English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

On the Preparation and Structure of Caesium Aluminium Tetrahydride

MPS-Authors
/persons/resource/persons187587

Krech,  Daniel
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59145

Zibrowius,  Bodo
Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59100

Weidenthaler,  Claudia
Research Group Weidenthaler, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58541

Felderhoff,  Michael
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Krech, D., Zibrowius, B., Weidenthaler, C., & Felderhoff, M. (2014). On the Preparation and Structure of Caesium Aluminium Tetrahydride. European Journal of Inorganic Chemistry, 2014(33), 5683-5688. doi:10.1002/ejic.201402629.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-0368-D
Abstract
A new tetragonal phase of CsAlH4 was observed after the precipitation of CsAlH4 from a diglyme solution with an inert solvent. This new phase and the previously described orthorhombic phase were characterized by a combination of X-ray powder diffraction analysis and 27Al and 133Cs solid-state NMR spectroscopy. The transformation of the tetragonal CsAlH4 phase into the orthorhombic CsAlH4 phase can be induced by thermal treatment, whereas the opposite process can be stimulated by mechanical treatment. The phase transformation processes are almost completely reversible and can be performed several times without any observable decomposition of CsAlH4. The structure of the tetragonal CCsAlH4 phase (space group I41/a) was solved from X-ray powder diffraction data, and the lattice parameters were determined to be a = 5.6732(4) and c = 14.2795(11) Å.