0 ≤ u ≤ 3t/4}. By C−1 < n <

C , we can always choose t0 ∈ [1, 2C] such that B 1
2

⊂ (D+
0 ∩ Σt0).

Next we extend the time axis Γ + : u = t backward by following the integral curve
of T to t = −λT . Let us denote the extended portion of the integral curve of T by Γ −.
Let Cu be the outgoing null cone initiating from vertex p(t) ∈ Γ − with u = t . We also
foliate the null hypersurfaces by time foliation, Cu = ∪u≤t≤τ∗ St,u .

Let � and � be smooth cut-off functions depending only on two variables t, u. For
t > 0, they are defined as follows

� =
{

1 on 0 ≤ u ≤ t
0 on u ≤ − t

4
� =

{

1 on 0 ≤ u
t ≤ 1

2

0 if u
t ≥ 3

4 or u ≤ − t
4

.

We also suppose � and � coincide in the region ∪{t∈[t0,τ∗],− t
4<u≤0}St,u .

Let us denote by N the outward unit normal of St,u ∈ Σt . Define θAB = 〈DA N , eB〉
and χAB = 〈DeA L , eB〉. We decompose χ as χAB = χ̂AB + 1

2 trχγAB .

/∇N N = −( /∇ log b)eA, /∇ A NB = θABeB, χAB = θAB − kAB (4.159)

We recall some useful results in Proposition 7, Proposition 8 and those established in
[25, Sections 4 and 8]. Under (BA1) and (BA2),

(i) There exists δ∗ > 0 depending only on B1 and the norm of initial data
‖(g, k)‖H2×H1(Σ0)

such that if T ≤ δ∗ then the outgoing null radius of injectivity
satisfies i∗(p) > T − t (p) for any p ∈ [−T, T ] × Σ .

And under (BA1), (BA2) and the rescaled coordinate,

(ii) Let N +(p) be an outgoing null cone initiating from p ∈ [−λT, λT ] × Σ and

contained therein. Then on every N +(p) there holds F 1
2 [̂∇g] � λ− 1

2 , the curvature
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flux R together with flux type norm of components of π on N +(p) satisfies (for
definition we refer to [25,26].)

R + N1[/π] � λ− 1
2 . (4.160)

(iii) For 0 ≤ T ≤ δ∗, consider Cu ⊂ [−λT, λT ] × Σ , with St,u = Cu ∩ Σt and

r(t, u) =
√

|St,u |
4π . As a consequence of (4.160) and C−1 < n < C the metric γt,u

on S
2, obtained by restricting the metric g on Σt to St,u and then pulling it back to

S
2 by the exponential map G(t, u, ·), verifies with small quantity 0 < ε < 1/2 that

|r−2γt,u(X, X) − γS2(X, X)| < εγS2(X, X), ∀X ∈ T S
2,

where γS2 is the standard metric on S
2; there holds (t − u) ≈ r(t, u). There hold

∣

∣

∣

∣

b
n

− 1

∣

∣

∣

∣

≤ 1

2
, r trχ ≈ 1, vt,u :=

√

|γt,u |
|γS2 | ≈ r2 (4.161)

‖π̃ , χ̂ , /∇ log b‖L4(St,u)
+ ‖r− 1

2 (π̃, χ̂ , /∇ log b)‖L2(St,u)
� λ− 1

2 .

We will constantly employ the following result, where all the constants suppressed
in � are independent of frequency λ.

Lemma 13. For any Σ-tangent tensor field F there hold for −τ∗/2 ≤ u < t
∫

St,u

|F |2 � ‖F‖H1(Σt )
‖F‖L2(Σt )

, ‖F‖L4(St,u)
+ ‖r− 1

2 F‖L2(St,u)
� ‖F‖H1(Σt )

.

Proof. This is [25, Proposition 7.5]. ��
Now we prove a commutator estimate for P , the Littlewood Paley projection with

frequency 1. This estimate is slightly more general than needed.

Lemma 14. Let b ≥ 2. For scalar function f and G, with max{b, 3} < p ≤ ∞ there
holds

‖[P, G]∂m f ‖W 1,b + ‖[P, G]∂m f ‖L∞
x

� ‖̂∇G‖L p
x
‖̂∇ f ‖L2

x
.

Proof. The L∞ estimate follows by Sobolev embedding and W 1,b estimates. Now we
consider the W 1,b estimate. In view of (6.195), we can write

[P, G]∂m f = [P, G](∂m f )≤1 +
∑

�>1

P (G� · P�(∂m f )) . (4.162)

Using Corollary 1, we obtain with 1
p + 1

b∗ = 1
b that

‖[P, G](∂m f )≤1‖Lb
x

� ‖̂∇G‖L p
x
‖̂∇ f≤1‖Lb∗

x
� ‖̂∇G‖L p

x
‖̂∇ f ‖L2

x
. (4.163)

Consider I = ̂∇[P, G](∂m f )≤1. Apply (6.198) to (G, ∂m f ) and μ = 1 we can obtain

I =
∫

̂∇M1(x − y)(x − y) j
∫ 1

0
∂ j G(τ y + (1 − τ)x)dτ(∂m f )≤1(y)dy

−
∫

M1(x − y)̂∇G(x)(∂m f )≤1(y)dy. (4.164)
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Similar to Corollary 1, we derive that

‖I‖Lb
x

� ‖̂∇G‖L p
x
‖∂ f≤1‖Lb∗

x
.

Now consider J = ∑

�>1
̂∇ P (G�P�(∂m f )). By finite band property, with 1

p + 1
b∗ = 1

2
we have

‖J‖Lb
x

�
∑

�>1

�−1‖̂∇G‖L p
x
‖P�(∂m f )‖Lb∗

x
�
∑

�>1

�
−1+ 3

p ‖∂m f ‖L2
x
‖̂∇G‖L p

x

� ‖̂∇G‖L p
x
‖̂∇ f ‖L2

x
.

Combining(4.162) with the estimates for I and J , we can complete the proof. ��
For ease of exposition, let us introduce the first version of conformal energy and state

its boundedness theorem whose proof occupies the rest of the paper.

Theorem 5 (Boundedness theorem). Let ψ be a solution of �gψ = 0 whose initial data
is supported in B 1

2
⊂ (D+

0 ∩ Σt0). In the region D+
0 ,

C[ψ](t) :=
∫

Σt

{t2(| /∇ψ |2 + | /∇Lψ |2) + u2|∇ψ |2 + (
t2

(t − u)2 + 1)ψ2}dμg (4.165)

under (BA1)–(BA3), there holds for t ∈ [t0, τ∗], C[ψ](t) � ‖ψ[t0]‖2
H1 +‖ψ(t0)‖2

L2(Σ)
.

Lemma 15. Let q > 2 and 0 < δ ≤ 1 − 2
q be two numbers. Assuming (BA2) and

‖�(χ̂, /∇ log b)‖L2[0,τ∗]L∞
x

� λ− 1
2 , with τ∗ ≤ λT, (4.166)

for any solution ψ of �gψ = 0, there holds

‖[P,� N m]∂mψ‖L∞
x

+ ‖[� /∇, P]ψ‖H1 � d̃(t)(‖ψ[t0]‖H1 + ‖ψ(t0)‖L2
x
),

where

(1 + t)δ d̃(t) � (1 + t)−
2
q + d(t)

with d(t) being a function satisfying (4.154).

The condition (4.166) is incorporated in (5.179) in Proposition 12 and is proved in [27].

Proof. We first claim for t > t0 there hold

‖̂∇(� N )‖L∞
x

� ‖�(χ̂, /∇ log b), k,̂∇g‖L∞ + (1 + t)−1. (4.167)

Indeed, for t ≥ t0, on the support of � , i.e. ∪{− t
4 ≤u≤ 3t

4 }St,u , the radius r of St,u within
the support of � satisfies r ≈ (1 + t). (4.167) follows by using (4.159), (4.161) and the
fact that ‖̂∇�‖L∞

x
� (1 + t)−1.

LetΠi j = gi j −Ni N j denote the projection tensor onΣ . Then for any scalar function
f , we have /∇ j f = Π i

j∂i f and

[P,� /∇ j ] f = −(� N i N j )P∂i f + P((� N j N i )∂i f ) = [P,� N j N i ]∂i f. (4.168)
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Applying Lemma 14 to (G, f ) = (� N i , ψ), (� N j N i , ψ), and using Proposition 5
for ψ , we have

‖[P, G]∂i f ‖L∞
x

+ ‖[P, G]∂i f ‖H1 � ‖̂∇G‖L∞
x
(‖Dψ(t0)‖L2

x
+ ‖ψ(t0)‖L2

x
).

Now for q > 2, we set d̃(t) = ‖̂∇G‖L∞
x

. We have from (4.167) that

d̃(t) � (1 + t)−1 + ‖�(χ̂, /∇ log b),̂∇g, k‖L∞
x

= (1 + t)−1 + d̃(2)(t).

By using (4.166) and Hölder inequality, we have

‖d̃(2)(t)‖
L

q
2

� λ
2
q −1T

2
q − 1

2 .

Thus, with 0 < δ ≤ 1 − 2
q and d(t) = (1 + t)δ d̃(2)(t), we can complete the proof. ��

Lemma 16. (i) Let St = Σt ∩ N +(p), with p ∈ [−λT, λT ] ×Σ . For St tangent tensor
F, there holds

‖r1−2/q F‖Lq (St ) � ‖r /∇F‖1−2/q
L2(St )

‖F‖2/q
L2(St )

+ ‖F‖L2(St )
, 2 ≤ q < ∞. (4.169)

(ii) For any δ ∈ (0, 1), any q ∈ (2,∞) and any scalar function f there hold

sup
St,u

| f | � r
2δ(q−2)

2q+δ(q−2)

(

∫

St,u

(

| /∇ f |2 + r−2| f |2
)

) 1
2 − δq

2q+δ(q−2)

×
(

∫

St,u

(| /∇ f |q + r−q | f |q)
) 2δ

2q+δ(q−2)

.

Proof. This is [12, Theorem 5.2] ��
Now we are ready to complete the proof of Proposition 11.

Proof (Proof of Proposition 11). We first claim that

‖� Pψ‖L∞(Σt ) �
(

1

(1 + |t − t0|)
2
q

+ d(t)

)

(‖ψ[t0]‖H1 + ‖ψ(t0)‖L2). (4.170)

Since � vanishes outside the region {−t/4 ≤ u < 3t/4}, this claim is trivial there.
Thus we may restrict our consideration to the region {−t/4 ≤ u < 3t/4}. In view of
r ≈ t − u, we thus have r ≈ t for t > 0. Recall that � is constant on each St,u , from
Lemma 16 (ii), we can obtain

sup
St,u

|� Pψ |2 � r δ

(

∫

St,u

(

|� /∇ Pψ |2 + r−2|� Pψ |2
)

)1−δ

×
(

∫

St,u

(

|� /∇ Pψ |4 + r−4|� Pψ |4
)

) 1
2 δ

.
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Applying Lemma 13 and the finite band property, we then obtain

sup
St,u

|� Pψ |2 � r δ

(

∫

St,u

(

|P(� /∇ψ)|2 + r−2|� Pψ |2 + |[P,� /∇]ψ |2
)

)1−δ

×
(

∫

St,u

(

|P(� /∇ψ)|4 + r−4|� Pψ |4 + |[P,� /∇]ψ |4
)

) 1
2 δ

� r δ
(

t−2C[ψ](t) + ‖[P,� /∇]ψ‖2
H1

)

.

By letting 0 < δ ≤ 2(1 − 2
q ), (4.170) then follows from Theorem 5 and Lemma 15.

In order to derive the estimate on P(e0(ψ)), we can write ‖P (e0ψ) ‖L∞
x

≤
‖P(�e0ψ)‖L∞

x
+ ‖P

(

(� − �)e0ψ
) ‖L∞

x
. By Bernstein inequality and Theorem 5,

we have

‖P
(

(� − �)e0ψ
) ‖L∞

x
� ‖(� − �)e0ψ‖L2

x
� (1 + t)−1C[ψ] 1

2 (t)

� (1 + t)−1(‖ψ[t0]‖H1(Σ) + ‖ψ(t0)‖L2(Σ))

and

‖P(�e0ψ)‖L∞
x

� ‖P(� Lψ)‖L∞
x

+ ‖P(� Nψ)‖L∞
x

� ‖� Lψ‖L2
x

+ ‖P(� Nψ)‖L∞
x
.

From Theorem 5 we have

‖� Lψ‖L2
x

� (1 + t)−1C[ψ] 1
2 (t) � (1 + t)−1(‖ψ[t0]‖H1(Σ) + ‖ψ(t0)‖L2

Σ
).

Moreover

‖P(� Nψ)‖L∞
x

≤ ‖[P,� Nl ]∂lψ‖L∞
x

+ ‖� Nl P∂lψ‖L∞
x
. (4.171)

The first term in (4.171) can be estimated by Lemma 15. By using (4.170), the second
term in (4.171) can be estimated as

‖� Nl P∂lψ(t)‖L∞
x

≤ ‖� P̃ψ(t)‖L∞
x

�
(

(1 + t)−
2
q + d(t)

)

(‖ψ[t0]‖H1 + ‖ψ(t0)‖L2
Σ
),

where P̃ denotes a Littlewood Paley projection with frequency 1 associated to a different
symbol. Putting the above estimates together completes the proof. ��

5. Boundedness Theorem for Conformal Energy

In this section we will present the proof of Theorem 5 under the bootstrap assumptions
(BA1)–(BA3). We will work under the rescaled coordinates. Let M∗ = [0, τ∗] × Σ ,
where τ∗ ≤ λT , where λ ≥ Λ and Λ is a sufficiently large number.

Recall the definition of the optical function u. We will set u := 2t − u and introduce
the Morawetz vector field K := 1

2 n(u2L + u2 L). Associated to K we introduce the
modified energy density

Q̄(K ,T) = Q̄[ψ](K ,T) = Q[ψ](K ,T) + 2tψTψ − ψ2T(t),

and the total conformal energy

Q̄[ψ](t) =
∫

Σt

Q̄[ψ](K ,T).
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Definition 2. We define C[F] for a scalar function F with suppF ⊆ D+
0 , by

C[F](t) = C[F](i)(t) + C[F](e)(t)
where t0 ≤ t ≤ τ∗, and

C[F](i)(t) =
∫

Σt

(� − �)

(

t2|DF |2 +

(

1 +
t2

(t − u)2

)

|F |2
)

dμg,

C[F](e)(t) =
∫

Σt

�
(

u2|DL F |2 + u2|DL F |2 + u2| /∇F |2 + |F |2
)

dμg.

From the definition it is easy to see that Q̄[ψ](t) � C[ψ](t) and C[ψ](t) � C[ψ](t).
We will prove the following results.

Theorem 6 (Comparison Theorem). T > 0 can be chosen appropriately small but
depending on universal constants, such that for any function ψ supported in D+

0 and
any 1 ≤ t ≤ τ∗ there holds

C[ψ](t) ≈ Q̄[ψ](t).
Theorem 7 (Boundedness theorem). There exists a large universal number Λ and a
small universal number T > 0 such that for any λ > Λ, τ∗ ≤ λT and any function ψ

satisfying the geometric wave equation

�gψ = 1√|g|∂α(g
αβ
√|g|∂βψ) = 0 in [0, τ∗] × R

3 (5.172)

with initial data ψ[t0] supported on the ball B1/2(0) there holds

Q̄[ψ](t) � Q̄[ψ](t0) ∀ t0 ≤ t ≤ τ∗.

5.0.1. Canonical null pair L , L. Recall that in (3.101) we have introduced along the null
hypersurface Cu the canonical null frame {L , L, e1, e2}, where {e1, e2} is an orthonormal
frame on St,u . Let e3 = L = T − N and e4 = L = T + N . Then from (3.101) it follows
that

D3u = 2b−1, D3u = 2(n−1 − b−1), D4u = 2n−1, D4u = 0.

Associated to this canonical null frame, we define on each null cone St,u the Ricci
coefficients

χAB = 〈DAe4, eB〉, χ
AB

= 〈DAe3, eB〉
ζA = 1

2
〈D3e4, eA〉, ζ

A
= 1

2
〈D4e3, eA〉

ξA = 1

2
〈D3e3, eA〉.

It is well-known ([8,13]) that there hold the identities

χ
AB

= −χAB − 2kAB, ζ
A

= −kAN + /∇ A log n,

ξA = kAN − ζA + /∇ A log n, ζA = /∇ A log b + kAN
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and the frame equations

D4e4 = −(kN N + π0N )e4, DAe4 = χABeB − kAN e4,

DAe3 = χ
AB

eB + kAN e3, D4e3 = 2ζ
A

eA + (kN N + π0N )e3,

D3e4 = 2ζAeA + (kN N − π0N )e4, D3e3 = 2ξAeA − (kN N − π0N )e3,

D4eA = /∇4eA + ζ
A

e4, D3eA = /∇3eA + ζAe3 + ξAe4.

We rely on the following result to prove the boundedness theorem. (5.173) and estimates
of ζ, k in (5.175) can be seen in (4.161). (5.174) consists of (BA2) and the L2

t L∞
x

estimates on e0n,̂∇n,̂∇Y that can be derived immediately by using (BA2), (2.29) and
(2.49), under the rescaled coordinates. In [27], we will prove (5.175)-(5.179).

Proposition 12. Under the bootstrap assumptions (BA1), (BA2) and (BA3), on D+ ⊂
[0, τ∗] × Σ there hold the estimates

(t − u)trχ ≈ 1 (5.173)

‖π̃‖L2
t L∞

x
� λ−1/2 (5.174)

‖z, ζ‖L4(St,u)
+ ‖r−1/2(z, ζ, k)‖L2(St,u)

� λ−1/2 (5.175)

‖Ω‖L2
t L∞

x
+ ‖Ω‖L4(St,u)

+ ‖(t − u)−1/2Ω‖L2(St,u)
� λ−1/2 (5.176)

‖z‖L2
t L∞

x
� λ−1/2, (5.177)

‖r3/2 /∇z, r3/2Lz‖L∞
t L∞

u L p
ω

� λ−1/2 (5.178)

‖χ̂ , ζ‖L2
t L∞

x
� λ−1/2, (5.179)

where p > 2 is such that 0 < 1 − 2/p < s − 2, and z = trχ − 2
n(t−u) , Ω = b−1−n−1

t−u .

Let (K )π denote the deformation tensor of K and let (K )π̄ := (K )π − 4tg. Then we
have

(K )π̄44 = −2u2n(∇L log n + kN N + π0N ), (K )π̄4A = u2n(ζ
A

− kAN − /∇ A log n),

(K )π̄34 =−4un(b−1−n−1)+nu2(kN N −π0N −D3 log n)+nu2(kN N +π0N −D4 log n),
(K )π̄33 = −8un(n−1 − b−1) − 2nu2(kN N − π0N + D3 log n),
(K )π̄3A = nu2(ζA + kAN − /∇ A log n) + nu2ξA,

(K )π̄ AB = −2nu2k̂AB − nu2trkδAB + 4tn(t − u)χ̂AB

+ 2tn(t − u)

(

trχ − 2

n(t − u)

)

δAB .

For simplicity of presentation, we will drop the superscript K in (K )π̄ . In view of (5.173),
as an immediate consequence of Proposition 12, we have

Proposition 13. Under the conditions in Proposition 12 we have on [0, τ∗] × Σ that

‖u−2 π̄44‖L2
t L∞

x
+ ‖(uu)−1 π̄34‖L2

t L∞
x

+ ‖u−2 π̄33‖L2
t L∞

x

+ ‖u−2 π̄4A‖L2
t L∞

x
+ ‖u−2 π̄3A‖L2

t L∞
x

+ ‖u−2 π̄AB‖L2
t L∞

x
� λ−1/2.

Now we are ready to give the proof of Theorem 7 and Theorem 6.



1322 Q. Wang

5.1. Proof of Theorem 7. By calculating ∂t Q̄[ψ] and integrating over the interval [t0, t],
we have

Q̄[ψ](t) = Q̄[ψ](t0) − 1

2
J1 + J2,

where

J1 =
∫

[t0,t]×Σ

Qαβ [ψ] (K )π̄αβ and J2 =
∫

[t0,t]×Σ

ψ2�gt.

It is easy to see that

J1 =
∫

[t0,t]×Σ

(

1

4
π̄33(Lψ)2 +

1

4
π̄44(Lψ)2 +

1

2
π̄34| /∇ψ |2 − π̄4A Lψ /∇ Aψ

−π̄3A Lψ /∇ Aψ + π̄AB /∇ Aψ /∇Bψ +
1

2
trπ̄

(

LψLψ − | /∇ψ |2
)

)

.

Observe that

trπ̄ = δAB π̄AB = 4tn(t − u)(trχ − 2

n(t − u)
) − 2u2ntrk.

It is easy to derive from (5.174) that
∫

[t0,t]×Σ

|u2ntrkLψLψ | � T
1
2 sup

t
C[ψ](t).

Thus, by letting

B =
∫

[t0,t]×Σ

2t ′n(t ′ − u)

(

trχ − 2

n(t ′ − u)

)

LψLψ,

we have from Proposition 13 that

|J1 − B| � T
1
2 sup

t
C[ψ](t). (5.180)

Since �gt = −e0(n−1) + n−1Trk, we can conclude from (5.174) that

|J2| � T
1
2 sup

t
C[ψ](t)

In the following we will show that

|B| � T
1
2 sup

t
C[ψ](t) (5.181)

We can write B = Bi + Be, where

Be =
∫

[t0,t]×Σ

2t ′n(t ′ − u)

(

trχ − 2

n(t ′ − u)

)

LψLψ�,

Bi =
∫

[t0,t]×Σ

2t ′n(t ′ − u)

(

trχ − 2

n(t ′ − u)

)

LψLψ(� − �).
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In view of (5.177), we have

Bi � T
1
2 sup

t
C[ψ](t).

We still need to estimate Be. Using [13, p. 1162] and the integration by part we have

1

2
Be = −I1 + I2 + I3 − I4,

where

I1 =
∫

[t0,t]×Σ

�nt ′(t ′ − u)z(L Lψ)ψ,

I2 =
∫

[t0,t]×Σ

(−L(�nt ′(t ′ − u)z)+(trθ+N log n−Trk− div Y
)

�nt ′(t ′−u)z)Lψψ,

I3 =
∫

Σt

�nt ′(t ′ − u)zLψψ, I4 =
∫

Σt0

�nt ′(t ′ − u)zLψψ.

Recall that in the exterior region {0 ≤ u ≤ 3t ′/4} we have r(t ′, u) ≈ t ′. Thus with the
help of the Sobolev inequality (4.169) on St ′,u , for any function ψ there holds

∫

0≤u≤3t ′/4
‖t ′1−2/q

ψ‖2
Lq (St ′,u)du � C[ψ](t ′), 2 ≤ q < ∞. (5.182)

Therefore, by using (5.175) and (5.182), for the boundary term I3 and I4 we have the
estimate

|I3| + |I4| � ‖t Lψ‖L∞
t L2

Σ
‖r

1
2 ψ‖L∞

t L2
u L4

x
sup

t,0<u< 3t
4

‖r
1
2 z‖L4(St,u)

� T
1
2 sup

t
C[ψ](t).

Now we consider I2. We write I2 = I (1)2 + I (2)2 , where

I (1)2 =
∫

[t0,t]×Σ

L(�nt ′(t ′ − u)z)Lψψ,

I (2)2 =
∫

[t0,t]×Σ

(trθ + N log n − Trk − div Y )�nt ′(t ′ − u)zLψψ.

In view of (5.173), (5.174) and (5.177) in Proposition 12, by Hölder inequality we have

|I (2)2 | � (τ∗‖π,∇Y, z‖L2
t L∞

x
+ τ

1
2∗ )‖z‖L2

t L∞
x

sup
t

C[ψ](t) � T
1
2 sup

t
C[ψ](t).

Observe that

|L� | � r−1, Lt = n−1, Lu = 2b−1. (5.183)

Let p > 2 be close to 2 such that 0 < 1 − 2/p < s − 2 and let 1/p + 1/q = 1/2. Then
it follows from (5.178) that

|I (1)2 | �
(

‖(|(t ′−u)L� | + 1)z‖L1
t L∞

x
+τ∗‖Ln‖L2

t L∞
x

‖z‖L2
t L∞

x

)

‖t ′Lψ‖L∞
t L2

Σ
‖ψ‖L∞

t L2
Σ

+ ‖t ′
2
q � Lz‖L1

t L∞
u L p

x
sup

t ′

(

∫

0≤u≤ 3t ′
4

‖t ′1− 2
q ψ‖2

Lq (St ′,u)du

) 1
2

‖t ′Lψ‖L∞
t L2

Σ
.
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In view of (5.182), (5.174), (5.177) and (5.178), we obtain

|I (1)2 | � T
1
2 sup

t
C[ψ](t)

Finally we will use (5.172) to estimate I1. We first rewrite (5.172) as

�gψ = −L Lψ + /Δψ + 2ζA /∇ Aψ − 1

2
trχLψ − (

1

2
trχ + ν)Lψ. (5.184)

Then I1 can be written as I1 = I11 + I12 + I13, where

I11 =
∫

[t0,t]×Σ

�nt ′(t ′ − u)z /Δψψ

I12 = −1

2

∫

[t0,t]×Σ

�nt ′(t ′ − u)ztrχψLψ

I13 =
∫

[t0,t]×Σ

�nt ′(t ′ − u)z

(

2ζA /∇ Aψ −
(

1

2
trχ + ν

)

Lψ

)

ψ.

Recall that for any vector field X tangent to St,u there holds
∫

Σt

F div X = −
∫

Σt

{ /∇ + (ζ + ζ )}F · X. (5.185)

In view of (5.185) we have

I11 = −
∫

[t0,t]×Σ

/∇(�nt ′(t ′ − u)zψ)/∇ψ + (ζ + ζ )�nt ′(t ′ − u)zψ · /∇ψ.

Now we introduce the following types of terms:

Er1 = nt ′(t ′ − u)

(

π, z,
b−1 − n−1

(t − u)

)

· (Lψ, /∇ψ) · z,

Er2 = nzt ′Lψ, Er3 = nt ′(t ′ − u) /∇z · /∇ψ,

Er4 = nt ′z((t ′ − u) /∇ψ,ψ), Er5 = nt ′(t ′ − u)ζ · /∇ψ · z.

Then, symbolically we can write I11 and I13 as

|I11| + |I13| =
∣

∣

∣

∣

∫

[t0,t]×Σ

�(Er1 + Er2 + Er3 + Er5)ψ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

[t0,t]×Σ

�Er4 · /∇ψ

∣

∣

∣

∣

.

By using (5.174), (5.177), (5.176) and Hölder inequality, we can derive
∣

∣

∣

∣

∫

[t0,t]×Σ

|�Er1 · ψ |
∣

∣

∣

∣

� ‖z‖L2
t L∞

x

∥

∥

∥

∥

z, π,
b−1 − n−1

n(t ′ − u)

∥

∥

∥

∥

L2
t L∞

x

τ∗ sup
t

C[ψ](t)

� T sup
t

C[ψ](t)

and
∣

∣

∣

∣

∫

[t0,t]×Σ

|�Er2ψ | + |�Er4 /∇ψ |
∣

∣

∣

∣

� ‖z‖L1
t L∞

x
sup

t

{

‖t (|Lψ | + | /∇ψ |)‖L2
Σ
(‖ψ‖L2

Σ
+ ‖t /∇ψ‖L2

Σ
)
}

� T
1
2 sup

t
C[ψ](t).
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By using (5.178) and (5.182) with 0 < 1 − 2/p < s − 2 and 1/q + 1/p = 1
2 , we have

∣

∣

∣

∣

∫

[t0,t]×Σ

|�Er3 · ψ |
∣

∣

∣

∣

� sup
t

‖t
2
q � /∇z‖L1

t L∞
u L p

x
sup

t ′

⎧

⎨

⎩

C[ψ](t ′) 1
2

(

∫

0≤u≤ 3t ′
4

‖t ′1− 2
q ψ‖2

Lq (St ′,u)du

) 1
2

⎫

⎬

⎭

� T
1
2 sup

t
C[ψ](t).

With the help of (5.177), (5.182) with q = 4 and (5.175), we obtain
∣

∣

∣

∣

∫

[t0,t]×Σ

|�Er5ψ |
∣

∣

∣

∣

�
∫ t

t0
sup

u
‖r

1
2 � z · ζ‖L4

x
· sup

t ′

⎧

⎨

⎩

‖t ′ /∇ψ‖L2
Σ

(

∫

0≤u≤ 3t ′
4

‖r ′ 1
2 ψ‖2

L4(St ′,u)
du

) 1
2

⎫

⎬

⎭

� ‖r
1
2 ζ‖L∞

t L∞
u L4

x
‖z‖L1

t L∞
x

sup
t

C[ψ](t) � T sup
t

C[ψ](t).

Now we consider I12. By integration by part we can obtain I12 := I (1)12 + I (2)12 + I (3)12 ,
where

I (1)12 = 1

4

∫

[t0,t]×Σ

−L(�nt ′(t ′ − u)ztrχ)ψ2,

I (2)12 = 1

4

∫

[t0,t]×Σ

(trθ + N log n − Trk − div Y )�nt ′(t ′ − u)ztrχ ψ2,

I (3)12 = 1

4

∫

Σt

�nt ′(t ′ − u)ztrχψ2 − 1

4

∫

Σ0

�nt ′(t ′ − u)ztrχψ2.

Using (5.173), (5.174) and (5.177), the term I (2)12 can be bounded by

|I (2)12 | �
∫

[t0,t]×Σ

∣

∣

∣

∣

�(z + π + ∇Y +
1

n(t − u)
)z

∣

∣

∣

∣

t ′nψ2

� ‖z‖L2
t L∞

x
‖|ψ |2‖L∞

t L1
Σ
(τ

1/2∗ + τ∗‖π,∇Y, z‖L2
t L∞

x
) � T

1
2 sup

t
C[ψ](t).

For the term I (3)12 , using (5.173), (5.175) and (5.182) with q = 4, we have

|I (3)12 | � sup
t,u

‖z‖L2(St,u)

∫

0<u≤ 3t
4

‖t ′|ψ |2‖L2(St,u)
� T

1
2 sup

t
C[ψ](t).

It remains only to consider the term I (1)12 . We have |I (1)12 | � J1 + J2, where

J1 :=
∣

∣

∣

∫

[t0,t]×Σ

(

L�nt ′(t ′ − u)trχ + �ntrχL(t ′(t ′ − u))

+ � trχLnt ′(t ′ − u) + � L(
1

n(t ′ − u)
)nt ′(t ′ − u)

)

zψ2
∣

∣

∣,

J2 :=
∫

[t0,t]×Σ

|� Lznt ′(t ′ − u)|(|trχ | + |z|)ψ2.
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Since r ≈ (t −u) and t (|trχ |+ |z|) ≈ 1 on Extt , with 1
p + 1

q = 1 and p is slightly greater
than 2, also using Hölder inequality, we obtain

J2 � ‖�r1− 2
p Lz‖L1

t L∞
u L p

x
sup

t ′
(

∫

0≤u≤ 3t ′
4

‖r
2
p |ψ |2‖Lq (St ′,u)du)

� ‖�r1− 2
p Lz‖L1

t L∞
u L p

x
sup

t ′
(

∫

0≤u≤ 3t ′
4

‖r
1− 2

q1 ψ‖Lq1 (St ′,u)‖r
1− 2

q2 ψ‖Lq2 (St ′,u)du)

where 1
q1

+ 1
q2

= 1
q . Using (5.182) and (5.178) we obtain

J2 � T
1
2 sup

t ′
C[ψ](t ′).

To estimate J1, in view of (5.183) and

L(
1

n(t − u)
) = nb−1

n2(t − u)2 − L log n

n(t − u)
− n(n−1 − b−1)

n2(t − u)2 ,

using (5.177), (5.174) and (5.176), we have

J1 � ‖zψ2‖L1
t L1

Σ
+ ‖Ln,

b−1 − n−1

n(t − u)
‖L2

t L∞
Σ

‖z‖L2
t L∞

Σ
τ∗ sup

t

∫

0≤u≤ 3t
4

‖ψ2‖L1(St,u)

� T
1
2 sup

t
C[ψ](t).

The proof is therefore complete.

5.2. Proof of comparison theorem. We will adapt the argument in [13] to prove Theorem
6. For simplicity, we use " to denote any term from the collection

{

trχ − 2

n(t − u)
, Trk,

b−1 − n−1

t − u
, k̂N N

}

.

According to (5.175) and (5.176) in Proposition 12 we have

‖r− 1
2 "‖L2(St,u)

� λ− 1
2 . (5.186)

By following the argument in [13, Section 6] we can derive

Q̄[ψ](t) �
∫

Σ

(

u2(Lψ)2 + u2(Lψ)2 + (u2 + u2)| /∇ψ |2 +

(

1 +
t2

(t − u)2

)

ψ2
)

−
∫

Σ

(

1 +
t2

(t − u)2

)

ψ2(t − u)"

� C[ψ](t) −
∫

Σ

(

1 +
t2

(t − u)2

)

ψ2(t − u)".

By using (5.186) and the inequality, which can be derived in view of (4.169),

‖tψ‖L2
u L4

ω
� ‖t /∇ψ‖L2

x
+ ‖ t

t − u
ψ‖L2

x
� C 1

2 [ψ](t),
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we can obtain
∫

Σ

t2

t − u
"ψ2 � ‖r

1
2 "‖L∞

u L2
ω
‖r

1
2 t2ψ2‖L1

u L2
ω

� λ− 1
2 τ

1
2∗ ‖t2ψ2‖L1

u L2
ω

� T
1
2 C[ψ](t).

Similarly we have
∫

Σ

ψ2(t − u)" � λ− 1
2 τ

1
2∗ ‖r2ψ2‖L1

u L2
ω

� T
1
2 C[ψ](t).

Therefore, there is a universal constant C0 > 0 such that

C[ψ](t) ≤ C0 Q̄[ψ](t) + C0T
1
2 C[ψ](t).

This implies the desired conclusion by taking T to be small universal constant.
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discussions, and Qinian Jin for reading the manuscript and valuable comments.

6. Appendix: Commutator estimates

In this section we derive various commutator estimates involving the LP projections Pλ

in fractional Sobolev spaces that are extensively used in this paper, where Pλ is defined
by (1.11). One can refer to [17,20] for various properties of LP projections. In view of
the LP decomposition, the norm in the Sobolev space H ε with 0 ≤ ε < 1 is defined by

‖F‖H ε := ‖F‖L2 +

(

∑

λ>1

λ2ε‖PλF‖2
L2

)1/2

for any scalar function F . For any nonnegative integer m and 0 ≤ ε < 1, we
define ‖F‖Hm+ε := ‖F‖Hm + ‖̂∇m F‖H ε . For simplicity of exposition, we will write

Fλ := PλF , F≤λ := ∑

μ≤λ PμF , and ‖Λr F‖L2 :=
(

∑

λ>1 λ
2r‖PλF‖2

L2

)1/2
. For any

sequence (aλ) we will use ‖aλ‖2
l2
λ

to denote
∑

λ≥1 |aλ|2.

6.1. Product estimates. We first derive some useful product estimates. According to the
Littlewood-Paley (LP) decomposition, one has, for any scalar functions F and G, the
trichotomy law which schematically says that

Pμ(F · G) = Pμ(F≤μ · Gμ) + Pμ(Fμ · G≤μ) +
∑

λ>μ

Pμ(Fλ · Gλ). (6.187)

We will use this decomposition repeatedly.

Lemma 17. For any 0 < ε < 1 and any scalar functions F and G there hold

‖Λε(F · G)‖L2 � ‖F‖H1/2+ε‖G‖H1 + ‖G‖H1/2+ε‖F‖H1 , (6.188)

‖μ−1/2+ε Pμ(F · G)‖l2
μL2 � ‖G‖H ε‖F‖H1 . (6.189)
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Proof. We first prove (6.188). By using the Bernstein inequality and the finite band
property of the LP projections, we have

με‖Pμ(F≤μ · Gμ)‖L2 � με
∑

λ≤μ

‖Fλ‖L∞‖Gμ‖L2

�
∑

λ≤μ

(

λ

μ

)1−ε

‖λ1/2+ε Fλ‖L2‖̂∇Gμ‖L2 .

Therefore

‖με Pμ(F≤μ · Gμ)‖l2
μL2

x
� ‖F‖H1/2+ε‖̂∇G‖L2 .

Similarly we have

‖με Pμ(Fμ · G≤μ)‖l2
μL2 � ‖G‖H1/2+ε‖̂∇F‖L2 .

Moreover, we have

με‖Pμ(Fλ · Gλ)‖L2 � μ
1
2 +ε‖Fλ‖L2‖Gλ‖L6 �

(μ

λ

)1/2+ε ‖λ1/2+ε Fλ‖L2‖̂∇Gλ‖L2 .

This implies that
∥

∥

∥μ
ε
∑

λ>μ

Pμ(Fλ · Gλ)

∥

∥

∥

l2
μL2

� ‖Λ1/2+ε F‖L2‖̂∇G‖L2 .

Combining the above estimates and using the trichotomy law (6.187) we obtain (6.188).
Next we prove (6.189). Using the properties of the LP projections we have

‖μ−1/2+ε Pμ(F≤μ · Gμ)‖l2
μL2 �

∥

∥

∥

∑

λ≤μ

(

λ

μ

)1/2

‖μεGμ‖L2‖̂∇Fλ‖L2

∥

∥

∥

l2
μ

� ‖F‖H1‖G‖H ε ,

‖μ−1/2+ε Pμ(Fμ · G≤μ)‖l2
μL2 �

∥

∥

∥

∑

λ≤μ

(

λ

μ

)3/2−ε

‖̂∇F‖L2‖λεGλ‖L2

∥

∥

∥

l2
μ

� ‖̂∇F‖L2‖G‖H ε

and
∥

∥

∥

∑

λ>μ

μ−1/2+ε Pμ(Fλ · Gλ)

∥

∥

∥

l2
μL2

�
∥

∥

∥μ
1/2+ε

∑

λ≥μ

‖Fλ‖L3‖Gλ‖L2

∥

∥

∥

l2
μ

�
∥

∥

∥

∑

λ≥μ

(μ

λ

)1/2+ε ‖̂∇Fλ‖L2‖λεGλ‖L2

∥

∥

∥

l2
μ

� ‖F‖H1‖G‖H ε .

Combining the above estimates with (6.187) yields (6.189). ��
Lemma 18. For any ε > 0 and any scalar functions G1, G2 and G3 there holds

∥

∥Λε(G1G2G3)
∥

∥

L2 �
3
∑

j=1

⎛

⎝‖G j‖H1+ε

∏

l �= j

‖Gl‖H1

⎞

⎠ .
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Proof. Using the facts ‖(G1)≤μ‖L∞ � μ1/2‖̂∇G1‖L2 and ‖(G2G3)μ‖L2 � μ−1‖Pμ
̂∇

(G2G3)‖L2 together with (6.189) in Lemma 17, we have

∥

∥με Pμ((G1)≤μ(G2G3)μ)
∥

∥

l2
μL2 � ‖̂∇G1‖L2

∥

∥

∥μ
−1/2+ε Pμ

̂∇(G2G3)

∥

∥

∥

l2
μL2

� ‖G1‖H1
(‖G2‖H1+ε‖G3‖H1 + ‖G3‖H1+ε‖G2‖H1

)

,

In view of ‖(G1)μ‖L3 � μ−1/2‖̂∇(G1)μ‖L2 and ‖(G2G3)≤μ‖L6 � μ1/2‖G2G3‖L3 ,
we obtain

∥

∥με Pμ

(

(G1)μ(G2G3)≤μ

)∥

∥

l2
μL2 �

∥

∥με
̂∇(G1)μ

∥

∥

l2
μL2 ‖G2‖L6‖G3‖L6

� ‖G1‖H1+ε‖G2‖H1‖G3‖H1 .

Furthermore, by using ‖(G1)λ‖L6 � ‖̂∇(G1)λ‖L2 , we have
∥

∥

∥

∑

λ>μ

με Pμ ((G1)λ(G2G3)λ)

∥

∥

∥

l2
μL2

�
∥

∥

∥

∑

λ>μ

(μ

λ

)ε ‖λε
̂∇(G1)λ‖L2

∥

∥

∥

l2
μ

‖G2G3‖L3

� ‖G1‖H1+ε‖G2‖H1‖G3‖H1 .

In view of the trichotomy law (6.187) and the above estimates, we thus complete the
proof. ��
Lemma 19. For any 0 < ε < 1 there hold

‖Λε(F · ̂∇G)‖L2 � ‖F‖L∞‖G‖H1+ε + ‖G‖L∞‖F‖H1+ε . (6.190)

Proof. We use the properties of the LP projections to obtain

‖με Pμ(F≤μ · ̂∇Gμ)‖l2
μL2 � ‖F‖L∞‖με(̂∇G)μ‖l2

μL2 � ‖F‖L∞‖Λε
̂∇G‖L2 ,

‖με Pμ(Fμ · ̂∇G≤μ)‖l2
μL2 � ‖μ1+ε Fμ‖l2

μL2‖G‖L∞ � ‖Λε
̂∇F‖L2‖G‖L∞

and
∥

∥

∥μ
ε
∑

λ>μ

Pμ(Fλ · ̂∇Gλ)

∥

∥

∥

l2
μL2

� ‖F‖L∞
∥

∥

∥

∑

λ>μ

(μ

λ

)ε ‖λε
̂∇Gλ‖L2

∥

∥

∥

l2
μ

� ‖F‖L∞‖Λε
̂∇G‖L2 .

Combining the above three estimates, we obtain (6.190) using the trichotomy law
(6.187). ��

6.2. Commutator estimates. In this subsection we will derive various estimates related
to the commutators [Pμ, F]G. We first consider the general setting. Let m(ξ) define a
multiplier

P f (x) =
∫

eixξm(ξ) f̂ (ξ)dξ. (6.191)

By introducing the function M(x) defined by

M(x) =
∫

eix ·ξm(ξ)dξ = m̂(−x), (6.192)
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then for any scalar functions F and G we can write

[P, F]G(x) =
∫

M(x − y)(F(y) − F(x))G(y)dy

=
∫

M(x − y)(x − y) j
∫ 1

0
∂ j F(τ y + (1 − τ)x)dτG(y)dy

=
∫

M(h)h j
∫ 1

0
∂ j F(x − τh)dτG(x − h)dh. (6.193)

By taking the Lq -norm with 1 ≤ q ≤ ∞ and using the Minkowski inequality we obtain

‖[P, F]G‖Lq ≤
∫

|M(h)||h|
∫ 1

0
‖∂F(· − τh)G(· − h)‖Lq dτdh (6.194)

An application of the Hölder inequality gives the following result whose special case
with p = ∞ and q = r = 2 is [12, Lemma 8.2].

Lemma 20. Let P be the multiplier operator defined by (6.191) and let M be the function
given by (6.192). Then, for any 1 ≤ p, q, r ≤ ∞ satisfying 1/p + 1/r = 1/q and any
scalar functions F and G, there holds

‖[P, F]G‖Lq ≤ ‖∂F‖L p‖G‖Lr

∫

|x ||M(x)|dx .

Recall that the LP projection Pμ is a multiplier operator with m(ξ) = Ψ (μ−1ξ),
where Ψ is a mollifier with support on {1/2 < |ξ | < 2}. Observe that M(x) =
μ3

̂Ψ (−μx). We have
∫ |x ||M(x)|dx � μ−1. Therefore, from Lemma 20 we obtain

the following commutator estimate.

Corollary 1. For any 1 ≤ p, q, r ≤ ∞ satisfying 1/p + 1/r = 1/q and any scalar
functions F and G there holds

‖[Pμ, F]G‖Lq � μ−1‖̂∇F‖L p‖G‖Lr .

In the following we will give further estimates related to the commutator [Pμ, F]G for
any scalar functions F and G. We can write [Pμ, F]G = [Pμ, F]G≤2μ + [Pμ, F]G>2μ.

By the orthogonality of the LP projections, we have

[Pμ, F]G>2μ =
∑

μ1>2μ

Pμ(F · Gμ1) =
∑

μ1>2μ

∑

μ1
2 ≤μ2≤2μ1

Pμ(Fμ2 · Gμ1).

Thus, schematically we can write

[Pμ, F]G = [Pμ, F]G≤μ +
∑

λ>μ

Pμ(FλGλ) (6.195)

which is not quite accurate but harmless to derive estimates.

Lemma 21. For 0 < ε < 1 there holds

‖με[Pμ, F]G‖l2
μL2 � ‖̂∇F‖

H
1
2 +ε‖G‖L2 .
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Proof. First we have
∥

∥

∥μ
ε
∑

λ>μ

Pμ(Fλ · Gλ)

∥

∥

∥

l2
μL2

� ‖G‖L2

∥

∥

∥

∑

λ>μ

(μ

λ

)ε ‖λε Fλ‖L∞
∥

∥

∥

l2
μ

� ‖̂∇F‖
H

1
2 +ε‖G‖L2 .

Now we decompose

[Pμ, F]G≤μ(x) =
∑

λ≤μ

[Pμ, F≤λ]Gλ +
∑

λ≤μ

[Pμ, F>λ]Gλ.

By using Corollary 1, ‖̂∇F�‖L∞ � �1−ε‖̂∇F�‖
H

1
2 +ε and ‖Gλ‖L∞ � λ3/2‖Gλ‖L2 , we

obtain

με‖[Pμ, F]G≤μ‖L2 � μ−1+ε
∑

λ≤μ

‖̂∇F≤λ‖L∞‖Gλ‖L2 + μ−1+ε
∑

λ≤μ

‖̂∇F>λ‖L2‖Gλ‖L∞

� ‖̂∇F‖
H

1
2 +ε

∑

λ≤μ

(

λ

μ

)1−ε

‖Gλ‖L2

+
∑

λ≤μ

∑

λ′>λ

(

λ

μ

)1−ε (
λ

λ′

) 1
2 +ε

‖λ′ 1
2 +ε

̂∇Fλ′ ‖L2‖Gλ‖L2 .

Taking the l2
μ-norm gives

‖με[Pμ, F]G≤μ‖l2
μL2 � ‖̂∇F‖H1/2+ε‖G‖L2 .

In view of (6.195), the proof is therefore complete. ��
Lemma 22. For 0 < ε < 1, there holds

με‖[Pμ, F]̂∇G‖L2 � ‖̂∇F‖L∞
(
∑

λ≤μ

(

λ

μ

)1−ε

‖λεGλ‖L2 +
∑

λ>μ

(μ

λ

)ε ‖λεGλ‖L2

)

.

(6.196)

Proof. By using Corollary 1 we have

‖[Pμ, F]̂∇G≤μ‖L2 � μ−1‖̂∇F‖L∞
∑

λ≤μ

‖̂∇Gλ‖L2 � μ−1‖̂∇F‖L∞
∑

λ≤μ

λ‖Gλ‖L2 .

On the other hand, by using the properties of the LP projections we have
∑

λ>μ

‖Pμ(Fλ · ̂∇Gλ)‖L2 �
∑

λ>μ

‖Fλ‖L∞‖̂∇Gλ‖L2 � ‖̂∇F‖L∞
∑

λ>μ

‖Gλ‖L2 .

Combining these two estimates and using the decomposition (6.195) we complete the
proof. ��
Lemma 23. For 0 < ε < 1/2 and μ ≥ 1 there hold

μ− 1
2 +ε‖̂∇[Pμ, F]G‖L2 + μ

1
2 +ε‖[Pμ, F]G‖L2

� ‖̂∇F‖L6

(
∑

λ≤μ

(

λ

μ

)1/2−ε

‖λεGλ‖L2 +
∑

λ>μ

(μ

λ

)1/2+ε ‖λεGλ‖L2

)

(6.197)
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Proof. From the we can obtain

̂∇[Pμ, F]G≤μ =
∫

̂∇Mμ(x − y)(x − y) j
∫ 1

0
∂ j F(τ y + (1 − τ)x)dτG≤μ(y)dy

+
∫

Mμ(x − y)̂∇F(x)G≤μ(y)dy, (6.198)

where Mμ is given by (6.192) with m(ξ) = Ψ (μ−1ξ). One can check
∫ |Mμ(x)|dx � 1

and
∫ |x ||̂∇Mμ(x)|dx � 1. Thus, it follows from the Minkowski inequality that

‖̂∇[Pμ, F]G≤μ‖L2 � ‖̂∇F‖L6‖G≤μ‖L3 � ‖̂∇F‖L6

∑

λ≤μ

λ1/2‖Gλ‖L2 .

On the other hand, by the properties of LP projections, we have
∑

λ>μ

‖̂∇ Pμ(Fλ · Gλ)‖L2 � μ
∑

λ>μ

‖Fλ‖L6‖Gλ‖L3 � μ‖̂∇F‖L6

∑

λ>μ

λ−1/2‖Gλ‖L2 .

In view of the decomposition (6.195) we thus obtain the estimate for the first term on
the left hand side of (6.197). Next we estimate the second term. By using Corollary 1
we obtain

‖μ 1
2 +ε[Pμ, F]G≤μ‖L2 � μ− 1

2 +ε‖̂∇F‖L6‖G≤μ‖L3 � μ− 1
2 +ε‖̂∇F‖L6

∑

λ≤μ

λ
1
2 ‖Gλ‖L2 ,

while by using the properties of the LP projections we have

μ
1
2 +ε

∑

λ>μ

‖Pμ(Fλ · Gλ)‖L2 � μ1+ε
∑

λ>μ

‖Fλ · Gλ‖
L

3
2

� μ1+ε‖̂∇F‖L6

∑

λ>μ

λ−1‖Gλ‖L2 .

The proof is thus complete using (6.195). ��
Lemma 24. For 0 < ε < 3/2 there holds

‖μ−1/2+ε[Pμ, F]̂∇G‖l2
μL2

x
� ‖̂∇F‖H1‖G‖H ε . (6.199)

Proof. We use the decomposition (6.195). We first consider
∑

λ>μ μ−1/2+ε Pμ(Fλ ·
̂∇Gλ). By the Bernstein inequality and the finite band property of LP projections, we
have

μ−1/2+ε‖Pμ(Fλ · ̂∇Gλ)‖L2 � με‖Fλ · ̂∇Gλ‖L3/2 � με‖Fλ‖L6‖̂∇Gλ‖L2

� με‖̂∇Fλ‖L6‖Gλ‖L2 �
(μ

λ

)ε ‖λεGλ‖L2‖̂∇F‖H1 .

Therefore
∥

∥

∥

∑

λ>μ

μ−1/2+ε Pμ(Fλ · ̂∇Gλ)

∥

∥

∥

l2
μL2

� ‖̂∇F‖H1‖ΛεG‖L2 . (6.200)

Next we consider the term μ−1/2+ε[Pμ, F]̂∇G≤μ. By using (6.194) and setting
Fh,τ (x) = F(x − τh), we obtain

‖[Pμ, F]̂∇G≤μ‖L2 � μ−1 sup
h,τ

‖̂∇Fh,τ · ̂∇G≤μ‖L2 .



Rough Solutions of Einstein Vacuum Equations in CMCSH Gauge 1333

By using the orthogonality of the LP projections, we can write ̂∇Fh,τ ·̂∇G≤μ = aμ+bμ,
where

aμ =
∑

λ>μ

Pλ((̂∇Fh,τ )λ · ̂∇G≤μ) and bμ =
∑

λ≤μ

Pλ(̂∇Fh,τ · ̂∇G≤μ).

By the finite band property and the Bernstein inequality of LP projections we have

‖aμ‖L2 �
∑

λ>μ

‖(̂∇Fh,τ )λ‖L2‖̂∇G≤μ‖L∞ �
∑

λ>μ,λ′≤μ

λ−1λ′5/2‖̂∇Fh,τ‖H1‖Gλ′ ‖L2

� ‖̂∇F‖H1

∑

λ′≤μ

μ−1λ′5/2‖Gλ′ ‖L2

Therefore

‖μ−3/2+εaμ‖l2
μL2 � ‖̂∇F‖H1‖G‖H ε . (6.201)

Next we consider bμ. By using the orthogonality of the LP projections we can write

bμ =
∑

λ≤μ

∑

λ′≤λ

Pλ

(

(̂∇Fh,τ )λ · ̂∇Gλ′ + (̂∇Fh,τ )λ′ · ̂∇Gλ

)

+
∑

λ≤μ

∑

λ<λ′≤μ

Pλ

(

(̂∇Fh,τ )λ′ · ̂∇Gλ′
)

.

By using the Bernstein inequality and the finite band property, we obtain

‖bμ‖L2 �
∑

λ≤μ

∑

λ′≤λ

(

λ−1‖(̂∇Fh,τ )λ‖H1‖̂∇Gλ′ ‖L∞ + λ′ 1
2 ‖̂∇(̂∇Fh,τ )λ′ ‖L2

x
‖̂∇Gλ‖L2

x

)

+
∑

λ≤μ

∑

λ<λ′≤μ

λ‖(̂∇Fh,τ )λ′ ‖L2‖̂∇Gλ′ ‖L3

� ‖̂∇F‖H1

∑

λ≤μ

(
∑

λ′≤λ≤μ

(λ−1λ′5/2 + λ′ 1
2 λ)‖Gλ′ ‖L2 +

∑

λ<λ′≤μ

λλ′1/2‖Gλ′ ‖L2

)

� ‖̂∇F‖H1

∑

λ≤μ

∑

λ′≤μ

λ′1/2λ‖Gλ′ ‖L2 .

Therefore

‖μ−3/2+εbμ‖l2
μL2 � ‖̂∇F‖H1‖G‖H ε . (6.202)

Combining (6.201) and (6.202) yields

‖μ−1/2+ε[Pμ, F]̂∇G≤μ‖l2
μL2 � ‖̂∇F‖H1‖G‖H ε

which together with (6.200) gives the desired estimate. ��
Lemma 25. For 0 < ε < 1 there holds

‖μ1+ε[Pμ, F]G‖l2
μL2 + ‖με

̂∇[Pμ, F]G‖l2
μL2 � ‖̂∇2 F‖

H
1
2 +ε‖G‖L2 + ‖̂∇F‖L∞‖G‖H ε

(6.203)

‖μ1+ε[Pμ, F]G‖l2
μL2 � (‖̂∇2 F‖

H
1
2

+ ‖̂∇F‖L∞)‖G‖H ε (6.204)
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Proof. We first use (6.195) to write μ1+ε[Pμ, F]G = aμ + bμ, where

aμ := μ1+ε
∑

λ>μ

Pμ(Fλ · Gλ) and bμ := μ1+ε
∑

λ≤μ

[Pμ, F]Gλ.

In view of ‖Fλ‖L∞ � λ−1‖̂∇F‖L∞ , it follows that

‖aμ‖l2
μL2 � ‖̂∇F‖L∞

∥

∥

∥

∑

λ>μ

(μ

λ

)1+ε ‖λεGλ‖L2

∥

∥

∥

l2
μ

� ‖̂∇F‖L∞‖ΛεG‖L2 .

To estimate bμ, we introduce Mμ(x) = ∫

eix ·ξmμ(ξ)dξ with mμ(ξ) = Ψ (μ−1ξ). It is
easy to see that

∫ |x |q |Mμ(x)|dx � μ−q for any q > −3. It follows from (6.193) that

[Pμ, F]Gλ(x) = Aμ,λ(x) + Bμ,λ(x) + Cμ,λ(x),

where

Aμ,λ(x) = ∂ j F(x)
∫

Mμ(x − y)(x − y) j Gλ(y)dy,

Bμ,λ(x)=
∫

Mμ(x−y)(x−y) j
∫ 1

0

[

∂ j F≤λ(x−τ(x−y))−∂ j F≤λ(x)
]

dτGλ(y)dy,

Cμ,λ(x) =
∫

Mμ(x − y)(x − y) j
∫ 1

0

[

∂ j F≥λ(x−τ(x−y))−∂ j F≥λ(x)
]

dτGλ(y)dy.

For the term Aμ,λ(x), it is nonzero only if μ and λ are at the same magnitude since both
Mμ and Gλ are frequency localized at the level μ and λ respectively. Thus

∑

λ≤μ

‖Aμ,λ‖L2 � μ−1‖̂∇F≤μ‖L∞‖Gμ‖L2 � μ−1‖Gμ‖L2‖̂∇F‖L∞ .

For the term Bμ,λ we write

Bμ,λ(x) =
∫

Mμ(x − y)(x − y) j (x − y)l
∫ 1

0

∫ 1

0

− τ∂l∂ j F≤λ

(

x − ττ ′(x − y)
)

dτdτ ′Gλ(y)dy.

Thus, by the Minkowski inequality we obtain

‖Bμ,λ‖L2 � μ−2‖̂∇2 F≤λ‖L∞‖Gλ‖L2 � μ−2λ‖Gλ‖L2‖̂∇F‖L∞ .

By the similar argument as above, we can obtain

‖Cμ,λ‖L2 � μ−2‖̂∇2 F>λ‖L2‖Gλ‖L∞ � μ−2λ3/2‖̂∇2 F>λ‖L2‖Gλ‖L2

Therefore

‖bμ‖L2 �
∑

λ≤μ

∑

λ′>λ

(

λ

μ

)1−ε (
λ

λ′

)1/2+ε

‖λ′1/2+ε
̂∇2 Fλ′ ‖L2‖Gλ‖L2

+ ‖̂∇F‖L∞
(

με‖Gμ‖L2 +
∑

λ≤μ

(

λ

μ

)1−ε

‖λεGλ‖L2

)
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which implies that ‖bμ‖l2
μL2 � ‖̂∇F‖L∞‖G‖H ε + ‖̂∇2 F‖H1/2+ε‖G‖L2 . This together

with the estimates on aμ and bμ gives the estimate for the first term on the left hand of
(6.203). (6.204) may follow by a slight modification of the estimate of ‖bμ‖l2

μL2 .
Next we derive the estimate for the second term on the left hand of (6.203). By using

(6.195) we can write με
̂∇[Pμ, F]G = Iμ + Jμ, where

Iμ := με
∑

λ>μ

̂∇ Pμ(Fλ · Gλ) and Jμ := με
̂∇[Pμ, F]G≤μ.

The same treatment as for aμ implies

‖Iμ‖l2
μL2 � ‖̂∇F‖L∞‖ΛεG‖L2 .

In order to estimate Jμ, we write

Jμ(x) = με

∫

̂∇x
(

Mμ(x − y)(F(x) − F(y))
)

G≤μ(y)dy

= με
̂∇F(x)

∫

Mμ(x − y)G≤μ(y)dy

+ με

∫

̂∇Mμ(x − y)(F(x) − F(y))G≤μ(y)dy.

By writing F(x) − F(y) = (x − y) j
∫ 1

0 ∂ j F(x − τ(x − y))dτ , we can decompose Jμ
as Jμ = J (1)

μ + J (2)
μ + J (3)

μ , where

J (1)
μ = με

̂∇F(x)
∫

Mμ(x − y)G≤μ(y)dy,

J (2)
μ = με∂ j F(x)

∫

̂∇Mμ(x − y)(x − y) j G≤μ(y)dy,

J (3)
μ = με

∫

̂∇Mμ(x − y)(x − y) j
∫ 1

0

[

∂ j F(x − τ(x − y))−∂ j F(x)
]

dτG≤μ(y)dy.

By using
∫ |x ||̂∇Mμ(x)|dx � 1 and the frequency localization of Mμ and Gλ we can

obtain

‖J (1)
μ ‖L2 + ‖J (2)

μ ‖L2 � με‖Gμ‖L2‖̂∇F‖L∞ .

For the term J (3)
μ , we can write

J (3)
μ (x)

= με
∑

λ≤μ

∫

̂∇Mμ(x − y)(x − y) j
∫ 1

0

[

∂ j F≤λ(x − τ(x − y)) − ∂ j F≤λ(x)
]

dτGλ(y)dy

+ με
∑

λ≤μ

∫

̂∇Mμ(x − y)(x − y) j
∫ 1

0

[

∂ j F>λ(x − τ(x − y)) − ∂ j F>λ(x)
]

dτGλ(y)dy.

By using the same treatment for Bμ,λ and Cμ,λ in the proof of the first part, we derive

‖J (3)
μ ‖l2

μL2 � ‖̂∇2 F‖H1/2+ε‖G‖L2 + ‖̂∇F‖L∞‖G‖H ε .
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This together with the estimates on J (1)
μ and J (2)

μ gives

‖Jμ‖l2
μL2 � ‖̂∇F‖L∞‖G‖H ε + ‖̂∇2 F‖H1/2+ε‖G‖L2 .

Combining this with the estimate on Iμ completes the proof of the second part of
(6.203). ��
Proposition 14. For 0 < ε < 1/2 there holds

‖μ1+ε
̂∇[Pμ, F]G‖l2

μL2 � ‖̂∇F‖L∞‖G‖H1+ε + ‖̂∇2 F‖
H

1
2 +ε‖G‖H1 . (6.205)

Proof. As can be seen from the proof of the second part of (6.203), it suffices to estimate
the term aμ := μJ (3)

μ . We can write aμ = a(1)
μ + a(2)

μ + a(3)
μ , where

a(1)
μ = μ1+ε

∫

̂∇Mμ(x − y)(x − y) j (x − y)l

×
∫ 1

0

∫ 1

0
−τ∂2

jl F≥μ

(

x − ττ ′(x − y)
)

dτdτ ′G≤μ(y)dy

a(2)
μ = μ1+ε∂2

jl F<μ(x)
∫

̂∇Mμ(x − y)(x − y) j (x − y)l G≤μ(y)dy

a(3)
μ = μ1+ε

∫

̂∇Mμ(x − y)(x − y) j (x − y)l

×
∫ 1

0

∫ 1

0
−τ

[

∂2
jl F<μ(x − ττ ′(x − y)) − ∂2

jl F<μ(x)
]

dτdτ ′G≤μ(y)dy.

By using the properties of the LP projections, it is easy to derive that

‖a(1)
μ ‖L2 � με

∑

λ≥μ

‖̂∇2 Fλ‖L2‖G≤μ‖L∞ �
∑

λ≥μ

(μ

λ

)1/2+ε ‖λ1/2+ε
̂∇2 Fλ‖L2‖̂∇G‖L2 ,

‖a(2)
μ ‖L2 � με‖̂∇2 F<μ‖L∞‖Gμ‖L2 � μ1+ε‖Gμ‖L2‖̂∇F‖L∞ ,

‖a(3)
μ ‖L2 � μ−1+ε‖̂∇3 F<μ‖L2‖G≤μ‖L∞ �

∑

λ<μ

(

λ

μ

)1/2−ε

‖λ1/2+ε
̂∇2 Fλ‖L2‖̂∇G‖L2 .

Therefore, by taking the l2
μ-norm, we obtain

‖a(1)
μ ‖l2

μL2 + ‖a(3)
μ ‖l2

μL2 � ‖̂∇2 F‖H1/2+ε‖G‖H1 , ‖a(2)
μ ‖l2

μL2 � ‖̂∇F‖L∞‖G‖H1+ε .

The proof is thus complete. ��
Lemma 26. For any ε > 0 and any scalar functions F and G, there holds

‖με Pμ(̂∇F · G)‖l2
μL2 � ‖̂∇F‖

H
1
2 +ε‖G‖H1 + ‖F‖L∞‖G‖H1+ε . (6.206)

Proof. By the trichotomy law (6.187), we can write

Pμ(̂∇F · G)= Pμ((̂∇F)μ · G≤μ)+
(

Pμ(̂∇F≤μ · Gμ)+
∑

λ>μ

Pμ(̂∇Fλ · Gλ)
)

=:aμ+bμ.
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For the terms bμ, it is easy to derive that ‖μεbμ‖l2
μL2 � ‖F‖L∞‖G‖H1+ε . For the term

aμ, we can write

aμ = [Pμ, G≤μ]̂∇Fμ + G≤μ · Pμ(̂∇F)μ. (6.207)

By the Bernstein inequality for LP projections, it is easy to obtain

‖μεG≤μPμ(̂∇F)μ‖L2 � με‖G≤μ‖L6‖Pμ(̂∇F)μ‖L3 � ‖G‖L6‖μ 1
2 +ε(̂∇F)μ‖L2 ,

while by using Corollary 1 we have

‖με[Pμ, G≤μ](̂∇F)μ‖L2 � με−1‖̂∇G≤μ‖L∞‖(̂∇F)μ‖L2

�
∑

λ≤μ

(

λ

μ

) 3
2 ‖̂∇Gλ‖L2‖μ 1

2 +ε(̂∇F)μ‖L2 .

Therefore ‖μεaμ‖l2
μL2

x
� ‖̂∇F‖

H
1
2 +ε‖G‖H1 . The combination of the estimates for aμ

and bμ gives (6.206). ��
By using Lemma 21 and (6.206), we can derive the following product estimate.

Lemma 27. For 0 < ε < 1 there holds

‖Λε
̂∇(F · G)‖L2 � ‖̂∇F‖

H
1
2 +ε‖G‖H1 + ‖F‖L∞‖G‖H1+ε (6.208)

Proof. We observe that

‖Λε
̂∇(F · G)‖L2 � ‖με Pμ(̂∇F · G)‖L2

μL2

+ ‖με[Pμ, F]̂∇G‖l2
μL2 + ‖F‖L∞

x
‖με Pμ

̂∇G‖l2
μL2

(6.208) then follows by using Lemma 21 and (6.206). ��
Lemma 28. Let 0 < ε < 1/2. For any μ ≥ 1 and any scalar functions F and G, there
hold

‖[Pμ, F]G‖L∞ � μ− 1
2 −ε‖G‖L∞(

∑

λ>μ

(μ

λ

) 1
2 +ε ‖λε

̂∇2 Fλ‖L2

+
∑

λ≤μ

(

λ

μ

) 1
2 −ε

‖λε
̂∇2 Fλ‖L2) (6.209)

‖[Pμ, F]G‖L∞ � μ− 1
2 −ε‖̂∇F‖L∞(

∑

λ>μ

(μ

λ

)2+ε ‖λε
̂∇Gλ‖L2

+
∑

λ≤μ

(

λ

μ

) 1
2 −ε

‖λε
̂∇Gλ‖L2) (6.210)
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Proof. In view of (6.195), we can write [Pμ, F]G = aμ + bμ + cμ, where

aμ =
∑

λ>μ

Pμ(FλGλ), bμ =
∑

λ≤μ

[Pμ, Fλ]G≤μ, cμ =
∑

λ>μ

[Pμ, Fλ]G≤μ.

It is easy to derive that

‖aμ‖L∞ � μ− 1
2 −ε

∑

λ>μ

(μ

λ

) 1
2 +ε ‖λε

̂∇2 Fλ‖L2
x
‖Gλ‖L∞ .

By using Corollary 1 and the Bernstein inequality, we also have

‖bμ‖L∞ � ‖G‖L∞
∑

λ≤μ

μ−1‖̂∇Fλ‖L∞ � μ− 1
2 −ε‖G‖L∞

∑

λ≤μ

(

λ

μ

) 1
2 −ε

‖λε
̂∇2 Fλ‖L2 .

By the trichotomy law, cμ can be simplified as cμ = F≥μ · Gμ. Consequently

‖cμ‖L∞ � μ− 1
2 −ε‖Gμ‖L∞

∑

λ>μ

(μ

λ

) 1
2 +ε ‖λε

̂∇2 Fλ‖L2 .

Thus we complete the proof of (6.209). Next we use the properties of LP projections
and Corollary 1 to derive that

‖aμ‖L∞ � μ− 1
2 −ε‖̂∇F‖L∞

∑

λ>μ

(μ

λ

)2+ε ‖λε
̂∇Gλ‖L2 ,

‖[Pμ, F]G≤μ‖L∞ � μ− 1
2 −ε‖̂∇F‖L∞

∑

λ≤μ

(

λ

μ

) 1
2 −ε

‖λε
̂∇Gλ‖L2 .

In view of (6.195), the proof of (6.210) is completed. ��

6.3. H ε elliptic estimates.

Lemma 29. For 0 < ε < 1/2 and any Σ-tangent tensor field F there hold

‖̂∇2 F‖Ḣ ε � ‖Δ̂F‖Ḣ ε + ‖F‖H1 , (6.211)

‖̂∇F‖Ḣ1/2+ε � ‖Λε−1/2Δ̂F‖L2 + ‖F‖H1 . (6.212)

Proof. Consider (6.211) first. We will use errμ to denote any error term satisfying
‖errμ‖L2 � μ−1‖F‖H1 . Using Corollary 1, we can obtain

Pμ
̂∇2 F = ̂∇2 PμF + errμ. (6.213)

Recall from Lemma 2 that

‖̂∇2 PμF‖L2 � ‖Δ̂PμF‖L2 + ‖̂∇ PμF‖L2 + ‖PμF‖L2 (6.214)

Recall also that Δ̂ = gi j
̂∇î∇ j , we have

Δ̂PμF = PμΔ̂F + [Pμ, gi j ](∂i∂ j F − Γ̂ k
i j∂k F) + errμ. (6.215)
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By Lemma 24 and 21, we have

‖με[Pμ, gi j ]∂i∂ j F‖l2
μL2 � ‖∂g‖H1‖Λε+1/2∂F‖L2 , (6.216)

‖με[Pμ, gi j ](Γ̂ k
i j∂k F)‖l2

μL2 � ‖∂g‖
H

1
2 +ε‖∂F‖L2 . (6.217)

This together with (6.213)–(6.215) and interpolation give (6.211).
To prove (6.212) for the case of scalar function, we first use the equivalence between

g and ĝ and the integration by parts to obtain

‖Pμ
̂∇F‖2

L2 ≈
∫

Σ

gi j Pμ∂i F Pμ∂ j Fdμg =
∫

Σ

PμFΔ̂PμFdμg. (6.218)

In view of (6.199), we can obtain

∑

μ

μ1+2ε
∣

∣

∣

∣

∫

Σ

PμF[Pμ, gi j ]∂i∂ j Fdμg

∣

∣

∣

∣

�
∑

μ

μ3/2+ε‖PμF‖L2‖μ−1/2+ε[Pμ, gi j ]∂i∂ j F‖L2

� ‖̂∇F‖H1/2+ε‖̂∇g‖H1‖Λε∂F‖L2 ,

and in view of (6.197)

∑

μ

μ1+2ε
∣

∣

∣

∣

∫

PμF · [Pμ, gΓ̂ ]∂F

∣

∣

∣

∣

� ‖μ 1
2 +ε PμF‖l2

μL2‖̂∇(g · Γ̂ )‖L6‖∂F‖H ε

� ‖F‖
H

1
2 +ε‖∂F‖H ε‖g‖H2 .

In view of (6.215) and (6.218), we have with p = ε/(1/2 + ε) that
∑

μ

μ1+2ε‖Pμ
̂∇F‖2

L2 � (‖ F‖
Ḣ

1
2 +ε + ‖∂F‖H1/2+ε )‖∂F‖p

H1/2+ε‖∂F‖1−p
L2 ‖g‖H2

+
∑

μ

‖μ3/2+ε PμF‖L2‖μ−1/2+ε PμΔ̂F‖L2 .

By the fact ‖g‖H2 � 1 and the Young’s inequality, we obtain (6.212).
To prove (6.212) for the vector field case, we note that

Pμ
̂∇i Fm = Pμ

̂∇i (Fm) + [Pμ, Γ̂ ]F + Γ̂ · PμF.

Using Corollary 1, then there holds Pμ
̂∇i Fm = Pμ

̂∇i (Fm)+ errμ, hence we can obtain

‖̂∇Fm‖H1/2+ε � ‖̂∇(Fm)‖H1/2+ε + ‖F‖H1 .

Now we can use (6.212) for the scalar function case to derive

‖̂∇Fm‖H1/2+ε � ‖Λε−1/2Δ̂(Fm)‖L2 + ‖F‖H1 . (6.219)

In view of (6.215), by deriving similar estimates as (6.216) and (6.217) we can obtain

‖Λε−1/2(Δ̂Fm)‖L2 � ‖Λε−1/2(Δ̂F)m‖L2 + ‖̂∇F‖L2 .

Combining this with (6.219) completes the proof. ��
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