
Gravitational Self-Force Correction to the Binding Energy of Compact Binary Systems

Alexandre Le Tiec,1 Enrico Barausse,1 and Alessandra Buonanno1,2

1Maryland Center for Fundamental Physics & Joint Space-Science Institute, Department of Physics, University of Maryland,
College Park, Maryland 20742, USA

2Radcliffe Institute for Advanced Study, Harvard University, 8 Garden Street, Cambridge, Massachusetts 02138, USA
(Received 23 November 2011; published 29 March 2012)

Using the first law of binary black-hole mechanics, we compute the binding energy E and total angular

momentum J of two nonspinning compact objects moving on circular orbits with frequency�, at leading

order beyond the test-particle approximation. By minimizing Eð�Þ we recover the exact frequency shift of
the Schwarzschild innermost stable circular orbit induced by the conservative piece of the gravitational

self-force. Comparing our results for the coordinate-invariant relation EðJÞ to those recently obtained from
numerical simulations of comparable-mass nonspinning black-hole binaries, we find a remarkably good

agreement, even in the strong-field regime. Our findings confirm that the domain of validity of

perturbative calculations may extend well beyond the extreme mass-ratio limit.
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Introduction.—The problem of motion has always
played a central role in physics, especially that of binary
systems in gravitational physics. While in Newtonian grav-
ity the two-body orbital motion can be solved analytically,
the exact general relativistic solution for two black holes
was only obtained very recently, by means of numerical
simulations [1].

The post-Newtonian (PN) approximation to general
relativity has proven a valuable tool to describe the dy-
namics of widely separated inspiralling compact-object
binaries [2], which are expected to be the main
gravitational-wave (GW) sources for existing ground-
based interferometric detectors (LIGO/Virgo) and future
space-based antennas. Furthermore, it has achieved suc-
cesses ranging from Solar-System tests of gravity [3], to
measurements of the damping rate of binary pulsars due to
GW emission [4], and to remarkable practical applications
such as the Global Positioning System (GPS) [5]. However,
the PN approximation becomes inaccurate during the late
stages of the binary’s inspiral, and breaks down during the
final plunge and merger. While numerical-relativity (NR)
simulations can describe these highly relativistic phases of
the evolution, they are still too time consuming to construct
GW template banks covering the whole parameter space of
compact binaries.

An alternative analytical approach that can improve our
knowledge of this highly relativistic regime is the gravita-
tional self-force (GSF) formalism, a natural extension of
black-hole perturbation theory [6]. The GSF approach
relies on an expansion in the binary’s mass ratio, and is
the natural tool to model extreme mass-ratio compact
binaries, which are among the most promising GW sources
for space-based detectors [7]. Unlike the PN approxima-
tion, which breaks down when the binary’s velocity be-
comes close to the speed of light, the GSF formalism
remains valid for highly relativistic systems, even in the

strong-field regime. Moreover, it has recently become clear
that the GSF can also describe at least certain aspects of the
dynamics of comparable-mass binary systems, such as
the relativistic periastron advance [8], possibly allowing
the construction of vaster and more accurate template
banks that would be crucial for GW astronomy.
In this Letter, we confirm that picture by computing the

binding energy E and angular momentum J of a nonspin-
ning circular-orbit compact binary system within the GSF
formalism. Our results provide a surprisingly accurate
description of comparable-mass binaries, as we verified
by comparing the coordinate-invariant relation EðJÞ that
we obtain with recent NR data [9]. In addition, they pave
the way to adiabatic evolutions of extreme mass-ratio
inspirals that include the effect of the first-order conserva-
tive GSF.
More specifically, we start from the first law of mechan-

ics for binaries of spinless compact objects moving along
circular orbits, and modeled as point particles. This rela-
tion, recently established in Ref. [10], gives the variations
of the total Arnowitt-Deser-Misner (ADM) mass M and
total angular momentum J of the binary system in response
to small variations of the individual masses mA (A ¼ 1, 2)
of the compact objects according to

�M���J ¼ z1�m1 þ z2�m2: (1)

Here we setG ¼ c ¼ 1 (a choice that we adopt throughout
this Letter), � is the circular-orbit frequency, and zA are
the so-called ‘‘redshift observables’’, namely, the gravita-
tional redshifts of light rays emitted from the particles, and
received far away from the binary along the direction
perpendicular to the orbital plane [11]. In a convenient
gauge, the redshifts simply coincide with the inverse time
components of the four-velocities u�A of the particles,
namely zA ¼ 1=utA [11]. The relation (1) is the point-
particle analog of the celebrated first law of black-hole

PRL 108, 131103 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

30 MARCH 2012

0031-9007=12=108(13)=131103(5) 131103-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.131103


mechanics �M��H�J ¼ 4�mirr�mirr [12], wheremirr ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð16�Þp

is the irreducible (or Christodoulou) mass of a
black hole of mass M, spin J ¼ aM, surface area A,
uniform surface gravity �, and horizon frequency �H.
(See Refs. [10,13] for more details on the first law of
black-hole mechanics, or ‘‘thermodynamics’’.)

In this Letter we show that the first law (1) can be used,
in conjunction with existing perturbative GSF calculations
of the redshift observable, to compute the binding energy
E � M� ðm1 þm2Þ and angular momentum J of com-
pact binary systems on circular orbits, at leading-order
beyond the test-particle approximation. (See Ref. [10] for
a discussion of the applicability of Eq. (1) to GSF
calculations.)

As an immediate application of our results, we recover
the exact frequency shift of the Schwarzschild innermost
stable circular orbit (ISCO) induced by the conservative
piece of the GSF, as computed previously from a stability
analysis of slightly eccentric orbits around a nonspinning
black-hole [14]. We then compare our newly derived GSF-
accurate expression for the invariant relation EðJÞ with the
results of spinless binary black-hole simulations with mass
ratios q � m1=m2 ¼ 1, 1=2, and 1=3 (we assumem1 � m2

throughout this Letter). Finally, we summarize our results
and discuss future work.

Binding energy and angular momentum.—The ADM
mass M, total angular momentum J, and redshift observ-
ables zA are all functions of the circular-orbit frequency �
and the individual massesmA. The first law (1) thus implies
@M=@� ¼ �@J=@� and @M=@mA ��@J=@mA ¼ zA.
Applying the change of variables ð�; m1; m2Þ !
ðm; �; xÞ, where m � m1 þm2 is the total mass, � �
m1m2=m

2 � �=m the symmetric mass ratio, and x �
ðm�Þ2=3 the usual dimensionless invariant PN parameter,
these relations can be combined to give

mz1 ¼ Mþ 2x

3

@M
@x

þ 1� 4�þ �

2

@M
@�

; (2a)

M ¼ M� 2x

3

@M
@x

; J ¼ � 2m

3
ffiffiffi
x

p @M
@x

; (2b)

where M � M��J can heuristically be viewed as

the energy of the binary in a corotating frame, and � �
ðm2 �m1Þ=m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4�
p

is the reduced mass difference.
To derive Eq. (2a), we used the fact that the dimensionless
ratioM=m is a function of � and x only [cf. the discussion
following Eq. (4.21) of Ref. [10]]. A similar equation for
particle 2 can be obtained by substituting � ! ��.

At first order beyond the test-particle approximation, the
following mass-ratio expansions hold for the redshift z1,

the specific binding energy Ê � ðM�mÞ=�, the dimen-

sionless angular momentum Ĵ � J=ðm�Þ, and M̂ �
ðM�mÞ=�:

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p þ � zSFðxÞ þOð�2Þ; (3a)

Ê ¼
�
1� 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p � 1

�
þ �ESFðxÞ þOð�2Þ; (3b)

Ĵ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� 3xÞp þ �JSFðxÞ þOð�2Þ; (3c)

M̂ ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p � 1Þ þ �MSFðxÞ þOð�2Þ: (3d)

The lowest-order terms are the well-known Schwarzschild
results in the test-mass limit. Since � ¼ q=ð1þ qÞ2 ¼ qþ
OðqÞ2, these equations remain valid if the symmetric mass
ratio � is replaced by the usual mass ratio q. Substituting
the expansions (3) in Eqs. (2), one obtains the following

relations between the various GSF corrections: zSFðxÞ ¼
2MSFðxÞ � 2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3x
p � 1Þ � x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p
, ESFðxÞ ¼

MSFðxÞ � 2x
3 M

0
SFðxÞ, and JSFðxÞ ¼ � 2

3
ffiffi
x

p M0
SFðxÞ, where

we denote M0
SF � dMSF=dx. Eliminating MSF, we then

find

ESFðxÞ ¼ 1

2
zSFðxÞ � x

3
z0SFðxÞ � 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3x
p

þ x

6

7� 24x

ð1� 3xÞ3=2 ; (4a)

JSFðxÞ ¼ � 1

3
ffiffiffi
x

p z0SFðxÞ þ
1

6
ffiffiffi
x

p 4� 15x

ð1� 3xÞ3=2 : (4b)

The knowledge of the GSF correction zSF to the redshift
(and thus of its first derivative z0SF ¼ dzSF=dx) therefore
immediately gives the corrections ESF and JSF to the test-
particle results for the binding energy and angular
momentum.
The GSF effect on the coordinate-invariant relation z1ðxÞ

was first computed in the Regge-Wheeler gauge in
Ref. [11]. Alternative GSF calculations based on different
gauges (harmonic gauge and radiative gauge) were later
found in agreement to within the numerical uncertainties
[15,16]. Collecting all the published GSF data [11,15–17],
we have at our disposal 55 data points for zSFðxÞ, with x
ranging from 0 to 1=5, and with relative errors lower than
10�6. In particular, 14 of these points lie in the ‘‘strong-
field interval’’ 5m � r � 10m, where r � m=x is an in-
variant measure of the separation.
Following Ref. [18], it is convenient to represent these

data by a compact analytic expression, in terms of a ratio of
polynomials in the PN parameter x. We adopt the model
zSFðxÞ ¼ 2xð1 þ a1x þ a2x

2Þ=ð1 þ a3x þ a4x
2 þ a5x

3Þ,
which accounts for the asymptotic behavior zSFðxÞ ¼ 2xþ
Oðx2Þ when x ! 0 [10]. Performing a standard least-
squares fit, we find that the coefficients a1 ¼ �2:185 22,
a2 ¼ 1:051 85, a3 ¼ �2:433 95, a4 ¼ 0:400 665, and
a5 ¼ �5:9991 reproduce the data towithin 10�5.We notice
that the extrapolation of our fit beyond the data point with
the smallest separation (r ¼ 5m) diverges very close to
r ¼ 3m. This suggests that the GSF contribution to z1
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may have a pole near the Schwarzschild circular photon
orbit (or ‘‘light-ring’’), located at xLR ¼ 1=3.

Using this fit for zSFðxÞ in Eqs. (4), the GSF contribu-

tions ESF and JSF to the binding energy Ê and angular

momentum Ĵ can easily be computed in the range 0 � x �
1=5, with a comparable accuracy.

Self-force correction to the Schwarzschild ISCO.—We
recall that the Schwarzschild ISCO is defined by the onset
of a dynamical (radial) instability for circular orbits. As a
first application of our results, we show how the GSF-
induced shift of the ISCO frequency can be recovered

very simply from the expressions (3b) and (4a) for Êð�Þ.
Beyond the test-particle approximation, the orbital fre-

quency of the ISCO is given by

m�ISCO ¼ 6�3=2 ½1þ �C� þOð�2Þ�; (5)

where the coefficient C�, which encodes the effect of the
conservative piece of the GSF, has recently been computed
by Barack and Sago (BS) [14,19]. Performing a stability
analysis of slightly eccentric orbits near r ¼ 6m, they
found CBS

� ¼ 1:2512ð4Þ [19]. This strong-field benchmark

has since then been used as a reference point for compari-
son with other analytical and numerical methods [20,21],
and for calibrations of the effective-one-body (EOB)
model [18,22–24].

On the other hand, the minimum-energy circular orbit
(MECO) is defined as the minimum of the binding energy

Êð�Þ; the MECO’s orbital frequency �MECO thus satisfies

@Ê

@�

���������MECO

¼ 0: (6)

It was shown in Ref. [25] that the notions of ISCO and
MECO are formally equivalent; hence �ISCO ¼ �MECO.
This result does not rely on any PN expansion or perturba-
tive analysis, and thus holds for any mass ratio, even in the
strong-field regime; it only requires that the binary’s
dynamics can be derived from a Hamiltonian. Inserting

Eqs. (3b) and (4a) for the binding energy Êð�Þ in the
condition (6), we then find the following expression for
the ISCO frequency shift:

C� ¼ 1

2
þ 1

4
ffiffiffi
2

p
�
1

3
z00SF

�
1

6

�
� z0SF

�
1

6

��
: (7)

In order to compute the GSF correction to the
Schwarzschild ISCO, one thus only needs the first and
second derivatives of the GSF correction to the redshift,
evaluated at x ¼ 1=6. By fitting our full data set for zSFðxÞ
(or the strong-field subset 5m � r � 10m only) to differ-
ent models, we find C� ¼ 1:2510ð2Þ, which agrees with
BS’s result CBS

� at the 1� level.

Moreover, Eq. (7) allows for a highly accurate determi-
nation of the ISCO frequency shift. Indeed, while previous
calculations relied on a stability analysis near a singular
point, using a GSF code capable of handling slightly

eccentric orbits, Eq. (7) only requires the evaluation of a
regular function near x ¼ 1=6, using a much simpler GSF
code for circular orbits. Current circular-orbit GSF codes
implemented in the frequency domain can already deliver
highly accurate results: for instance, the data reported in
Refs. [17,26] for the GSF correction to ut1 ¼ 1=z1 (for

separations r � 200m) are accurate to within 10�13, and
similar accuracies should be achievable at least down to
r ¼ 5m. With high-accuracy GSF data for zSF near x ¼
1=6, it will become possible to determine the ISCO fre-
quency shift C� much more accurately than ever before; a
valuable result given the physical significance of this
genuinely strong-field effect. In particular, this could prove
useful to cross-check the results of different GSF codes.
Comparison with numerical relativity.—We now com-

bine our results (3) and (4) for the binding energy Êð�Þ and
angular momentum Ĵð�Þ to compute the coordinate-

invariant relation ÊðĴÞ, at leading-order beyond the test-
mass approximation, and compare it to the results recently
obtained in Ref. [9] using accurate NR simulations [27]
(with Cauchy characteristic extraction [28]) of nonspin-
ning black-hole binaries with mass ratios q ¼ 1, 1=2, and
1=3. This comparison is presented in Fig. 1 for the q ¼ 1
case, and gives similar results for q ¼ 1=2 and q ¼ 1=3.

The curve labeled ‘‘Schw’’ shows the relation ÊðĴÞ for a
test mass on an adiabatic sequence of circular orbits around
a Schwarzschild black hole, given in parametric form by
the lowest-order terms in Eqs. (3b) and (3c). It necessarily
presents a cusp at the Schwarzschild ISCO, located at
m�Schw

ISCO ’ 0:068. As can be seen in Fig. 1, this result

is in reasonable agreement with the NR data all the way

down to the ISCO, where the difference reaches �Ê ’
�1:7� 10�3. The astonishing agreement between the
test-mass result and the NR result for q ¼ 1 suggests that

the relation ÊðĴÞ should be almost independent of q, at
least for ‘‘large’’ orbital separations. Indeed, we verified
this using the NR data for q ¼ 1, 1=2, and 1=3, as well as
the other models shown in Fig. 1.

The ÊðĴÞ adiabatic relation given in parametric form by
Eqs. (3b) and (3c) includes the effect of the conservative
GSF. Expressing Eqs. (3b) and (3c) in terms of the mass-
ratio q (which simply amounts to replacing � ! q), we
obtain the curve ‘‘GSFq’’. Given the large mass ratio
involved (q ¼ 1), the poor agreement with NR is expected,
and the agreement does not improve significantly for q ¼
1=2 or q ¼ 1=3. However, the GSF result expressed in
terms of the symmetric mass ratio � (‘‘GSF�’’) compares
remarkably well with the NR result, with a difference that
grows larger than the numerical error only near r ¼ 5m

(which corresponds to Ĵ ’ 3:126 for the ‘‘GSF�’’ model,

where it reaches �Ê ’ 3:5� 10�4).
For completeness, we also show the invariant relation

ÊðĴÞ as computed in the adiabatic PN approximation
(‘‘3PN’’) and in the EOB adiabatic model [‘‘EOB
(3PN)’’]. The PN result is given in the parametric form
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fÊð�Þ; Ĵð�Þg by, e.g., Eqs. (5.13) and (5.8) of Ref. [29],
where we set � ¼ 1=4, and use the known values !static ¼
0 and !kinetic ¼ 41=24 for the 3PN static and kinetic
‘‘ambiguity parameters.’’ We observe very good agreement
with the NR data all the way down to the cusp occurring at
the 3PN MECO (m�3PN

MECO ’ 0:129), where the difference

grows to �Ê ’ �10�3. In that respect, we point out that
this PN approximant performs much better than the PN
approximant considered in Ref. [9] [see Eq. (5) there],

which is obtained through the series reversion Ê½�ðĴÞ�
and subsequent reexpansion through 3PN order. Although
technically correct, the resulting (univalued) function nec-
essarily fails to capture the cusp at the MECO. Moreover,
we checked that even in the test-particle limit the para-

metric form fÊð�Þ; Ĵð�Þg is closer than the expression

Ê½�ðĴÞ� to the Schwarzschild result. The poor behavior

of some PN approximants, such as Ê½�ðĴÞ�, is not a

surprise in PN theory (see, e.g., Ref. [30]). The EOB result
in Fig. 1 is produced using the 3PN model of Ref. [31],
with a (1,3) Padé model for the effective metric component
gefftt (see, e.g., Ref. [9]). As can be seen the difference

with respect to the NR data grows as large as �Ê ’
�9� 10�4 near the cusp occurring at the EOB ISCO
(m�EOB

ISCO ’ 0:088).
We emphasize that the NR curve was obtained by

Ref. [9] from an actual binary black-hole evolution, and
therefore includes nonadiabatic effects during the late in-
spiral and plunge. These effects are not captured by our
adiabatic models, and may in part explain the differences

from the NR result in Fig. 1 at small Ĵ (i.e., at large�). We
also note that the remarkable agreement between the adia-

batic models and the NR data for ÊðĴÞ does not automati-
cally imply that the same will hold true for the invariant

relations Êð�Þ and Ĵð�Þ.
Finally, we stress that although the GSF-accurate bind-

ing energy necessarily has an ISCO/MECO for small mass
ratios (since for q ¼ 0 it reduces to the binding energy of a
test mass in a Schwarzschild background), it does not
present an ISCO/MECO (at least for r � 5m) for q ¼ 1,
1=2, and 1=3. It remains to be seen if this holds true even
when GSF data for r < 5m become available.
Summary and future work.—Recently, the general rela-

tivistic periastron advance of nonspinning black-hole bi-
naries on quasicircular orbits was computed in NR, and
compared to the prediction of the GSF (as well as to other
approximation techniques) [8]. By expressing the GSF
result in terms of the symmetric mass ratio � rather than
the usual mass ratio q, the GSF prediction was found in
remarkable agreement with the exact NR result, even for
comparable masses. This prompted the authors of Ref. [8]
to suggest that the domain of validity of perturbative
calculations may extend well beyond the extreme mass-
ratio limit. Our new, alternative comparison based on the

invariant relation ÊðĴÞ strongly supports this expectation.
A similar observation was previously made for the dissi-
pative component of the GSF, based on a comparison of
perturbative and NR calculations of the GW energy flux
for head-on collisions [32]. The ‘‘scaling-up’’ procedure
q ! � has also been used in the context of perturbative
calculations of the linear momentum flux for quasicircular
orbits [33,34]. In the future, our analysis should be revis-
ited using more GSF data in the very strong-field region
3m< r � 5m, as well as including dissipative effects in a
consistent GSF evolution [35].

Our expression for the binding energy Êð�Þ can also be
used to compute the EOB effective metric component gefftt

exactly, through linear order in the mass ratio.
Furthermore, by combining this result with the recent
GSF/EOB comparison of Ref. [18] for the periastron ad-
vance in quasicircular compact binaries, the geffrr compo-
nent of the EOB effective metric can also be computed.
These results, which completely determine the EOBmetric
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FIG. 1 (color online). In the upper panel, the (specific) binding
energy Ê ¼ E=� of an equal-mass black-hole binary is shown as
a function of the (dimensionless) total angular momentum Ĵ ¼
J=ð�mÞ, as computed in numerical-relativity (‘‘NR’’), in PN
theory (3PN), in the EOB model [‘‘EOB(3PN)’’], in the test-
particle approximation (Schw), and including the conservative
gravitational self-force (‘‘GSFq’’ and ‘‘GSF�’’). The 3PN, EOB
(3PN), and test-particle curves show cusps at their respective
ISCO/MECO; the lower branches correspond to stable circular
orbits, while the upper branches correspond to unstable circular
orbits. We might find similar branches for the GSF curves when
more data closer to the light-ring become available. The
‘‘GSFq’’ and ‘‘GSF�’’ curves are only shown in the region
where numerical data for the self-force are available (i.e., r �
5m, corresponding to Ĵ ’ 3:126 for the ‘‘GSF�’’ model and to
Ĵ ’ 1:896 for the ‘‘GSFq’’ model). The differences between the
various models and the NR result, �Ê � Ê� ÊNR, are shown in
the lower panel (down to the ISCO/MECO, when that is present),
with the exception of the ‘‘GSFq’’ model, which quickly grows
beyond the plot range. The shaded area represents the error
affecting the NR results.
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for spinless binaries through linear order in the mass ratio,
are presented in the companion paper [36].

In the Schwarzschild spacetime, circular orbits for mas-
sive particles exist for any radius r > 3m. The redshift
observable can thus be calculated, at least in principle, at
any such radius. When more data for zSFðxÞ near x ¼ 1=3
become available, our formulas (3) and (4) for the binding
energy and angular momentum will provide information
about the shift of the light-ring frequency induced by the
conservative GSF acting on ultrarelativistic particles, or
photons.

In this respect, we emphasize that the connections estab-
lished by Eqs. (4) are particularly useful to explore the
highly relativistic regime: while standard perturbative
analyses cannot describe the binary’s dynamics beyond
the ISCO [37], the relations (4) give direct access to the
binding energy E and angular momentum J in the very
strong-field regime 3m< r � 6m, using only ‘‘routine’’
GSF calculations of the redshift z1 for circular orbits.
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[13] J. L. Friedman, K. Uryū, and M. Shibata, Phys. Rev. D 65,

064035 (2002); Phys. Rev. D 70, 129904(E) (2004).
[14] L. Barack and N. Sago, Phys. Rev. Lett. 102, 191101

(2009).
[15] N. Sago, L. Barack, and S. Detweiler, Phys. Rev. D 78,

124024 (2008).
[16] A. G. Shah et al., Phys. Rev. D 83, 064018 (2011).
[17] L. Blanchet et al., Phys. Rev. D 81, 064004 (2010).
[18] L. Barack, T. Damour, and N. Sago, Phys. Rev. D 82,

084036 (2010).
[19] L. Barack and N. Sago, Phys. Rev. D 81, 084021

(2010).
[20] C. O. Lousto et al., Classical Quantum Gravity 27, 114006

(2010).
[21] M. Favata, Phys. Rev. D 83, 024027 (2011).
[22] T. Damour, Phys. Rev. D 81, 024017 (2010).
[23] E. Barausse and A. Buonanno, Phys. Rev. D 81, 084024

(2010).
[24] Y. Pan et al., Phys. Rev. D 84, 124052 (2011).
[25] A. Buonanno, Y. Chen, and M. Vallisneri, Phys. Rev. D 67,

024016 (2003); Phys. Rev. D 74, 029903(E) (2006).
[26] L. Blanchet et al., Phys. Rev. D 81, 084033 (2010).
[27] D. Pollney et al., Phys. Rev. D 83, 044045 (2011).
[28] C. Reisswig et al., Phys. Rev. Lett. 103, 221101 (2009).
[29] T. Damour, P. Jaranowski, and G. Schäfer, Phys. Rev. D
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62, 084011 (2000).
[32] S. L. Detweiler, in Sources of Gravitational Radiation,

edited by L. Smarr (Cambridge University Press,

Cambridge, England, 1979), p. 211; L. Smarr, in

Sources of Gravitational Radiation, edited by L. Smarr

(Cambridge University Press, Cambridge, England, 1979),

p. 245.
[33] M. J. Fitchett and S. Detweiler, Mon. Not. R. Astron. Soc.

211, 933 (1984).
[34] M. Favata, S. A. Hughes, and D. E. Holz, Astrophys. J.

607, L5 (2004).
[35] N. Warburton, S. Akcay, L. Barack, J. R. Gair, and N.

Sago, Phys. Rev. D 85, 061501(R) (2012).
[36] E. Barausse, A. Buonanno, and A. Le Tiec, Phys. Rev. D

85, 064010 (2012).
[37] L. Barack and N. Sago, Phys. Rev. D 83, 084023

(2011).

PRL 108, 131103 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

30 MARCH 2012

131103-5

http://dx.doi.org/10.1103/PhysRevLett.95.121101
http://dx.doi.org/10.1103/PhysRevLett.96.111101
http://dx.doi.org/10.1103/PhysRevLett.96.111102
http://dx.doi.org/10.1086/167917
http://dx.doi.org/10.1086/167917
http://dx.doi.org/10.1088/0264-9381/24/17/R01
http://dx.doi.org/10.1088/0264-9381/24/17/R01
http://dx.doi.org/10.1103/PhysRevLett.107.141101
http://arXiv.org/abs/1110.2938
http://dx.doi.org/10.1103/PhysRevD.85.064039
http://dx.doi.org/10.1103/PhysRevD.85.064039
http://dx.doi.org/10.1103/PhysRevD.77.124026
http://dx.doi.org/10.1007/BF01645742
http://dx.doi.org/10.1007/BF01645742
http://dx.doi.org/10.1103/PhysRevD.65.064035
http://dx.doi.org/10.1103/PhysRevD.65.064035
http://dx.doi.org/10.1103/PhysRevD.70.129904
http://dx.doi.org/10.1103/PhysRevLett.102.191101
http://dx.doi.org/10.1103/PhysRevLett.102.191101
http://dx.doi.org/10.1103/PhysRevD.78.124024
http://dx.doi.org/10.1103/PhysRevD.78.124024
http://dx.doi.org/10.1103/PhysRevD.83.064018
http://dx.doi.org/10.1103/PhysRevD.81.064004
http://dx.doi.org/10.1103/PhysRevD.82.084036
http://dx.doi.org/10.1103/PhysRevD.82.084036
http://dx.doi.org/10.1103/PhysRevD.81.084021
http://dx.doi.org/10.1103/PhysRevD.81.084021
http://dx.doi.org/10.1088/0264-9381/27/11/114006
http://dx.doi.org/10.1088/0264-9381/27/11/114006
http://dx.doi.org/10.1103/PhysRevD.83.024027
http://dx.doi.org/10.1103/PhysRevD.81.024017
http://dx.doi.org/10.1103/PhysRevD.81.084024
http://dx.doi.org/10.1103/PhysRevD.81.084024
http://dx.doi.org/10.1103/PhysRevD.84.124052
http://dx.doi.org/10.1103/PhysRevD.67.024016
http://dx.doi.org/10.1103/PhysRevD.67.024016
http://dx.doi.org/10.1103/PhysRevD.74.029903
http://dx.doi.org/10.1103/PhysRevD.81.084033
http://dx.doi.org/10.1103/PhysRevD.83.044045
http://dx.doi.org/10.1103/PhysRevLett.103.221101
http://dx.doi.org/10.1103/PhysRevD.62.044024
http://dx.doi.org/10.1103/PhysRevD.62.044024
http://dx.doi.org/10.1103/PhysRevD.76.124038
http://dx.doi.org/10.1103/PhysRevD.62.084011
http://dx.doi.org/10.1103/PhysRevD.62.084011
http://dx.doi.org/10.1086/421552
http://dx.doi.org/10.1086/421552
http://dx.doi.org/10.1103/PhysRevD.85.061501
http://dx.doi.org/10.1103/PhysRevD.85.064010
http://dx.doi.org/10.1103/PhysRevD.85.064010
http://dx.doi.org/10.1103/PhysRevD.83.084023
http://dx.doi.org/10.1103/PhysRevD.83.084023

