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In the effective-one-body (EOB) approach, the dynamics of two compact objects of masses m1 and m2

and spins S1 and S2 is mapped into the dynamics of one test particle of mass � ¼ m1m2=ðm1 þm2Þ and
spin S� moving in a deformed Kerr metric with mass M ¼ m1 þm2 and spin SKerr. In a previous paper,

we computed an EOB Hamiltonian for spinning black-hole binaries that (i) when expanded in post-

Newtonian orders, reproduces the leading-order spin-spin coupling and the leading and next-to-leading

order spin-orbit couplings for any mass ratio, and (iii) reproduces all spin-orbit couplings in the test-

particle limit. Here we extend this EOB Hamiltonian to include next-to-next-to-leading spin-orbit

couplings for any mass ratio. We discuss two classes of EOB Hamiltonians that differ by the way the

spin variables are mapped between the effective and real descriptions. We also investigate the main

features of the dynamics when the motion is equatorial, such as the existence of the innermost stable

circular orbit and of a peak in the orbital frequency during the plunge subsequent to the inspiral.
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I. INTRODUCTION

Coalescing compact binaries composed of neutron
stars and/or black holes are among the most promising
gravitational-wave sources for ground-based detectors,
such as the Laser Interferometer Gravitational-wave
Observatory (LIGO) [1], Virgo [2], GEO [3], the Large
Cryogenic Gravitational Telescope [4], and future space-
based detectors.

So far, the search for gravitational waves with LIGO,
GEO, and Virgo detectors has focused on nonspinning
compact binaries [5–9], although in Ref. [10] single-spin
templates were used to search for inspiraling spinning
compact objects. Within the next 4–5 years, LIGO and
Virgo detectors will be upgraded to a sensitivity such that
event rates for coalescing binary systems will increase by a
factor of 1000. Thus, it is timely and necessary to develop
more accurate templates that include spin effects. For
maximally spinning objects, we expect that reasonably
accurate templates would need to be computed at least
through 3.5PN order. In the nonspinning case, studies at
the interface between numerical and analytical relativity
have demonstrated that templates computed at 3.5PN order
are indeed reasonably accurate.

In the last few years, motivated by the search for gravi-
tational waves, the knowledge of spin effects in the two-
body dynamics and gravitational-wave emission within the
post-Newtonian (PN)1 approximation has improved
considerably. In particular, spin-orbit (SO) effects in the
two-body equations of motion are currently known through
3.5PN order (i.e., 2PN order beyond the leading SO term)

[11–19], and in the energy flux through 3PN order
[12,13,20–23] (i.e., 1.5PN order beyond the leading SO
term). Moreover, spin-spin (SS) effects have been com-
puted through 3PN order (i.e., 1PN order beyond the lead-
ing SS term) in the conservative dynamics [11,20,24–34]
and also in the multipole moments [35].
In order to build reliable templates and search for

gravitational-waves from high-mass compact binaries that
merge in the detector bandwidth, it is crucial to improve the
PN approximation by resumming the dynamics and gravi-
tational emission in a suitable way and by using numerical
relativity and perturbation theory as a guidance. The
effective-one-body approach (EOB) [36–40] offers the
possibility of fulfilling this goal. The EOB approach uses
the results of PN theory, not in their original Taylor-
expanded form (i.e., as polynomials in v=c), but instead
in a suitably resummed form. In particular, it maps the
dynamics of two compact objects of masses m1 and m2,
and spinsS1 andS2, into the dynamics of one test particle of
mass � ¼ m1m2=ðm1 þm2Þ and spin S� moving in a de-
formed Kerr metric with mass M ¼ m1 þm2 and spin
SKerr. The deformation parameter is the symmetric mass
ratio � ¼ m1m2=ðm1 þm2Þ2, which ranges between 0
(test-particle limit) and 1=4 (equal-mass limit). The analy-
ses and theoretical progress made in Refs. [41–57] have
demonstrated that faithful EOB templates describing the
full signal (i.e., the inspiral, merger and ringdown) can be
built and used in real searches [9].
Here we build on previous work [39,46,58,59], employ

the recent results of Ref. [19], and extend the EOB con-
servative dynamics, i.e. the EOB Hamiltonian, through
3.5PN order in the SO couplings. Since the mapping be-
tween the PN-expanded Hamiltonian (or real Hamiltonian)
and the EOB Hamiltonian is not unique, we explore two

1We refer to n PN as the order equivalent to terms Oðc�2nÞ in
the equations of motion beyond the Newtonian acceleration.
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specific classes of EOB Hamiltonians, which differ by the
way the spin variables of the real and effective descriptions
are mapped.

This paper is organized as follows. In Sec. II, after
reviewing the logic underpinning the construction of the
EOB Hamiltonian, we proceed in steps and extend the
EOB Hamiltonian proposed in Ref. [46] through 3.5PN
order in the SO couplings. In particular, in Sec. II A we
derive the PN-expanded Arnowitt-Deser-Misner (ADM)
Hamiltonian in the EOB canonical coordinates; then, after
computing in Sec. II B the effective Hamiltonian corre-
sponding to the canonically transformed PN-expanded
ADM Hamiltonian, we compare it (in Sec. II C) to the
deformed Kerr Hamiltonian for a spinning test particle
[46], and work out (in Secs. II D and II E) two classes of
EOB Hamiltonians. In Sec. III, we study the dynamics of
these Hamiltonians for equatorial orbits, and in Sec. IV we
summarize our main conclusions.

We use geometric units G ¼ c ¼ 1 throughout the pa-
per, except when performing PN expansions, where powers
of the speed of light c are restored and play the role of
book-keeping parameters.

II. THE EFFECTIVE-ONE-BODY HAMILTONIAN
FOR TWO SPINNING BLACK HOLES

The main ingredient of the EOB approach is the real
PN-expanded ADM Hamiltonian (or real Hamiltonian)
describing two black holes with masses m1, m2 and spins
S1, S2. The real Hamiltonian is then canonically trans-
formed and subsequently mapped to an effective
Hamiltonian Heff describing a test particle of mass � ¼
m1m2=ðm1 þm2Þ and suitable spin S�, moving in a de-
formed Kerr metric of mass M ¼ m1 þm2 and suitable
spin SKerr. The deformation is regulated by the binary’s
symmetric mass-ratio parameter, � ¼ �=M, and therefore
disappears in the test-particle limit � ! 0. The so-called
improved real (or EOB) Hamiltonian reads

H
improved
real ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

�
Heff

�
� 1

�s
: (1)

The computation of the EOB Hamiltonian consists of
several steps. We briefly review these steps and the under-
lying logic that we will follow in the next sections:
(i) We apply a canonical transformation to the PN-

expanded ADM Hamiltonian using the Lie method,
obtaining the PN-expanded Hamiltonian in EOB
canonical coordinates (see Sec. II A);

(ii) We compute the effective Hamiltonian correspond-
ing to the canonically transformed PN-expanded
ADM Hamiltonian (see Sec. II B);

(iii) We PN-expand the deformed-Kerr Hamiltonian for
a spinning test-particle derived in Ref. [46] (see
Sec. II C);

(iv) We compare (ii) and (iii), and work out the mapping
between the spin variables in the real and effective
descriptions, and compute the improved EOB
Hamiltonian (see Secs. II D and II E).

A. The ADM Hamiltonian canonically
transformed to EOB coordinates

Following Ref. [46], we denote the ADM canonical
variables in the binary’s center-of-mass frame with r0 and
p0, and we introduce the following spin variables:

� ¼ S1 þ S2; (2)

� � ¼ S1

m2

m1

þ S2

m1

m2

: (3)

Henceforth, to keep track of the PN orders, we rescale the
spins variables as �� ! ��c and � ! �c.
We use the spin-independent part of the ADM

Hamiltonian through 3PN order [38], and we include SO
effects through 2PN order beyond the leading-order effects
(1.5PN), thus through 3.5PN order. In particular, the ADM
SO Hamiltonian at 3.5PN order was computed recently in
Ref. [19] (the ADM SO Hamiltonian at 1.5PN was com-
puted in Ref. [60], and at 2.5PN in Ref. [58]). In the
binary’s center-of-mass, the ADM SO Hamiltonian reads

HADM
SO ðr0;p0;��;�Þ ¼ 1

c3
L0

r03
� ðgADM� � þ gADM�� ��Þ; (4)

where we indicate L0 ¼ r0 � p0 and

gADM� ¼ 2þ 1

c2

�
19

8
�p̂02þ 3

2
�ðn0 � p̂0Þ2�ð6þ 2�ÞM

r0

�
þ 1

c4

�
15

16
�2ðn0 � p̂0Þ4þ 21

2
ð1þ�Þ

�
M

r0

�
2

þ 1

8
�ð�9þ 22�Þp̂04� 1

16
�ð314þ 39�ÞM

r0
p̂02� 1

16
�ð256þ 45�ÞM

r0
ðn0 � p̂0Þ2þ 3

16
�ð�4þ 9�Þp̂02ðn0 � p̂0Þ2

�
;

(5a)

gADM�� ¼ 3

2
þ 1

c2

��
�5

8
þ 2�

�
p̂02þ 3

4
�ðn0 � p̂0Þ2�ð5þ 2�ÞM

r0

�
þ 1

c4

�
1

8
ð75þ 82�Þ

�
M

r0

�
2þ 1

16
ð7� 37�þ 39�2Þp̂04

� 3

16
ð�18þ 86�þ 13�2ÞM

r0
p̂02� 3

16
�ð32þ 15�ÞM

r0
ðn0 � p̂0Þ2þ 9

16
�ð�1þ 2�Þp̂02ðn0 � p̂0Þ2

�
; (5b)
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with n0 ¼ r0=r0, and where we have introduced the re-
scaled conjugate momentum p̂0 ¼ p0=�.

In order to canonically transform the ADM Hamiltonian
to EOB coordinates, various approaches are possible. A
popular method, used in the previous work on the EOB
model [37,38,58], is to use a generating function that
produces a near-identity transformation, i.e. one of the

form ~Gðq0; �Þ ¼ q0i�i þ �Gðq0; �Þ, where ðq; �Þ are the
phase variables (including the angles defining the spins and
their conjugate momenta; see Ref. [59]) and � is a small
parameter. Expressing the initial ‘‘primed’’ coordinates
(the ADM coordinates) in terms of the new ‘‘unprimed’’
coordinates (the EOB coordinates), one gets

q0i ¼ qi � �
@Gðq0; �Þ

@�i

¼ qi � �
@Gðq;�Þ

@�i

þ �2
@2Gðq;�Þ
@�i@q

j

@Gðq; �Þ
@�j

þOð�3Þ; (6a)

�0
i ¼ �i þ �

@Gðq0; �Þ
@q0i

¼ �i þ �
@Gðq; �Þ

@qi
� �2

@2Gðq; �Þ
@qi@qj

@Gðq; �Þ
@�j

þOð�3Þ: (6b)

Because under a time-independent canonical transformation the Hamiltonian transforms as Hðq; pÞ ¼ H0ðq0; p0Þ,
Eqs. (6) imply

Hðq;�Þ ¼ H0ðq0; �0Þ

¼ H0ðq; �Þ þ �

�
@H0ðq; �Þ

@�i

@Gðq;�Þ
@qi

� @H0ðq; �Þ
@qi

@Gðq;�Þ
@�i

�
þ �2

�
@H0ðq; �Þ

@qi
@2Gðq; �Þ
@�i@q

j

@Gðq; �Þ
@�j

� @H0ðq; �Þ
@�i

@2Gðq; �Þ
@qi@qj

@Gðq;�Þ
@�j

þ 1

2

@2H0ðq; �Þ
@qi@qj

@Gðq;�Þ
@�i

@Gðq; �Þ
@�j

þ 1

2

@2H0ðq;�Þ
@�i@�j

@Gðq; �Þ
@qi

@Gðq; �Þ
@qj

� @2H0ðq;�Þ
@qi@�j

@Gðq; �Þ
@�i

@Gðq;�Þ
@qj

�
þOð�3Þ: (7)

The terms of orderOð�Þ in this equation can be rewritten as
�fG;H0g, which is very convenient because it transforms a
sum over all the phase variables (including the angles
defining the spins and their conjugate momenta) into a
Poisson bracket that can be computed using only the
commutation relations fxi; pjg ¼ �i

j, fxi; SjðaÞg ¼ 0,
fpi; S

j
ðaÞg ¼ 0, and fSiðaÞ; SjðbÞg ¼ �ðaÞðbÞ�ijkSkðaÞ (a; b ¼ 1; 2

being indices that distinguish between the two black
holes). Unfortunately, the terms Oð�2Þ cannot be easily
expressed in terms of Poisson brackets, which makes
them hard to compute (because the spin variables must
be carefully taken into account in the sums). Also, the
generalization of Eq. (7) to higher orders in � becomes
more and more complicated.

A possible alternative to the generating function method
mentioned above is given by the so-called Lie method [61].
This approach exploits the fact that the flux of the
Hamilton equations is canonical. Therefore, one can define
a fictitious Hamiltonian H ðq;�Þ whose flux sends some
initial data ðq;�Þ to ðq0ðq; �; �Þ; �0ðq;�; �ÞÞ, where � is
the ‘‘time’’ variable of this fictitious Hamiltonian. The
canonical transformation is then simply given by
ðq0ðq; �; �Þ; �0ðq; �; �ÞÞ. The advantage of this approach

is that any function fðq; �Þ satisfies _f ¼ ff;H g (where we
denote with _¼ d=d�) under the Hamiltonian flux of H .
Defining for convenience G ¼ �H , this equation be-

comes _f ¼ fG; fg, and denoting the differential operator
fG; . . .g by LG, a Taylor expansion yields

fðq0ðq;�;�Þ;�0ðq;�;�ÞÞ¼X1
n¼0

�n

n!
Ln

Gfðq;�Þ

¼ expð�LGÞfðq;�Þ
¼fðq;�Þþ�fG;fgðq;�Þ
þ1

2
�2fG;fG;fggðq;�ÞþOð�3Þ:

(8)

Specializing to the (nonfictitious) Hamiltonian H0, we
obtain the equivalent of Eq. (7), that is

Hðq; �Þ ¼ H0ðq0; �0Þ
¼ H0ðq;�Þ þ �fG; H0gðq; �Þ

þ 1

2
�2fG; fG; H0ggðq; �Þ þOð�3Þ: (9)

As already mentioned, the above expression allows us to
account for the spin variables very easily, if necessary,2 by

means of the commutation relations fxi; SjðaÞg ¼ 0,

fpi; S
j
ðaÞg ¼ 0, and fSiðaÞ; SjðbÞg ¼ �ðaÞðbÞ�ijkSkðaÞ.

In this paper we will use the Lie method to generate the
canonical transformation from ADM to EOB coordinates.
In particular, we assume

2The Poisson brackets of the spin variables with themselves do
not enter in the computations that we perform in this paper, but
they do enter at higher PN orders.
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G ðr;pÞ ¼ r � pþGNSðr;pÞ þGSðr;p;��;�Þ; (10)

where GNS is the purely orbital part of the fictitious
Hamiltonian, while GS is the spin-dependent part, which
we assume to be linear in the spins since in this paper we
focus on the SO terms only. Because the transformations
(7) and (9) agree at leading order in the perturbative
parameter �, G and G must agree at leading PN order. In
particular, since the purely orbital generating function for
the transformation from ADM to EOB coordinates starts at
1PN, GNS must start at 1PN order too, that is

GNSðr;pÞ ¼ GNS1PNðr;pÞ þ GNS2PNðr;pÞ þO
�
1

c6

�
; (11)

where GNS1PN must coincide withGNS1PN, and therefore be
given by [37]

GNS1PNðr;pÞ ¼ 1

c2
ðr � pÞ

�
� 1

2
�p̂2 þM

r

�
1þ 1

2
�

��
: (12)

At 2PN, instead, GNS does not coincide with GNS, but a
computation similar to the one in Ref. [37] easily shows
that

GNS2PNðr;pÞ ¼ 1

c4
ðr � pÞ

�
�p̂4 þ �

M

r
p̂2

þ 	
M

r
ðn � p̂Þ2 þ �

�
M

r

�
2
�
; (13)

with

� ¼ �

8
; � ¼ �

4
ð4� �Þ; (14a)

	 ¼ �
4þ �

8
; � ¼ 1� 7�þ �2

4
: (14b)

[Note that the functional form (13) is the same as for
GNS2PN, but the values of the parameters �, �, 	, and �
are different from those of Ref. [37].]

Similarly, the spin-dependent part of the fictitious
Hamiltonian, GS, must start like GS at 2.5PN order:

GSðr;p;��;�Þ ¼ GS2:5PNðr;p;��;�Þ
þGS3:5PNðr;p;��;�Þ þO

�
1

c9

�
: (15)

and if we restrict to functions that are linear in the spin
variables, it must be [15]

GS2:5PNðr;p;��;�Þ ¼ 1

c5r3
ðr � p̂Þ½a0ð�ÞðL � �Þ

þ b0ð�ÞðL � ��Þ�; (16)

where a0ð�Þ and b0ð�Þ are arbitrary gauge functions. [Note
that restricting to functions that are linear in the spin
variables is justified because here we are looking at SO
effects only, but in general cubic terms in the spin may be
present; see Ref. [46].]
The most general form for GS at 3.5PN order is instead,

if we restrict again to functions linear in the spins,

GS3:5PNðr;pÞ ¼ 1

c7r3
ðr � p̂Þ

�
ðL � �Þ

�
a1ð�Þp̂2 þ a2ð�ÞMr

þ a3ð�Þðn � p̂Þ2
�
þ ðL � ��Þ½b1ð�Þp̂2

þ b2ð�ÞMr þ b3ð�Þðn � p̂Þ2
��
; (17)

where aið�Þ and bið�Þ with i ¼ 1; 2; 3 are other arbitrary
gauge functions. To ease the notation, henceforth we drop
the � dependence in the gauge parameters, both at 2.5PN
and 3.5PN order, and will denote them simply with ai and
bi (with i ¼ 0; 3).
Applying Eq. (9), we obtain that the 3.5 SO Hamiltonian

in EOB coordinates is given by

HSO3:5PN ¼ HADM
SO3:5PN þ fGNS2PN; H

ADM
SO1:5PNg

þ fGNS1PN; H
ADM
SO2:5PNg þ fGS2:5PN; H

ADM
1PN g

þ fGS3:5PN; H
ADM
Newt g þ

1

2
fGNS1PN; fGNS1PN; H

ADM
SO1:5PNgg

þ 1

2
fGNS1PN; fGS2:5PN; H

ADM
Newt gg

þ 1

2
fGS2:5PN; fGNS1PN; H

ADM
Newt gg: (18)

A tedious but straightforward calculation gives the several
terms entering the above equation:

fGNS2PN; H
ADM
SO1:5PNg ¼

3

c7r3
L �

�
2� þ 3

2
��

��
�

�
M

r

�
2 þ �p̂4 þ �

M

r
p̂2 þ 4�p̂2ðn � p̂Þ2 þ ð2�þ 3	ÞM

r
ðn � p̂Þ2

�
; (19)

fGNS1PN; H
ADM
SO2:5PNg ¼

1

c7r3
L � �

�
�4ð6þ 5�þ �2Þ

�
M

r

�
2 � 95

16
�2p̂4 þ 1

16
�ð382þ 159�ÞM

r
p̂2 � 63

8
�2p̂2ðn � p̂Þ2

� 15

2
�2ðn � p̂Þ4 þ 1

8
�ð190þ 63�ÞM

r
ðn � p̂Þ2

�
þ 1

c7r3
L � ��

�
�2ð10þ 9�þ 2�2Þ

�
M

r

�
2

þ 5

16
�ð5� 16�Þp̂4 þ 1

16
ð�50þ 295�þ 144�2ÞM

r
p̂2 þ 3

8
�ð5� 17�Þp̂2ðn � p̂Þ2

� 15

4
�2ðn � p̂Þ4 þ 1

8
ð10þ 151�þ 57�2ÞM

r
ðn � p̂Þ2

�
; (20)
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fGS2:5PN; H
ADM
1PN g ¼ 1

c7r3
ða0L � � þ b0L � ��Þ

��
M

r

�
2 þ 1

2
ð�1þ 3�Þp̂4 � 3

2
ð3þ �ÞM

r
p̂2

þ 9

2
ð2þ �ÞM

r
ðn � p̂Þ2 � 3

2
ð�1þ 3�Þp̂2ðn � p̂Þ2

�
; (21)

fGS3:5PN; H
ADM
Newt g ¼

1

c7r3
L � �

�
�a2

�
M

r

�
2 þ a1p̂

4 þ ða2 � a1ÞMr p̂2 � ð4a2 þ 2a1 þ 3a3ÞMr ðn � p̂Þ2

� 3ða1 � a3Þp̂2ðn � p̂Þ2 � 5a3ðn � p̂Þ4
�
þ 1

c7r3
L � ��

�
�b2

�
M

r

�
2 þ b1p̂

4 þ ðb2 � b1ÞMr p̂2

� ð4b2 þ 2b1 þ 3b3ÞMr ðn � p̂Þ2 � 3ðb1 � b3Þp̂2ðn � p̂Þ2 � 5b3ðn � p̂Þ4
�
; (22)

fGNS1PN; fGNS1PN; H
ADM
SO1:5PNgg ¼

3

4c7r3
L �

�
2� þ 3

2
��

��
4ð2þ �Þ2

�
M

r

�
2 þ 5�2p̂4 � 9�ð2þ �ÞM

r
p̂2

þ 8�2p̂2ðn � p̂Þ2 � 12�ð2þ �ÞM
r
ðn � p̂Þ2 þ 20�2ðn � p̂Þ4

�
; (23)

fGNS1PN; fGS2:5PN; H
ADM
Newt gg ¼

1

c7r3
L � ða0� þ b0�

�Þ
�
�2ð2þ �Þ

�
M

r

�
2 � 5

2
�p̂4 þ 1

2
ð10þ 9�ÞM

r
p̂2

� 3

2
�p̂2ðn � p̂Þ2 � 1

2
ð22þ 3�ÞM

r
ðn � p̂Þ2 þ 15�ðn � p̂Þ4

�
; (24)

fGS2:5PN; fGNS1PN; H
ADM
Newt gg ¼

1

c7r3
L � ða0� þ b0�

�Þ
�
�ð2þ �Þ

�
M

r

�
2 � 2�p̂4 þ 3ð1þ �ÞM

r
p̂2 þ 6�p̂2ðn � p̂Þ2

� 3

2
ð2þ 5�ÞM

r
ðn � p̂Þ2

�
: (25)

Also, we have [46]

HNewt¼HADM
Newt ; (26a)

H1PN¼HADM
1PN þfGNS1PN;H

ADM
Newt g; (26b)

HSO1:5PN¼HADM
SO1:5PN; (26c)

HSO2:5PN¼HADM
SO2:5PNþfGS2:5PN;H

ADM
Newt gþfG1PN;H

ADM
SO1:5PNg;

(26d)

where HADM
Newt , H

ADM
1PN can be found in Ref. [37], the explicit

expressions of fGS2:5PN; H
ADM
Newt g and fG1PN; H

ADM
SO1:5PNg are

given in Eqs. (5.20), (5.24) of Ref. [46], while

fGNS1PN;H
ADM
Newt g¼

�

c2

�
�1

2
ð2þ�Þ

�
M

r

�
2��

2
p̂4

þð1þ�ÞM
r
p̂2þ1

2
ð�2þ�ÞM

r
ðn � p̂Þ2

�
:

(27)

Also, we note that Eqs. (26b) and (26d) immediately imply
G2:5PN ¼ G2:5PN, i.e. the 2.5 PN gauge parameters a0 and
b0 appearing in Eq. (16) have the same meaning in the Lie
method and in the generating function approaches.

B. The spin-orbit terms in the effective
Hamiltonian through 3.5PN order

Following Refs. [37,39,62], we map the effective and
real two-body Hamiltonians as

Heff

�c2
¼ H2

real �m2
1c

4 �m2
2c

4

2m1m2c
4

; (28)

where Hreal is the real two-body Hamiltonian containing
also the rest-mass contributionMc2. Expanding Eq. (28) in
powers of 1=c, we have

Heff
SO3:5PN ¼ HSO3:5PN þ 1

M
ðHSO1:5PNH1PN

þHSO2:5PNHNewtÞ: (29)

Using Eqs. (18) and (26), we find that through 3.5PN order
the SO couplings of the effective Hamiltonian are

Heff
SO ¼ 1

c3
L

r3
� ðgeff� � þ geff����Þ; (30)

where
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geff� ¼ 2þ 1

c2

�
1

8
ð3�þ 8a0Þp̂2 � 1

2
ð9�þ 6a0Þðn � p̂Þ2 � ð�þ a0ÞMr

�
þ 1

c4

�
1

2
ð�4a0 � 2a2 � 18�� a0�� 3�2Þ

�
M

r

�
2

þ 1

8
ð�4a0 þ 8a1 � 5�� 2a0�Þp̂4 þ 1

8
ð�4a0 � 8a1 þ 8a2 � 34�þ 6a0�þ 11�2ÞM

r
p̂2

þ 3

16
ð8a0 � 16a1 þ 16a3 þ 12�� 20a0�� 13�2Þp̂2ðn � p̂Þ2 þ 1

16
ð32a0 � 32a1 � 64a2 � 48a3

þ 140�þ 48a0�� 3�2ÞM
r
ðn � p̂Þ2 þ 5

16
ð�16a3 þ 24a0�þ 27�2Þðn � p̂Þ4

�
; (31a)

geff�� ¼ 3

2
þ 1

c2

�
1

8
ð�5þ 4�þ 8b0Þp̂2 � 1

4
ð15�þ 12b0Þðn � p̂Þ2 � 1

4
ð2þ 5�þ 4b0ÞMr

�

þ 1

c4

�
1

8
ð�4� 16b0 � 8b2 � 55�� 4b0�� 13�2Þ

�
M

r

�
2 þ 1

16
ð7� 8b0 þ 16b1 � 11�� 4b0�� �2Þp̂4

þ 1

16
ð4� 8b0 � 16b1 þ 16b2 � 59�þ 12b0�þ 24�2ÞM

r
p̂2 þ 3

16
ð8b0 � 16b1 þ 16b3 þ 19�

� 20b0�� 14�2Þp̂2ðn � p̂Þ2 þ 1

8
ð10þ 16b0 � 16b1 � 32b2 � 24b3 þ 109�þ 24b0�þ 6�2ÞM

r
ðn � p̂Þ2

þ 5

2
ð�2b3 þ 3b0�þ 3�2Þðn � p̂Þ4

�
: (31b)

C. The PN-expanded Hamiltonian of a spinning
test-particle in a deformed Kerr spacetime

The deformed Kerr metric was obtained in Ref. [46], and
it reads

gtt ¼ � �t

�t�
; (32a)

grr ¼ �r

�
; (32b)

g

 ¼ 1

�
; (32c)

g�� ¼ 1

�t

�
� ~!2

fd

�t�
þ �

sin2


�
; (32d)

gt� ¼ � ~!fd

�t�
: (32e)

The potentials in these equations are given by

�t ¼ r2
�
AðrÞ þ a2

r2

�
; (33)

�r ¼ �tD
�1ðrÞ; (34)

�t ¼ ðr2 þ a2Þ2 � a2�tsin
2
; (35)

� ¼ r2 þ a2 cos
2; (36)

and

~! fd ¼ 2aMrþ a�!0
fdM

2 þ a�!1
fd

M3

r
; (37)

where !0
fd and !1

fd are two ‘‘frame-dragging’’ parameters

(that we will fix later), and where

AðrÞ ¼ 1� 2M

r
þ 2�M3

r3
þ

�
94

3
� 41

32
�2

�
�M4

r4
; (38a)

D�1ðrÞ ¼ 1þ 6�M2

r2
þ 2ð26� 3�Þ�M

3

r3
: (38b)

The Hamiltonian of a spinning test particle in the deformed
Kerr spacetime is

H ¼ HNS þHS; (39)

with

HNS ¼ �ipi þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 	ijpipj þQ4ðpÞ

q
; (40)

where the term Q4ðpÞ is quartic in the space momenta pi

and was introduced in Ref. [62]. Moreover, we have

� ¼ 1ffiffiffiffiffiffiffiffiffiffi�gtt
p ; (41)

�i ¼ gti

gtt
; (42)

	ij ¼ gij � gtigtj

gtt
: (43)

and

HS ¼ HSO þHSS; (44)

where HSO contains the odd terms in the spins (and there-
fore, in particular, the SO terms) andHSS contains the even
terms in the spins (and therefore, in particular, the spin-
spin terms of the kind SKerrS

�).
Since here we are interested in the SO couplings, we

consider only HSO (HSS can be read from Eq. (4.19) in
Ref. [46]):
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HSO ¼ e2�� ~�ðe ~�þ� � ~BÞðp̂ � �rÞðS � ŜKerrÞ
~B2

ffiffiffiffi
Q

p

2

þ e��2 ~�

~B2ð ffiffiffiffi
Q

p þ 1Þ ffiffiffiffi
Q

p

2

fðS � �Þ~J½�rðp̂ � vrÞð ffiffiffiffi
Q

p þ 1Þ

��cos
ðp̂ � nÞ
2 � ffiffiffiffi
Q

p ð�rðp̂ � vrÞ þ ð�cos
 � �cos
Þðp̂ � nÞ
2Þ� ~B2 þ e ~�þ�ðp̂ � �rÞð2 ffiffiffiffi
Q

p þ 1Þ
� ½~J�rðS � vÞ � �cos
ðS � nÞ
2� ~B� ~J ~Bre

~�þ�ðp̂ � �rÞð ffiffiffiffi
Q

p þ 1ÞðS � vÞg; (45)

where ŜKerr ¼ SKerr=SKerr, � ¼ ŜKerr � n, v ¼ n� �,
and where

Q ¼ 1þ �rðp̂ � nÞ2
�

þ ðp̂ � �rÞ2�
�tsin

2

þ ðp̂ � vrÞ2

�sin2

; (46)

and

�r ¼ r

�
þ ðr2 þ a2Þ½ðr2 þ a2Þ�0

t � 4r�t�
2�t�t

; (47a)

�cos
 ¼ a2ðr2 þ a2Þ cos
ðr2 þ a2 ��tÞ
�t�

; (47b)

�r ¼ r

�
� 1ffiffiffiffiffiffi

�r

p ; �cos
 ¼ a2 cos


�
; (47c)

~B ¼ ffiffiffiffiffiffi
�t

p
; ~Br ¼

ffiffiffiffiffiffi
�r

p
�0

t � 2�t

2
ffiffiffiffiffiffiffiffiffiffiffi
�r�t

p ; (47d)

e2 ~� ¼ � ; e2� ¼ �t�

�t

; ~J ¼ ffiffiffiffiffiffiffi
�r

p
; (47e)

in which we use a prime to denote the derivative with
respect to r. To obtain the SO couplings through 3.5PN
order, we expand Eq. (39). In particular, it is sufficient to
consider the first term in the right-hand side of Eq. (40),
and set a ¼ 0 (deformed Schwarzschild limit) in
Eqs. (45)–(47). Doing so, for the PN-expanded deformed
Kerr Hamiltonian we obtain

HNS
SO1:5PN ¼ 2

r3c3
L � SKerr; (48a)

HNS
SO2:5PN ¼ 1

r3c5
�!0

fd

M

r
L � SKerr; (48b)

HNS
SO3:5PN ¼ 1

r3c7
�!1

fd

�
M

r

�
2
L � SKerr; (48c)

and

HS
SO1:5PN¼

3

2r3c3
L �S�; (49a)

HS
SO2:5PN¼

1

r3c5
L �S�

�
�1

2
ð1þ6�ÞM

r
�5

8
p̂2

�
; (49b)

HS
SO3:5PN¼

1

r3c7
L �S�

�
1

2
ð�1�42�þ6�2Þ

�
M

r

�
2þ 7

16
p̂4

þ1þ6�

4

�
M

r

�
p̂2þ5

4

�
M

r

�
ðn � p̂Þ2

�
: (49c)

D. The EOB Hamiltonian: spin-mapping
dependent on dynamical variables

We now determine the mapping between the spins� and
�� of the effective ADM Hamiltonian and the spins SKerr

and S� of the EOB Hamiltonian by imposing that the
deformed Kerr Hamiltonian given by Eqs. (48) and (49)
coincides with the effective Hamiltonian given by
Eqs. (30) and (31). As found in Ref. [46], we have to
assume that the mapping depends on the orbital dynamical
variables p2, n � p, and r. The general mapping of the spins
has the form

S� ¼ �� þ 1

c2
�ð1Þ

�� þ 1

c4
�ð2Þ

�� ; (50a)

SKerr ¼ � þ 1

c2
�ð1Þ

� þ 1

c4
�ð2Þ

� : (50b)

At 2.5PN order, if we assume !0
fd ¼ 0 [see Eq. (37)] and

�ð1Þ
� ¼ 0, we have [46]

�ð1Þ
�� ¼��

�
1

6
ð�4b0þ7�ÞM

r
þ1

3
ð2b0þ�ÞðQ�1Þ

�1

2
ð4b0þ5�Þ�r

�
ðn � p̂Þ2

�
þ�

�
�2

3
ða0þ�ÞM

r

þ 1

12
ð8a0þ3�ÞðQ�1Þ�ð2a0þ3�Þ�r

�
ðn � p̂Þ2

�
;

(51)

and at 3.5PN order, assuming !1
fd ¼ 0 [see Eq. (37)] and

�ð2Þ
� ¼ 0, we obtain
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�ð2Þ
�� ¼��

�
1

36
ð�56b0�24b2þ353��60b0��27�2Þ

�
M

r

�
2þ5

3
ð�2b3þ3b0�þ3�2Þ�

2
r

�2
ðn � p̂Þ4

þ 1

72
ð�4b0þ48b1�23��12b0��3�2ÞðQ�1Þ2þ 1

36
ð�14b0�24b1þ24b2�103�þ66b0�þ60�2ÞM

r
ðQ�1Þ

þ 1

12
ð2b0�24b1þ24b3þ16��30b0��21�2Þ�r

�
ðn � p̂Þ2ðQ�1Þþ 1

12
ð�24b0�16b1�32b2

�24b3þ47��24b0��54�2ÞM
r

�r

�
ðn � p̂Þ2�þ�

�
1

9
ð�14a0�6a2�56��15a0��21�2Þ

�
M

r

�
2

þ 5

24
ð�16a3þ24a0�þ27�2Þ�

2
r

�2
ðn � p̂Þ4þ 1

144
ð�8a0þ96a1�45��24a0�ÞðQ�1Þ2

þ 1

36
ð�14a0�24a1þ24a2�109�þ66a0�þ51�2ÞM

r
ðQ�1Þþ 1

24
ð4a0�48a1þ48a3þ6��60a0�

�39�2Þ�r

�
ðn � p̂Þ2ðQ�1Þþ 1

24
ð�48a0�32a1�64a2�48a3�16��48a0��147�2ÞM

r

�r

�
ðn � p̂Þ2

�
: (52)

Note that as in Ref. [46], we have replaced, in the expres-
sions for �ð1Þ

�� and �ð2Þ
�� , the term p̂2 with 	ijp̂ip̂j ¼ Q� 1

and the term ðn � p̂Þ2 with �rðn � p̂Þ2=� ¼ grrp̂2
r .

Having determined the spin mappings, we can write
down the real improved (or EOB) Hamiltonian for spin-
ning black holes, which turns out to be

Himproved
real ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

�
Heff

�
� 1

�s
; (53)

where

Heff ¼ HS þ �ipi þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 	ijpipj þQ4ðpÞ

q

� �

2Mr3
ð�ij � 3ninjÞS�i S�j : (54)

E. The EOB Hamiltonian: spin-mapping
independent of dynamical variables

In the previous section, we had to assume a dependence
on the orbital dynamical variables p2, n � p, and r in the
mapping between the spins � and �� of the effective ADM
Hamiltonian and the spins SKerr and S� of the deformed
Kerr Hamiltonian. To avoid this dependence on the dy-
namical variables and obtain the much simpler mapping

S� ¼ ��; (55a)

SKerr ¼ �; (55b)

we need to modify the Hamilton-Jacobi equation by adding
terms depending on the momenta and spins. Since in this
paper we are dealing only with SO effects, we will neglect
modifications that involve spin-spin terms. We start by
observing that in the presence of spins the linear momen-
tum P�, which is related to the canonical momentum by

P� ¼ p� þ E
��
� S��� [see Eq. (3.28) of Ref. [59]], satisfies

the Hamilton-Jacobi equation [59]

�2 þ P�P
� ¼ �2 þ p�p

� þ 2E
��
� p�S��� þOðS�Þ2 ¼ 0:

(56)

Here, S��� is the spin tensor of the test particle [see Ref. [59]

and also Eqs. (2.4)–(2.7) in Ref. [14]]. Equation (56) leads
to the correct Hamiltonian for a spinning particle in curved
spacetime, at linear order in the particle’s spin [59]. To
modify the Hamilton-Jacobi equation, a suitable ansatz is

�2 þ g
��
eff ðr;SKerrÞp�p� þ 2E

��
� p�S���

þ ½B���
�� ðrÞp�p�p� þ B�����

�� ðrÞp�p�p�p�p��S���
þ A����ðr;SKerrÞp�p�p�p�

þ A������ðr;SKerrÞp�p�p�p�p�p� þ � � � ¼ 0: (57)

If we make use at lowest order of the condition �2 þ
g��
eff p�p� ’ 0, we can replace pt with the spatial

components of the momentum, and obtain the following
generalized form of the effective Hamiltonian

Heff¼�ipiþ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ	ijpipjþQ4ðpÞþQSðr;p;S�;SKerrÞ

q

� �

2Mr3
ð�ij�3ninjÞS�i S�jþHS; (58)

whereQ4ðpÞ is a quartic term in themomenta [62], which is
due to the presence of the quartic term A����p�p�p�p� in

Eq. (57), and QSðr; p; S�; SKerrÞ is a term linear in S�
and SKerr

QSðr;p;S�;SKerrÞ¼QSKerr
i ðr;pÞSiKerrþQS�

i ðr;pÞSi�: (59)

In particular, the term QS�
i ðr; pÞSi� comes from the terms

B
���
�� ðrÞp�p�p�S

��
� and B

�����
�� p�p�p�p�p�S

��
� in

Eq. (57), while the term QSKerr
i ðr; pÞSiKerr comes from

At���ptp�p�p� and At�����ptp�p�p�p�p� (through the

dependence of the tensors A���� and A������ on SKerr).
Finally, the term HS in Eq. (58) comes from the presence
of 2E��

� p�S��� in Eq. (57). As already stressed, this
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happens because Eq. (56) leads to the correct Hamiltonian
for a spinning particle in curved spacetime, and, in par-
ticular, to HS, which is the spin-dependent part of that
Hamiltonian [59].

Through 3.5PN order the quantitiesQSKerr
i ðr; pÞSiKerr and

QS�
i ðr; pÞSi� must have the form

Qs
i ðr;pÞsi¼

�

r2c3
�ijkn

jpksi�
�
1

c2

�
c1
M

r
þc2p̂

2þc3ðn�p̂Þ2
�

þ 1

c4

�
c4p̂

4þc5

�
M

r

�
2þc6ðn�p̂Þ4

þc7p̂
2M

r
þc8ðn�p̂Þ2Mr þc9ðn�p̂Þ2p̂2

��
;

(60)

where s stands for either SKerr or S
�, while the coefficients

cn, n ¼ 1; . . . 9 are determined by the mapping of the

effective to the real description. A straightforward compu-
tation leads to

Q S ¼ QS2:5PN þQS3:5PN; (61)

where

QS2:5PNðr;p;S�;SKerrÞ
¼ �

r3c5

�
ðSKerr �LÞ

�
�2ða0þ�ÞM

r
þ1

4
ð8a0þ3�ÞðQ�1Þ

�3ð2a0þ3�Þ�r

�
ðn � p̂Þ2�þðS� �LÞ

�
1

2
ð�4b0þ7�ÞM

r

þð2b0þ�ÞðQ�1Þ�3

2
ð4b0þ5�Þ�r

�
ðn � p̂Þ2

��
; (62)

QS3:5PNðr;p;S�;SKerrÞ¼ �

r3c7

�
ðSKerr �LÞ

�
ð�6a0�2a2�20��a0��3�2Þ

�
M

r

�
2þ5

8
ð�16a3þ24a0�þ27�2Þ�

2
r

�2
ðn � p̂Þ4

þ1

8
ð16a1�7��4a0�ÞðQ�1Þ2þ1

4
ð�8a1þ8a2�35�þ6a0�þ11�2ÞM

r
ðQ�1Þ

þ3

8
ð�16a1þ16a3�20a0��13�2Þ�r

�
ðn � p̂Þ2ðQ�1Þþ1

8
ð�80a0�32a1�64a2�48a3�64�

þ48a0��3�2ÞM
r

�r

�
ðn � p̂Þ2

�
þðS� �LÞ

�
1

4
ð�24b0�8b2þ127��4b0��37�2Þ

�
M

r

�
2

þ5ð�2b3þ3b0�þ3�2Þ�
2
r

�2
ðn � p̂Þ4þ1

8
ð16b1�7��4b0���2ÞðQ�1Þ2þ1

8
ð�16b1þ16b2

�61�þ12b0�þ24�2ÞM
r
ðQ�1Þþ3

8
ð�16b1þ16b3þ9��20b0��14�2Þ�r

�
ðn � p̂Þ2ðQ�1Þ

þ1

4
ð�40b0�16b1�32b2�24b3þ27�þ24b0�þ6�2ÞM

r

�r

�
ðn � p̂Þ2

��
: (63)

Finally, the EOB Hamiltonian is obtained by inserting
Eq. (58) into Eq. (53).

III. THE EFFECTIVE-ONE-BODY DYNAMICS
FOR EQUATORIAL ORBITS

We stress that the EOB models introduced in the pre-
vious sections have the correct test-particle limit, for both
nonspinning and spinning black holes (for generic orbits
and arbitrary spin orientations), and that the test-particle
limit is recovered nonperturbatively, (i.e., at all PN orders).
This is because in order to build our models, in Sec. II C we
started from the Hamiltonian derived in Ref. [59], which
correctly reproduces the Mathisson-Papapetrou-Pirani
equation describing the motion of a classical spinning
particle in a generic curved spacetime [63–67]. The EOB
models that we present in this paper share this feature with
our earlier model [46], which was valid through 3PN order
in the nonspinning sector and through 2.5PN order in the

spinning sector, but not with other EOB models for spin-
ning black-hole binaries, which recover the test-particle
limit only approximately [15].

Other attractive features of our models are evident when

considering configurations with spins parallel to the orbital

angular momentum, which correspond, in the effective

EOB dynamics, to a particle moving on equatorial orbits.

For aligned spins and equatorial orbits, in fact, both the

models with dynamical and nondynamical spin mapping

predict the existence of an innermost stable circular orbits

(ISCO), for all values of the system’s parameters. This

feature is again shared by our earlier model [46], but not

by other EOB models for spinning black-hole binaries

[15], which do not present ISCOs for large values of the

spins. While the nonexistence of an ISCO is not necessarily

a sign that a model is flawed, its presence helps reproduce

the results of numerical-relativity simulations for binaries

with aligned spins [68].
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To calculate the radius and the orbital angular momen-
tum at the ISCO for our EOB models, we solve numeri-
cally the following system of equations [36]

@H
improved
real ðr; pr ¼ 0; LzÞ

@r
¼ 0; (64)

@2Himproved
real ðr; pr ¼ 0; LzÞ

@r2
¼ 0; (65)

with respect to r and Lz ¼ p�. The solutions can then be

used to evaluate the ISCO frequency via

�ISCO ¼ @Himproved
real ðrISCO; pr ¼ 0; LISCO

z Þ
@Lz

; (66)

which follows immediately from the Hamilton equations.
The values of rISCO and LISCO

z can also be used to

calculate the binding energy at the ISCO via Ebind ¼
H

improved
real �M. This quantity is interesting because it cor-

responds to the mass lost in gravitational waves during the
binary’s inspiral, and is therefore a lower limit to the total
mass loss, to which it reduces for � ! 0 (when the fluxes
during the merger and the ringdown become negligible
[46]). Similarly, one can estimate the spin of the binary
at the ISCO via

�ISCO ¼ Sz1 þ Sz2 þ Lz
ISCO

ðMþ Ebind
ISCOÞ2

: (67)

This expression clearly neglects the mass and angular
momentum lost during the merger and ringdown phases,
but it is useful as qualitative diagnostics of our model, and
it reduces to the spin of the final black-hole remnant when
� ! 0 (again, because in this limit the fluxes during the
merger and the ringdown become negligible [46]).

We rewrite the metric potentials �t and �r given in
Eqs. (33) and (34), using the ‘‘log-model’’ of Ref. [46]
[see Eqs. (5.71) and (5.73)–(5.83) of that paper], and
assume

Kð�Þ ¼ 1:447� 0:1574�� 9:082�2: (68)

The value of Kð�Þ for � ¼ 0 ensures [46,69] that the ISCO
frequency for extreme mass-ratio nonspinning binaries
predicted by our EOB models agrees with the exact result
of Ref. [70], which calculated the shift of the ISCO fre-
quency due to the conservative part of the self-force. The
linear and quadratic terms in � in Eq. (68) are such that our
EOB models accurately reproduce numerical relativity
simulations for nonspinning binaries with mass ratios rang-
ing from q ¼ 1=6 to q ¼ 1 [68].

We fix the gauge parameters to the following values:

a0 ¼ � 3

2
�; b0 ¼ � 5

4
�; (69)

a1 ¼ 1

2
�2; b1 ¼ 1

16
�ð9þ 5�Þ;

a2 ¼ 1

8
�ð7� 8�Þ; b2 ¼ 1

8
�ð17� 5�Þ;

a3 ¼ � 9

16
�2; b3 ¼ � 3

8
�2; (70)

which we determine by requiring that all the terms involv-

ing �rp̂ � n=� cancel out in �ð1Þ
�� and �ð2Þ

�� [Eqs. (51) and

(52)], or equivalently inQS2:5PN andQS3:5PN [Eqs. (62) and
(63)]. Different choices of the gauge parameters produce
qualitatively similar results for the ISCO quantities that we
described above.
Focusing on systems with spins aligned with the orbital

angular momentum L, and denoting with S1;2 ¼ �1;2m
2
1;2

the projections of the spins along the direction of L, we
consider binaries with �1 ¼ �2 ¼ � and mass ratios q ¼
m2=m1 ¼ 0:1, 0.5, and 1. In particular, in Figs. 1–3 we
show how the ISCO quantities described above change as a
consequence of including the 3.5PN SO terms in our EOB
model with dynamical spin mapping. More specifically, we
calculate �ISCOM, EISCO

bind =M, and �ISCO using the

Hamiltonian (54), with and without the 3.5PN terms given

by �ð2Þ
�� . As can be seen, the inclusion of the 3.5PN terms

does not change the ISCO quantities significantly for � �
0, while small differences appear for �> 0. (In the case of
�ISCOM, however, these differences grow quite large when
� ! 1.) Overall, Figs. 1–3 suggest that the model has
reasonable convergence properties for radii r � rISCO.
The results for the model with nondynamical spin map-

ping are similar [i.e., a comparison of the ISCO quantities
calculated using the Hamiltonian (58), with and without
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FIG. 1 (color online). The spin parameter of the binary at the
ISCO given by Eq. (67) for the 2.5PN and 3.5PN EOB models
with dynamical mapping of the spins, for binaries having spins
parallel to L, mass ratio q ¼ m2=m1, and spin-parameter pro-
jections onto the direction of L given by �1 ¼ �2 ¼ �.
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the 3.5PN term Q3:5PN, gives similar results]. In general,
however, the model with nondynamical spin mapping
presents lower values for �ISCOM at high spins and for
comparable mass ratios (see Fig. 4, where we compare the
3.5PN models with dynamical and nondynamical spin
mapping).

Another attractive feature of our models is the existence
of a peak of the orbital frequency during the plunge starting
at the ISCO. More precisely, we assume that the effective
particle starts off with no radial velocity at the ISCO (thus
having angular momentum LISCO and energy EISCO), and
we evolve the geodesic equations by calculating the radial
momentum pr during the plunge from energy and angular
momentum conservation. We then calculate the orbital

frequency � ¼ @Himproved
real =@Lz along the trajectory and

find that it presents a peak �max. This is not surprising
because the same behavior was observed to be generic in
our earlier model [46]. The values of M�max for binaries
with spins parallel to L, as function of � ¼ �1 ¼ �2, are
shown in Fig. 5 for mass ratios q ¼ 1, 0.5, and 0.1, for the
EOB model with dynamical spin mapping at 2.5PN and
3.5PN. As can be seen, the differences introduced by the
3.5 PN terms, although reasonable, are larger than for the
ISCO quantities. This may be because the plunge happens
at radii that are smaller than rISCO and approach the
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FIG. 2 (color online). The same as in Fig. 1 but for the binding
energy of the binary at the ISCO.
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FIG. 3 (color online). The same as in Fig. 1 but for the ISCO
frequency.
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FIG. 4 (color online). The ISCO frequency for the 3.5PN EOB
models with dynamical (dyn) and nondynamical (non-dyn)
mapping of the spins, for binaries having spins parallel to L,
mass ratio q ¼ m2=m1, and spin-parameter projections onto the
direction of L given by �1 ¼ �2 ¼ �.
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FIG. 5 (color online). The same as in Fig. 1, but for the
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horizon’s radius, thus making the higher-order PN terms
more and more important. The results for the model with
nondynamical spin mapping are generally similar,
although they differ slightly at high spins. In particular,
in Fig. 6 we compare the 3.5PN models with dynamical
and nondynamical spin mapping. As can be seen, for q ¼
0:5 and q ¼ 1 the predictions of the two models are very
close, while for q ¼ 0:1 the model with dynamical spin
mapping presents somewhat lower maximum frequencies.

Also, we stress that the values of M�max for spin
antialigned with the angular momentum (i.e., �1 ¼ �2 ¼
�< 0) are quite sensitive to the values of the gauge pa-
rameters a0–a3 and b0–b3. For instance, setting all the
gauge parameters to 0 makes the behavior of M�max

with � nonmonotonic if the 3.5PN models (both with
dynamical and nondynamical spin mapping) are consid-
ered. This effect does not appear in the 2.5PN models, and
can in principle be important for the calibration of our
model with numerical-relativity simulations. More details
on this will be given in a follow-up paper [68]. Even worse,
when the gauge parameters are set to zero, the difference in
M�max between the 2.5PN and 3.5PNmodels is larger than
in Fig. 5, a sign that the model probably converges more
slowly in this gauge. In light of this, it seems preferable to
use the gauge parameters (69) and (70), which by canceling

out the radial momentum �rp̂ � n=� from �ð1Þ
�� and �ð2Þ

��

(and from QS2:5PN and QS3:5PN) provide a rather regular
and monotonic behavior for M�max and reasonable differ-
ences between the 2.5 and 3.5PN models.

Finally, in Fig. 7 we show the predictions of our EOB
model with dynamical spin mapping for the ISCO fre-
quency of a system with q ¼ m2=m1 ¼ 10�3, �1 ¼ �,
and �2 ¼ 0 (the results for the EOB model with nondy-
namical spin mapping are similar). More precisely, we

show the fractional deviation from the Kerr ISCO fre-
quency normalized by the mass ratio,

c� ¼ 1

q

�
�ISCOMjq
�ISCOMjKerr � 1

�
; (71)

as a function of �, as proposed in Ref. [69]. This ISCO
shift is caused by the conservative part of the self-force
and has been calculated exactly by Ref. [70] in the case of
a Schwarzschild spacetime (� ¼ 0). The results of
Ref. [70] is c� ¼ 1:2513þOðqÞ [see also Ref. [71]],
and is denoted by a filled circle in Fig. 7. As can be
seen, both the 2.5 and 3.5PN models predict c� > 0,
except when � * 0:83. This change of behavior of the
EOB prediction is common also to our earlier model of
Ref. [46], and might have important implication for con-
figurations that might violate the Cosmic Censorship
Conjecture [72,73]. However, the behavior of c�, which
seems to diverge as � approaches 1, suggests that this
might simply be a spurious effect due to the incomplete
knowledge of the function K [Eq. (68)] and to the fact that
the EOB model only reproduces the SS coupling at lead-
ing PN order (2PN). As mentioned in Ref. [46], K may in
general depend not only on � but also on �2, and these
spin-dependent terms can be very important for near-
extremal spins, and so will the 3PN SS couplings.
It is therefore possible that after reconstructing the full

functional form of K (by comparing to future self-force
calculations in Kerr or to numerical-relativity simulations
for spinning binaries) and extending the EOB model to
include the 3PN SS couplings, c� might remain positive
even at high spins.
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FIG. 6 (color online). The same as in Fig. 4, but for the
maximum frequency during the plunge.
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FIG. 7 (color online). The shift of the ISCO frequency c�,
defined in Eq. (71), for the 2.5PN and 3.5PN EOB models with
dynamical mapping of the spins, for a binary having spins
parallel to L, mass ratio q ¼ m2=m1 ¼ 10�3, and spin-
parameter projections onto the direction of L given by �1 ¼ �
and �2 ¼ 0.
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IV. CONCLUSIONS

Recently, Ref. [19] has computed the 3.5PN SO effects
in the ADM Hamiltonian. We have taken advantage of this
result and extended the EOB Hamiltonian of spinning
black holes to include these higher-order SO couplings.

Building on previous work [39,58], and, in particular, on
the EOB Hamiltonian of Refs. [46,59], which reproduces
the SO test-particle couplings exactly at all PN orders, we
have worked out two classes of EOB Hamiltonians, which
differ by the way the spin variables are mapped between
the effective and real descriptions. One class of EOB
Hamiltonians is the straightforward extension to the next
PN order of the EOB Hamiltonian of Ref. [46]. It uses a
mapping between the real and effective spin variables that
depends on the dynamical orbital variables p2,n � p, and r.
By contrast, the other class of EOB Hamiltonians uses a
mapping between the real and effective spin variables that
does not depend on these dynamical orbital variables. We
achieved this result at the cost of modifying the Hamilton-
Jacobi equation of a spinning test particle.

Quite interestingly, when restricting to spins aligned or
antialigned with the orbital angular momentum and to
equatorial circular orbits, we find that the predictions of
these two classes of EOB Hamiltonians for the ISCO
frequency, energy and angular momentum, and for the
maximum of the orbital frequency during the plunge are
generally similar. However, for high spins the model with
dynamical mapping of the spins may present somewhat
lower maximum frequencies and larger ISCO frequencies.

As pointed out originally in Ref. [58], several gauge
parameters can enter the canonical transformation that
maps the real and effective Hamiltonians. If the
Hamiltonian were known exactly, i.e., at all PN orders,
then physical effects should not depend on these parame-
ters. However, since we know the Hamiltonian only at a
certain PN order, we expect these gauge parameters to lead
to non-negligible differences. In fact, we obtained that
when setting all the gauge parameters to zero, the maxi-
mum frequency during the plunge has a nonmonotonic
dependence on the spins, and varies quite significantly as
a consequence of the inclusion of the 3.5 PN SO couplings.
We found instead that when choosing the gauge parameters
so that the terms depending on the radial momentum
disappear from our spin mapping (in the model with dy-
namical spin mapping) or from the modifications to the

Hamilton-Jacobi equation (in the model with nondynam-
ical spin mapping), the maximum frequency during the
plunge has a much more regular behavior and varies by
small amounts when adding the 3.5PN SO couplings. This
suggests that such a choice of the gauge parameters may
accelerate the convergence of the model’s results in the
strong-field region where the plunge takes place.
The EOB Hamiltonians derived in this paper can be

calibrated to numerical-relativity simulations with the
goal of building analytical templates for LIGO and Virgo
searches. A first example was obtained in Ref. [47], where
the EOB Hamiltonian at 2.5PN order in the SO couplings
of Ref. [58] was calibrated to two highly-accurate numeri-
cal simulations. Results that use the EOB Hamiltonian at
3.5PN order developed in this paper will be reported in the
near future [68].
Lastly, while finalizing this work, Ref. [74] appeared in

the archives as a preprint. Both this paper and Ref. [74]
derive the effective gyromagnetic coefficients [see
Eq. (31)], but with two different methods. Our computa-
tion uses the Lie method to generate both the purely-
orbital and the spin-dependent canonical transformations,
while Ref. [74] first applies explicitly the purely-orbital
transformation from ADM to EOB coordinates, and then
uses Eq. (7) to account for the effect of a spin-dependent
canonical transformation. As a result of these different
procedures, and as discussed in Sec. II A, the 2.5PN gauge
parameters in our spin-dependent canonical transforma-
tion coincide with those of Ref. [74], but the 3.5PN gauge
parameters have different meanings in the two approaches
and therefore do not coincide. However, by suitably ex-
pressing our 3.5PN gauge parameters in terms of those of
Ref. [74], we find that our effective gyromagnetic coef-
ficients fully agree with those of Ref. [74]. This amounts
to saying that our gyromagnetic coefficients agree with
those of Ref. [74] up to a canonical transformation, and
are therefore physically equivalent. More importantly, in
this paper we have focused on and worked out two classes
of EOB Hamiltonians that are different from the one
considered in Ref. [74].
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