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Solving Polynomial Equations with Equation

Constraints: the Zero-dimensional Case

Ye Liang

Max-Plank-Institut für Informatik, Saarbrücken, Germany

Abstract

A zero-dimensional polynomial ideal may have a lot of complex zeros. But sometimes, only some
of them are needed. In this paper, for a zero-dimensional ideal I , we study its complex zeros
that locate in another variety V(J) where J is an arbitrary ideal.

The main problem is that for a point in V(I) ∩ V(J) = V(I + J), its multiplicities w.r.t. I
and I + J may be different. Therefore, we cannot get the multiplicity of this point w.r.t. I by
studying I + J . A straightforward way is that first compute the points of V(I + J), then study
their multiplicities w.r.t. I . But the former step is difficult to realize exactly.

In this paper, we propose a natural geometric explanation of the localization of a polynomial
ring corresponding to a semigroup order. Then, based on this view, using the standard basis
method and the border basis method, we introduce a way to compute the complex zeros of
I in V(J) with their multiplicities w.r.t. I . As an application, we compute the sum of Milnor
numbers of the singular points on a polynomial hypersurface and work out all the singular points
on the hypersurface with their Milnor numbers.

Key words: Semigroup order, multiplicity, zero-dimensional, standard basis, border basis,
polynomial equations, Milnor number, sum

1. Introduction

A crucial difference between linear equations and polynomial equations is that the
latter may have many isolated complex solutions. In fact, when the degrees of polyno-
mials and the number of variables become larger, the number of complex solutions of
polynomial equations can increase dramatically. But sometimes not all these solutions
are of interest. We may only want to get the information of a part of them.

Given two polynomial ideals I and J in C[x1, . . . , xn] with I zero-dimensional, we want
to compute the points in V(I) ∩V(J) = V(I + J) with the multiplicities w.r.t. I. Note
that a point in V(I) ∩V(J) may have different multiplicities when it is considered as a
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zero of I or I + J . For example, let I = 〈x3〉 and J = 〈x〉 in C[x]. We can easily obtain

that the point 0 ∈ C has multiplicities 3 and 1 w.r.t. I and I+J = J , respectively. Thus,

we cannot get the multiplicity of 0 w.r.t. I by only studying I + J . One possible way to

solve this problem is that we first compute the common points of V(I) and V(J), then

localize I and C[x1, . . . , xn] at each point of V(I + J) and compute their multiplicities

w.r.t. I. However, in general, it is not easy to compute the zeros of I+J exactly. Usually,

we need a numerical solver and should use floating-point computation. As a result, we

cannot get an exact result.

In this paper, the problem is dealt with in another way. We first provide a natural

geometric explanation of the localization of C[x1, . . . , xn] w.r.t. a semigroup order > (cf.

Theorem 3.1 and Corollary 3.2), i.e., for each 1 ≤ i ≤ n, xi < 1 implies that the complex

zeros of I with the i-th coordinates nonzero are discarded from V(Iec) ⊂ Cn. In other

words, only the complex zeros ξ of I with ξi = 0 for all i such that xi < 1 are kept

in V(Iec). Based on this geometric view, by renaming constraint polynomials g1, . . . , gu
with 〈g1, . . . , gu〉 = J to new variables xn+1, . . . , xn+u, we transform the computation of

the zeros of I in V(J) to the computation in a larger polynomial ring C[x1, . . . , xn+u]

where Theorem 3.1 can be used. Now, we need to compute the complex zeros of I ′ec :=

〈I, xn+1 − g1, . . . , xn+u − gu〉ec w.r.t. a semigroup order > with x1 > 1, . . . , xn > 1 and

xn+1 < 1, . . . , xn+u < 1. By using the standard basis method and the Mora normal form

algorithm in Loc>(C[x1, . . . , xn+u]), we can compute the reduced normal form of the

monomials in the border ∂W of the order ideal W consisting of the standard monomials.

Then, G := {t − redNF(t) : t ∈ ∂W} forms a border basis of I ′ec in C[x1, . . . , xn+u].

From G, we can construct multiplication matrices and apply the Chow form method,

the rational univariate representation (RUR) method or other methods to work out the

complex zeros of I that locate in V(J) with their multiplicities w.r.t I. To illustrate

this process, we compute the singular points with their Milnor numbers on a polynomial

hypersurface in Section 5.

As far as we know, there is no previous work for solving polynomial equations with

equation constraints (no parameters). But there are some related work to our studies of

semigroup orders. Buchberger (1965) used global orders in setting up his Gröbner basis

theory. By computing a Gröbner basis of I, one can calculate all the complex zeros of

the ideal. After that, Mora (1982) provided an algorithm to compute standard bases

by using local orders. A important usage of such a standard basis is to compute the

local multiplicity of a given complex zero of I. Then, Robbiano (1985) proved that every

semigroup order can be described by a suitable matrix. Later, Greuel and Pfister (1996)

and Gräbe (1994) found Mora’s algorithm works for any semigroup order.

The rest of this paper is structured as follows. Section 2 is devoted to introducing

necessary notions and theorems. In Section 3, we present a natural geometric explanation

of the localization of polynomial rings corresponding to an arbitrary semigroup ordering.

In Section 4, we study partial zeros of I with their multiplicities w.r.t. I. Then, in Section

5 we compute these partial solutions. An application in computing Milnor numbers on

a polynomial hypersurface is provided at this section as an example. Finally, we make a

conclusion in Section 6.
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2. Preliminaries

This section consists of background concepts and theorems. Let A = C[x1, . . . , xn] and

T{x1,...,xn} = {xα : α ∈ Zn
≥0}. The following five definitions come from Cox et al. (2005).

Definition 2.1 (Multiplicities). Let I be a zero-dimensional ideal in A, so that V(I)
consists of finitely many points in C

n, and assume that p = (a1, . . . , an) is one of
them. Then the multiplicity of p as a point in V(I) is dimC AM/IAM where M =
〈x1 − a1, . . . , xn − an〉.

Definition 2.2 (Semigroup Orders). An order > on Zn
≥0, or equivalently, on T{x1,...,xn}

in A is said to be a semigroup order if it satisfies:
(1) > is a total ordering on Z

n
≥0;

(2) > is compatible with multiplication of monomials.

Definition 2.3 (Localizations of Rings). Let > be a semigroup order in A and let
S = {1 + g ∈ A : g = 0 or lt(g) < 1}. The localization of A w.r.t. > is the ring

Loc>(A) = S−1A = {f/(1 + g) : f ∈ A, 1 + g ∈ S}.

Definition 2.4 (Standard Bases). Let > be a semigroup order and let I ⊂ Loc>(A)
be an ideal. A standard basis of I w.r.t. > is a set {g1, . . . , gt} ⊂ I such that 〈lt(I)〉 =
〈lt(g1), . . . , lt(gt)〉.

Definition 2.5 (Standard Monomials). Given a semigroup order > and an ideal I in the
localization Loc>(A) of the ring A, we say that a monomial xα is standard if xα 6∈ 〈lt(I)〉.

The above definition is a generalization of the one in Cox et al. (2005), where the
order > is a local order.

Let f : A → S−1A, a 7→ a/1 be a ring homomorphism where S is a multiplicatively
closed subset of A. For an ideal I ⊂ A, its extension Ie in S−1A is I(S−1A) = S−1I. For
an ideal J ⊂ S−1A, its contraction Jc in A is f−1(J). The following two theorems come
from Atiyah and MacDonald (1969).

Theorem 2.6. Let S be a multiplicatively closed subset of A, and let I be an ideal. Let
I = ∩k

i=1Qi be a minimal primary decomposition of I. Let Pi be the radical of Qi and
suppose the Qi numbered so that S meets Pm+1, . . . , Pk but not P1, . . . , Pm. Then

S−1I = ∩m
i=1S

−1Qi, Iec = (S−1I)c = ∩m
i=1Qi

and these are minimal primary decompositions.

Theorem 2.7. Let A be a Noetherian ring, P a maximal ideal of A, Q any ideal of A.
Then the following are equivalent:
(1) Q is P -primary;
(2)

√
Q = P ;

(3) P k ⊂ Q ⊂ P for some k > 0.

The contents of border basis come from Kehrein et al. (2005).

Definition 2.8 (Order Ideals). A non-empty, finite set of terms W ⊂ T{x1,...,xn} is called
an order ideal if it is closed under forming divisors, i.e., if t ∈ W and t′|t imply t′ ∈ W .
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Definition 2.9 (Borders). Let W ⊂ T{x1,...,xn} be an order ideal. The border of W is
the set

∂W = (x1W ∪ · · · ∪ xnW ) \W.

Definition 2.10 (W -border Prebases). Let W = {t1, . . . , tµ} be an order ideal, and let
∂W = {b1, . . . , bν} be its border. A set of polynomials G = {g1, . . . , gν} is called a W -
border prebasis if the polynomials have the form gj = bj −

∑µ
i=1 αijti such that αij ∈ C

for 1 ≤ i ≤ µ and 1 ≤ j ≤ ν.

Definition 2.11 (W -border Bases). Let I be a zero-dimensional ideal in A, W =
{t1, . . . , tµ} be an order ideal and G = {g1, . . . , gν} be a W -border prebasis consist-
ing of polynomials in I. We say that the set G is a W -border basis of I if the residue
classes of t1, . . . , tµ form a C-vector space basis of A/I.

Proposition 2.12. Let W = {t1, . . . , tµ} be an order ideal, and let G be a W -border
basis of I. Then I is generated by G.

The rest of this section comes from Mourrain (2007).

Definition 2.13 (Multiplication Matrices). For a polynomial ideal I ⊂ A and any
element a ∈ A/I, we define the map Ma : A/I → A/I, b 7→ ab. Given a vector space
basis of A/I, we call the matrix associated to this operator the multiplication matrix
w.r.t. the basis and still denote it by Ma.

Definition 2.14 (Chow Forms). For a zero-dimensional polynomial ideal I ⊂ A, the
Chow form of A/I is the homogeneous polynomial in u = (u0, . . . , un) defined by

CI(u) = det(u0 + u1Mx1
+ · · ·+ unMxn

).

Theorem 2.15. The Chow form of A/I is

CI(u) =
∏

ζ∈V(I)

(u0 + u1ζ1 + · · ·+ unζn)
mζ ,

where V(I) is the finite complex zero set of I, ζ1, · · · , ζn are the components of ζ, and
mζ is the multiplicity of ζ.

3. Classification of Semigroup Orders

In this section, we provide a classification of semigroup orders based on their effects
on localizing polynomial rings. The following theorem is in the center of all our results.
It gives a natural geometric explanation to the localization of A corresponding to a
semigroup order >, i.e., for a zero-dimensional ideal I ⊂ A, xi < 1 implies that the points
ξ ∈ V(I) with ξi 6= 0 are deleted from V(Iec) ⊂ Cn. After introducing this theorem we
present two corollaries and a definition of the equivalence of semigroup orders.

Theorem 3.1. Let > be a semigroup order in A with xj1 < 1, . . . , xjk < 1 and xjk+1
>

1, . . . , xjn > 1 where (j1, . . . , jn) is a permutation of (1, . . . , n). Let S = {1 + g : g =
0∨lt(g) < 1, g ∈ A}. Let I ⊂ A be a zero-dimensional polynomial ideal and I = ∩k

i=1Qi

be its minimal primary decomposition. Let Pi = 〈x1 − ai1, . . . , xn − ain〉 be the radical

4



of Qi and suppose the Qi numbered so that aij1 = aij2 = · · · = aijk = 0 for and only
for the first m Qi. Then, S

−1I = ∩m
i=1S

−1Qi and Iec = (S−1I)c = ∩m
i=1Qi are minimal

primary decompositions.

Proof. According to Theorem 2.6, we only need to verify that Pi does not meet S if and
only if aij1 = aij2 = · · · = aijk = 0.

“⇐” Since > is a semigroup order and lt(g) < 1 for 1 + g ∈ S \ {1}, there exists
a j ∈ {j1, . . . , jk} such that xj |lt(g). Then all the monomials of g can be divided by
an element of {xj1 , . . . , xjk}. Hence, when substituting aij1 = aij2 = · · · = aijk = 0 to
1 + g we obtain the result 1. It means that none of the elements of S vanish under the
substitution.

“⇒” Consider 1 + αxj with j ∈ {j1, . . . , jk}. It locates in S for any α ∈ C. Since Pi

does not meet S, we have aij = 0. ✷

Corollary 3.2. In theorem 3.1, Iec = (S−1I)c has the same multiplicity with I at each
Pi (1 ≤ i ≤ m).

Proof. We know Iec = (S−1I)c = ∩m
i=1Qi by Theorem 3.1. By Definition 2.1, we only

need to check if the localizations of Iec and I are equal at Pi (1 ≤ i ≤ m). This is
obviously correct according to Theorem 2.6. ✷

From the view of computing isolated complex roots, semigroup orders can be classified
only according to the orders between variables and 1.

Corollary 3.3. For two semigroup orders >1 and >2 in A, they have the same effect
on the localization of any zero-dimensional ideal I, i.e., (S−1

1 I)c = (S−1
2 I)c, if and only

if for every 1 ≤ j ≤ n we have xj >1 1 if and only if xj >2 1.

Proof. “⇐” If for every 1 ≤ j ≤ n we have xj >1 1 if and only if xj >2 1, then we have
(S−1

1 I)c = (S−1
2 I)c according to Theorem 3.1.

“⇒” Suppose there exists a 1 ≤ j ≤ n such that xj >1 1 (or xj <1 1) but xj <2 1 (or
xj >2 1). Then, for the maximal ideal I = Q = P = 〈x1 − a1, . . . , xn − an〉 where aj 6= 0
and ai = 0 for i 6= j, we have (S−1

1 I)c = I (or A) and (S−1
2 I)c = A (or I) by Theorem

3.1. This is a contradiction. ✷

Corollary 3.3 indicates that there exists an equivalence relation among semigroup
orders. We make this relation explicit below.

Definition 3.4 (Equivalence Relations). Given two semigroup orders >1 and >2 on
Zn
≥0, we say that >1 is equivalent to >2 (denoted by >1∼>2) if for every 1 ≤ j ≤ n we

have xj >1 1 if and only if xj >2 1.

Corollary 3.3 says that semigroup orders in the same equivalence class have the same
effect in localizing rings. Thus, we only need to choose any representative of the orders
in the same equivalence class to compute a standard basis (cf. Example 5.5) for solving
polynomial equations. It is easy to see that there are 2n different equivalence classes of
semigroup orders on Zn

≥0.
The view of Theorem 3.1 can be very helpful for us to work out the complex zeros of

a zero-dimensional ideal I in another variety V(J). We introduce this idea below.
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4. Partial Zeros of Zero-dimensional Ideals

By Theorem 3.1, we can only compute the complex zeros of I in V(〈xj1, . . . , xjk〉). For
a general case, we want to transform it to this special case and solve it. A natural idea is
to rename the generators g1, . . . , gu of the ideal J to new variables xn+1, . . . , xn+u. (Sim-
ilar process has been provided in Mora and Rossi (1995) for different purpose. we will
introduce it for our purpose here.) Suppose I = 〈f1, . . . , fv〉 where v ≥ n since I is zero-
dimensional. Consider the ideal 〈f1, . . . , fv, g1 − xn+1, . . . , gu − xn+u〉 ⊂ C[x1, . . . , xn+u].
We can easily imagine that the complex zeros of this ideal are in one-to-one correspon-
dence with the complex zeros of I, and corresponding zeros of the two ideals share the
same multiplicities. A proof of a similar result can be found in Faugère and Liang (2011).
For completeness, we write down the detail proof of this lemma.

Lemma 4.1. Specify a zero-dimensional polynomial ideal I = 〈f1, . . . , fv〉 ⊂ A and
another polynomial ideal J = 〈g1, . . . , gu〉 ⊂ A. Consider the ideal I ′ = 〈f1, . . . , fv, g1 −
xn+1, . . . , gu − xn+u〉 ⊂ C[x1, . . . , xn+u]. Then, we have that the complex zeros of I ′ and
I are in a one-to-one correspondence. The two zeros in each pair have the same first n
projections and have the same multiplicity.

Proof For each complex zero of I we can easily obtain a corresponding complex zero
for I ′ by substituting the zero to xn+1 = g1, . . . , xn+u = gu. Moreover, different zeros of
I yield different zeros of I ′. On the other hand, for each zero of I ′, we take the first n
components to form a point p in Cn. Then p is obviously a zero of I. Hence there exists
a one-to-one correspondence between the complex zeros of I and I ′, and corresponding
zeros have the same first n projections. We only need to prove that the two zeros in each
pair have the same multiplicity. It is proved by definition as follows.

LetO andO′ be the rings of rational functions defined at complex zeros p = (a1, . . . , an)
and p′ = (a1, . . . , an, g1(p), . . . , gu(p)) of I and I ′, respectively, i.e., O = {h/g : g, h ∈
A, g(p) 6= 0} and O′ = {h′/g′ : g′, h′ ∈ C[x1, . . . , xn+u], g

′(p′) 6= 0}. Let IO be the ideal
generated by I in O. Let ϕ : O′ −→ O/IO be a homomorphism such that

ϕ(h′/g′) =
h′(x1, . . . , xn, g1, . . . , gu)

g′(x1, . . . , xn, g1, . . . , gu)
+ IO

where h′, g′ ∈ C[x1, . . . , xn+u] and g′(p′) 6= 0. It is easy to see this homomorphism is
surjective. For any q′ ∈ O′, if ϕ(q′) = q′(x1, . . . , xn, g1, . . . , gu) + IO = IO, then

q′(x1, . . . , xn, g1, . . . , gu) =
h′(x1, . . . , xn, g1, . . . , gu)

g′(x1, . . . , xn, g1, . . . , gu)
∈ IO.

Hence h′(x1, . . . , xn, g1, . . . , gu) ∈ IO ⊂ I ′O′. Each term in T{x1,...,xn+u} can be written
as

xu1

1 · · ·xun
n xv1

n+1 · · ·xvu
n+u

= xu1

1 · · ·xun
n (g1 + (xn+1 − g1))

v1 · · · (gu + (xn+u − gu))
vu

= xu1

1 · · ·xun
n gv11 · · · gvuu +

u
∑

j=1

rj(xn+j − gj)

6



where rj ∈ C[x1, . . . , xn+u]. Hence,

h′(x1, . . . , xn+u) = h′(x1, . . . , xn, g1, . . . , gu) +

u
∑

j=1

r∗j (xn+j − gj) ∈ I ′O′

where r∗j ∈ C[x1, . . . , xn+u]. Therefore, q
′ = h′/g′ ∈ I ′O′ and ker(ϕ) ⊂ I ′O′. Conversely,

for every q′ ∈ I ′O′ there exists a g′ ∈ C[x1, . . . , xn+u] with g′(p′) 6= 0 such that g′q′ ∈
I ′. Hence g′(p′) 6= 0 and (g′q′)(x1, . . . , xn, g1, . . . , gu) ∈ I. Therefore, ϕ(q′) = IO and
ker(ϕ) ⊃ I ′O′. We have ker(ϕ) = I ′O′, and O′/I ′O′ ∼= O/IO. This ring isomorphism is
also an isomorphism of vector spaces over C. Consequently, dim(O′/I ′O′) = dim(O/IO),
i.e., p and p′ have the same multiplicity. ✷

In the following theorem, we transform the problem of computing the complex zeros
of I that locate in V(J) with multiplicities w.r.t. I to a problem in a larger ring that
Theorem 3.1 can be used to solve.

Theorem 4.2. Specify two ideals I = 〈f1, . . . , fv〉 and J = 〈g1, . . . , gu〉 in A with I zero-

dimensional. Let > be a semigroup order on T{x1,...,xn+u} such that x1 > 1, . . . , xn > 1
and xn+1 < 1, . . . , xn+u < 1. Consider the ideal I ′ = 〈f1, . . . , fv, g1 − xn+1, . . . , gu −
xn+u〉 ⊂ C[x1, . . . , xn+u]. Then, the complex zeros of I ′ec = (Loc>(I

′))c correspond to the
complex zeros of I in variety V(J) and corresponding zeros have the same multiplicities
and first n coordinates.

Proof The complex zeros of I in variety V(J) correspond to the complex zeros of I ′

with xn+1 = 0, . . . , xn+u = 0. By Lemma 4.1, corresponding zeros of I and I ′ have the
same first n coordinates and the same multiplicities. By Theorem 3.1, we can obtain
that I ′ec = (Loc>(I

′))c has a minimal primary decomposition ∩m
i=1Qi where m is the

number of distinct complex zeros of I ′ with xn+1 = 0, . . . , xn+u = 0, Qi are primary
ideals in C[x1, . . . , xn+u] such that

√
Qi = Pi = 〈x1 − ai1, . . . , xn − ain, xn+1, . . . , xn+u〉

and (ai1, . . . , ain, 0, . . . , 0) ∈ C
n+u are all complex zeros of I ′ec. By Corollary 3.2, for

each 1 ≤ i ≤ m, the multiplicity of (ai1, . . . , ain, 0, . . . , 0) ∈ Cn+u w.r.t. I ′ec is the same
as the multiplicity of the same point w.r.t. I ′. Therefore, the zeros of I ′ec = (Loc>(I

′))c

correspond to the zeros of I in variety V(J) such that corresponding zeros have the same
multiplicities and first n coordinates. ✷

5. Computing Partial Solutions

In this section, we study how to use the standard basis method to count or compute
the complex zeros of I that locate in V(J) with the multiplicities w.r.t. I.

Theorem 5.1. If I ⊂ A is a zero-dimensional ideal and > is a semigroup order on Zn
≥0,

then A/Iec ∼= Loc>(A)/ILoc>(A).

Proof. A/Iec ∼= ⊕m
i=1A/Qi and Loc>(A)/ILoc>(A) ∼= ⊕m

i=1S
−1A/S−1Qi hold accord-

ing to Theorem 3.1. We only need to show A/Qi
∼= S−1A/S−1Qi for every i = 1, . . . ,m.

Let ϕi : A → S−1A/S−1Qi, a 7→ [a/1]. This is a ring homomorphism. If we can prove
ker(ϕi) = Qi and ϕi is onto, then we are done.
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It is easy to see that Qi ⊂ ker(ϕi). Note that Qi is primary and S ∩ √
Qi = ∅. Then

(S−1Qi)
c = Qi by Theorem 2.6. Let b ∈ ker(ϕi). Then b/1 ∈ S−1Qi and b ∈ (S−1Qi)

c.
We have ker(ϕi) ⊂ Qi. Thus, ker(ϕi) = Qi.

Take an arbitrary element [h/s] in S−1A/S−1Qi where h ∈ A and s ∈ S. Let Pi =
√
Qi

be the maximal ideal corresponding to a point pi in Cn. By Theorem 2.7, there exists a
positive integer k such that P k

i ⊂ Qi. Since S ∩ Pi = ∅, we have s(pi) = c0 6= 0. Hence,
1 − s/c0 ∈ Pi and (1 − s/c0)

k ∈ P k
i ⊂ Qi ⊂ S−1Qi. Take d = (1 + (1 − s/c0) + (1 −

s/c0)
2 + · · ·+ (1 − s/c0)

k−1))/c0 ∈ A. Then sd = c0(1 − (1 − s/c0)) ∗ (1 + (1 − s/c0) +
(1 − s/c0)

2 + · · · + (1 − s/c0)
k−1))/c0 = 1 − (1 − s/c0)

k ≡ 1 mod S−1Qi. Then dh is a
preimage of [h/s], i.e., ϕi is onto. ✷

Corollary 5.2. If I ⊂ A is a zero-dimensional ideal and > is a semigroup order on Zn
≥0,

then dimA/Iec = dimLoc>(A)/ILoc>(A) < ∞.

Proof By Theorem 3.1, dimA/Iec =
∑m

i=1 dimA/Qi ≤ dimA/I < ∞. Then by Theo-
rem 5.1, dimLoc>(A)/ILoc>(A) = dimA/Iec < ∞. ✷

Corollary 5.2 transforms the problem of counting complex zeros of Iec with multiplic-
ities to the problem of computing the C-vector space dimension of Loc>(A)/ILoc>(A).
The next theorem shows that this dimension can be worked out by computing a standard
basis of ILoc>(A) in Loc>(A) w.r.t. >. The number of the standard monomials is just the
C-vector space dimension of Loc>(A)/ILoc>(A). This theorem is an easy generalization
of the one in Cox et al. (2005), where the order > is a local order.

Theorem 5.3. Let > be a semigroup order on Zn
≥0 and R be the ring Loc>(A). If I ⊂ R

is an ideal, then the following are equivalent.
(1) dimR/I is finite.
(2) dimR/〈lt(I)〉 is finite.
(3) There are only finitely many standard monomials.

Furthermore, when any of these conditions is satisfied, we have

dimR/I = dimR/〈lt(I)〉 = number of standard monomials

and every f ∈ R can be written uniquely as a sum

f = g + r,

where g ∈ I and r is a linear combination of standard monomials. In addition, this
decomposition can be computed algorithmically in R.

Proof. The proof is almost the same as the proof of its local version in Cox et al.
(2005). We only need to change a local order to a semigroup order and a local ring
to Loc>(A). ✷

In the proof of Theorem 5.3, a standard basis G of I w.r.t. > should be computed
first to reduce an element f ∈ R to r by the Mora normal form algorithm. Denote r
by redNF(f,G,>). Theorem 5.3 and Corollary 5.2 tell us that for a zero-dimensional
ideal I ⊂ A and an arbitrary semigroup order > on Zn

≥0, there exists a unique reduced
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standard basis G of Ie = ILoc>(A) w.r.t. >. And for every f ∈ Loc>(A) the reduced
normal form redNF(f,G,>) is well defined.

By Theorem 4.2, Corollary 5.2 and Theorem 5.3, for a zero-dimensional polynomial
ideal, we can count the number of its complex zeros that locate in another variety with
multiplicities by computing a standard basis of a localization of a new polynomial ideal
w.r.t. a semigroup ordering.

In the next theorem, we introduce a way to work out such partial solutions.

Theorem 5.4. If I ⊂ A is a zero-dimensional ideal, > is a semigroup order on Zn
≥0 and

G is a standard basis of ILoc>(A) w.r.t. >, then there are only finitely many standard
monomials. Moreover, these standard monomials form an order ideal W and a C-vector
space basis of A/Iec. Consequently, the set H = {t − redNF(t, G,>) : t ∈ ∂W} is a
W -border basis of the ideal Iec = (ILoc>(A))

c in A.

Proof. Since I ⊂ A is zero-dimensional, we have dimLoc>(A)/ILoc>(A) < ∞ by Corol-
lary 5.2. Then, by Theorem 5.3, the set W of standard monomials is finite. For every
t ∈ W , the divisors of t in T{x1,...,xn} is also in W by Definition 2.5. Thus, W is an order
ideal by Definition 2.8 and H = {t− redNF(t, G,>) : t ∈ ∂W} is a W -border prebasis by
Definition 2.9 and Definition 2.10. Note that dimA/Iec < ∞ by Corollary 5.2. It implies
Iec is zero-dimensional. By Theorem 5.3, H ⊂ ILoc>(A) ∩ A = Iec. Suppose there is a
nontrivial linear combination f of the monomials in W with coefficients in C such that
f ∈ Iec ⊂ ILoc>(A). Then the residue classes of these monomials in Loc>(A)/ILoc>(A)
are linearly dependent, a contradiction with the conclusion of Theorem 5.3. Hence, the
residue classes of the monomials in W in A/Iec are linearly independent. On the other
hand, by Corollary 5.2 and Theorem 5.3, dimA/Iec = dimLoc>(A)/ILoc>(A) = #W .
As a result, we know that the residue classes of the monomials in W form a C-vector
space basis of A/Iec. Thus, by Definition 2.11, the set H is a W -border basis of the ideal
Iec in A. ✷

According to Proposition 2.12, the border basisH in Theorem 5.4 is a set of generators
of Iec. By using this border basis, we can construct multiplication matrices (cf. Definition
2.13) and a Chow form (cf. Defintion 2.14). Then applying Theorem 2.15, we can compute
all the complex zeros of Iec in Cn with their multiplicities. Other methods can also be
used to work out the zeros of Iec with multiplicities, for example, the rational univariate
representation (RUR) method (cf. Rouillier (1999)).

Example 5.5. Milnor number is an important invariant in singularity theory. According
to Greuel and Pfister (2008), for a holomorphic function f , the critical points are the
points in Cn that vanish the ideal I = 〈∂f/∂x1, . . . , ∂f/∂xn〉 ⊂ A, and the singular
points are the critical points on the hypersurface V(f). If f is a polynomial in A, then
the Milnor number of a critical point p is just equal to the multiplicity of p w.r.t. I (note
that not 〈I, f〉 for the singular points). We want to calculate the sum of Milnor numbers
of the singular points on V(f) and work out all the singular points with their Milnor
numbers.

Take f = (x2 + y2 − 2y)(y − 2x2) = −2x4 − 2x2y2 + 5x2y + y3 − 2y2 ∈ A = C[x, y]
for example. We do the computation in a computer algebra software Singular (cf.
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Decker et al. (2012) and Greuel and Pfister (2008)). The codes and outputs are listed

below.

ring B=0,(x,y,u),(a(1,1,-1),dp);

poly f=-2x4-2x2y2+5x2y+y3-2y2;

ideal I=jacob(f);

ideal K=I,u-f;

ideal G=std(K);

G;

G[1]=18xy2-27xy+64xu

G[2]=45x2+9y2-32x2u-36y-27u

G[3]=u

G[4]=4y3+25x2-y2-20y-16u

In the codes, B is a ring k[x, y, u] where k is a field with characteristic 0. For our

purpose, we can view B as C[x, y, u]. The set G is a standard basis of Loc>(〈I, u− f〉) in
Loc>(B) w.r.t. a semigroup order > such that x > 1, y > 1 and u < 1. The dp in the first

line of the codes is an ordering chosen randomly to break ties. Note that the polynomials

in G are not reduced. All the terms in G[1], G[2] and G[4] that contain factor u can be

cancelled by G[3]. G[4] can be further reduced to 2y3 − 3y2.

vdim(G);

5

The command vdim computes the C-vector space dimension of Loc>(B)/〈G〉 for a

standard basis G w.r.t. >. Here, the output means the sum of Milnor numbers of singular

points on V(f) is 5 (the sum of Milnor numbers of all the critical points is 8). This result

is based on Theorem 4.2, Corollary 5.2 and Theorem 5.3.

From the output of G we can easily see that 1, y, x, y2, xy form an order ideal and

a C-vector space basis of B/〈I, u − f〉ec. Compute the normal form of x2y (note that

here and the previous reductions should use the Mora normal form algorithm, because

we are working in Loc>(B)). Then, by Theorem 5.4, we get a border basis H = {2xy2 −
3xy, 5x2+y2−4y, u, 2y3−3y2, 2x2y−y2} of 〈I, u−f〉ec in B. Construct the multiplication

matrices of B/〈I, u− f〉ec w.r.t. the C-vector space basis {1, y, x, y2, xy} from H :

Mx =























0 0 1 0 0

0 0 0 0 1

0 4/5 0 −1/5 0

0 0 0 0 3/2

0 0 0 1/2 0























,My =























0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 3/2 0

0 0 0 0 3/2























,Mu = 05×5.

By Definition 2.14, the Chow form of B/〈I, u− f〉ec in v = (v0, v1, v2, v3) is
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C〈I,u−f〉ec(v) = det(v0 + v1Mx + v2My + v3Mu)

= v30(v0 −
√
3

2
v1 +

3

2
v2)(v0 +

√
3

2
v1 +

3

2
v2).

Therefore, there are three distinct singular points (0, 0), (−
√
3/2, 3/2) and (

√
3/2, 3/2)

on the hypersurface V(f) with respective Milnor numbers 3, 1 and 1 by Theorem 2.15
and Theorem 4.2. Note that u does not appear in the Chow form since for each complex
zero of 〈I, u − f〉ec, its u-coordinate is 0 by Theorem 3.1. Thus, in fact, we do not need
to compute Mu for computing the Chow form.

6. Conclusion

In this paper, we proposed a natural geometric explanation of the effect of a semi-
group order > on localizing polynomial rings C[x1, . . . , xn], i.e., for an arbitrary zero-
dimensional ideal I in C[x1, . . . , xn] and every 1 ≤ i ≤ n, if xi < 1 then the complex zeros
of I with the i-th coordinates nonzero are discarded when we construct Iec. Then, based
on this view, we proved that for a zero-dimensional ideal, the standard basis method and
the border basis method can be used to compute its complex zeros that locate in another
variety. As an application, we computed singular points with their Milnor numbers on a
polynomial hypersurface V(f).
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