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Abstract: In this paper, we consider very rough solutions to the Cauchy problem for
the Einstein vacuum equations in CMC spatial harmonic gauge, and obtain the local
well-posedness result in H*, s > 2. The novelty of our approach lies in that, without
resorting to the standard paradifferential regularization over the rough, Einstein metric
g, we manage to implement the commuting vector field approach to prove Strichartz
estimate for geometric wave equation [g¢p = 0 directly.

1. Introduction

In mathematical relativity, a fundamental question is to find a four dimensional Lorentz
metric g that satisfies the vacuum Einstein equations

Ric(g) = 0. (1.1)

Since the equation is diffeomorphic invariant, certain gauges should be fixed before
solving it. There exist extensive works on (1.1) under the wave coordinates gauge or the
constant mean curvature gauge.

In [2] Andersson and Moncrief consider the vacuum Einstein equation (1.1) under
the so-called constant mean curvature and spatial harmonic coordinate (CMCSH) gauge
condition. To set up the framework, let X be a 3-dimensional compact, connected and
orientable smooth manifold, and let M := R x X. Lett : M — R be the projection
on the first component and let X := {t} x X' be the level sets of . One may construct
solutions of (1.1) by considering Lorentz metrics g of the form

g = —n’dt @ dt +g;;(dx' +Y'dr) ® (dx/ +Y/dr)

with suitable determination of the scalar function n, the vector field Y := Y79 ; and
the Riemannian metric g := g;jdx’' ® dx/ on X. In order for 9, to be time-like, it is
necessary to have n? — gij Y'Y/ > 0. Let T be the time-like unit normal to X, then
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d=nT+7Y.

We call n the lapse function and Y the shift vector field. R
Let g be a fixed smooth Riemannian metric on X' with Levi-Civita connection V and
Christoffel symbol I‘lk] Let I’I']‘ denote the Christoffel symbol with respect to g. We may

introduce the vector field U = U'9; with
I, ij ol Al
U =g ij 1 ij)'

Let k be the second fundamental form of X; in M, ie. k;; = —%ETgi ;. The solution
of (1.1) constructed in [2] is to find the pair (g, k) such that they satisfy the CMCSH
condition

Trk := g'k;j =t and U/ =0 (1.2)
and the vacuum Einstein evolution equations

0:8ij = —2nk;j + Lygij (1.3)
3,/{,‘/' =-V; an + n(R,'j + Trkkij — 2k,‘mk71) + ﬁyk,'j (1.4)

with the constraint equations
R — k| + (Trk)> =0 and V;Trk — V/k;; = 0. (1.5)

It has been shown in [2] that for initial data (g%, k%) € H* x H*~! with s > 5/2
satisfying the constraint equation (1.5) with 7y := Trk® < 0, the Cauchy problem
for the system (1.2)—(1.5) is locally well-posed. In particular, there is a time 7, >
0 depending on || g%l ys and [|KO)| ps—1 such that the Cauchy problem has a unique
solution defined on [fg — T, to + Tx] x X. We should mention that, for the solution
constructed in this way, the lapse function n and the shift vector field ¥ satisfy the elliptic
equations

—An+k)Pn =1 (1.6)
and
AY + Ry = (—2nkﬂ +2V/ Yl) L+ 29 nkl — Vinkd, (1.7)
where U /’ ; is the tensor defined by

It is natural to ask under what minimal regularity on the initial data the CMCSH Cauchy
problem (1.2)—(1.5) is locally well-posed. In this paper we prove the following result
which shows the well-posedness! of the problem when the initial data is in H® x H*~!
with s > 2.

Theorem 1 (Main Theorem). For any s > 2, t) < 0 and My > O, there exist positive
constants Ty, M1 and My such that the following properties hold true:

! The result of Theorem 1 requires that the initial data can be approximated by a smooth sequence of data
satisfying the constraint equation. The issue was settled in [6,7] by using a conformal method.



Rough Solutions of Einstein Vacuum Equations in CMCSH Gauge 1277

(i) For any initial data set (go,ko) satisfying (1.5) with ty = Tk < 0 and
IIgOIIHs(z,O) + ”kOHHS"(ErO) < Moy, there exists a unique solution (g,k) €
C(I, H* x H™Y x C'(I,, H*~! x H*"2) to the problem (1.2)~(1.5);

(ii) There holds

IV kliz2 poo + IV, KllLeps-1 = M
L

(iii) For 2 < r < s, and for each t € I the linear equation

[Dg@ﬁ:()’ (t,x)el,x X
V(r, ) =vo € H(X), dy(r,)=1 € H (%)

admits a unique solution y € C (I, H") x C'(I,, H"™") satisfying the estimates
IVl mr + 110: ¥ oo r—1 < M2l (Yo, Y g7 =1

and

DY 2000 = Mall(Wo, YOl prscpar—15
where I, := [tg — Ty, ty + Ty].

We actually obtain a stronger result than Theorem 1, which is contained in Theorem 2.

1.1. Review and motivation. Since the pioneer work of Choquet-Bruhat [5], there has
been extensive work on the well-posedness of quasilinear wave equation

Ogy@ = 92¢ — 87 ($)3;0;¢ = N (¢, 3¢), 9
Oli=0 = o, 0 Pli=0 = P1 .

in R™*!, where the symmetric matrix g%/ (¢) is positive definite and smooth as a function
of ¢, and the function N (¢, d¢) is smooth in its arguments and is quadratic in d¢. In
view of the energy estimate

1
0@l gs—1 S 106 (0) [l ys-1 - exp (/0 |I3¢(T)IIL;><>dT), (1.10)

the Sobolev embedding and a standard iteration argument, the classical result of Hughes—
Kato—Marsden [9] of well-posedness in the Sobolev space H* follows forany s > 5 +1,
where the estimate of [|d¢|| o Lo is heavily relied on. To improve the classical result,
it is crucial to get a good estimate on [|d¢ ]|, Ipoe This is naturally reduced to deriving
the Strichartz estimate for the wave operator [, sy which has rough coefficients since
g"/(¢) depend on the solution ¢ and thus at most have as much regularity as ¢. The
first important breakthrough was achieved by Bahouri—Chemin [3,4] and by Tataru [21]
using parametrix constructions. They obtained the well-posedness of (1.9) in H® with
s> 5+ % + % by establishing a Strichartz estimate for solutions to linearized equations
of the form

1,o)

19012100 < cllloll  5ote + 11N 2 1
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with a loss of 0 > }1. This well-posedness result was later improved to s > 5 + % + %

in [23].

The next important progress was made by Klainerman in [10] where a vector field
approach was developed to establish the Strichartz estimate. This approach was further
developed by Klainerman—Rodnianski in [ 12] where they successfully improved the local

well-posedness of (1.9) in R3*! to the Sobolev space H® with s > 2+ Z_T‘@ Due to the
limited regularity of the coefficients, the paradifferential localization procedure in [4,
22,23] was adopted in [12] to consider the Strichartz estimate for solutions of linearized
wave equation [,_, ¥ = 0 for some 0 < a < I, where g<ja = S3a(g(Sra(9))) is
the truncation of g(¢) at the frequency level A¢. Here Sy := > u< P and Py is the

Littlewood-Paley projector with frequency A = 2¥ defined for any function f by
P = 10 = [ e e flends (111)

with ¢ being a smooth function supported in the shell {£ : % < |&| < 2} satisfying

> <7 ;(2"5) = 1 for & # 0. We refer to [17,20] for detailed properties of Littlewood-
Paley decompositions. With the help of a 77* argument, such Strichartz estimate was
reduced to the dispersive estimate for solutions of [, _, , ¥ = 0 with frequency localized
initial data. It was then further reduced to deriving the boundedness of Morewatz type
energy for dv and its higher derivatives. To derive these energy estimates requires the
control of the deformation tensor of Morawetz vector field, which involves the Ricci
coefficients relative to the Lorentzian metric —d72 + (g<na)ij dx' ® dx’. Since Ric of
the smoothed metric appears crucially in the structure equations for Ricci coefficients,
new characteristics techniques were developed to take advantage of the observation that
R4y, the tangential component of Ric along null hypersurfaces, has better structure and
the fact that the coefficients g themselves verify equations of the form (1.9). For the
Einstein vacuum equation under the wave coordinates gauge, the local well-posedness

were obtained in H® for any s > 2 in [13-15]. The core progress which enables the
2-3

improvement from s > 2 + =5 to s > 2 was made in [15] by showing that the Ricci
tensor relative to the frequency-truncated metric h := g, does not deviate from O to a
harmful level; the decay rate of Ric(h) and its derivatives were proven to be sufficiently
strong in terms of A. However, similar estimates for Ric(h) can hardly be obtained for
(1.9). The sharp local well-posedness for type (1.9) in H® with s > 2 was achieved
by Smith and Tataru in [19] based on a parametrix construction of a solution by using
wave packet. The particular structure of R44 observed in [12] also played an important
role to control the geometry of null surface. The local well-posedness with s = 2 for
Einstein vacuum equation was conjectured by Klainerman in [11]. Recently we learned
that significant progress has been achieved for this so-called L? curvature conjecture
[18].

A reduction to consider Ug_ % = 0, with 0 < a < 1 appeared in almost all
the above mentioned work. This regularization on metric is used to phase-localize the
solution, and in most of the works, to balance the differentiability on coefficients required
either by parametrix construction or by energy method. Such a regularization on metric,
nevertheless, poses major technical baggage, in particular, in carrying out the vector field
approach in Einstein vacuum spacetime, since Ric(g<; ) no longer vanishes. The analysis
in [15] on the defected Ricci tensor and its derivatives is a very delicate procedure, which
relies crucially on full force of dh, hence, on their non-smoothed counter part g as well.
One particular issue tied to CMCSH gauge itself arises due to the lack of control on DY,
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the time derivative of the shift vector field. By differentiating (1.7), we can obtain an
elliptic equation for D1Y. However, the elliptic equation does not provide a valid control
onDrY evenin terms of L2-norm, since the kernel of this elliptic operator is not expected
to be trivial. The loss of control over some components of dg becomes a serious hurdle
in recovering the decay for Ric(h) and its derivatives. The potential issue on Ricci defect
forces us to abandon the frequency truncation on metric.

The important aspect of our analysis is to implement the vector field approach directly
in the non-smoothed Einstein spacetime (M, g) to establish the Strichartz estimate with
an arbitrarily small loss for the linearized problem [y = 0. This confirms that, due to
the better behavior of Ric, the Einstein metric is in nature “smooth” enough to implement
the vector field approach without the truncation on g in Fourier space, and leads to the
H® well-posedness result with s > 2 for Einstein equation.

Compared with the classical approach in [2,9], the risk of carrying out a more direct
analysis is expected to arise from lack of %-derivative. In the heart of the regime of
Strichartz estimates contained in [12—15], the main building block is to obtain the dis-
persive estimate for P, 9,y by deriving the bounded Morawetz type energy of derivatives
of ¢, withOg_, , ¥ = 0. This procedure relieson H?, o > % norm of curvature, which is
1/2 more derivative than the rough Einstein metric could offer. To conquer this difficulty,
we firstly manage to derive the dispersive estimate merely by using the Morawetz type
energy for  itself. The analysis to control such energy is then accomplished based on
Proposition 12. The main technical baggage is then reduced to proving (5.179) in Propo-
sition 12, a Strichartz type control over the Ricci coefficients x, ¢ relative to Einstein
metric.

The control of Ricci coefficients consistent with H2 Einstein metrics has been studied
in [16,24,26], where a set of estimates concerning try, X, £, { was achieved in terms of
curvature flux, combined with flux of k if null hypersurface is foliated by level sets of
t. Bearing the flavor of these works, in the situation when H>*¢ estimates for g can be
established, we manage to obtain stronger set of estimates on Ricci coefficients in terms
of the L>* type flux. This enables us to carry out delicate analysis such as Calderon-
Zygmund inequality on null hypersurfaces under rough metric. In this procedure, thanks
to working directly in vacuum spacetime, we no longer encounter the technical difficulty
in [13-15] posed by the defected Ric(h). Nevertheless, this set of estimates is much
weaker than (5.179). The crucial estimates for ¥ and ¢ will be based on the Hodge
systems of x and ¢, Strichartz estimates on k, V g via a bootstrap argument and Calderon-
Zygmund theory. The standard L$® Calderson-Zygmund inequality ([14, Propositoin
6.20]) would involve the bound of H?, o > 1/2 for Vk and §2g. One advantage offered
by the smoothed metric g<; lies in that such a loss of derivative is quantitized to be a log-
loss in terms of frequency. Instead of smoothing, we solve this problem by modifying
the Calderon-Zygmund inequality and squeezing out an extra bit of differentiability for
Vg, k through Strichartz estimates.

The difficulty coming from DtY still penetrates in key steps in our vector fields
approach, where all components of dg were typically involved. We exclude such term
by introducing a modified energy current, and by refining 77 * argument and curvature
decomposition ([27]) into more invariant fashion.

We will divide our work into two parts. In this paper, we establish the Strichartz
estimates and close the proof of the main theorem by assuming the estimates of Ricci
coefficients contained in Proposition 12. In [27], we will prove Proposition 12.

We emphasize that our approach can be directly applied for reproducing H>*€ result
for Einstein equations in wave coordinates gauge. It actually works better under wave
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coordinates since D1Y can be well controlled in this situation. Steps which are involved
with getting around this term in CMCSH gauge take simpler and more straightforward
form in wave coordinate gauge. The delicate procedures of deforming the actual space-
time and controlling the defected Ricci no longer appear in our approach. Our approach
gives a vast simplification over the methodology in [13-15].

1.2. Outline of the proof. According to [14,19], in order to complete the proof of The-
orem 1 it suffices to show that for any s > 2 there exist two positive constants C and T
depending on || g #s(zy) and [[k|| gs-1(x,) such that

gl ms (15 x) + Nkl Lo prs-1(1x 3y = € (1.12)

where [ := [tg — T, to + T']. We achieve this by a bootstrap argument. That is, we first
make the bootstrap assumption

to+T . > >
/ Vg, k, VY, Vn| =(x,dt < By, (BA1)
to—T

where, for any X-tangent tensor F, we will use ||F|p>(x,) to denote its L°°-norm
with respect to the Riemannian metric g on X;. We then show that (BA1) and some
auxiliary bootstrap assumptions imply (1.12). We prove these bootstrap assumptions
can be improved for small but universal 7" > 0.

We will only work on the time interval [7, #o + T'] since the same procedure applies to
the time interval [fo — T, fo] by simply reversing the time. In view of (BA1) and elliptic
estimates, we derive in Sect. 2 better estimates for VY and V. That is, we show that,
forany 1 < b < 2, there holds

VY,V <C
l nIILﬁ0 el =
which improves the estimates for Vnand VY in (BA1) with T sufficiently small. In order
to improve the estimates for v g and k, we establish the core estimates in Theorem 1(ii)
by showing that
Ve, kllz o <CT?,

[1g.10+T1x
for some § > 0. Here we briefly describe the ideas behind the proof.
1.2.1. Step 1. Energy estimates and flux. In Sects. 2 and 3, we derive (1.12) under

bootstrap assumptions. We also derive for the scalar solution of homogeneous geometric
wave equation [g¢p = 0, the energy estimate

1001l 51 S 1o (O) s + 199 (O) || gys—1-

To obtain (1.12), the typical energy argument is based on considering [y g with bootstrap
assumptions on ||dg||; 1 Ll The second order equations [lgg = --- contain terms of

DrY. In view of (1.7), DTY satisfies the elliptic equation
AV,rY' + R;vnTYf —2U,, V" VurY? = —n(curl H);Yf +g-V7 -7,

where 77 denotes components of dg excluding d;Y. Due to the appearance of the term
R; V,1Y’/, in general, one cannot show the kernel of the elliptic operator is trivial since
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the lower bound of R,.] is not expected to be controlled. This equation is not good enough
to provide /yalid control for DtY. The same issue occurs when one considers the elliptic
equation ADtY = ---. In order to avoid the difficulty coming from DY, we manage
to employ equations not containing this term at all. In Sects. 2.1 and 3 we derive the
energy estimate by considering the first order hyperbolic system,

Iatu—Vyu—nv+F (1.13)

0;v — Vyv =nAu+ F,

for the pairs (u, v) = (g, —2k), (k, E) and (¢, eg¢) with corresponding remainder terms
(Fy, F,), where, for any X' tangent tensor F,

AF := ¢V, V,F. (1.14)

Consistent with these energy estimates, we also obtain the L>° H $=3 and L} H estimates
of Vn VY Dyn with the help of elliptic Egs. (1.6) and (1.7).

However, to derive the flux estimate for Vg, k, Pk, and P Vg, we still have to rely
on the second order hyperbolic system of ¥ = k or v g, both of which contain the time
derivative of the shift vector field. With a careful manipulation of terms, we observe that
the sum of g/ with the remainder term Dt (n! Fy) which contains DtY no longer

involves this bad term. In Sect. 3.2, we introduce a modified current 150, to cope with the
sum, instead of merely [y via the standard current P, = Qa,gTﬁ. This successfully
yields the control on flux by divergence theorem. Note that terms of P, T* are almost
the same with those in ﬁa T%, except that the term (DT1/f)2 becomes (Dt — n1 Fw)2
in the latter. P, T* does not give the full energy density, which is not good enough
for the purpose of controlling energy. Due to such limitation, the modified current P,
is developed to control flux after the full set of energy estimates on , i.e., (1.12), is
established by using the first order system.

As the major technicality to carry out energy estimates in fractional Sobolev space and
estimates of dyadic flux, a series of more delicate commutator estimates are established in
Appendix (Sect. 6) on the Littlewood Paley projection and the rough metric, particularly
to handle the decreased differentiability of coefficients.

1.2.2. Step 2. Reduction to dyadic Strichartz estimates on frequency dependent time
intervals. By using the Littlewood-Paley decomposition, it is easy to reduce the proof
of Theorem 1 to establishing for sufficiently large A the estimates

~ 1_1 ~
1PV, Pikll 2y AT IV, kll gs—1(5y) (1.15)
and

I~
POl 2100 S 2 ‘SIII IV, eodllgs-1(xy) (1.16)

for any solution ¢ of the equation [g¢p = 0, where I = [19, to+ T, g > 2 is sufficiently
close to 2, and § > 0 is sufficiently close to 0.

We reduce the proof of (1.15) and (1.16) to Strichartz estimates on small time inter-
vals. We pick a sufficiently small €p > 0 and partition [7, fo + 7] into disjoint union of
subintervals Iy := [fz—1, #] of total number < 280 with the properties that

el S A789T and ||k, Vg, VY, §n||L% Lo < ATHO, (1.17)
k X
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To explain our approach, we take the derivation of (1.16) as an example. We consider on
each Iy the Strichartz norm for P d¢. By commuting P with [z we have Uy Pr¢p = Fj,
where F; = [[g, P,]¢ can be treated as phase-localized at level of A in certain sense
although it is not frequency-localized. We use W (¢, s) to denote the operator that sends
(fo, f1) to the solution of [y = O satisfying the initial conditions ¥ (s) = fo and
0; ¥ (s) = fi at the time s. Using Duhamel principle followed by differentiation, we can
represent P d¢ as

t
Pogp(t) = oW (t, ti—1) Paplti—1] +/ aW (¢, s)(0, Fy(s))ds, (1.18)

where we used the convention ¢[¢] := (¢ (¢), 9,¢(¢)). Running a 77 * argument leads
to Strichartz estimate for one dyadic piece of 9,

31
IIanlﬂllLf;kL;o SA2 Y0l (1.19)

where g > 2 is sufficiently close to 2.

A similar procedure was used in [13] for [g_, ¢ = 0. Observe that the solution of
this homogeneous wave equation is frequency-localized at the level of A if the data is
localized in Fourier space at the dyadic shell {£ : % < |&| < 2)}. Therefore, the dyadic
Strichartz estimates (1.19) can be applied directly to the representation of Pjd¢. Since
we will work for the metric g without frequency truncation, the corresponding operator
W (t, s) does not preserve the frequency-localized feature of data. The Strichartz estimate
for oW (¢, ty—1) Pr¢[tr—1] is no longer expected to be obtained directly from (1.19). We
solve this problem in Sect. 4 by modifying (1.18) with the help of the reproducing

property of the Littlewood-Paley projections, i.e., P, = Py P;, as follows,

~ ~ t ~
Pog(t) = P oW(t, ti—1) Paolti—11] +/ Py oW(z, )0, Fy(s))ds.  (1.20)

S

This makes it possible to apply (1.19). The effort then goes into piecing together the
result of dyadic Strichartz estimates over intervals I with the help of (1.17). This trick
would have successfully reduced the main estimates to dyadic strichartz estimate for the
solution of Llg¢p = 0 on one sub-interval /i, had the term of DtY not appeared in Fj.
We then refine (1.20) further by modifying the application of Duhamel principle.

1.2.3. Step 3. Reduction to dispersive estimates and boundedness theorem. By rescaling
coordinates as (t, x) — ((t —tx—1)/A, x/A), we need only to consider (1.19) on [0, 7] x
¥ withr, < A!780T Inview of a 77T* argument, this essentially relies on the dispersive
estimate

IPDW @, ) Isllise < (41— D77 +d@) DIV 0s1,y (1.21)
k=0

with initial data I[s] = (Y (s), Dt (s)) forall 0 < s < t,, where m is a positive integer,
d(t) is a function satisfying ||d ||L% < 1 for g > 2 sufficiently close to 2, and P denotes
the Littlewood Paley projection Pj—1.

Let {x s} be a suitable partition of unity on X' supported on balls of radius 1 in rescaled
coordinates. We localize the solution of gy = 0 by writing ¥ (f, x) = > ; ¥, (1, x),
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where ¥, (¢, x) is the solution of [gy; = 0 with the initial data v;[t0] = xs - ¥[70].
We then reduce the derivation of (1.21) to proving that

1 m—2 .
IPDT ()12 < (— + d(t)) DIVl e, (122)
I+t — D9 k=0

with ¢ the solution of Ug¢p = 0 and with data supported within a unit ball at X,.
It then suffices to consider (1.22) on jo‘r , the causal future of the support of x; from
t = 19 ~ 1, where one can introduce optical function u whose level sets are null cones
C,. Thus j0+ can be foliated by S;, := C, N X; and a null frame {L, L, e1, €3} can
be naturally defined, where e4, A = 1, 2, are tangent to S; ;. Using these vector fields
and u = 2t — u, one can introduce the Morawetz vector field K = %n(uzg +u’L).
Consequently, for any function f, one can introduce the generalized energy

OLfie) = [ k. Lf)
where Q(K, T)[ f]1s defined by applying X = K, Y =T, 2 =4t to

- 1 1
QX VIf]1= QX V)[f1+52fY(f) - Zsz(Q) (1.23)

with O, being the standard energy momentum tensor

1
Ouv = Olfluw =y fouf — Egmg‘*ﬁaafaﬁf).

The typical energy method gives

- ~ 1
/1) = OLf1(xo) = =5 /j O Tap QLS lop + /
0

Yx

Ogf - Kf +lot, (1.24)
1

where, for any vector field X, the deformation tensor x )naﬂ = Lx8up and (K )ﬁ’aﬂ =
(K)na,g — 4tgyps. By applying (1.24) to f = Dr¢, we consider bounding general-
ized energy Q[DT¢] in terms of their initial values at t = 79 =~ 1. Due to one “bad”
term contained in LgD1¢ = [, Dr]¢, the estimate of Q[DT¢] has to be coupled
with Q[qub] with Z either L or ey, for which we need to control ||D(Z)7T||L}L$° and

é* sup,, ID@ || L S,,,,)dL Since D)7 contains curvature terms, such estimates rel-
ative to non-smoothed metric can only be obtained under the assumption of H 3+ on
data. A similar regularity issue occurs for the estimates required for DM due to the
integration by part argument employed to handle the aforementioned bad term. There-
fore, we no longer expect to obtain the boundedness of the conformal energy for any
derivative of ¢, including the one for Dt¢.

Our strategy is to control || PD1¢ (7) || Lo merely in terms of O[¢](1), with certain loss
of decay rate and with error incorporated into d(¢) in (1.22). With @ a cut-off function
whose support is essentially in a so-called exterior region, our treatment concerning the
harder part, P(zwDt¢), starts with writing it as P(wDt¢) = P(w Lop) — P(w N¢)
with N the unit outward normal vector fields on S; , C X. The first term is controlled

by the Bernstein inequality and Q[¢](¢). The second term is treated in view of

P(@wN¢) = o N Pp+[P,wN'19,6. (1.25)
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The first term of (1.25) is then related to Q[¢] with the help of Sobolev embedding and
commutator estimates. By using the machinery developed in Sect. 6, the treatment on
the commutators involved in both terms in (1.25) is reduced to estimating [|d( N)|| L.

Note that 9 N can be expressed as g - (x, ¢, ﬁg, k), thus we need to establish estimates
q

on L/ L$°, g > 2 of Ricci coefficients ¥, ¢ and L estimate on try. The components

of K )ﬁaﬁ in (1.24) involve D, X, ¢ and other Ricci coefficients as well. By assuming

suitable control on Ricci coefficients, the proof of boundedness theorem is given in
Sect. 5. We accomplish this step by showing that (1.22) holds true with m = 3.

2. H? Estimates

We first derive some preliminary consequences of (BA1) that will be used throughout
this paper.

Let X be an arbitrary vector field on X'. We use |X|, and |X|; to denote the lengths
of X measured by g and g respectively. It then follows from (1.3) that

W(UXI2) = Y"Vugij X' X) — 2nkij X X7+ (8im VY™ + g Vi Y™ X' X

Therefore

at|X|§\ < (VY [+ Y[ [Vg| +2nlk]) | X]3.

In view of (1.6) and the maximum principle, we can derive that 0 < n < C, where C is
a constant depending only on #y; see [25, Section 2]. Recall that | Y|, < n. We thus have

aIX2| = C(I9Y 1+ Vgl + k) X2,

This together with the bootstrap assumption (BA1) implies C ibe eto) < 1 Xlgry =
C|X|g()- Since g(tp) and g are always equivalent on compact X, we therefore have

C'g<g=Cs onltgto+TIx X (2.26)

for some universal constant C > 0.? This equivalence between g and g on each X; gives
us the freedom to use g or g to measure the length of any X-tangent tensor.

Using (2.26) and (BA1), we can follow the arguments in [25, Sections 2 and 3] to
derive that

C'<n<C, Q@) <C, |H ERicl;2<C, |z, Dyrnln<C (227)
IV2nll 2 + 1V Dyrnli 2 < Nkl s (2.28)

where 7 is the deformation tensor of T with components k and Vlogn, E and H are
the electric and magnetic parts of spacetime curvature defined by E;; = Ro;o; and
H;; = "Ry respectively, and Q(¢) is the Bel-Robinson energy defined by

0 = [ (1ER +1HE) di.

2 We will always use C to denote a universal constant that depends only on the constant in the bootstrap
assumptions, information on g(19), [y, | and [[(g, k)l s o gs—1 (Zi) For two quantities @ and ¥ we will
0

use @ S ¥ to mean that @ < CW¥ for some universal constant C.
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As a consequence of (2.28), we have

3_3
Vi, Dyrnlle S 1+1klj", 3 <p<6. (2.29)

Let us fix the convention that F' * G denotes contraction by g and - denotes either usual
multiplication or contraction by g.
Lemma 1. Under the spatial harmonic gauge, the shift vector field Y satisfies the equa-
tion

AAY=rr>x<U+n>x<r[+g-§g-§g-Y+g3'1§‘Y (2.30)

where A is defined in (1.14), U is defined in (1.8), and R is the Riemannian curvature
with respect to g.

Proof. Straightforward calculation shows for any vector field Y and tensor F that

VY =V Y+ U Y, VF, =V, F, + U, FL Ul F.

In view of the spatial harmonic gauge condition U’ := g/'U ]’ , = 0, we obtain

gmijVjYi = gmj§m§jyi + gmjgmU;qu + 2gij;q§;an + gijerUquYq.

Recall the identity

Rj[=I%j1+§iUJl:l—/V\jUiil+UjplUIi)i—UﬁUli]j, (2.31)

which can be checked directly. We can obtain that
AY'+ RLYP = AY' + 20YP +2g™ ULV, Y
+g" U, UL Y +U-U-g-Y+R-g-Y.
where .Q;, = g’”j/V\mU]".p + (/V\ngk — ﬁpUr’Zlk)gk".
By using the expression of U, the commutation formula and U? = g'/ Ui? =0 we
have

. ~ o~ 1 .. ~ ~ o~
2, =g-Vg-Vg+ Eg'”g’"’ (Vi Vg = VpVimgit)
U iomls o SR SR
+§g 8 (vapgkl"‘vpvlgmk_vpvkgml)
=g Vg Vgt+tg-g-g R
Thus
i iyp _ Avyi Vo.V 3.9y, mjirri - vq mjyri P vq
AY'+R,)YP =AY ' +(g-Vg-Vg+g - R)- Y +28™U; VY9 +¢ UnpUj, Y.
Combining this with (1.7) gives
Avi mjrri O yvq mjyri P vyq
AY' +2g quVmY +g UmpquY
= —2nk™ U}, + 2V YU+ 2V nkh, — Vinkl +¢ - Vg -Vg-Y+g° R Y.
In view of V'”YlUr’;ﬂ = g’”jVleU,;l = g’"fﬁleUr’;ll +gijqu,i,qu, we can obtain
the desired equation. 0O
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Lemma 2. For any X -tangent tensor field F, on each X; there holds
IV?Fll SIAFl 2 +1IVg - V2 + IVFll2 + 1 Fll2.

Proof. Let dug denote the volume form induced by g on X;. Then, under the spacial
harmonic gauge, there holds V; (gij dig) = 0 (see [2, Page 3]). Thus, by integration by
part, we have

1 i,

/ ¢ g9, F'V,9, Frdu,
p)

- / (9 F1 A9, Fig™ + 5198719, F19;9, Fi) .
z
Here and throughout the paper we will use g to raise and lower the indices in tensors. It
is easy to check the following commutator formula
AV F —~V,AF =g -Vg-V?F+g-R-VF+g-VR-F. (2.32)

Therefore we can derive that

R
:/ (_gl"ﬁpF’%AFl+g§g-§F~§2F+(g-IéﬁF+g$1é-FﬁF)dug
X

where the first term is | P AF'AFd g by integration by part. O
Lemma 3. On each X, there hold
IVYll2 S 1Vgllz2 +1, (2.33)
IV?Y (2 S Ix, VY, Vg) - Vgll 2 + Vgl 2 + 1, (2.34)
~ ~ o~ ~ 4 ~ 2 ~
IV3Y 2 S (IVY, Vgl + DAIVel;=lIVel;, +1Vgllire)
+ (V22 + 1) - Vg, Lo + [ Vgll g2 + 1. (2.35)

Proof. Consider (2.33) first. By using (2.30) and V;(g"/dj14) = 0, we have
I9Y]2, ~ / IV ¥'Y, Yidpg
=/—AY1 Aidpg S Nl + 198 - (T ol + 1.

In view of (2.27), we thus obtain (2.33).
Next, by using (2.30) we have

IAY [l2 S 11, Vg) - Vgl o+ w3 + 1.
It then follows from Lemma 2 that
IV2Yll2 S 1IG, VY, V) - Vel + VY [ 12 + 1.
We thus obtain (2.34) in view of (2.33).
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Finally, by writing AVY = VAY + [AA, %]Y, we have from (2.30) and (2.32) that
AA/ﬁY=§n~§g+n~/V\2g+ﬂ‘§g~§g+n~§n+n~n~§g
+’V\g-§2g~Y+§g~/V\g~/V\g-Y+/V\g-’V\g-§Y+g-§g~/V\2Y
+g-R-VY+g-VR-Y+V(g> R-Y). (2.36)

It is easy to see that L? norm of the last three terms involving R can be bounded by
1+]|Vgl 2. Note that

S IVelieee,

I -7 - Vgl 2 S Vgl liml?e <
1(VY. Vg, ) - Vg - Vgl2 £ (Vg VY g1 + 7l ) IVEl 5 1Vl -

Thus, using Lemma 2, we can obtain (2.35). O

2.1. Energy estimate for v g. In order to proceed further, besides (BA1) we also need
the following bootstrap assumption

Vgl L el kIl ;2 1o < Bo. (BA2)

[to—T,10+T]1~x

which is a stronger version for the corresponding part in (BA1). The verification of
(BA1) and (BA2) will be carried out in Sect. 4.
We first introduce some conventions. For any 2-tensors u and v we define

~ o~

(u,v) ;= g"kgﬂu,-jvk, and (Vu, Vv), = gijﬁ,'u, %,-v).

We will use |u]? := (u, u) and |§u|§ = (’V\u, ﬁu)g.
In the following we will derive some estimates on %g and the derivatives on Y. By
using the formula

Eyu,-j = §yuij + uim§ij + umj@ Ve
for any 2-tensor u and the formula under the spatial harmonic gauge,

1. = U
Rij = —5Agij+Rij+g- Vg Vg (2.37)

we can derive from (1.3) and (1.4) that the 2-tensors u := g and v := —2k satisfy the
hyperbolic system (1.13) with F,, and F, given symbolically by

F,=u-VY and F,=2V?n+n-kxk+k*VY. (2.38)

From (1.13) and the commutation formula (2.32), we can derive that

Bl§u — §y§u =nVu+ Fg, and 8t§v — §y§v = nAVu + Fg,, (2.39)
where
Fo,=VY -Vu+Y-R-u+Vn-v+VF,,
Fg, :%Y~§U+Y-Ié-v+§nAAu+§Fv+n(g~§g~$2u+g~Ié~§u+g~$]§~u)
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It is straightforward to derive that

V2F, = V%Y -Vg+g- VY +Vy . Vg,
VF,=g-V%Y - k+2V3n+g-Vk-VY +V(ng -k -k)

and

IVFg,, Fo,| < IV2Y - (k, Vg)| + V3n, V3Y| + [(VY, Vi, k,Vg) - V(Vg, k)|
+|Vn-k-(Vg, k)| +|Vg -k-VY|+|Vg-k-k|+|Vn k|
+1k| + VY| + Vgl + 1. (2.40)

In order to derive the estimates, we use the energy introduced in [2, Section 2]
1 ~
EO (1) = £O @, v)(1) = 5/ (|u|2 +1Vul?+ |v|2) djig (2.41)
)
with u = g and v = —2k.

Proposition 1. Under the bootstrap assumption (BA1), there holds

sup [IVgllp2x,) = C.
[t0,70+T]

Proof. Recall that for any vector fields Z tangent to X; and any scalar function f there
holds fE; Lz(fdug) = fE; div(fZ)du, = 0. Therefore

1 _
000 =5 [ @ = L) [P+ [Ful + P
2 /s,
- / [(u, du — Vyu) + (v, v — Vyv) + g7 (Viu, (3, — %ﬁju)] dpig
5
1 . N A
+— | (887 — Lyg")Viu, Vju)dug
2 /s,

1 ~
5 [ i+ Vulg+ )@ = Ly)dpy).
Zi

By using (1.3) we have 9,g"/ — Lyg"/ = 2nk"/ and (3; — Ly)(dpg) = —nTrkdpg.
These two identities together with (1.13) and (2.39) give

3,0 (1) = / (n<u, v) + (u, F,) + (v, F}) +nkij§,-u§ju) dug
P
+/ g-(/V\Fu~’V\u+Y~Ié-u-§u+/V\Y'/V\”'/V\M)dug
X
1 o~
__/ nTrk(Jul® + [Vul} + [v[*)d .
2 /s,

In view of the bounds on n, |Y| and g, we can derive that

#EQ 1) < (Ik, VY [l + 1) EQ @) + IVE N 2 IVull 2 + [0l 2 | Foll 2. (2.42)
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By using (2.27) and Lemma 3 we have
IVE 2 < IVY I lVel2 + 1V?Y 2 S (IVY, Vg, iz + D Vel2 + 1.
and

IFollz2 S UVl + 1k, + KNIV Y N3 S 1+ IV2Y |2 + VY || 2
S (7. VY, Vgl + D[ Vgll 2 + 1.

Therefore
3EQ(t) < (Ilm, VY, Vgllro(s,) +1) EQ @) + 1.

This together with the bootstrap assumption (BA1) gives £ (r) < £O0(z) + 1 for all
t € [to, to + T]. The proof is thus complete. O

We now consider the energy £V (1) = £© (614, %v). From (2.42) it follows easily that
5ED 1) < (I, VY iz + 1) EV O + (IVFg, 12 + 1 Foy ll2) VED @)

By taking L2-norm of (2.40), we can obtain, using (2.27), (2.28), Proposition 1, and
(2.33) and (2.35) in Lemma 3, that

~ ~ ~ o~ ~ 4 ~
19 P, Foulle S (Wg, k. VY. Vnllp + |||Vg||zoo) (19%¢1,2+ 1)
~ ~ ~ 4
HIVY I (||Vg, Kl + 1Vl 1 + 1) 41,

Using this estimate, | V2g||;2 < v/€D(r), and the Young’s inequality, we obtain

0D S (1+ 1k I, Vg, VY [l + Ik, Vgl ) €0 r)

+ 1k, Vi, Vg, VY 1 + Vgl + IV2Y 172 + 1.

In view of (BA1) and (BA2), it follows easily that E0 (1) < €M (z9) + 1 + |V2Y ||3L3 .
t~x

This in particular implies that

1V28ll 1205y S 1+IVPY IS (2.43)
On the other hand, it follows from (2.34), (2.27), and Proposition 1 that
IVYll2 SIVY - Vel + 1Vel7a + lIml7s +1
S IDYILITY 21Vl e + 98], + 1.

Using [[VY |6 < [V2Y ;2 + 1 and (2.33) we can obtain [V2Y |2 < Vgl +1 <
||§2g||i2 + 1. This together with (2.43) gives

VYl S 1+IVPY IS, . (2.44)
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Integrating with respect ¢ over [t, o + T'] yields

o~ 1 o~
VY|, s » ST3 14 VY .
I ”L[’vao’fT]L"' ~ | ”Lgto,toJrT]L)zf

Therefore we can choose a small but universal 7 > 0 such that ||’V\2Y I L L2 <C
1010t X

for some universal constant C. Consequently, by using (2.43) and (2.44) we can obtain
(2.45) and (2.46) in the following result.

Proposition 2. Under the bootstrap assumption (BA1) and (BA2), there hold

lgll 2z + VKl 25, < C. (2.45)
IV?Y Il 205 + IV Y [l 25, < C. (2.46)
leo(V)ll 25, + 18 Vel 125,y < C (2.47)

forallt € (19,10 + T] with T > 0 being a universal number, where, for any X;-tangent
tensor field F, we use the notation eo(F) = n (8, F — VyF).

Proof. 1t remains only to prove (2.47). We use (2.39), (2.45) and (2.46) to deduce that

lleo(Ve)ll2 S IVl + INVY sl Vel + IVY Il 2 + 1Vl s
+IYllz=ligl2 S 1.

Finally, in view of (2.45) we obtain ||, Vgll,;2 < [leo(Vg) |2 + IV2gll;2 < 1. O

Lemma 4. Under the bootstrap assumptions (BA1) and (BA2), for 3 < p < 6 there
hold

IV3Y 12 S IIVE, kLo +1, (2.48)
IVY |l < Ik, Vgl ™7 +1. (2.49)

Proof. In view of Proposition 2, (2.27), and Lemma 2, we obtain from (2.36) that

IV3Yll2 S IV, Vel 21Ve, wliiee + VY - Vgl 2 + Vg, kL + 1.
We may write

IV?Y - Vel S IVY131Vgle SIVAY 51Vl 2 + D).

Applying the Sobolev type inequality ([25, Lemma 2.5]) to IV2Y| 13, and using (2.27),
(2.28),(2.45) and (2.46), we can obtain (2.48). Finally we can use the Sobolev embedding
given in [25, Lemma 2.6] to conclude (2.49). O
3. H**¢ Estimates

In this section, under the bootstrap assumptions (BA1) and (BA2), we will establish H I+e
type energy estimates for k, Vg and D¢ with ¢ being solutions of homogeneous wave
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equation (g¢ = 0. We will also obtain the H 3+€ and H2* estimates for Vn, VY, ney(n)
simultaneously. As the main building block of this section, established in Appendix are
a series of product estimates in fractional Sobolev spaces and estimates for commutators
between the Littlewood-Paley projections P, and the rough coefficients.

For simplicity of exposition, we fix some conventions. We will use 77 to denote any
term from the set VY, Vn, k, Vg and eq(n), where eq(n) = n~!(3;n — Vyn) as defined
before. It follows from Proposition 2 and (2.27) that ||| z1 < C. We also introduce the
error terms

err1=g~ﬁ~§fr, erry, =g-7 -7 - 7T, (3.50)

where g denotes any product of the components of n, g and Y. We denote by err(R)

any term involving R and its derivatives, and satisfying ||err(1§)|| iz, < C for all
t €lty, t0+T].

Proposition 3. For 0 < € < 1/2 there hold

IAY24€(V2n, Vineo(n)), VXY )l 2 S IVg, kllgyse +1, (3.51)
1A (VPn, V2 (neo(m)), VY )12 S Ve, Kl Vg, Kll e + 1 (3.52)

and, for the error type terms defined in (3.50), there hold

1Aerrill2 < NIk, VegllLo(1Vg. kll gse + 1) + 1, (3.53)
| ACerrli2 < Vg, k|l give + 1. (3.54)

Proof. For any scalar function f it is easy to derive the commutation formula
[A, Varlf = =20kl Vi f — Vinklv, f. (3.55)

To obtain the estimates of Vn and neo(n), we first use (1.6) and (3.55) to derive the
identities

AVn =V @lk|2) +gR - Vn, (3.56)
A(neo(n)) = neo(nlk[3) — 20k, ViVn — VnVnk,,. (3.57)
In view of (3.56), we have
AVn =nVk -k-g+(Vn, k,Vg)® - (n, g) +err(R). (3.58)
It then follows from (6.189) that
1A AV 2 S VKl g Ing - kll g + 11V, k, V@) - (n, @)l 2 + llerr(R) | 2.
By using (6.212) and || || y1 < C, we can conclude that
A2 V20| 2 < (VK] e + 1. (3.59)
In view of (3.57) and (1.13), we have

AA(neo(n)) = (nAg+V2n)ng~k+g~ﬁ ST T (3.60)
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Thus, with the help of (6.189) and (3.59), it follows
IATY2€ Aneom) 2 S 1V2g, Vialluelig -kl g + lgl7 Pl S 1V, Vil ge +1
which implies, in view of (6.212) and |7 || ;1 < C, that
141249 (neo ()l 2 S 11978 V| ge + 1. (3.61)
Next we use (2.36) and (6.189) to obtain
IATY2AVY || 2 S IV, Vg, YY) [ ge + llerr(R)]| 2.

This together with (3.59), (6.212), ||| 1 < C and the interpolation inequality gives

IAY*2Y |2 S VY (e + 1V2g, Villpe +1 < V28, VEl|ge + 1. (3.62)

Combining the estimates (3.59), (3.61) and (3.62), we therefore complete the proof
of (3.51).
As a byproduct of (3.51), we have

1AV 2 S Ik, Vgl give + 1. (3.63)
It then follows from (6.190) and (3.63) that
1A - V)2 S N7 L 17 e S (k. Vel gise + DIF e (3.64)
By Lemma 18 and (3.63), we have
1A -7 D)2 S IF G 17 N ppiee S NIk Vgl give + 1. (3.65)

To treat the factor g in the definition (3.50), in view of ||g||z2 < C in Proposition 2,

using Lemma 21, and (3.64) and (3.65), we thus obtain (3.53) and (3.54).
Finally, we consider (3.52) with the help of (6.211). Let F = neg(n), Vn, VY. Then

it follows from (2.27) and (2.46) that | F|l ;1 < 1. Moreover, the elliptic equations

(3.58), (3.60) and (2.36) can be written symbolically as AF = err) +emy + err(]é). In
view of (3.53), (3.54), and the definition of err(R), we thus obtain (3.52). O

3.1. First order hyperbolic systems.

3.1.1. Energy estimates. We consider a pair of tensors (u, v) satisfying the first order
hyperbolic system

ou — Vyu =nv+ F),

v — Vyv = nAu+ F,. (3.66)

Note that for (u, v) satisfying (3.66), the pair (U;, V1) = (§u, ’V\v) satisfies a system
of the form (3.66) with

FUI=§Ym§mu+§n-v+§Fu+Y-1%-u
Fy, =VY"V,v+Vn-Au+VFE,+nVg- VZu+nR-Vu+ (RYv+nV(R - u))
(3.67)
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where the last term in Fy, and Fy, can be dropped in case (u, v) is a pair of scalar
functions.
We also can check that the pair of functions (U#, V#) := (P,u, P, v) satisfies (3.66)

with Fyu and Fyu given by?
Fyn =[Py, Y"0uu+ [Py, nlv+ P, Fy,
- ; (3.68)
Fyu = [Py nglV2u+ PuFy+ [Py, Y™ 1ov.
Thus, it is easy to check that (U}", V) := (P, Vu, P, Vv) satisfies (3.66) with Fyp and
Fvlu given by

[ Fyi = [Py, Y" 10 Vu + [Py, n]Vv + Py Fy,, (3.69)

Fyp =[Py, ngIVE Vi + [Py, Y™10, Vv + Py Fy,.

Lemma 5. Let 0 < € < 1/2. Then for Fyr and Fyu defined by (3.68) there hold the
estimates

1 _li.s
2™ Fynllp 2 + I\~ 2" VFyelp 2
n=x n-x
~ o~ ~ 1
S IV, VY i Vu, vl ge + IIM2+€PMFu||1/gL;, (3.70)
< 1+
IV Funllp gz + 1 Funllp 2

SIVRY.92nll 1 Vi vl + 19 VY i [Vu ol e + 11V PuFulg 12,
(3.71)

and
I Fyulla e S IV(ng), VYl [Vu, vlige + |u€ PuFyllz 2. (3.72)
nx nx

Proof. (3.71) follows from (6.203), (3.72) follows from (6.196), and (3.70) follows from
(6.197). O

Lemma 6. For 0 < € < 1/2, there hold
IV Fyullp 2 + 10V Fypllp 2 S IV Full e + Z(e,u, v), (3.73)
I Fypllp e S (Vglge + DIV ull e + 1V Fyllze + 1Vl 2o 1n Vgl giv
+Z(e,u, v) + |[Vu, v|| ge, (3.74)
where

o = -~ = - = -~
e, u, v) = VY, Von|l 1, IV7u, Vollz + VY, Vil [ Vu, vl give.

Proof. The first part of (3.73) follows from (6.205) and (3.68). In order to prove the
second part of (3.73), we may use the same argument for deriving (3.71) to obtain

3 We remark that the precise form of the first term in Fyu should be [Py, ng?Z]u which consists of
[Py, ng]§2u and ng[ Py, r Jou. The latter is of much lower order, which not only can be treated similar to

the first term, but also can be done in a much easier way since I is smooth. Thus, we will omit this term for
ease of exposition.
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IV Fysllp 2 S TG u,v) + 11V PuFuy a2
In view of (3.67), we apply (6.208) to obtain

IV PuFuy e S TG u,0) + 1n VPVl 2 + 1AV - R w2
< T(e,u,v)+ ||m$PﬁFu||l&L§.

Combining the above two estimates, we therefore obtain the second part of (3.73).
Next we prove (3.74). We first apply Lemma 22 to derive that

||;fFVlu 222 S IV L lIVZull ge + VY | Vol ge + 1€ Py Fy, lizz2-
(3.75)

By using Lemma 21 and 19 we have

- - - -~ -~
1 PuFvilliz ez SIVYI 1 MVl + VUl InVell e + 1V Foll e

Ll

- . P .
IVl Ll Aullpz +nR - Vullge + [YR - vl ge.

Lie
2
With the help of Lemma 21 and [|7|| 51 < C, we obtain
1 Aullrre S 18" PuNiullp 2 + 10 TP, 871V5ullp 12 S IVull e,
InR - Vullge S 11 LPe, nRIVullp 2 + 1Vull e S 1Vullge
Similarly, we have with the help of I|§Y||H1 < C that ||Y~I§ | ge < ||v|| e . Therefore
I PuFy, Nl 12 S 1Vullo InVgl give + IV Foll e +Z(esu, v) + [ Vu, ol e

Combining this estimate with (3.75) we thus obtain (3.74). 0O

In the following we will derive the estimates on ||§2 gllge and ||§k|| mge. Recall the
energy & ©) (4, v) defined in (2.41). Let P, be the Littlewood-Paley projection with
frequency size u, we can introduce

EV0) =D W, v) == VP, Vu, P,Vv),
and the energy
1
EMu,v)(t) == D EP w, v)() + D ED (w, v)(@). (3.76)
w>1 i=0

In view of (2.42) we can derive that

LD @) < (IIk, VYl +1) EL @ + IV Fypl 2 INU 2 + IV 2 1 Fypel 2.
(3.77)
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Hence, by the Cauchy-Schwartz inequality, we obtain

0r (Z MZeg/Sl)(t)) < (Ilk, VY ||z + 1) 2“265;3”0)
"

0
IV Fypll 2l VUL i 2+ 10 Vil 211 Fypella 2.
(3.78)

We will apply (3.78) with (u,v) = (g, —2k) and (2.38) to derive energy estimates.
Lemma 6 will be used to estimate the terms ||MGVFUfL ||13L2 and ||pu€ Fvlu ||1§L2 which

involve terms related to F,, and F),. The following result gives such estimates.
Lemma 7. For 0 < € < 1/2 there hold
1AV Fll 2 + 1AV Fyll 2 S (IV8, VY, k, Vil + DIVE kllgiee, (379
1AV Ell2 S 198 kg + 1. (3.80)

Proof. Recall F, and F, from (2.38). By straightforward calculation, symbolically we
have

VZFM =g- VY + erry + errp, VF, = VVZn + erry + errp.

where err| and erry denote the terms introduced in (3.50). Then (3.79) follows from
Proposition 3. Applying (6.208)to F = g and G = VY, and using (3.51) and (2.46) we
obtain

1~ = =~ = -~ —~
A2V (g - V)2 S IVE I a1 IVY [l 1 + IIgIILoollszIIH% SIVE, kllgee +1

which gives (3.80). 0O
Proposition 4. For 0 < € < s — 2 there holds
IV28(O)ll e + I VK@)l e < € (3.81)

and for any pair (u, v) satisfying (3.66) there holds

t
g0+ (1)1 < £0+9) (10)3 +/ (IVull oo + IV Eyll grive + | Fyll gise)- (3.82)

fo

Proof. Now we consider the energy defined by (3.76) for the pair (u, v) = (g, —2k) by
using (3.78). In view of (2.28), Propositions 1 and Proposition 2, we have £V +£@ < C.
Combining this fact with (3.51), we have

Z(e, u,v) S (IVY, Va|lpeo +1) VE+O (u, v).

This together with Lemma 6, Lemma 7 and (3.78) implies
o (D D) = (16 VYl +1) D u L @)
I Iz

+(Ik, Vg, VY, Ve + 1) E1 (u, v).
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which, together with the fact £ + £© < €, gives

at(zuke,ﬁ”(z)) < (Ik, Vg, VY, Vn|l = +1) (Z;ﬂfg;})(z) + 1). (3.83)
w I

By the bootstrap assumption (BA1), we obtain £ (u, v)(r) < £14€ (u, v)(19) + 1 for
to <t < to+ T which implies (3.81).
From (3.81), (3.51) and Sobolev embedding, it follows that

IVY,Vn, neo(n)|| L + | AY2€(V2Y, V2, V(neom))ll 2 < IV(Vg, k) (o) || e + 1.
(3.84)

Thus for any pair (u, v) satisfying (3.66) there holds Z(e, u, v) < ||§u, V|| yi+e ON Xy
Now we prove (3.82). We will rely on Lemma 6 to treat ||u€VFU;4 ||1§L2 and || u€ Fvlu HlﬁLz

in (3.78). Note that by using (6.208) we can derive ||n§g||H1+E < ”’V\g”HH—e < 1. We
then obtain from (3.78) that

3:(2;/«265,9)0)) < (I, 97, Vgllz= +1) > w260 0)
: w

1

+ (VO Fuy Pl +1Vull s+ 1V vl (3 10 0)
i

(3.85)

Now we consider lower order energy ED(y, v), by using (3.67) for (Uy, V1) = (?u, 61})
and

IVFy1, Fyille S IV FG F)llg + Vgl IVl 2 + VU, vl + llull
which can be derived by using Sobolev embedding and (3.84). By (2.42), we obtain
3: €V u, v)(1) < (I, VY, Vgl + 1) €V (u, v) (1)
+1V%u, Vol 2 (IV(V Euy F)l g2 + IV, vl + el 12). (3.86)

For €O (u, v)(1), we employ (2.42) again. Combining (3.85), (3.86), (2.42), Lemma 6
and the Gronwall inequality gives (3.82). O

3.1.2. Geometric wave operator. For the pair (u, v) satisfying (3.66), we can show that
u satisfies the geometric wave equation

n?Ogu = —(nFy +neg(F,)) + eo(n) Fy — nmoa Veu +n*Trkeg(u).  (3.87)

Indeed, relative to an orthonormal frame ey := T, ¢, j = 1,2, 3, by straightforward
calculation we have

g/D}u = Au+TrkDru, DrDru = eo(eo()) +mo;V/u.
Since Ogu = —DDru + gijD?ju, we obtain

nZDgu = —nzeo(eo(u)) +n?Au — nznojVju +n’Trk Dryu. (3.88)
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In view of (3.66) we have
neg(neg(u)) = neg(n) - v+ n*Au + nkFy, +ney(Fy).

Combining this with (3.88) and using (3.66) we obtain (3.87) as desired.
Therefore, if ¥ is a solution of the geometric wave equation

ey =W, (3.89)
we can check by (3.87) that (u, v) := (¥, eg(¥)) satisfies the hyperbolic system

eo(u) =v, ney(v) = nAu + F,,

F,=0, Fy=-nW —nno;jV/u+nvTrk. (3.90)

Lemma 8. Let v be a scalar function satisfying the geometric wave equation Ugfr = 0.
Then for 0 < € < s — 2 there holds

IV Fylle S IV, eo() | e (3.91)
Proof. Indeed, in view of (6.208) and Trk = r we have

~ - = ~ - -~
IVENme WV 1 AV ull 2 + VRl e IVEullpe + IV Ull e

Ll

Since 0 < € < 5 — 2, we have from (3.84) that [V F, ||z < 1V2ull 12 + |V (Vue, v)l| e
which gives the estimate. O

It is standard to derive for v satisfying [gy = O that
IDY DNz S IDY @Dl to<n <t=to+T. (3.92)
We now give the following energy estimate.

Proposition 5. Let  be a scalar function satisfying the geometric wave equation
gy = 0. Then for any 0 < € < 1/2andty < t1 <t < to+ T there hold the
energy estimates

EQW, N S D EV W e, i=0,1. (3.93)

0=j=i

Under the assumption that

199l i < Bo(€ W cow) 1) (BA4)

t.to+T]

there holds

EMI (W, eo()) (1) < C(Bj + DHEM (Y, eo(¥)(0)-
Proof. Since (u, v) = (¥, eg(¥)) satisfies (3.90) with W = 0, we can easily derive that

1
S 2
1Pz S (¥Rl + 1Tkl (€0, v)
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Recall that F,, = 0, an application of (2.42) glves (3.93) with i = 0. The case i = 1 can
be proved by employing (2.42) with (U", Lyl .= (Vlﬂ V(eo(w))) Indeed, in view of
(3.67) and (3.84), we have

o~ o~ o~ 1
1Fy, VEille S IVF2 + ED v (14 [Vgllge) + €O, v)2,
and

IVE 2 < U9Vl 3 + 190 )1Vl g1+ (19002 + [Vl e [0l 2) [ Trk | e

< (5<1>(u, v)(t))% + (5(0)(14, v)(t))%

By substituting to (2.42), we can complete the proof of (3.93). Using (3.82), (3.91) and
the Gronwall inequality, we can complete the proof of Proposition 5. O

3.2. Flux. Inview of (2.39), we can see that (u, v) := (Vg, —2Vk) satisfies (3.66) with
F, =g’V\2Y+§Y~§g+Y~I§~g+§n-k,
F,=VQV2n+nk+k+k«VY)+VnAg+VY -Vk+Y -R-k (3.94)

+n(g-Vg-V2g+g~R~Vg+g~VIé~g).

By straightforward calculation we have

%Fu =g- VY + err] + erry + err(ﬁ) and F, = Vn + err| + erry + en(ﬁ).

Next we give the first order hyperbolic system for the pair (k, E). Recall that (see

[1, (3.11a)])

5
n '@ — Ly)Ei; = curl Hj —n~ ' (Vn A H);j — S (E x k)i
2 1
- g(E * k)gij - ETI‘kE,’j, (395)

where curl F;, = %(e;d ViFep + ede VaFc,), for any symmetric 2-tensor F, with eaCd
denoting the components of the volume form of (X;, g). When div F = 0 and TrF = ¢,
symbolically we can obtain the identity

curlcurl F = —AF +Ricx F+Vg-Vg-g - F+g-R-F+g-Vg-VF  (3.96)

In view of curlk = —H, we can use (3.96) with F' = k to treat the term curl H in (3.95).
Consequently we obtain

n @ — Ly)E;; = Ak +Ricxk+Vg Vg -k-g+n 'Vnsx H+kxkxk. (3.97)

By coupling (3.97) with (1.4), we can see that the pair (4, v) := (k, E) satisfies the first
order hyperbolic system (3.66) with

Fu_V n+nkxk+k- VY
F, —anc*k+ng Vg Vk+VnxH+E-VY (3.98)
+ng - k3 +ng - (Vg)2 k+ng- R k.

Using the Gauss equation E = Ric + k *x k and (2.37) to treat E, we have
§Fu =Vn+ err| + erry + err(ﬁ) and F, =err| +err + err(I%).

In view of Proposition 3, we obtain
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Proposition 6 (Remainder estimates). Let (F,, F,) be defined by either (3.94) or (3.98).
Then for any 0 < € < 1/2 there hold

IVFullme + 1Fullae S (Vg kllzoe + DIV, kll gise,
[ “ v~ " (3.99)
I Full gioe S NASV (K, V)l 12
and
IVFull2 + 1Foll 2 S (Vg kllze + D[ Ve, kll g1 (3.100)

We now fix a point p in X' x I and use I'* to denote the time integral curve through p
of the forward unit normal T with "+ (¢ ») = p. Weuse I to denote the intersection point
of I'* with X;. Let u be the outgoing solution of the eikonal equation g®# dqudgu =0
satisfying the initial condition u(/7) = t — t,, on the time axis. We call this u an optical
function. We denote by C,, the level sets of u which are the outgoing null cones with
vertex on I'*. Let Sy, = C,, N X} and let {e], €2} be an orthonormal frame on S; ;. Let
N be the outward unit normal along X to the surface S; ,. We define

b !':=Tw), L:=T+N, L:=T—-N=2T—-L (3.101)

and call L, L the canonical null pair. Then {e1, €2, e3 := L, e4 := L} forms a null frame.

ForO <u <1+T —t,andt, < t; <1y < fo+T,weintroduce the null hypersurface
H = Uy, <t=1,St.u- We will use D* to denote the region enclosed by H, X, and X,.
For any scalar function ¥ we introduce the flux

= [ (ILvP+y ¥ ¥ sy).

where y is the induced metric on Sy, and Y is the corresponding covariant differentiation.
For any scalar functions ¢ and ¥ we introduce the energy-momentum tensor

1 1
Old, ¥l = E(Du‘pDvl/f +D,¢Dy ) — Eguv(gaﬂDa¢Dﬂ¢)~ (3.102)
Let Q[v] := Q[¥, ¥] and define the energy
QW) (@) = /E QY I(T, T)d .
t
It is straightforward to check F[y] = 2 fCu Oy (T, L).
For any X'-tangent tensor field F,, we set
VLF; =e'L"D,F,, YaF; =el'V4F, (3.103)
and introduce the norms
IVLF[; := g'DLEDLF;,  |YFIg :=y*P¢ "V sF;V,F;.

We will drop the subscript g in the definition of norms whenever there occurs no confu-
sion.

Following the same proof in [25, Section 5], we can obtain the following result on
tensorial k-flux.
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Proposition 7. Under the bootstrap assumption (BA1), for the tensorial k-flux there
holds on the null cone C,, the estimate

| (e +1vuit) <c.

The following estimate is the main result of this subsection.

Proposition 8. Let the bootstrap assumptions (BA1) and (BA2) hold. Let f be the scalar
components of Vg and k. Then for 0 < € < s — 2 there holds

FAS1+ I Fo P S < C.

In the following we will give the proof of Proposition 8. By the standard energy estimate
we have

Flyl = 10W) (1) — Q) (1)
123 1 5]
+/ Q2 () ID0g¥ |l 2 +/ Clllmlize + DQW)(dr'.  (3.104)
1 1

Recall that (/V\ g, —2§k) and (k, E) satisfy the first order hyperbolic system (3.66). Thus,

for ¢ = Vg or k, the expression of [y derived from (3.87) contains time derivatives

of the shift vector field Y since F;, contains the term 1 - VY and other terms involving Y.

The lack of control on DY makes it impractical to apply (3.104) directly to ¢ = Vg, k.
To get around the difficulty, we consider the following modified energy current

~ 1
Py=-n"'EDu+Q,,T + E(n_lFu)anM(t).
When (u, v) satisfies the system (3.66), u must satisfy (3.87). We claim that
D'P, = (—no(lV“u + Trkeo(u) — n_lFU) v =D F)Diu+ Q0 P,
(3.105)
Indeed, since (3.66) implies —n~'F, +Dyu = v, we have from the definition of ﬁu that
D*P, = —D*(n ' F)Dyu — n F,Ogu +D* QT + 0,0, P
+ (' F)D*(n " F)nD 1
=Do(n" ' F,)Dou — D' (n~' F)Dju — n~ ' F,Ogu + OguDru + QMY
+ (' F)D* (" F)nD 1
= (—=n"'F, + Dru)(Ogu + Do(n ")) — D' (n ' F)Dju + QM
_ (Dgu + Do(n_lFu)) v =D F)Diu + Q0 D,

In view of (3.87), we obtain (3.105). _
By the divergence theorem we have for P, that

/ L"P, :/ ﬁMT“—/ ﬁMT“—/ DHP,. (3.106)
H X, "D+ "D+ D+
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Note that
. 1 _ _
AL“PM=LE<|DLM|2+|Wu|2+(n "F)?) —n~'F,Dru
11 2 2 g2y, L g2
= H5(5|DLM| +|Yul”— (n" " F,) )+(§DL’4—’1 F)”.
Thus
11 2 2 "o 1 —1 2
H§(§|DLM| +|Yul?) < HL PM+§(’1 Fu)”.

Also using (3.106), we obtain

1 ~ - -
Flul(H) S / —(n7'F)* + / P, TH _/ P, TH| + / D" B,
H 2 £,ND* £, ND* +
(3.107)
Now consider the terms on the right of (3.107). By trace inequality,
2 B
/ (n'F)* S / I Eull gl Full 2 (3.108)
H 1 :
By definition of 13“ and C~! <n < C, for any0 <t <T,
/ TPy | S IDulls + 1 Full. (3.109)
EﬂﬂD* * x
For the third term, by (3.105), there holds
~ t T
‘/ D*P,| < / 17 Lo IDull 2 (vl 2 + D] 2)
D+ o .
+/ nwF, + D (n ' F,)Djul . (3.110)

Proof (Proof of Proposition 8 ) We first apply (3.110) to the modified energy current
Pu corresponding to (u, v) = (Vg, —2Vk) or (k, E). In view of (3.100), we obtain

' / D*P,
D+

By Proposition 2 and (3.100) we have

/ T*P,
X,/ND*

Therefore we can conclude that .7-" [Vg k] <C.
Recall again that (u, v) = (Vg, —2Vk) and (k, E) satisfy (3.66) with (F,, F,) given
by (3.94) and (3.98) respectively. Then the pair (U#, V#*) = (P,u, P,v) satisfies (3.66)

~ ~ )
SIVE Kl lIVE: Kl oo -

<C and /(n_lFu)z <C.
H
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with (Fyu, Fyw) given by in (3.68). In view of (3.70)—(3.72), (3.81), and Proposition 6,
we have

1 . ~ ~

Iu* Fyullp 2 + e 2"V Fyullp 2 S IV, Bllge S 1, (3.111)

IuVFurlg e S (k. Vgl + 1) IV(Vg Dlge S Ik, Vgllie +1, (3.112)

I Fyullp 2 S (1 Velie +1) IV(Ve. Dllne S Ik Vel +1. (3.113)
Define

B = 1| Fynll gl Fynll 2. (3.114)

Similar to (3.108), we have [, 12 (n~' Fyu)? < [ Bf’. Using (3.111), it yields

1 1
ZBEP S s T2 Fynllg g [ Fyrliprz =€ (.115)
u>1

In view of (3.110), it follows that

2

n>1

~ &
Lo al s [ (10 3w o, o
+ 1 ’
n>1

+ D I Pyl 2 € Puvll 2+ D~ i€ Funll g Il Di Pl 2
n>1 u>1
Using (3.111)—(3.113), we obtain

2

n>1

/D ) /ﬁfD“ﬁa‘ SN, Ve, VY 1, IV, D) < €. (3.116)
In view of (3.109), (3.111) and (3.81),

Z / LT B,
Et/ nND+

n>1
We conclude in view of (3.115), (3.116) and (3.117) that

S D W UDPullT, + I Funlf) <€ G117
n>1

> uF(FIPu Vgl + FIPuK]) < C.

u>1

The proof is thus complete. 0O

4. Strichartz Estimate and Main Estimates

In this section we will show that (BA1) and (BA2) can be improved. For ease of exposi-
tion, we shift the origin of time coordinate to 7y and consider [0, 7] x X. Now we make
the following additional bootstrap assumption: there is a constant By such that
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§ < 1)
ll PP-Vg”lﬁL[ZO‘T]L;O + 1w PukllgﬁL[zho]Lgc < Bo, (BA3)

where 0 < § < s — 2 is a sufficiently small number. As an immediate consequence of
(BA2), (BA3), and (6.209), there holds

s =
Pu(gV ~ < Bo.
14" Pu(@Velllr2 1o < Bo

This estimate will always be used together with (BA3). Our goal is to show that the
estimates in (BA1), (BA2) and (BA3) can be improved by shrinking the time interval if
necessary. We will achieve this by establishing the following main estimates.

Theorem 2 (Main estimates). Let (BA2) and (BA3) hold for some sufficiently small
number 0 < § < s — 2. Then for any number q > 2 that is sufficiently close to 2 there
holds

1
e ST 7.

R -

—~ 5 ~
Vg, k”L%O,T]L)OcO + |l P/L(vgs k)”l;%.L%O,T]

If ¢ is a function satisfying Ug¢ = O then there holds

2 s 2 1-2 = 2
||3¢||L%L;o + |l P“ad)”l,%L%Lgo = CT 1[IV, eodlly e -

4.1. Decay estimate = Strichartz estimates. Let us rescale the coordinate (¢, x) —
(%, 3) for some positive constant A. We first prove Strichartz estimate by assuming the
following decay estimate.

Theorem 3 (Decay estimate). Let 0 < €y < s — 2 be a given number. There exists a
large number A such that for any A > A and any solution \ of the equation

ey =0 (4.118)
on the time interval I, = [0, t,] with t, < A1 78€0T there is a function d(t) satisfying

||d||L% <1, for q > 2 sufficiently close to 2 4.119)

such that for any 0 <t < t, there holds

3
T+ d(z)) DNl (4.120)

m=0

[Peoy (Dl < (
(1+1)

where Y[0] = (¥(0),n =239 (0) and V" P[0Nllp1 = V™Y Ol + V"~
(23,9 ()l 1.
Using Theorem 3, we can prove the following result.

Theorem 4 (Dyadic Strichartz estimate). There is a large universal constant Cy such
that if on the time interval I, := [0, t,] there holds

Collw. Vg, VY14 10 =< 1. (4.121)

then for any ¢ satisfying the wave equation Ugp = 0 and q > 2 sufficiently close to 2,
there holds

||Pa¢’||1j1’*L§C S [0l 1, 4.122)

where P denote the Littlewood-Paley projection on the frequency domain {1/2 <|&| <2}.
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We will prove Theorem 4 by adapting a 77 * argument from [12,13]. Applying the
TT* argument therein directly to our setting requires the control over dg including the
undesired quantity DtY. To get around this difficulty, we give a careful refinement.

Definition 1. Let w := (wp, w1) € HY(X) x L*(X). We denote by ¢(t; s, w) the
unique solution of the homogeneous geometric wave equation Ugep = 0 satisfying
the initial condition ¢(s; s, w) = wg and Dop(s; s, w) = wi. We set ®(t;s, w) =
(p(t; s, w), Do (t; s, ®)). By uniqueness we have @ (t; s, ®(s; ty, w)) = @ (¢; to, w).

We first show that
IIP(€0¢)||LZ;*L3<> NR A7 (4.123)

To this end, we let H := H'(X) x LZ(ZJ ) endowed with the inner product
(w,v) = / (a)1 -]+ SijD,-a)o . Djvo)
=

relative to the orthornormal frame {eg =T, e; = 1,2,3}. Let I = [t/, t,] with0 < ¢’ <
t. and let X = LYL%. Then the dual of X is X' = LY L!, where 1/¢' + 1/q = 1. Let
T (t") : H — X be the linear operator defined by

T({tw := PDyop(t; 1, w), (4.124)

where ¢ := ¢(1;1', w) is the unique solution of g¢p = 0 satisfying ¢ (1) = wo and
Do (1) = w1 with w := (wp, w1).

By using the Bernstein inequality for LP projections and the energy estimate it is
easy to see that 7 (') : H — X is a bounded linear operator, i.e.

1T )wlx = 1Peop)ll 1100 < CAIDP(E) 12 (4.125)

for some constant C(A) possibly depending on A. Let M(¢") := ||7(¢t")||— x. Then
M (t") < oo, and for the adjoint 7 (+')* : X’ — H we have

1T Ny =M@, ITETE) lx—x =M@

Note that M (-) is a continuous function on /,, whose maximum, denoted by M, is
achieved at certain 79 € [0, ). Our goal is to show that M is independent of A. Our
strategy is to show that

2 1 2
M*<C+ M (4.126)

for some universal positive constant C independent of A. Let us set Ip = [f, ] and con-
sider X = L?O LY, X = L?O L )lc, and the operators 7 (fp) and 7 (f9)*. For convenience,
we drop the 7 in the notation for operators.

We first calculate 7* : X’ — H. Forany f € X’ and w € H we have

(T*f,oyn = (f To)x x =/ fPDop = (Pf)Doe(t, 10, ).
Iox X Iyx X
We introduce the function ¥ to be the solution of the initial value problem

[Dgw = —Pf, in[ty, 1) x X,

Y(ty) = Y (ty) = 0. (4.127)
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Recall the energy momentum tensor Q[¢, ¥ ] introduced in (3.102). For any vector field
Z we set Py = Ql¢, ¥],wZ”. In view of [g¢p = 0, it is easy to check that

1
D’ Py = 5 ((Zo)0gy + 016 ¥lop 7).

By the divergence theorem we have

Q[d),l/f],wZ“T”—/ Olo, ¥1uwZ"T" =/ Df Py (4.128)
EtO Iyx X

Dty

which together with the initial conditions in (4.127) implies that

/ —(Z$)Ogy =2/ T”‘Pa+/ 0, V1upPn®?.  (4.129)
Iox X Ioyx X

S
Now we take Z = T. Then it follows from (4.129) that
/ —DopUgy = / DopDoyr + 8 D;¢D;yr + / 0l¢, Ylap M.
Iox X iy Iox X
(4.130)
Therefore
(T f, o) = (¥lto], 0y + (o), (4.131)

where [(-) is a linear functional on H defined by
l() = / Q. Ylup V7.
Iox X

We claim that /(-) is a bounded linear functional on H. To see this, let @ € H with
lwll < 1. Then by the energy estimate we have ||D¢||L§>°L§ < ||l < 1. Thus

H@)] < 17113 o 1D o2 1DV er2 S W13 1DV 13-

Hence, by the Riesz representation theorem we have [(w) = (R(f), w)x for some
R(f) € H and there is a universal constant Cy such that

IR(HIIH = Ci IIHIIL;L;oIIlelL;SLg-
Moreover, we have from (4.131) that 7* f = {[t9] + R(f) and hence
TT*f =TY[tol + TR(f). (4.132)
We claim that there is a universal constant C» such that

||D1/f||L73L§ =GMIfI (4.133)

;o
L
Assuming this claim for a moment, it follows from the definition of M that

IITR(f)IIL;fOL;c < CICOM? |l £

/
ar1-
LIOLX
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Thus, if (4.121) holds with Cy > 2C;C», then

1
ITRNNLs 1o = 5MPISI

<5 o (4.134)

Next we will estimate ||sz[t0]||L;, Lo We set F':= (0, —nPf). By the Duhamel
0 X

principle we have
t
vlr] =/ D(1; s, F(s))ds.
a

Then ¥ [f] = — [g* @ (19; s, F(s))ds and thus

Iy Iy
Tlio] = P [€0¢ (r; fo, —/ (105, F(s)))} —_p [eo (/ o1, s, F(s))ds)}
to to

1y
= —/ Pleg®(t,s, F(s))]ds.
1

0

It follows from Theorem 3 that
2
_2 ~
IP [eo@(t.s. F(s)]llLx <C (<1+|r—s|) g +d<|t—s|>) DIVTPFOI SIF N
m=0

Thus, in view of the Hardy—Littlewood—Sobolev inequality, (4.119) and Hausdorff Young
inequality we obtain

Ly
[t =shis©ids
1

0

< : < ,
179 Tl 1o S ||f||L?OL}( + u s ||f||L;,OL}. (4.135)
0

Combining (4.132), (4.134) and (4.1~35), we therefore othain (4.126).

It remains to prove (4.133). Let ¢ be a solution of [lg¢ = 0 in /. Then for any #( €
[0, #.] there holds the energy estimate [[D (1| 125y < Do)l 25y for ¢ € [to, ti].
Let#g <t < t,. Similar to the derivation of (4.130), we have on I = [¢/, t,] that

| D0t = [ DogDoy+8DD iy [ 0l w1 P,
IxY Xy IxXY
(4.136)
which together with gy = — P f gives

(DY, D) (1) < 1Peodll g ool fIl, o,y + 1Pl L1 IDV N o2 1D 02

q
L; L;

According to definition of M, we can obtain || PeOJ’”L’,’Lw < M|D¢(t") ||L§. Thus

(DY, DY) () < (MIIfIILc;le + ||<T>n||L;Lgo||DW||L;>cL;) DGl 2

Since Dqs (') can be arbitrary, there is a universal constant C3 such that

IDY ()l2 < C3MISI o,y +C3 Il Pl DYl ooz
I —x
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Recall that ¢’ € [1g, t,) is arbitrary. Thus, if (4.121) holds with Cy > 2C3 then

1
+ 5 IDY e

DYl 12 = C3MILfI ooty
lot*)

tt)‘c

This implies claim (4.133) with C; = 2C3. The proof of (4.123) is thus completed. We
also have proved for any ¢ € I

IDYliLee 12 = C2MIfI

[f [}

" (4.137)

Now we consider || P (3,,¢)|| L L It suffices to estimate
w X

7= / FP(n) = / OndPf
I, xX L,xX

for any function f satisfying || f ”Lq,Ll < 1. Let ¥ be the solution of (4.127), then
Iy ~x

7= / — 0 @Ug .
I xX
In view of (4.129), we have with Z = 9,, that

/ —Z¢Dg¢:2/ T“Po,+/ Ol Ylup PP,
I, xX 20 L, xX

By direct calculation we can see that (“)7 = g - 7. Thus it follows from the energy
estimate (4.137) and (4.121) that

/ 0lo, Vlap P
I.xX

SNy 1 IDV 121D 12 S IDSO) 211 1

ERE
and
/ TPy | S IDG Ol 21DV Il e 12 S DGO 2ll £y,
20 * I =x
Therefore |Z| < Do (0) |21 f ||Lq/L , - Hence we can conclude that
* I X
I1POm@lLe 1o = CIDPO)I 2. (4.138)
Finally we prove (4.122) for the case that 0 = 9, i.e.
1P3:ll g pgo = CIIDSO)I12- (4.139)

Note that o; f = neo(f) + Y™0,, f. We can write
Pdp =nPeo(p) +Y" Pond +[P,nleog + [P, Y" 0.

By using (6.195), the Bernstein inequality and the finite band property for the Littlewood-
Paley projections, we obtain
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1P, nleod g oo < 1Vllga poe o)<t + D1 Pre - (eod))ll g poe
>1

S IVallLg peolleodlipgers-

By using (2.29) and (BA2) under the rescaling coordinates || Vn I L9 Ly < A4 also
using the energy estimate for ¢, we can obtain ’

ILP, nleodlirg poo S DS Oz

141

Similarly, we have ||§Y||Llli oo SA T4 and

P, Y100l g 1o S IDGO)I 2

Combining the above two estimates with (4.123) and (4.138) we therefore obtain (4.139).
The proof is thus complete.

4.2. Strichartz estimates = main estimates. In this section we will use Theorem 4 to
prove Theorem 2. According to the properties of Littlewood-Paley projections, it is easy
to derive the desired estimates for the low frequency part. Therefore, to complete the
proof of Theorem 2, it suffices to establish the following result.

Proposition 9. There exists a large number A > 1 such that for any q > 2 sufficiently
close to 2 and any § > O sufficiently close to 0 there holds on I = [0, T

1-2
> {1 Putmgl o+ I Putigl2 o} S T,
n>A
Moreover for any solution of Ug¢p = 0, there holds
1_,
D I8 Pudlzs o S T 71V, c0dliee o

n>A

In order to carry out the proof of Proposition 9, we pick a sufficiently small €y > 0
and for each & > 1 we partition the interval [0, T'] into disjoint union of subintervals
I = [tx—1, tr) with the properties that

] < 30T and |k, Vg, VY, Dnl;2 1o < wheo, (4.140)
k X

Such partition is always possible. Let «,, denote the total number of subintervals in the

partition. It is even possible to make «,, < 3.
We first consider any pair (u, v) satisfying (3.66). Then (U#, V) := (P,u, P,v)
also satisfies the system (3.66) with Fy» and Fyu given by (3.68), i.e.

Fyu = [Py, Y™ ]8pu + [Py, nlv + P, Fy, (4.141)
Fyu = [Py, nglV2u+ Py Fy + [Py, Y90, (4.142)

Consequently, it follows from (3.87) that

n*Og Py = —nDrFyu +n(—Fyu — no, VU + e(In n) Fyu +nTrkegU™).
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Now we will use the Duhamel principle to represent Py u. To simplify the notation, we
use W (t, s) to denote the operator defined on H such that, for each o := (wp, w1) € H,
¢ := W(t, s)(w) is the unique solution of the initial value problem

Ugp =0, ¢(t:5,x) =wp, 0,P(;s,x) =wi. (4.143)
Then, by the Duhamel principle, we have for t € Iy = [#;_1, ] that
Puu(t) = W(t, t—1) (Puu(ti—1), 8 Puu(te—1) — Fyu(tx—1))
+/t W(t, s)(0, =R, (s)) + W(t, s)(Fyu(s), 0)ds. (4.144)
te—1

Now we apply P, to the both sides and take the spatial derivative. Writing P/f = P, by
a little abuse of notation, we have

t
Pﬂamu(t)z/ {8 PuW (1, 5)(0, =Ry, () + 3 PuW (2, $)(Fyn(s), 0)} ds
th—1

+ 0 PuW (t, k1) (Puu(ti—1), 0y Puu(tx—1) — FUu(tk,l)) ,  (4.145)
where
Ry, = n(—Fyu — nmwoa VU™ + eg(Inn) Fyu +nTrkegU") — Y'9; Fyu.
By using (4.122) in Theorem 4 with suitable change of coordinates, we have for any

one-parameter family of data w(s) := (wo(s), w1(s)) € H withs € Iy := [tx_1, 1z] that

141 1
" *a | P OW(t, S)(O)(S))”L‘[is LS S u2llw(s) |-

In view of the Minkowski inequality we then obtain

Tk
< / | P oW (t,s)(w(s)) “L[zs.zkjLi"’ds

Tk—1

t
/ PLOW (1, 5)(w(s))ds

k-1

2
L Ly

1
S Hl?

Q=

_1
uih / o (5) I7eds.
13

Since |I;| < T =3, it follows that

Applying the above inequality to (4.145) gives, with &g := (% — %)(1 — 8¢p), that

! 11 11
/ PLOW(t,5)(w(s))ds ST a0 / 1ello () l13ds.
I

Ir—1

2
L3 L

1_1
| Pl 3 e S T770 0 (nu(o, Ryl ¢+ In(Fue, O)”LW)

1

+TIu (Bu(tr—1) + Cpulte—1)) (4.146)
where
Bu(t) = ™l (Puu(t), 3 Puu()) llp,  Cpu(t) := 1| (0, — Fyn (6)ll34-

In the following we will give the estimates on R, Fyu, B, (tx—1) and C,(tx—1) sepa-
rately. Positive indices €, ¢, § are chosen such that4ep+380+8 < s —2,and §p+6 < 4e.
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4.2.1. Estimates for R, Fyn.

Lemma 9. For any §1 > § > 0 satisfying b := 89 + 81 < 4€q, there holds

1

Ky 2
> > ||M1+5°+5R;L||i} | S UV vl gies + 10 PuFull o
X
w>A k=1 k
"0 p,F, V2 4.147
HlIw T PuFoliptp 2 + 1Viullpgerz. (4.147)

K
- 1+50+5 F 0 2 < 8 1+bP 8F 2
2 2 I Fyn (), 01171 5y < (10 vl g pyios + 1 Pud Full 12 12
u>A k=1 k
(4.148)

Proof. We first write R, = —n[Py, ng]V2u — Y'; Fyu + R, where

v

Ry ==n(—PyFy — [Py, Y™0nv — nmo, VYU + eo(Inn) Fys + nTrkeoU") .

Let us set
Ky K
. 1+80+8 S22 . 1+80+8 75 112
I = E E | "0 [Py, nglV uIIL} 120 2= E E ™0 Ru”L} 12
X X
u>A k=1 k u>A k=1 k

It suffices to show that
1 —~
I} SIVullppa, (4.149)

1
2 < 1+b 1+b
L S 1V vl T+ 1 PuFull g g2 + 1 PuFoll o as - (4150)

Ku
1+60+6§F 2 < 3 1+bP aF 2
> > n eI 2 S (10l g + 11 P Full g 2
n>Ak=1 ko ~
(4.151)

By (4.140), we have ||§(ng)||L 1o S w8€0_ We can apply Corollary 1 to obtain

1

s
1+6+6 o2 8+80 1O o2

|l 0[Py, nglV uIIL;kL; S K °|IV(ng)IIL;kLgoIIV ullpeer2

8+80—8¢€¢ ” ’V‘Z

SHu ullpoor2.

Recall also that «,, < 130, We can obtain

K

1+5+6 <2 2 2(84+8¢—4 <2 2
> I[P ngl VP, 5 < CuPCroT OVt .
k=1 bt o

Since 0 < § < 81 and b := §g + §; < 4€g, we have

2(b—4 o2 2,112
Ty S AP0 Vull o2 S IVl o2

which gives (4.149).
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Next we prove (4.150). Since 0 < 6 < 81, we observe that for any function q,, there
holds

2

Ku
) 2 § 2 §
a =< a =< a 2
E E [l u”L}kL% E [l e “”L}L% x E [l e p,”LX

n>Ak=1 n>A n>A

2
S (/1 IIM‘S]%II%L;) . (4.152)

(4.151) and (4.148) can be derived immediately by using (4.152) and (3.73).
In view of (4.152), it suffices to estimate f] ||u1+bRM ”lﬁLE' From (6.203) it follows
that

11 Y™ o vl 2 S IVY eIVl + 192X I3, IV V]2

In view of (4.141), (3.71) and (3.84) we have

I eolnnFyulip 2 S leonmllzee (IVY, Vallzge |19u, vl o

92, 2l g0, vl + 1 PuFlla 2 )
S 19w, vl o + 1P PuFall 2

Recall that ||Vn, TI'k”L?OLoo < C, we can derive that

! (1 Tk eo(U™)] + 1VinD U Dl 12 S IV, Tekll 221 APV (Vut, 0) ] 2

SNAPY Vv 2

Combining the above three estimates we thus obtain (4.150). O

4.2.2. Estimates for B, (ty—1) and C(ty—1).

Lemma 10. For any § > 0 satisfying o := 4€g + 80+ 8 < s — 2, there holds

> D B )?

n>A k=1

2 1 = 2 3 2
<> u“sup€;><t)+sup(||w,v|| 1+a+||uz+“PMFL,||,2L2).
ey tel t H2 i

Proof. Since k), S w30, we have from the expression of B, (t) that

DD P But-)? S D sup(ut O B (1)

n>Ak=1 n>A rel

S D0 i sup | (Puu(n), 9, Puu(0) I
1

) te

According to the definition of S,Sl) (1) := 8,31) (u(t), v(t)) and the equation for 9, P, u we
obtain
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Ku
2 2 WPBum—)? £ D P supELP (1) + D sup | Fye (1|7

n>A k=1 n>A rel n>A rel
With the help of (6.204) we have
_ 3 _ = 3
I Funlizy = n™' 20002 Fun Ol S n7 AV 012 )+ 127 PFulp ).
s

Plugging this into the above inequality and summing over u© > A gives the desired
estimate. O

Lemma 11. For any 61 > § > 0 satisfying b := 8o + §1 < 4€g there hold

K
) 2 2 1+4€0+b 2
> 2 (1CHn=D)" < Nt V117 s pacgus +5up D 0P P F 1.
n>A k=1 rel n>1

Proof. Since 31 (1PC, (1)) < sup,e; [|40+50+3+1 12, with 0 < 8 < 81,

we have

Ku
B 2 deg+80+8+1 2
> > (W Cu-n)” < sup [ Fyu o).
> A k=1 ! g

In view of (6.204) and (3.84), we complete the proof of Lemma 11. O

In view of (4.146), Lemma 9, Lemma 11, Lemma 10 and writing

Ku
8 2 _ 8 2
D Pl = D7 D I Pudtl3 o

n>A n>Ak=1
we can obtain the following result.

Proposition 10. For any q > 2 sufficiently close to 2 and any § > 0 sufficiently small

such that o == 4ep+ 89+ 8 < s — 2, where §g := (% — %)(1 — 8¢). Then for any pair

(u, v) satisfying (3.66) there holds with o < ay < s — 2 that

) 2
2 I Pl o
n>A

2 1 ~
< Tl_g 2+0(P F 2 + 1+O(P F 2 + §+OZP VF 2
~ (”M " u”L}l[zLL)ZC [l e " v”L}liL% ll e " M”L?OI/ZLL,%
_2
+T'7a sup 1) (1, v)(1).
tel

Now we are ready to derive the estimates on the spatial derivative part in Proposition
9. Recall that (u, v) := (g, —2k) satisfies (1.13). With the help of (3.79), (3.80), (3.81)

and (BA1), it follows that ||/L%+“ P,L?Fu ||L‘}°l§L§ < 1 and then

h h ~ ~ o~
[l e +aPuFu||L}lﬁL§ +lp JrOlP/LFv“L}IIZLL)ZC S|IVg. k, VY, Vn”L}L)oco +15 1
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Therefore we can obtain from Proposition 10 and (3.81) that
1=2
1m8l52 o0+ D0 11" Pudnglzs, o < CT 74
n>A

For a solution ¢ of the equation Lg¢p = 0, we recall that (u, v) = (¢, ep¢) satisfies
(3.90) with W = 0. We make the bootstrap assumption (BA4) for ¢. In view of (3.91)
and F, = 0, and £17%) (i, v) (1) < £+ (u, v)(0) in Proposition 5, we may use the
same argument as above to conclude that

1-2 S
10m @12+ 2 N4 Pudm@lz o < CT 71 (14 BV, 0bl10r
n>A

which improves assumption of (BA4) for ¢ since T can be chosen sufficiently small and
universal.

4.2.3. Estimate for P, 0;u. From (4.144) it follows that.
P du(t) = Py Fyu(t) + PudyW(t, 1) (Puulte—1), 8 Puu(te—1) — Fyn(tr—1))

t
+/ P {oW(t,s)(O0, —R,(s) + 0, W(t,s)(Fyn(s),0)}ds.  (4.153)

Tk—1

We can use the same argument for dealing with P,,0,,u to estimate the terms on the right
hand side except the first term P, Fyu(t).

Lemma 12. For sufficiently small § > 0 there holds

§ 2 S 2 2., v..02
2 I PuFunlla o S 2 I PuFulla oo + TV, Vol s
n>A n>A

Proof. From (6.210), for 0 < n < 1/2 there holds
WPy Y™ 0mutll e + 1O I[Py, nlvlizoe S w™IVY, VillzeolIV2u, Voll s

This together with (4.141) implies that

8 2 8 2 v .02 2., .12
D PuFunla o S D0 M0 PuFulla oo + TIVY, Vnlloo oo V20, Vol oo s
n>A n>A

In view of Proposition 3, we therefore obtain the desired estimate. 0O

By using (4.153), Lemma 12 and Proposition 5 for the solution ¢ of Ug¢p = 0, in
view of F,, = 0 we derive that

-2 =
1000172 00+ D I Pudil7a o < CT TV, 08l 10c -
n>A

Next we consider (u, v) = (g, —2k) which satisfies (1.13). Recall that F,, = VY - gin
(1.13), we have

IW° PuFull 200 S I TP 8IVY Nl 20 + I PuVY N2
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By using (6.209) we have with 0 < n < 1/2 that
142 [P, §1VY llLe S M IVY (Lo IV gl g

Therefore

DI PuF o ST (||$2Y||iwﬁ+5 +1V2¢, ﬂui?om)
n>A 4
From this, (4.153), (3.81) and (3.84), we conclude that >, , ||M‘3PM8tg||i% -

cr'-i.

4.3. Boundedness theorem = decay estimates. In this subsection we give the proof
of Theorem 3 under the rescaled coordinates. A time interval / = [0, 7] becomes
I, = [0, AT] after rescaling. Let t, denote a number such that ¢, < 7, < AT and let
to be certain number satisfying 1 &~ 7y < .. We may take a sequence of balls {B;}
of radius 1/2 such that their union covers X, and any ball in this collection intersect
at most 10 other balls. Let {x} be a partition of unity subordinate to the cover {B}.
We may assume that Z?n:l |’V\m XJlLee < Cy uniformly in J. By using this partition of
unity and a standard argument we can reduce the proof of Theorem 3 by establishing the
following dispersive estimate result with initial data supported on a ball of radius 1/2.

Proposition 11. There exists a large constant A such that for any . > A and any
solution ¥ of

Ogy =0

on the time interval [0, t,] with ©, < AT, with certain ty € [1, C] and any initial data
Ylto]l = (U (t0), 0¥ (t0)) supported in the geodesic ball By, of radius %, there is a
function d(t) satisfying

<1

ldll 4 S 1, forq > 2 sufficiently close to 2 (4.154)
L2]0,7]

such that for all tg <t < Ty,
1
| Peoyr ()llLee < (—2 +d(f))(||1ﬁ[to]||H1 + 1Y (@)llg2). (4.155)
I+t =10l

where |[Yto]ll g1 = IV (t0) [ 22 + 19, (t0) | -
Proof (Proof of Theorem 3). To derive Theorem 3, we apply the above result to ¥z,
Ugr =0, v1(0) = x7-v(0), 8v(0) = xr-8¥(0),

where  is the solution of (4.118) with initial data ¥ [0] := (¥ (0), 9;v(0)). For 0 <
t < to, it follows immediately from Bernstein inequality and (3.92) that

[Peoy (DL < leoy (Dl 2. (4.156)
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By (4.155), we have fortp <t < 7,

1
[Peorr(D)lLge < (—2 +d(t))(||1//1[to]llyl +Y1(0)ll ). (4.157)
(L+ ]t =104

By applying (3.93) to the solution ¥/,

Il g + 1Dl z2 S 101l g1 + 197 (0) Il 2.
Then by combining (4.157) with (4.156) and using the above energy estimate, we have

1 -
[Peovr ()L < (—2 +a’(t))(||1ﬁ1[0]|IH1 + Y1 (0)l2).  (4.158)
(A +1r =104

where &[O] = (¥ (0), n—2a,w(0)) and we employed the fact that there exists C > 0
such that C~! < n < C. (4.120) then follows by applying Sobolev embedding also in

view of Y (¢, x) = >, ¥y (t, x). O

We will prove Proposition 11 by establishing boundedness theorem for conformal
energy. For this purpose, we introduce the setup and notation. We denote by I'* the
portion in [0, AT'] of the integral curve of T passing through the center of B 1 We define

the optical function u to be the solution of eikonal equation g/ Oqudgu = 0 with u =
t on I'*. We denote the outgoing null cone initiating from I"* by C, with0 < u < AT.
Let St,u = CL,QE[.LetuS SetDa‘ = U{[e[[o’f*]’oiuit}st’u and Dt = U{ZG[O,‘L’*],OquZ}St,u'
We denote the exterior region on X, t > fo by Ext, = {0 <u < 3t/4}.ByC~! <n <
C, we can always choose 7y € [1, 2C] such that B% C (Da' N Xg).

Next we extend the time axis I'* : u = r backward by following the integral curve
of Ttot = —AT. Let us denote the extended portion of the integral curve of T by I" .
Let C,, be the outgoing null cone initiating from vertex p(t) € I'™ with u = t. We also
foliate the null hypersurfaces by time foliation, C,, = U, </<z, St.u-

Let  and @ be smooth cut-off functions depending only on two variables ¢, u. For
t > 0, they are defined as follows

u 1
oo Lo O=us=e I on0<% <3
=710 onu<-=% -

N

We also suppose @ and @ coincide in the region Uy, cp 7,1 - <u<o
Let us denote by N the outward unit normal of S; , € X;. Define 64p = (DAN, ep)
and xap = (D, L, ep). We decompose x as xap = XaB + %trxyAB.

VNN = —(Vlogb)ea, VaNp =0apep,  xap =0 —kap (4.159)

We recall some useful results in Proposition 7, Proposition 8 and those established in
[25, Sections 4 and 8]. Under (BA1) and (BA2),

(i) There exists 6, > O depending only on B; and the norm of initial data
(8, F)l 2 x m1(x) Such that if 7 < &, then the outgoing null radius of injectivity
satisfies iy (p) > T —t(p) forany p € [-T,T] x X.

And under (BA1), (BA2) and the rescaled coordinate,

(ii) Let N*(p) be an outgoing null cone initiating from p € [-AT,AT] x ¥ and
contained therein. Then on every A/ (p) there holds F 2 Vgl < A~2, the curvature
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flux R together with flux type norm of components of 7 on N*(p) satisfies (for
definition we refer to [25,26].)

R+Nil#] S A2 (4.160)
(iii)) For 0 < T < §,, consider C, C [-AT,AT] x X, with §;, = C, N X; and
r(t,u) = %. As a consequence of (4.160) and C~! < n < C the metric Viu

on S?, obtained by restricting the metric g on X, to S;.. and then pulling it back to
S? by the exponential map G (¢, u, -), verifies with small quantity 0 < € < 1/2 that

Ir2yeu(X, X) — v (X, X)| < ey (X, X), VX e TS?,

where yg is the standard metric on S2; there holds (t —u) ~ r(t,u). There hold

b
|
n

Ve ul 2

rtry ~ 1, Uy = _IJ/ N ~r
S

<

1
=, 4.161
=3 ( )

~ A Lo . _
||7T,X,W10gb”L4(St’u)+||r z(n’XvWIOgb)”LZ(S,,,,) 5)\, 2,

We will constantly employ the following result, where all the constants suppressed
in < are independent of frequency A.

Lemma 13. For any X' -tangent tensor field F there hold for —t,/2 <u < t
1
/ P S UF sy 1 Fllzcsy 1F s+ 17 Pl S 1F ).
Stou

Proof. This is [25, Proposition 7.5]. O

Now we prove a commutator estimate for P, the Littlewood Paley projection with
frequency 1. This estimate is slightly more general than needed.

Lemma 14. Let b > 2. For scalar function f and G, with max{b, 3} < p < oo there
holds

ILP. G10m fllw1o + ILP. G1om fllee S IVG 21V flI2-

Proof. The L™ estimate follows by Sobolev embedding and W'-? estimates. Now we
consider the W12 estimate. In view of (6.195), we can write

[P, Glomf =[P,Gl(0nf)<1 + ZP (Ge - Pe(Om f))- (4.162)
>1

Using Corollary 1, we obtain with % + b]—* % that

1P, G10w <1 lrp SUVGH IV il SIVGI 2 IV 2. (4.163)

Consider I = §[P, G1(0m f)<1- Apply (6.198) to (G, d,, ) and u = 1 we can obtain
1
S ALCE —W/O 8G(ry+ (1 = DX (B f)=1 (¥)dy

—/Ml(x = DIVGE) B f)<1()dy. (4.164)
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Similar to Corollary 1, we derive that
1l < IVGIH 2 l18f<1ll o

Now consider J = >",_, VP (G P¢ (9, f)). By finite band property, with % + ﬁ
we have

1,5 —1+3 S
1 lze S D IVG 2 I Pe@n )l S D7 2 10m Fll2IVG o
>1 {>1

SIVGI IV FllL2.

Combining(4.162) with the estimates for I and J , we can complete the proof. O

For ease of exposition, let us introduce the first version of conformal energy and state
its boundedness theorem whose proof occupies the rest of the paper.

Theorem 5 (Boundedness theorem). Let Y be a solution of Ugy = 0 whose initial data
is supported in B% C (D N Xyy). In the region Dy,

2

(t —u)?

Cly1t) == /,\; (FPAYY P+ YL +u? [V + ( + DY )dug  (4.165)

under (BA1)~(BA3), there holds for t € [to, T.], CIy1(1) S ¥ [tolll7, + IIw(to)Iliz(Z)-

Lemma 5. Letg > 2and0 <§ <1 — % be two numbers. Assuming (BA2) and

1

2, withte <AT, (4.166)

I (X, ¥ 1ogb)ll 20,7, 1000 S *

for any solution ¥ of Ugyr = 0, there holds

P, @ N™ 10V e + Il ¥, Pl S d@ Lol g + 19 (o)l 2),
where
A+0ld) <@ +z)‘§ +d(1)
with d(t) being a function satisfying (4.154).
The condition (4.166) is incorporated in (5.179) in Proposition 12 and is proved in [27].
Proof. We first claim for ¢ > t; there hold
IV(@N)lie <l (7. Vlogh), k, Vgl +(1+0)7" (4.167)

Indeed, for # > ty, on the support of @, i.e. U{7L<u<37t}517u, the radius r of S, within

the support of @ satisfies r ~ (1 +1). (4.167) follows by using (4.159), (4.161) and the
fact that |Ver || S (1+1)7".

LetIl;; = g;j— N; N denote the projection tensor on X. Then for any scalar function
f.wehave V; f = H;Bl-f and

[P,oV;lf =—(@N' N)Pdf+P(wN;N)3;f) =[P, mN;N13; f. (4.168)
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Applying Lemma 14 to (G, f) = (w N, W), (zerjNi, Y¥), and using Proposition 5
for i, we have

I[P, G19; fliLe + I[P, G10; fll g1 < WGIIL;O(IIDW(ZO)IILg + ¥ ()l L2)-
Now for g > 2, we set d(t) = ||/75G||L§o. We have from (4.167) that

dit) S 1+ + o (R, Yiogh), Vg, klze = 1+~ +d@ ().

By using (4.166) and Holder inequality, we have

1

2_1
q 2,

~ 2_
1P @, g 2T

Thus, with0 < § <1 — % and d(r) = (1 +1)°d@ (1), we can complete the proof. O

Lemma 16. (i) Let S; = X; "N (p), with p € [-AT, AT] x X. For S, tangent tensor
F, there holds

— 1-2 2
IF =2 Fllacsy S IrV Iz IFIE S + I Fllpasy, 2 <g <oo. (4.169)
(ii) For any § € (0, 1), any q € (2, 00) and any scalar function f there hold

1 8q

25(g—2) 5 ) ) 27 2q+5(q—2)
suplf1 S rin ([ (19242017
Sr,u

tu
28
2q+6(q—2)
x (/ (1911 +rqlf|q)) .
St,u

Now we are ready to complete the proof of Proposition 11.

Proof. Thisis [12, Theorem 5.2] O

Proof (Proof of Proposition 11). We first claim that

1
o PYliLecs) S (—2 +d(t))(||1ﬁ[to]||H1 + 1Y (t0)l22). (4.170)
(L+]t —10D)e

Since @ vanishes outside the region {—t/4 < u < 3t/4}, this claim is trivial there.
Thus we may restrict our consideration to the region {—z/4 < u < 3t/4}. In view of
r &~ t —u, we thus have r ~ ¢ for ¢t > 0. Recall that @ is constant on each S; ,, from
Lemma 16 (ii), we can obtain

1-6
supleW,SrS(/ (|vaw|2+r—2|wa|2))
Stou

St,u

8

x(/ (|w¥71ﬂw|4+r4|wm|4))2 .
Stou
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Applying Lemma 13 and the finite band property, we then obtain

tu

1-8
sup|wa|25r5(/ (|P(ww>|2+r—2|ww|2+|[P,wv]w|2))
St.u

1
79

x (/S (1P@ YW+~ Py + 1P, wmr‘))

<l (t_zC[I//](t) +I[P, wW]I/flli,.) :

By letting 0 < § < 2(1 — %), (4.170) then follows from Theorem 5 and Lemma 15.
In order to derive the estimate on P(eo(y)), we can write [P (eoy) lLe =<

| P(weoyr)llLe + |IP ((g — w)emﬁ) Lo By Bernstein inequality and Theorem 5,
we have

1P (@ —@)eoy) e S @ — @)eoyll2 S (1 07 ClYIT0)
S A+ Aol g sy + 1Y @)l 2(xy)
and
I1P(@eoy)liLe S NIP@L)lliie + 1P@NY) e S o Lvllgz + 1P(@ Ny)llg.
From Theorem 5 we have
I Ll S A+ Cy ) S A+07 W loll g sy + 1 (o)l 2).
Moreover
I1P@ Nl < 1P, @ Naipllee + o N Popy |z 4.171)
The first term in (4.171) can be estimated by Lemma 15. By using (4.170), the second
term in (4.171) can be estimated as

lo N P (Ol <l U@l < (4077 +d®) Aol + 1Y @l 3).

where P denotes a Littlewood Paley projection with frequency 1 associated to a different
symbol. Putting the above estimates together completes the proof. O

5. Boundedness Theorem for Conformal Energy

In this section we will present the proof of Theorem 5 under the bootstrap assumptions
(BA1)—-(BA3). We will work under the rescaled coordinates. Let M, = [0, 74] x X,
where 7, < AT, where A > A and A is a sufficiently large number.

Recall the definition of the optical function u. We will set u := 2¢ — u and introduce
the Morawetz vector field K := %n(u2£ + u?L). Associated to K we introduce the
modified energy density

O(K,T) = QY 1(K, T) = QY 1(K, T) + 26 Tyr — ¥°T(1),

and the total conformal energy

Oyl = . O[Y1(K, T).



1320 Q. Wang

Definition 2. We define C[F] for a scalar function F with suppF C D¢, by
CIF1() = CIF1V (1) +CIF1()

where tg <t < Ty, and

2
D (1) = _ 2pFP2 ! 2
100 = [ @ —o (Poree (14 s ) 17R) d,

CIF1 (1) = /

2

- (g2|DLF|2 + 12D FI? + il |V F) + |F|2) diig.

From the definition it is easy to see that Q[v](r) < C[¥]1(z) and C[y](r) < C[¥1(r).
We will prove the following results.

Theorem 6 (Comparison Theorem). T > 0 can be chosen appropriately small but
depending on universal constants, such that for any function y supported in Dy and
any 1 <t < 1, there holds

CIY1(®) ~ Q[Y1().

Theorem 7 (Boundedness theorem). There exists a large universal number A and a
small universal number T > 0 such that for any . > A, v, < AT and any function
satisfying the geometric wave equation

1 .
Ogyr = Eaa(g“ﬂ\/@aﬂw) =0 in[0, 7] x R? (5.172)

with initial data Vr[ty] supported on the ball By,2(0) there holds
OlY1() S Oy lto)  Vip <t <t

5.0.1. Canonical null pair L, L. Recall thatin (3.101) we have introduced along the null
hypersurface Cy, the canonical null frame {L, L, e;, e»}, where {e, e>} is an orthonormal
frameon S; ,.Letes =L =T — N andes = L = T+ N. Then from (3.101) it follows
that

Dsu=2b"!, Du=2n""'=b"", Dju=2n""', Dsu=0.

Associated to this canonical null frame, we define on each null cone S;, the Ricci
coefficients

xap = (Daes, ep), x , p = (Dae3, ep)
1

1
ta = =(Dse4,ea), ¢ (Dg4e3, eq)

2 473
1
éa = §(D3€3,€A)~

It is well-known ([8, 13]) that there hold the identities

X,p = —XaB —2kap, &, =—kan+Yalogn,
Ea=kan —Ca+Valogn, (4 =Valogbh+kan
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and the frame equations

Dies = —(knn +mon)es, Daes = xapep — kanea,
Daes = x , pep +kanes,  Daes =2 ea+ (kyn +mon)es,
D3es = 2¢4ea + (kyy — won)es,  Dzez = 264e4 — (kny — 7on)es3,
Dier = Vaea+ & ea,  Diea = Viea +laes +Eaes.
We rely on the following result to prove the boundedness theorem. (5.173) and estimates
of ¢,k in (5.175)£ani)e seen in (4.161). (5.174) consists of (BA2) and the L,2L§°

estimates on egn, Vn, VY that can be derived immediately by using (BA2), (2.29) and
(2.49), under the rescaled coordinates. In [27], we will prove (5.175)-(5.179).

Proposition 12. Under the bootstrap assumptions (BA1), (BA2) and (BA3), on D* C
[0, 4] x X there hold the estimates

(t—witry =1 (5.173)
- < 4172

”ﬂ”L?L;O SA (5.174)

2 Ellzacs, )+ 2@ 6 0,y S A7 (5.175)

”Q”L%Lgo + ”“Q”L“(S[’u) + ”(t - u)_l/z-Q”LZ(S“u) g )L—I/Z (5176)
< 4172

”Z”L%Lgo SA ) (5.177)

”’"S/ZWZ» r3/2LZ”L,°°L§°LZ S A2 (5.178)

IR ¢z S22 (5.179)

where p > 2 is suchthat0 <1 —2/p <s —2,and 7 = try _ 2 g bl

n(t—u)’ t—u

Let K7 denote the deformation tensor of K and let KV := (K)7 — 4¢g. Then we
have

B4y = —2un(Vplogn +kyy +mon), Fitas = MZH(QA —kan — Yalogn),
K734 =—dund ™' —n~ Y +nu’kyy —mony —D3 log n)+nu’ (ky n +mon — Dy logn),
K33 = —8un(n™' —b™") = 2nu’ (kyy — 7oy + D3 logn),

(K)

T34 = nu*(Ca +kay — Yalogn) +nu’éa,

(K)T_[AB = —Zl’mzleB — nuztrszAB +4tn(t — u))?AB

+2tn(t — u) (trx — ﬁ) SAB.-

For simplicity of presentation, we will drop the superscript K in 5)77 . In view of (5.173),
as an immediate consequence of Proposition 12, we have

Proposition 13. Under the conditions in Proposition 12 we have on [0, t,] X X that
-2 - -1 = -2 -
||zt ”44”L,2L§° + [ (uuw) 7734||Lt2L§o + llu n33”L,2L§°
-2 - -2 - -2 - -1/2
12 Faallp2po + w7 F3all 2o + 2 Fapll 2o S 27V

Now we are ready to give the proof of Theorem 7 and Theorem 6.
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5.1. Proof of Theorem 7. By calculating o; Q[l/f] and integrating over the interval [7, ],
we have

= - 1
Oy 1) = O[¥ (o) — 5?1 + 72,

where

T =/ 0%%1y] ©r,s  and j2=/ Y20yt
lt9,11x & [

fo,t]x X

It is easy to see that

1 1 1
T = / (—7?33(L1ﬂ)2 + ~ 744 (LY)? + =734 VY |> — Taa LYV ayr
lo.1x 5 \4 4 2

_ _ I
—T3ALYY AV + WAV a¥ VY + il (QﬂLlﬂ - |Y71/f|2)) :
Observe that
2
trw = 848745 = dtn(t — u)(try — ———) — 2u’ntrk.
n(t —u)
It is easy to derive from (5.174) that

/ lu?ntrk Ly Ly | < T3 supC[y1(1).
[to.t1x X !

Thus, by letting

o 2
B = 2t'n(t’ — u) (tr)( — /—) Ly Ly,
lto.t]1x 5 n(t' —u)
we have from Proposition 13 that
|71 — Bl S T supCly1(). (5.180)
t
Since [gt = —eg(n~ Y + n~1Trk, we can conclude from (5.174) that

1
|72l S T2 sup C[y](0)
t
In the following we will show that

B] S T sup Cly (1) (5.181)
t

We can write B = B’ + B¢, where

2
B¢ = / 2t'n(t" — u) (tr)( - /—) Ly Lyw,
lfo,t]x 5 n(t'" —u)

B = / 2t'n(t — u) (trx - #) Ly Ly (m — @).
lt0,7]x = n(t" —u)
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In view of (5.177), we have
B < T2 supClyl).
t
We still need to estimate 3¢. Using [13, p. 1162] and the integration by part we have
1
EBe =—L+h+1—14,
where

I = / wnt' (¢’ — w)z(LLY)Y,
[to,t]x X

L :/ (=L(@wnt'(t' — w)2)+(tr6+N logn—Trk—divY) wnt' (t' —u)z) Ly,
[t0,1]x X
L= [ wnt'(t' —wzlyy, Iy :/ wont' (' —u)zLy .
Et Et()
Recall that in the exterior region {0 < u < 31’/4} we have r (', u) ~ t'. Thus with the
help of the Sobolev inequality (4.169) on S,/ ,,, for any function s there holds
-2
/ I 2 s, jdu SCIWIE). 2<q <o (5.182)
0<u<3t'/4 "

Therefore, by using (5.175) and (5.182), for the boundary term /3 and I4 we have the
estimate

1 1 1
1+ al S LYl o2 172 Y llpgerars sup lIr2zlipacs,,) S T2 supCLy1@).
t

3t
t,O<u<7

(1 (2
2

Now we consider I,. We write I, = +1,”, where

P =/ L(@mnt'(t' —u)z) Ly,
[to,t]x X

12(2) :/ (trt® + N logn — Trk — divY)wnt'(t' — u)zLy .
[t0.1]x %

In view of (5.173), (5.174) and (5.177) in Proposition 12, by Holder inequality we have
1 1
1571 S (@llr, VY. 2ll 2 + T2 12l 21 sup CIV(E) S T2 sup CIYI().
X 1 =x ¢ t

Observe that

Lo | <r7 ', Lt=n"' Lu=2b"" (5.183)
Let p > 2becloseto2suchthat0 <1 —-2/p <s—2andletl1/p+1/q = 1/2. Then
it follows from (5.178) that

1
1S (106 =L |+ D2l e+l Lol 2ozl 20 ) 10 LW e 191 e

1

2
/2 -2 2 1
q q
+ It sznL}LgoLfsgp(/(kww 10 s, ydu ) 1LYl oo

Py
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In view of (5.182), (5.174), (5.177) and (5.178), we obtain
11571 £ 7% supCly o)
Finally we will use (5.172) to estimate /1. We first rewrite (5.172) as
Og¥ = —LLy + Ay + 204V Ay — %trxélﬂ = <%tr1 VLY. (5.184)
Then I, can be written as I} = 1 + I12 + 113, where

I = / wont' (' — u)zAYy
lt0.1]x 5

1
In = ——/ wnt'(t' — u)ztrxy L
2 Jito.1x =

I3 = / ont' (' —u)z (2§AY7AW - (ltr)( + v) Liﬁ) V.
[19,1]x = 2 =

Recall that for any vector field X tangent to S; , there holds
/ FdivX =— | {Y+(@+0}F-X. (5.185)
% z -
In view of (5.185) we have
I = _/ Y(@nt' (1" —w)zy)Vy + (¢ + Dont’ (" —u)zyy - Vi
[to,1x X

Now we introduce the following types of terms:

-1 -1

W) (LY, YY) - z,

Ery = nzt' L, Er; = nt'(t' —uw)Vz -V,
Ery = nt'z((t' — w) Y, ¥), Ers = nt'(t' —u)¢ - YV - z.

Then, symbolically we can write /11 and /3 as

Ery = nt'(t' —u) (JT, zZ,

[I11| + |113] = ‘/ @ (Er; + Erp + Ers + Ers)y | +
[to,t]x X

/ ZD‘EI‘4 . Wgﬁ .
[to,t]x X

By using (5.174), (5.177), (5.176) and Holder inequality, we can derive

-1 _ -1
Z, T,

‘/ |ZD'EI"1W|‘§”Z||L%L20
[fo0.1]x &

S TsupCly]()
t

T, sup C[¥](2)
t

and

/ |@Eny| + |ZUEr4Y71//|‘
[to,11x %

1

S 2l e sup {NEALW T+ V0D (113, + 199120} S T2 supClyrto),
t t
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By using (5.178) and (5.182) withO0 < 1 —=2/p <s—2and 1/g+1/p = %, we have

/ | Ers - ¢
[to,t]x X

2 1
Ssup i@ Yzl 10 r sup C[w](/)Z(/
t xRy 0

2
1—
3/ I ‘”P”Lq(s, )d”)

<u<-=- )

< T supClyl().
t

With the help of (5.177), (5.182) with ¢ = 4 and (5.175), we obtain

‘/ IwErﬂ/fl'
[to,t]x X
1

t 2
1
5/ sup “rzw'Z'{”Li - sup ”t/v‘w”[‘zx / ” /2¢||L4(S, )
fn u t OSMS

NP2l e rzens 2l 1o SUPCLYIE) S T supCLY ().
: - t t

Now we consider /1. By integration by part we can obtain [ = [ 8) +15 @ S) s

where

1
Iy =~ / —L(mwnt' (' — u)ztry)y?,
4 Jit.11xx
1(2) _ 1 . I 2
B == (tr6 + Nlogn — Trk — divY) wnt' (¢’ — u)ztrx ¥~,
4 Jig.xx

1(3) / wnt’ (t' — u)ztrxy? — 4_1 wnt’ (t' — u)ztrx .
%o

Using (5.173), (5.174) and (5.177), the term [ 1(2 can be bounded by
1 ’ 2
w(z+n+VY+—))z t'nyr

13| </
[0, 1x 5 n(t—u

1/2 1
< ||Z||L,2L§o|||1/f|2||L[00L£:(T*/ + T4||7T, VY, Z||L,2L§°) S T2supClyl(t).
t

For the term 13, using (5.173), (5.175) and (5.182) with g = 4, we have
3
1131 S suplizll 2, / 119 25, S T2 sup CY/1(0).
tu " Jo<us<d
It remains only to consider the term / 1%) We have |/, a )| < Ji + Jo, where
= )/ (Lwnt/(t/ —utry +wntrx L' (¢ — u))
to,t]x X

+wtryLnt’ (t' —u) + wé(ﬁ)nt’(l’ - u))zt/f2

b= / (@ Lant' (' — )|y | + 2Dy
[t0,t]x X

’
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Sincer ~ (t —u) and ¢ (Jtrx | +|z|) & 1 on Ext;, with %+% = 1 and p is slightly greater
than 2, also using Holder inequality, we obtain

2
20
o PP Ellacs, du)

<u<->-

1-2

< P
b S lor LZ”L}LZ?OL)’Z SBP(/O
7

1—-2 1—-2
e P llpar s, plr 2 ¥lies, du)

’

1-2
Sllor pLZ”LtIL;oLi’ SU/P(
t O<u<=4

where qll + q% = ql Using (5.182) and (5.178) we obtain

J2 S T7supCLY ().
t/

To estimate Ji, in view of (5.183) and

1 nb~! Llogn n(n~'—=b7h

L = — _
_(n(t —u) n2(t —u)?  n(t—u) n2(t — u)?
using (5.177), (5.174) and (5.176), we have
-1 _ -1
IS N2y + 1Ln, ———— 2o llzll 200 T SUP/ 12121 (s,
~ 1ty - n(t —u) thy b)) ; 3t t.u

Osufj

S T2supCly](@).
t

The proof is therefore complete.

5.2. Proof of comparison theorem. We will adapt the argument in [13] to prove Theorem
6. For simplicity, we use ® to denote any term from the collection

2 b —n7! .
try — —, Trk, ———, & .
[r)( n(t —u) : t—u NNI

According to (5.175) and (5.176) in Proposition 12 we have

1

120l 25, S 477 (5.186)

By following the argument in [13, Section 6] we can derive

2
ol / (f(Ll/f)z+u2<gw>2+(u2+f)|wﬁ+(1+ ! )wz)
X

(t —u)?
1 a 2(t 0}
_/2( +(t—u)2)w (=

2
zcwf](r)—/ (1+t—) V20— we.

) (t —u)?

By using (5.186) and the inequality, which can be derived in view of (4.169),

t
r—u

I llzis S IeVW e +I——wll2 < C2LYI0).
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we can obtain

2
t 1 1 1L 1
2 5 5,22 —5 242 5
/ Oy < 1720 poop2 lr2tY =112 <A it ||t Yol iz S T2C[Y]@).
Et_u u w u w u w

Similarly we have

11 1
/ YAt —w)® SATT2 Y e S T2CIY1).
2 u-—"w
Therefore, there is a universal constant Cp > 0 such that

CIY1() < CoQLY1(r) + CoT ZCIYI().

This implies the desired conclusion by taking 7' to be small universal constant.
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discussions, and Qinian Jin for reading the manuscript and valuable comments.

6. Appendix: Commutator estimates

In this section we derive various commutator estimates involving the LP projections Py,
in fractional Sobolev spaces that are extensively used in this paper, where P, is defined
by (1.11). One can refer to [17,20] for various properties of LP projections. In view of
the LP decomposition, the norm in the Sobolev space H¢ with 0 < ¢ < 1 is defined by

12
I F e == 11 F |2 +(ZA26||PAF||32)

A>1

for any scalar function F. For any nonnegative integer m and 0 < € < 1, we
define || F'||gm+e := ||F||gm + ||V™ F| ge. For simplicity of exposition, we will write

12
Fyi= PF, Fop =, P,F,and |A"F||2 := (ZM )»2’||PAF||22) . For any

sequence (a;) we will use ||aA||122 to denote >, ., |a,\|2.
2 >

H=h

6.1. Product estimates. We first derive some useful product estimates. According to the
Littlewood-Paley (LP) decomposition, one has, for any scalar functions F' and G, the
trichotomy law which schematically says that

Pu(F-G)=P,(F<;, - Gu)+ Py (F,-G<p) + Z Py (F;, - Gy).  (6.187)
A>
We will use this decomposition repeatedly.

Lemma 17. For any 0 < € < 1 and any scalar functions F and G there hold

IASCF - G2 S NE e Gl + 1G L gose [ Fla (6.188)
™2 Pu(F - Ol 2 S NG I Fllg- (6.189)
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Proof. We first prove (6.188). By using the Bernstein inequality and the finite band
property of the LP projections, we have

RN PL(Fep - G2 S 1€ D I Fallw |Gl 2
A<p

< Z( ) X2 E 12 IV Gl 2

A=p
Therefore
11 Pu(Fep - Gl z S IF I VGl 2.
Similarly we have
14 Pu(Fu - G<p)lliz 2 S NG pgivase IVF|l 2.

Moreover, we have

. < bee < (BNVFE 124 S
UNPL(Fo - Gl S w2 N Fll 2 1Gall s < (X) A Full 2 IVGall 2.

This implies that

I

Combining the above estimates and using the trichotomy law (6.187) we obtain (6.188).
Next we prove (6.189). Using the properties of the LP projections we have

ZP (Fr-Gy)

pie S S NIAVPEF | 2]VG .

1/2
A -~

—1/2
I +€PM(F5M-GM>||,5L25HZ(;) 114Gl 2NV Fall 2|,

A<u "

S IHFNpiIGll e,

3/2—¢
i Py (B - Gl 5 | Z(;) I9F 1212 Gal2
r<n

SIVE 211G me

and

| ZM_1/2+€P (F,. - Gy)

1/2+4€ Z
a5l LAY
Azp

1/24e
< HZ( ) IV EN 1A Galle |, S 1Pl G e
m

Combining the above estimates with (6.187) yields (6.189). O
Lemma 18. For any € > 0 and any scalar functions G|, G, and G3 there holds

3

| A9(G1G2G3) |2 S Z 1Gjll gise [ TGl
j=1 I#]
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Proof. Using the facts [|(G1) <yl < u!'/2IVG1ll12 and [[(G2G3)ull 2 S ™ I P,V
(G2G3)|| 2 together with (6.189) in Lemma 17, we have

|1 Pu((G)24(G2G3)w) 2 2 < IVGH L2 |2 PuV(G2G3)

2L
SIGg (1G2 1 g+ Gl gt + 1G5l e 1 G2l 1)

In view of [[(G1)ullzs S w™ 2IV(G) 2 and [(G2G3)<ullps < w'21G2Gsll s,
we obtain

|1 Pu ((G1)1(G2GD) <) |12 S 1V Gl 2 1G2ll 6 NGl o
S NG gl Gall g1 Gl g

Furthermore, by using [|[(G)allze S ||/V5(G1);\||Lz, we have

l’l’ € =
oS 2 (5) VG
® A>

SIGig1llG2ll g1 1G3l g1

| > 1 PL (GGG 162Gl
A> w

In view of the trichotomy law (6.187) and the above estimates, we thus complete the
proof. O

Lemma 19. For any 0 < € < 1 there hold
IASCF -V G2 S IF <Gl gise + Gl | Fll gyive. (6.190)
Proof. We use the properties of the LP projections to obtain
It Pu(Fp - VGl 2 S IFIeln (VG)llg 2 S IF I AV Gl 2,
I Pu(Fy - VGllipre S I Fullp 211Gl S IAVF 121Gl

and

€ < HNE e
|1 X BuE VG|, L SHFI| 3 (5) 1V G
A> F A>u

SIF L= AVG]i 2.

2
la

Combining the above three estimates, we obtain (6.190) using the trichotomy law
(6.187). O

6.2. Commutator estimates. In this subsection we will derive various estimates related
to the commutators [P, F]G. We first consider the general setting. Let m (&) define a
multiplier

Prex) = / () f(E)dE. (6.191)

By introducing the function M (x) defined by

M(x) = /eix'EIn(é)dé = m(—x), (6.192)
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then for any scalar functions F and G we can write
[P, FIG(x) = /M(x —NF®Q) — F(x)G(y)dy
= / Mx —y)(x —y) /01 3 F(zy + (1 — 0)x)dtG(y)dy
= /M(h)hj /01 0jF(x —th)dtG(x — h)dh. (6.193)
By taking the L9-norm with 1 < ¢ < oo and using the Minkowski inequality we obtain

1
I[P, F1G|[za < / IM(h)IIhI/ [0F(—th)G(- —h)|padtdh  (6.194)
0
An application of the Holder inequality gives the following result whose special case
with p = oo and g = r = 2is [12, Lemma 8.2].

Lemma 20. Let P be the multiplier operator defined by (6.191) and let M be the function
given by (6.192). Then, for any 1 < p,q,r < oo satisfying 1/p + 1/r = 1/q and any
scalar functions F and G, there holds

I[P, F1G|lLe < I|3F||LPIIGIIU/IXIIM(X)IdX-

Recall that the LP projection P, is a multiplier operator with m(§) = w(ule),
where ¥ is a mollifier with support on {1/2 < [§] < 2}. Observe that M(x) =
w3 (—pux). We have f [x|IM(x)|dx < w~ L. Therefore, from Lemma 20 we obtain
the following commutator estimate.

Corollary 1. For any 1 < p,q,r < oo satisfying 1/p + 1/r = 1/q and any scalar
functions F and G there holds

I[Py, F1Gllze S w HIVFI Lo |Gllzr

In the following we will give further estimates related to the commutator [ P, F']G for
any scalar functions F and G. We can write [Py, F1G = [Py, F1G <, +[ Py, F1G>2yu.
By the orthogonality of the LP projections, we have

[Py, F1G 52 = Z Pu(F -Gy = Z Z Pu(Fu, - Guy)-
H1=2p H=20 Bl < <2

Thus, schematically we can write

[Py, FIG =[Py, F1G<u+ D Pu(FrGy) (6.195)
A>
which is not quite accurate but harmless to derive estimates.

Lemma 21. For 0 < € < 1 there holds

4 LP, FIGllz 2 S |I§F||H 1G>

e
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Proof. First we have
DA
A>u

Now we decompose

[Py, FIG < (x) = D [Py, F5)Gr+ D [Py, F-;1G;.
A<p A<u

S Gl e

N\ €
> (%) 1R

A>u

< IS
I;ZLLQ li ~ ||VF||H%+E ||G||L2-

By using Corollary 1, |V Fy|lzo < El_€||’V\Fg||H%+E and |Gy [lze < 232Gyl 2, we
obtain

PP FIG <ullp2 S 7 D IV Pl I Gallge + =4 D IV Foa 211Gl e

A<u AZp
. A 1—e€
< _
SIVEIL 1. D, (H) 1Gall2
A=p
1—e€ Lie
A A\ 2 1, ~
+> > (—) (A—) 12V 211Gl 2
A< A >A K

Taking the /%-norm gives

I TPu, F1G <yl 2 S IVF Il g1 l|Gll 2.
In view of (6.195), the proof is therefore complete. O
Lemma 22. For 0 < € < 1, there holds

N . A 1—e€ €
€ € €
KNP FIVG 2 S IV F = (D (;) 13Gallz + X (§) 12°Galiz).

A<p A>p
(6.196)

Proof. By using Corollary 1 we have
I[P, FIVG <pllz2 S IVF e D IVGale S i IVF e D° MGl 2.
A<p AZp

On the other hand, by using the properties of the LP projections we have

D NPL(FL - VGOl 2 S DN Fllie=IVGalle SIVFlle D G2
A>[ A>n A>p

Combining these two estimates and using the decomposition (6.195) we complete the
proof. O

Lemma 23. For 0 < € < 1/2 and v > 1 there hold

_liens 1
w2 NVIPy, FIG 2 + w2 || [Py, F1G| 12

. A\ /2 [ 1/2+€
snmm(Z(;) Gl + X (5) 7 17Gallz) (619

ASp A>p
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Proof. From the we can obtain
VIP,.F1G<, = / VM, (x — y)(x — )/ /Ol 3 F(ty + (1 — 1)x)dtG <, (y)dy
+/Mﬂ(x — WVF®)G<u(y)dy, (6.198)

where M|, is given by (6.192) withm(§) = lI/(,u_lf). One can check f M, (x)|dx S'1
and f [x[[VM, (x)|dx < 1. Thus, it follows from the Minkowski inequality that

IVIPu. FIG<ullz2 SIVF sl Geplips SIVFIzs D 221G 2
A=p
On the other hand, by the properties of LP projections, we have
D IVPUE -Gl S D IFallslGallps S mliVFIs D 272Gy 2.
A>p A> A>p

In view of the decomposition (6.195) we thus obtain the estimate for the first term on
the left hand side of (6.197). Next we estimate the second term. By using Corollary 1
we obtain

1 _1 = _1 = 1
I 2* Py, F1G<ullz S 2 IV F sl G <ullps S ™2 IV Flls D A2 1Gallge,
A<p

while by using the properties of the LP projections we have
1D IPLF - Gllge S 1 D IF - Goll 3 S IV Flle D A7 Gl 2.
A> A>p A>p
The proof is thus complete using (6.195). O
Lemma 24. For 0 < € < 3/2 there holds
|2 1Py, FIVGl 12 S IVl G lae (6.199)

Proof. We use the decomposition (6.195). We first consider ZA>;¢ /e P, (F) -

VG)). By the Bernstein inequality and the finite band property of LP projections, we
have

VP (F VG2 S uENF - VGillae S péllFallollVGall
~ N\ € ~
SHNVEIeIGLe S (5) 12Gal 21V Fl.
Therefore

H > WP PUF VG| S IVl A°G . (6.200)
A>

2
L

Next we consider the term M’1/2+E[P,L, F]§G§u- By using (6.194) and setting
Fp - (x) = F(x — th), we obtain

I[Py, FIVG <yl ;2 S ' sup IV Fi - VG <yl 2.
h,t
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By using the orthogonality of the LP projections, we can write /VSF;,,r . /V5G5M =ay,+by,,
where

ap=> Pi(VFy)s-VGzy) and by => P.(VFyr-VGzy).
A>p ASp

By the finite band property and the Bernstein inequality of LP projections we have

laulle S DNV F Dl 2 VG <ullie S D A WPV Fy el 1Goll 2

A>p A>p A <p
SUVFIg D w226l 2
M=
Therefore
I aplip 2 S NVF g1 IG e (6.201)

Next we consider b,,. By using the orthogonality of the LP projections we can write

b= P (VFuo) - VGy+(VE, )y - VGy)
A< A <A

* Z Z Py ((/V\Fh,r)w . gG;L/) .

ASH A<M <p

By using the Bernstein inequality and the finite band property, we obtain

~ —~ 1 ~ ~ ~
Ibull2 S 7 (rluth,mnH} IVGi i+ ||V(VFh,r)m|L;||VGA||L;)

A< A <A
+3 > MEE w2 VGl s
ASp A<M Zp
~ 1
SIVFIm > (2 640Gl + > W PIG )
A=p M=asp A<M =p
NPT IDITEEA [ 5
AN <p
Therefore
I bullp 12 SIVE Gl e (6.202)

Combining (6.201) and (6.202) yields
|2 (P, FIVG <yllg 12 S IVF It Gl e
which together with (6.200) gives the desired estimate. O
Lemma 25. For 0 < € < 1 there holds
1" 1Py. FIGIl2 12 + 11 VTP, FIG g 12 S IVPFIL 1 Gl 2 + IVF 1< 1G L
(6.203)
I €1Pu. FIGl 2 S (IVPFIL ) + IV F )]Gl e (6.204)

2
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Proof. We first use (6.195) to write ,u”e[P/L, F1G = ay, + by, where

ay = p'*e Z Pu(F,.-Gy) and b, = p'* Z[Ppu F1G,.
A> A<p

In view of || Fy|lzc < A~V F| 1o, it follows that

SNVF| o ASGl| 2.

2
U

—~ " 1+€
lale e SI9FI=] X2 (5) ™ 126Gl
A>[
To estimate by, we introduce M, (x) = [ e'*5m, (§)dg with m,(§) = ¥ (u=1&). Itis
easy to see that f [x]9| M, (x)|dx S u™9 for any g > —3. It follows from (6.193) that
[P, F1G3.(x) = Ay (%) + By (x) + Cpa (%),

where

A (x) = 9 F(x) / My (x — 9)(x — ) Gr(y)dy,
. 1
By (x)= / My (x—y)(x—y)] /0 [0 Far(x— 7 (x—y))—3; F<3.(0)] G ()d.

) 1
Crun(x) = / My (x — y)(x — y) /0 [0 Far (s — 7 (x—y))—3; Foz.(0)] dTGi.()dy.

For the term A, 5 (x), it is nonzero only if  and A are at the same magnitude since both
M, and G, are frequency localized at the level v and A respectively. Thus

o~ 1 ~
E 1Al S IV Fplliie Gl S NGl 2 IV F | oo
ASp

For the term B, ; we write

. 1ol
Bﬂ,ux)=/Mu<x—y)(x—yw(x—y>l/0 /0

— 100 F<) (x — 17'(x — y)) d7d7' Gy (y)dy.
Thus, by the Minkowski inequality we obtain
IBusll2 S w2 IV FliollGall e S w2 MGl 2 IV F | oo
By the similar argument as above, we can obtain
ICualle S IV Fasll 2 IGallze S w2232 IV Fayll 121Gl 2
Therefore

2 1—e A 1/2+€ eeen
”bu“LZSZZ(;) (;) IVl 21 Gall 2

A<p A >A

R A 1—e€
IVl (0 1Gll2 + Y (;) 1Gall.2)

A=p
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which implies that [|b, 2> < IVF | ||Gllge + |V2F || 120 |G|l ;2. This together
with the estimates on a, and b, gives the estimate for the first term on the left hand of
(6.203). (6.204) may follow by a slight modification of the estimate of ||b, ||lﬁL2-

Next we derive the estimate for the second term on the left hand of (6.203). By using
(6.195) we can write uV[P,, F1G = I, + J,,, where

I, = uf Z VP,(F.-G;) and J, := u‘V[P,, FIG<,.
A>u

The same treatment as for a;, implies
Mullzr2 S UVElL=llAGll 2.

In order to estimate J,, we write
Ju(x) = p€ / Vi (Mu(x — y)(F(x) = F(3))) G=u(y)dy
= uVF(x) / My (x = )G <, (y)dy
+ € / VM, (x = y)(F(x) = F(»)G <, (y)dy.

By writing F(x) — F(y) = (x — y)/ fol 0jF(x —t(x — y))dt, we can decompose J,
as J, = J,ﬁl) + J,iz) + JS), where

s = ,fw(x)/Mﬂ(x — )Gy,
I = u9; F(x) / VM, (x = y) @ = 3)/ G (n)dy.

. 1
VREIT / VM, (x — y)(x — y)’ /0 [0jF(x — (x — )= F(x)] dtG <, (y)dy.

By using [ |x||§MM(x)|dx < 1 and the frequency localization of M, and G, we can
obtain

1 2 S
P2 + 1722 S NGl 2 IV F | e
For the term J,£3), we can write
3
I (x)

. 1
— X [ IMu =@ =) [ [0y = 7 = ) = 0, P 0] 4G 02y
A=p

+us Z/ﬁMu(x —(x - y)j/ [0 Fon(x — T(x — y)) — 9 F>).(x)|dt Gy (y)dy.

1
A<p 0
By using the same treatment for By, ; and C,, ; in the proof of the first part, we derive

a2 S IV2Fl el Gllz + IV F Il |Gl e
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This together with the estimates on J, I(LI) and J,Ez) gives
Iullz 2 S IVFleliGllime + IV Fll g Gl 2

Combining this with the estimate on I, completes the proof of the second part of
(6.203). O

Proposition 14. For 0 < € < 1/2 there holds

1! VIPy. FIGlig 12 S IVF =Gl e +IV2FIl 1, NGl 1. (6:205)

e

Proof. As can be seen from the proof of the second part of (6.203), it suffices to estimate

the term a,, := ;LJ,(P). We can write a;, = aﬁ(}) + a,(f) + al(?), where

ap) = p'*e / VM, (x = y)(x = y)  (x — y)'
1 1
x / / —105 Fop (x — 77/ (x — ) dTd7' G < ()dy
0 Jo
0 = WO Fa () / VM = 0 = ) (= )G )y
af) = u'* / VM, (x = y)(x = y)  (x — y)'

1,
X /0 /0 -7 [8]21F<M(x —tt'(x —y)) — 8]2-1F<,L(x)] dtdt'G <, (y)dy.
By using the properties of the LP projections, it is easy to derive that

~ I 1/2+€ ~ ~
laPll2 S p D IVEF21G<pllie S - A2V F 2 IVG 2,
s A
A A=

- 1 _
laPll2 S pUV2Fapllie Gl S u* NGl 2 IVF | L.

1/2—€
_ = A ~ ~
la N2 S IV Fopll 2 1G <yl <D (—) A2V Rl 2 VG 2.
A<iL

Therefore, by taking the lﬁ—norm, we obtain
1 3 S2 2 S
lag Nz 2 + a2 S IVAFlgiaelGllans a? gz S IVFIelGlge.
The proof is thus complete. O

Lemma 26. For any € > 0 and any scalar functions F and G, there holds

IGllgt + 1 FllL |Gl give.  (6.206)

5+e

11 Pu(VF -Gz SIVFI
Proof. By the trichotomy law (6.187), we can write

PuF - G)=Pu(VF)y - G+ (P Foy - G+ Y Pu(VF, - Go)) =tay+by.
A>u
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For the terms b, it is easy to derive that ||1b,, ”lﬁLz S 1 Fll o |G| g1+ . For the term
a,, wWe can write

ay =[Py, G<pyIVF, + Gy - Py(VF),,. (6.207)

By the Bernstein inequality for LP projections, it is easy to obtain

~ ~ 1, -~
11°G < PuCV )l 2 S NG <pll s 1 Pu(V )l s S NGl pollw2 ™ (VE) i 2,
while by using Corollary 1 we have

1Py G J(VE) 2 S HIVG <l I(VF) g2

3
)\. 2~ 1 -~

> (—) VGl 212 (V)2

hep W

Therefore ”'“éal‘“lﬁlﬁ < ||’V\F||H%+€ |Gl 71. The combination of the estimates for a,,
and b, gives (6.206). O

By using Lemma 21 and (6.206), we can derive the following product estimate.
Lemma 27. For 0 < € < 1 there holds

IAV(F -Gz S |I§F|IH Gl gt + 1 F Nz [1G 1+ (6.208)

1+€
2
Proof. We observe that
IAV(F - G)l2 S InPu(VE - G)ll2 2
+ 1 TP FIVGl 2 + I F e ln PV Gl 2
(6.208) then follows by using Lemma 21 and (6.206). O

Lemma 28. Let 0 < € < 1/2. For any u > 1 and any scalar functions F and G, there
hold

1
. N2t S
ILPu FIGI S n 2 1G=(Y (5) T 1A Va2

A>p
1
A\ e
+Z(—) 192 Fyl2) (6.209)
A< H
<
s U 2+€ -~
1P FIGI S uIVFI=(Y (5) 12V Gall2
A>u
1
A\2~°¢ -
+Z(—) VGl 2) (6.210)
%

A=p
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Proof. In view of (6.195), we can write [Py, F|G = a, + b, + ¢, where

Q. Wang

ap = Z Pu(FrGy), by = Z[PM, FG<p, cu= Z[P’“ FlG <y

A> ASp A=
It is easy to derive that
1
1 Y\ 2te 2
lapls S p72 D (5)7 1A V2 Fulz 1Ga .
A>

By using Corollary 1 and the Bernstein inequality, we also have

1
R 1 M s
Ibullze S UGz D w IVFllLe S 2 G e Y (_) VL

A<p A<p

By the trichotomy law, ¢, can be simplified as ¢, = F>; - G,. Consequently

1
1 M 2t€ ~
leulem S 741Gl 3 (2) T PPl

A>

Thus we complete the proof of (6.209). Next we use the properties of LP projections

and Corollary 1 to derive that

1l o~ " 2+€ ~
laulls S p= 2 1VF I 3 (5) 169Gl

A>p

s A2 e
I[Py, FIG iz S p2 €||VF||L«>Z(—) 12V Gl 2.

h<u

In view of (6.195), the proof of (6.210) is completed. O

6.3. H€ elliptic estimates.

Lemma 29. For 0 < € < 1/2 and any X -tangent tensor field F there hold

IV2Fll ge STHAF | ge + 1 F g,
IVE gjzse S NATY2AF| 2 + | Fll 1.

6.211)
(6.212)

Proof. Consider (6.211) first. We will use err, to denote any error term satisfying

llerrull2 S w! || F|| . Using Corollary 1, we can obtain
P,V?F =V2P,F +err,.
Recall from Lemma 2 that
IV2PuFllp2 S IAPFll 2+ IVPLFllp2 + 1 PuFll 2
Recall also that A = g/ V¥,V ;, we have

APy F = PyAF +[Py. ¢71(3;0;F — [0, F) +err,.

(6.213)

(6.214)

(6.215)
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By Lemma 24 and 21, we have
|1 LPy. 8710:0; Flli2 2 < 10811 1 A2 F |2, (6.216)
I LPu. 810 Pl 2 S 118811 4. IO F 2. (6.217)
This together with (6.213)—(6.215) and interpolation give (6.211).

To prove (6.212) for the case of scalar function, we first use the equivalence between
g and g and the integration by parts to obtain

1P, VF|2, ~ /EgiquaiFPﬂadeug = /2 P FAP,Fdug.  (6218)
In view of (6.199), we can obtain

Z ‘u1+2€

2

/ P, F[P,, g"18;0;Fdju,
X

< WP F || 2| PP, 8719:0, F |l 2
"

S IVFEl gy IVellg I1ASOF | 2,

and in view of (6.197)

M1+26
2

N 1 ~ N
/P;LF'[P/u gF]BF‘ ,S ||M2+€P/LF||lﬁL2||V(g'F)“L(’HBFHHG

S IFN 1 19 F I8l a2
In view of (6.215) and (6.218), we have with p = €/(1/2 + €) that

~ 1—
S RUNPIFIR S A FI e+ 10F L) 10F 1 anc 1OFI g2
"

+ D NP F |l P PLAF | 2
I

By the fact ||g|| g2 < 1 and the Young’s inequality, we obtain (6.212).
To prove (6.212) for the vector field case, we note that

PNV F" = P,V;(F™y +[P,,'1F + I - P,F.
Using Corollary 1, then there holds P, /V\i F" =P, ’V\i (F™)+err,,, hence we can obtain
IVE™ | gazse SUVE™ | gijzse + 1 F 1.
Now we can use (6.212) for the scalar function case to derive
IVE™ | grze SNATYV2AFE™) | 2+ 1F g1 (6.219)
In view of (6.215), by deriving similar estimates as (6.216) and (6.217) we can obtain
1A 2AF™) |2 S IATV2AFR) |2 + |V F | 2.

Combining this with (6.219) completes the proof. O
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