Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Instantaneous Band Gap Collapse in Photoexcited Monoclinic VO2 due to Photocarrier Doping

MPG-Autoren
/persons/resource/persons22225

Wegkamp,  Daniel
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons81237

Herzog,  Marc
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22028

Rubio,  Angel
Nano-Bio Spectroscopy group, Universidad del País Vasco CFM CSIC-UPV/EHU-MPC & DIPC;
Theory, Fritz Haber Institute, Max Planck Society;
European Theoretical Spectroscopy Facility (ETSF);
Max Planck Institute for the Structure and Dynamics of Matter;

/persons/resource/persons22250

Wolf,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22128

Stähler,  Julia
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Wegkamp VO2 PRL 2014.pdf
(Verlagsversion), 404KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wegkamp, D., Herzog, M., Xian, L., Gatti, M., Cudazzo, P., McGahan, C. L., et al. (2014). Instantaneous Band Gap Collapse in Photoexcited Monoclinic VO2 due to Photocarrier Doping. Physical Review Letters, 113(21): 216401. doi:10.1103/PhysRevLett.113.216401.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0024-3F4F-D
Zusammenfassung
Using femtosecond time-resolved photoelectron spectroscopy we demonstrate that photoexcitation transforms monoclinic VO2 quasi-instantaneously into a metal. Thereby, we exclude an 80 fs structural bottleneck for the photoinduced electronic phase transition of VO2. First-principles many-body perturbation theory calculations reveal a high sensitivity of the VO2 band gap to variations of the dynamically screened Coulomb interaction, supporting a fully electronically driven isostructural insulator-to-metal transition. We thus conclude that the ultrafast band structure renormalization is caused by photoexcitation of carriers from localized V 3d valence states, strongly changing the screening before significant hot-carrier relaxation or ionic motion has occurred.