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Approximate Range Emptiness in Constant Time and Optimal
Space
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Abstract

This paper studies theε-approximate range emptinessproblem, where the task is to represent a set
S of n points from{0, . . . , U − 1} and answer emptiness queries of the form “[a; b] ∩ S 6= ∅ ?” with
a probability offalse positivesallowed. This generalizes the functionality ofBloom filtersfrom single
point queries to any interval lengthL. Setting the false positive rate toε/L and performingL queries,
Bloom filters yield a solution to this problem with spaceO(n lg(L/ε)) bits, false positive probability
bounded byε for intervals of length up toL, using query timeO(L lg(L/ε)). Our first contribution is to
show that the space/error trade-off cannot be improved asymptotically: Any data structure for answering
approximate range emptiness queries on intervals of lengthup toL with false positive probabilityε, must
use spaceΩ(n lg(L/ε))−O(n) bits. On the positive side we show that the query time can be improved
greatly, to constant time, while matching our space lower bound up to a lower order additive term. This
result is achieved through a succinct data structure for (non-approximate 1d) range emptiness/reporting
queries, which may be of independent interest.
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1 Introduction

The approximate membership problem is a fundamental and well-studied data structure problem. Here we
are to represent a static setS of n distinct points/elements from a universe[U ] = {0, . . . , U − 1}. A query
is specified by a pointx ∈ [U ] and the data structure must answermemberwith probability 1 if x ∈ S.
If x /∈ S, then the data structure must answernot memberwith probability at least1 − ε, whereε > 0
is a parameter of the data structure and the probability is over the randomness used when constructing the
data structure. Hence the name approximate membership. Note that solutions are inherently randomized
as queries for points not inS must be answered correctly with a given probability. The valueε is typically
refered to as thefalse positive rate.

While storingS directly requireslg
(U
n

)

≥ n lg(U/n) bits, approximate membership data structures
can be implemented to use onlyn lg(1/ε) + O(n) bits, which is known to be optimal [7]. Thus efficient
approximate membership data structures use less space thanthe information theoretic minimum for storing
S directly.

In this paper, we study a natural generalization of the approximate membership problem, in which we
are to handle query intervals rather than single-point queries. More formally, we define theapproximate
range emptinessproblem as follows: Represent a setS of n points from a universe[U ], such that given a
query intervalI = [a; b], the data structure must answernon-emptywith probability1 if there is a point from
S in I (i.e. “is S ∩ I 6= ∅?”). If I contains no points fromS, the data structure must answeremptywith
probability at least1− ε.

The approximate range emptiness problem was first considered in database applications [1]. Here ap-
proximate range emptiness data structures were used to store a small (approximate) representation of a
collection of points/records in main memory, while maintaining the actual (exact) points on disk. When
processing range queries, the approximate representationis first queried to avoid expensive disk accesses
in the case of an empty output. The paper takes a heuristic approach to the problem and design data struc-
tures that seem to perform well in practice. Unfortunately no formal analysis or worst case performance
guarantees are provided. Motivated by this lack of theoretical understanding, we ask the following question:

Question 1. What theoretical guarantees can be provided for the approximate range emptiness problem?

Towards answering this question, observe that an approximate range emptiness structure solves the
approximate membership problem and hence a space lower bound of n lg(1/ε) bits follows directly from
previous work. But can this space bound be realized? Or does an approximate range emptiness data structure
require even more space? What if we require only that the datastructure answers queries of length no more
than a given input parameterL? At least forL ≪ u/n, we can beat the trivialn lg(U/n) space bound
as follows: Implement the approximate membership data structure of [9] onS with false positive rate
ε/L. Upon receiving a query intervalI of length no more thanL, query the approximate membership data
structure for everyx ∈ I ∩ [U ] and returnnon-emptyif any of these queries returnmember. Otherwise
returnempty. By a union bound, this gives the desired false positive rateof ε and the space consumption
is n lg(L/ε) bits. How much can we improve over this trivial solution? A natural line of attack would be
to design an approximate membership structure where the locations of the false positives are correlated and
tend to “cluster” together inside a few short intervals. Is this possible without increasing the space usage?
Answering these questions is the focus of this paper.

Our Results. In Section 2, we answer the questions above in the strongest possible negative sense, i.e. we
prove that any data structure for the approximate range emptiness problem, where only query intervals of
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length up to a givenL are to answered, must use

n lg

(

L1−O(ε)

ε

)

−O(n)

bits of space. Thus it is not even possible to shave off a constant factor in the space consumption of the
trivial solution, at least forε = o(1). Moreover, the lower bound applies even if only queries of length
exactlyL are to be answered. We find this extremely surprising (and disappointing).

In light of the strong lower bounds, we set out to improve overtheΩ(L) query time of the trivial solution
above, while maintaining optimal space. In Section 3 we present a data structure withO(1) query time and
spacen lg(L/ε) + o(n lg(L/ε)) + O(n) bits, thus matching the lower bound up to a lower order term
wheneverL/ε = ω(1). The data structure answers a query of any lengthℓ ≤ L, not only those of length
exactlyL, with false positive rateεℓ/L. As a building block in our data structure, we also design a new
succinct data structure for (non-approximate) range emptiness queries which may be of independent interest.
This data structure usesn lg(U/n) +O(n lgδ(U/n)) bits of space for storingn points from a universe[U ],
while answering queries in constant time. Hereδ > 0 is an arbitrarily small constant. The data structure is
thus optimal up to the lower order additive term in the space usage. Moreover, it also supports reporting all
k points inside a query interval inO(k) time, thus providing a succinct 1d range reporting data structure.
The best previous data structure was a non-succinctO(n lgU) bit data structure of Alstrup et al. [2].

As an additional result, we also prove in Section 2.1 that data structures with two-sided errorε > 0 (i.e.,
for non-empty intervals, we must answernon-emptywith probability1− ε), must use space

n lg(L/ε)−O(n)

bits when0 < ε < 1/ lgU . Thus for small error rate, only lower order additive savings in space are possible.
For1/ lgU < ε < 1/2− Ω(1), we get a space lower bound of

Ω

(

n lg(L lgU)

lg1/ε lgU

)

bits, thus ruling out hope of large space savings even with two-sided errors. Again, these lower bounds hold
even if only query intervals of length exactlyL are to be answered.

Related Work on Approximate Membership. Bloom filters [5] are the first approximate membership
data structures, requiringn lg(1/ε) lg e space and having a lookup time oflg(1/ε). They have found a vari-
ety of applications both in theory and practice, and we referthe reader to [6] for an overview of applications.
In [9] the space usage was reduced to near-optimal(1 + o(1))n lg(1/ε) bits and the lookup time to an opti-
malO(1), while also supporting insertions/deletions in amortizedexpectedO(1) time. In the static case the
space usage has been further reduced too(n) bits from the lower bound [4].

The dynamic case where the sizen of the setS is not known in advance was handled in [10], where it
was shown that the average number of bits per element in an optimal data structure must grow withlg lg n.
A closely related problem to approximate membership is the retrieval problem, where each element has an
associated data, and data must be retrieved correctly only for members. In [4] the authors achieve a query
time ofO(1) using a space that is withino(n) of optimal.

2 Lower Bounds

In this section, we prove a lower bound on the space needed forany data structure answering approximate
range emptiness queries. While the upper bounds presented in Section 3 guarantees a false positive rate of
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ε for any query interval of length up to a predefined valueL, the lower bound applies even ifonly lengthL
intervals are to be answered. More formally, we show:

Theorem 1. For the approximate range emptiness problem onn points from a universe[U ], any data
structure answering all query intervals of a fixed lengthL ≤ u/5n with false positive rateε > 0, must use
at least

s ≥ n lg

(

L1−O(ε)

ε

)

−O(n)

bits of space.

The proof of Theorem 5 is based on an encoding argument. The high level idea is to use an approximate
range emptiness data structure to uniquely encode (and decode) every set ofn points into a bit string whose
length depends on the space usage and false positive rate of the data structure. Since each point set is
uniquely encoded, this gives a lower bound on the size of the encoding and hence the space usage of the
data structure.

For technical reasons, we do not encode every set ofn points, but instead only point sets that are well-
separated in the following sense: LetI be the set of allL-well-separatedsets ofn points in[U ], where a set
S of n points isL-well-separated if:

• For any two distinctx, y ∈ S, we have|x− y| ≥ 2L.

• For anyx ∈ S, we havex ≥ 2L− 1 andx ≤ U − 2L.

Note that there are manyL-well-separated whenL is not too close toU/n:

Lemma 2. There are at least((U − 4nL)/n)n L-well-separated point sets for anyL ≤ U/4n.

Proof. Consider picking one point at a time fromU , each time making sure the constructed set isL-well-
separated. For thei’th point, i = 1, . . . , n, there areU − 4L− 4(i − 1)L = U − 4iL valid choices for the
location of thei’th point. Since the same set of points can be constructed inn! ways using this procedure,
there are at least

(U − 4nL)n

n!
≥

(

u− 4nL

n

)n

.

L-well-separated point sets.

We now set out to encode any setS ∈ I in a number of bits depending on the performance of a given
data structure. Assume for simplicity thatU andL are powers of2. The encoding algorithm considers two
carefully chosen sets of intervals:

• The top intervals is the set ofU/L lengthL intervalsT = {T0, . . . , TU/L−1} of the formTi =
[iL; (i + 1)L− 1].

• For eachx ∈ S andi = 1, . . . , lgL− 1, thelevel-i-coveringintervals ofx are the two intervals:

ℓi(x) = [⌊x/2i⌋ · 2i + 2i−1 − L; ⌊x/2i⌋ · 2i + 2i−1 − 1].

ri(x) = [⌊x/2i⌋ · 2i + 2i−1; ⌊x/2i⌋ · 2i + 2i−1 + L− 1].

For intuition on why we take interest in these intervals, observe the following:

Lemma 3. Consider the binary representation of a pointx ∈ S. If the i’th least significant bit ofx is 0
(counting fromi = 1), thenx is contained inℓi(x). Otherwisex is contained inri(x). Furthermoreℓi(x)
andri(x) contain no other points fromS and any top intervalTj contain at most one point fromS.
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Proof. Rewritex = ⌊x/2i⌋ · 2i + (x mod 2i). If the i’th least significant bit ofx is 0 then(x mod 2i) ∈
{0, . . . , 2i−1 − 1}, i.e. x ∈ [⌊x/2i⌋ · 2i; ⌊x/2i⌋ · 2i + 2i−1 − 1] ⊆ ℓi(x). Otherwise(x mod 2i) ∈
{2i−1, . . . , 2i − 1} implying x ∈ [⌊x/2i⌋ · 2i + 2i−1; ⌊x/2i⌋ · 2i + 2i − 1] ⊆ ri(x).

Next, observe that the intervalsℓi(x) andri(x) have lengthL and both have an endpoint of distance
less than2i+1 ≤ L from x. SinceS is L-well-separated, it follows that no other points can be contained
in ℓi(x) andri(x). For the top intervalsTj, the claimed property similarly follows fromS beingL-well-
separated.

We are ready to give the encoding and decoding algorithms forall L-well-separated point setsS ∈ I.
For the encoding and decoding procedures, we assume the existence of a data structureD with s bits of
space and false positive rateε > 0 for query intervals of lengthL.

Encoding Algorithm. In this paragraph we present the encoding algorithm. LetS ∈ I be anL-well-
separated point set. Observe that if we run the randomized construction algorithm ofD on S, we are
returned a (random) memory representationM ∈ {0, 1}s. For the memory representationM, the answer
to each query is fixed, i.e. it is the randomized choice ofM that gives the false positive rate ofε for
each query interval of lengthL (the memory representation encodes e.g. a particular hash function from
a family of hash functions). LettingA(M) denote the number of false positives amongst the top intervals
T , we get from linearity of expectation thatE[A(M)] ≤ εU/L. Similarly, letB(M) denote the number
of false positives amongst all the intervalsℓi(x) andri(x) for x ∈ S andi ∈ {1, . . . , lgL − 1}. We have
E[B(M)] ≤ εn lgL since preciselyn lgL of the intervalsℓi(x) andri(x) are empty. Since bothA(M) and
B(M) are non-negative, it follows from Markov’s inequality and aunion bound that:

Pr
M

[

A(M) ≤
1

1− 1/γ
· εU/L

∧

B(M) ≤ γεn lgL

]

> 0

for any parameterγ > 1. Since the probability is non-zero, there exists a particular memory representation
M∗ ∈ {0, 1}s for which:

A(M∗) ≤
1

1− 1/γ
· εU/L

∧

B(M∗) ≤ γεn lgL.

The encoding consists of the following:

1. Thes bits ofM∗.

2. Let T ∗ be the subset ofT that returnnon-emptyon M∗. We encode the set ofn top intervalsTS
containingS, whereTS is specified as ann-sized subset ofT ∗. This costslg

(|T ∗|
n

)

= lg
(A(M∗)+n

n

)

bits.

3. For each intervalTj ∈ TS in turn (from left to right), letx be the point fromS in Tj . For i =
lgL−1, . . . , 1 in turn, check whether bothℓi(x) andri(x) returnnon-emptyonM∗. If so, we append
one bit to our encoding. This bit is0 if x ∈ ℓi(x) and it is1 if x ∈ ri(x). Otherwise we continue
without writing any bits to the encoding. In total this costsexactlyB(M∗) bits (each bit can be
charged to exactly one false positive).

This concludes the description of the encoding algorithm. Next we show thatS can be uniquely recov-
ered from the encoding.
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Decoding Algorithm. In the following, we show how we recover anL-well-separated point set from the
encoding described in the paragraph above. The decoding algorithm is as follows:

1. Read thes first bits of the encoding to recoverM∗.

2. Run the query algorithm for every query inT with the memory representationM∗. This recoversT ∗.

3. FromT ∗ and the bits written in step 2 of the encoding algorithm, we recoverTS .

4. For each intervalTj ∈ TS (from left to right), letx be the point fromS in Tj. This step recovers
x as follows: FromTj , we know all but thelgL − 1 least significant bits ofx. Now observe that
the definition ofℓlgL−1(x) andrlgL−1(x) does not depend on thelgL − 1 least significant bits of
x, hence we can determine the intervalsℓlgL−1(x) andrlgL−1(x) from Tj . We now run the query
algorithm forℓlgL−1(x) andrlgL−1(x) with M∗ as the memory. If only one of them returnsnon-
empty, it follows from Lemma 3 that we have recovered the(lgL− 1)’st least significant bit ofx. If
both returnnon-empty, we read off one bit from the part of the encoding written during step 3 of the
encoding algorithm. This bit tells us whetherx ∈ ℓlgL−1(x) or x ∈ rlgL−1(x) and we have again
recovered the next bit ofx. Note that we have reduced the number of unknown bits inx by one and
we now determineℓlgL−2(x) andrlgL−2(x) and recurse. This process continues until all bits ofx
have been recovered and we continue to the nextTj′ ∈ TS .

Thus we have shown how to encode and decode anyL-well-separated point setS. We are ready to
derive the lower bound.

Analysis. The size of the encoding is

s+ lg

(

A(M∗) + n

n

)

+B(M∗) ≤

s+ lg

( 1
1−1/γ · εU/L+ n

n

)

+ γεn lgL ≤

s+ n lg





e
(

1
1−1/γ · εU/L+ n

)

n



+ γεn lgL ≤

s+ n lg

(

εU

(1− 1/γ)nL

)

+ γεn lgL+O(n) =

s+ n lg

(

εU

(1− 1/γ)nL1−εγ

)

+O(n)

bits. But from Lemma 2 we have that there are at least((U−4nL)/n)n distinctL-well-separated point sets.
Hence we must have

s+ n lg

(

εU

(1− 1/γ)nL1−εγ

)

+O(n) ≥ n lg

(

U − 4nL

n

)

⇒

s ≥ n lg

(

(1− 1/γ)L1−εγ(U − 4nL)

εU

)

−O(n).

ForL ≤ U/5n, this is:

s ≥ n lg

(

(1− 1/γ)L1−εγ

ε

)

−O(n).
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Settingγ to a constant, this simplifies to

s ≥ n lg

(

L1−O(ε)

ε

)

−O(n),

which completes the proof of Theorem 5.

2.1 Extension to two-sided errors

In this section, we extend the lower bound above to the case oftwo sided error, i.e. we have both false
positives and false negatives. The result of the section is the following:

Theorem 4. For the approximate range emptiness problem onn points from a universe[U ], any data
structure answering all query intervals of a fixed lengthL ≤ u/5n with two-sided error rateε, must use at
least

s ≥ n lg(L/ε) −O(n)

bits of space when0 < ε < 1/ lgU , and at least

s = Ω

(

n lg(L lgU)

lg1/ε lgU

)

bits for1/ lgU ≤ ε ≤ 1/2− Ω(1).

As in the previous section, we use an approximate range emptiness data structure to encode any set of
L-well-separated points. The encoding procedure follows that of the one-sided error case closely and we
assume the reader has read Section 2.

So assume we are given an approximate range emptiness data structureD with s bits of space and two-
sided error rate0 < ε ≤ 1/2 − Ω(1). Our first step is to reduce the error rate using a standard trick: Upon
receiving an input set of pointsS, implementk copies ofD onS, where the randomness used for each copy
is independent. When answering a query, we ask the query on each copy of the data structure and return the
majority answer. Sinceε < 1/2 − Ω(1), it follows from a Chernoff bound that the error rate is bounded by
εO(k). Thus we now have a data structure usingks bits of space with error rateδ = εO(k) for a parameter
k ≥ 1 to be determined later.

Encoding Algorithm. Let S ∈ I be anL-well-separated point set to encode. DefineT , ℓi(x), ri(x), M,
A(M) andB(M) as in Section 2. DefineC(M) as the number of false negatives amongst queries inT and
F (M) as the number of false negatives amongst queriesℓi(x) andri(x) over all i andx. From Markov’s
inequality and a union bound, we conclude that there must exist a set of memory bitsM∗ ∈ {0, 1}ks for
which:

• A(M∗) ≤ 4δU/L.

• B(M∗) ≤ 4δn lgL.

• C(M∗) ≤ 4δn.

• F (M∗) ≤ 4δn lgL.

The encoding algorithm first writes down some bits that allowus to correct all the false negatives. Following
that, it simply writes down the encoding from the previous section (since we have reduced the decoding
problem to the case of no false negatives). Describing the false negatives is done as follows:
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1. First we write downlg(U/L) bits to specifyC(M∗). Following that, we encode theC(M∗) false
negatives amongstT usinglg

( U/L
C(M∗)

)

bits.

2. Secondly, we spendlg(n lgL) bits to specifyF (M∗). We then uselg
(2n lgL
F (M∗)

)

bits to specify the false
negatives amongstℓi(x) andri(x). Note that we avoid the explicit encoding ofℓi(x) andri(x) by
mapping a false negativeℓi(x) to the numberΓ(ℓi(x)) = rankS(x) · 2 lgL+2(i− 1) andri(x) to the
numberΓ(ri(x)) = rankS(x) · 2 lgL+ 2(i− 1) + 1. Here rankS(x) denotes the number of elements
in S smaller thanx. Note thatΓ(ℓi(x)),Γ(ri(x)) ∈ [2n lgL] and the claimed space bound follows.

3. Lastly, we run the entire encoding algorithm from Section2 assuming the false negatives have been
corrected.

Decoding Algorithm. In the following, we describe the decoding algorithm.

1. From the bits written in step 1 of the encoding procedure, we correct all false negatives amongst
queries inT .

2. From the secondary encoding, we recoverM∗. Since we have corrected all false negatives inT , we
also recoverTS using steps 2-3 of the decoding procedure in Section 2.

3. We now run step 4 of the decoding algorithm in Section 2. Observe that for eachx we are about to
recover, we know rankS(x). Therefore we can use the bits written in step 2 of the encoding algorithm
above to correct all false negatives amongst queriesℓi(x) andri(x). Following that, we can finish
step 4 of the decoding algorithm in Section 2 as all false negatives have been corrected.

Analysis. Examining the encoding algorithm above and the one in Section 2, we see that the produced
encoding uses:

ks+ lg

(

U/L

C(M∗)

)

+ lg

(

2n lgL

F (M∗)

)

+ lg

(

A(M∗) + n

n

)

+B(M∗) +O(lg n)

bits. By the arguments in Section 2, this is bounded by:

ks+ lg

(

U/L

C(M∗)

)

+ lg

(

2n lgL

F (M∗)

)

+ n lg

(

δU

4nL1−4δ

)

+O(n).

Using the bounds onC(M∗) andF (M∗), we see that this is at most:

ks+ 4δn lg

(

U

Lδn

)

+ 4δn lgL lg
( e

2δ

)

+ n lg

(

δU

4nL1−4δ

)

+O(n).

Fixing k = max{1,Θ(lg1/ε lgU)}, the second and third term becomesO(n) and we get:

ks+ n lg

(

δU

4nL1−4δ

)

+O(n).
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ForL ≤ U/5n we have at least(U/5n)n distinctL-well-separated point sets, thus we must have:

ks ≥ n lg

(

L1−O(δ)

δ

)

−O(n) ⇒

s ≥
n lg

(

L1−O(1/ lgU)

min{ε,1/ lgU}

)

k
−O(n) ⇒

s ≥
n lg

(

L
min{ε,1/ lgU}

)

k
−O(n).

Whenε < 1/ lgU we getk = 1 and this simplifies to

s = n lg(L/ε)−O(n),

and forε > 1/ lgU it becomes:

s = Ω

(

n lg(L lgU)

lg1/ε lgU

)

.

3 Upper Bounds

In this section we describe our approximate range emptinessdata structures. The data structure consists of
a (non-approximate) succinct range emptiness data structure applied to the input points after they have been
mapped to a smaller universe. More specifically, we use a carefully chosen hash function to map the input
points to a universe of sizer = nL/ε, and store them in a range emptiness data structure that has constant
query time and usesn lg(U/n) + O(n lgδ(U/n)) bits of space for storingn points from a universe of size
U . This gives us our main upper bound result.

Theorem 5. For any ε > 0, L andn input points from a universe[U ], there is a data structure that uses
n lg(L/ε)+O(n lgδ(L/ε)) bits of space, whereδ > 0 is any desired constant, that answers range emptiness
queries for all ranges of length at mostL in constant time with a false positive rate of at mostε.

3.1 Universe Reduction

Let r = nL/ε and chooseu : [U/r] → [r] from a pairwise independent family. Now define a hash function
(similar in spirit to the “non-expansive” hash functions ofLinial and Sasson [8]) that preserves locality, yet
has small collision probability:

h(x) = (u(⌊x/r⌋) + x) mod r .

Lemma 6. For x1 6= x2 we havePr[h(x1) = h(x2)] ≤ 1/r.

Proof. Collision happens if and only ifu(⌊x1/r⌋) − u(⌊x2/r⌋) ≡ x2 − x1 mod r. If ⌊x1/r⌋ = ⌊x2/r⌋
thenx2 − x1 6≡ 0 mod r, so the collision probability is zero. Otherwise, sinceu is pairwise independent
u(⌊x1/r⌋)− u(⌊x2/r⌋) is equal to a given fixed value with probability exactly1/r.

We storeh(S) ⊆ [r] in a (non-approximate) range emptiness data structure. To answer an approximate
range membership query on an intervalI, observe that the imageh(I) will be the union of at most two
intervalsI1, I2 ⊆ [r]. If either of these intervals are non-empty inh(S) we report “not empty”, otherwise
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we report “empty”. It is clear that there can be no false negatives. False positives occur whenI ∩ S = ∅ but
there is a hash collision among a pointx ∈ S and a pointy ∈ I. We can bound the false positive rate by a
union bound over all possible collisions:

∑

x∈S

∑

y∈I

Pr[h(x) = h(y)] ≤ nL/r ≤ ε .

3.2 Range Emptiness Data Structure

We first describe a range emptiness data structure for size-n subsets of[U ] that answers queries in constant
time and usesn lgU+O(n lgδ U) bits, whereδ > 0 is any desired constant. Later, we show how to decrease
the space usage ton lg(U/n) + O(n lgδ(U/n)) bits. The data structure consists of the sorted list of points
plus an indexing data structure, namely, the weak prefix search data structure of [3, Theorem 5, second
part]. A weak prefix query on a set of points in[U ] is specified by a bit stringp of length at mostlgU and
returns the interval of ranks of the input points that have prefix p (when written in binary). If no such points
exist the answer is arbitrary. Given a query range[a; b] we compute the longest common prefixp of the bit
representations ofa andb. This is possible inO(1) time using a most significant bit computation. Observe
as in [2] thath(S) ∩ [a; b] is non-empty if and only if at least one of the following holds:

• A largest point inh(S) prefixed byp ◦ 0 exists, and is not smaller thana, or

• A smallest point inh(S) prefixed byp ◦ 1 exists, and is not greater thanb.

We can determine if each of these holds by a weak prefix query, by considering the points in the sorted list
at the position of the maximum and minimum returned ranks. Ifthere are no points with prefixp ◦ 0 or
p ◦ 1 the range returned by the weak prefix search is arbitrary, butthis is no problem since we can always
check points for inclusion in[a; b]. The space usage for the weak prefix search data structure, inthe case of
constant query time, can be madeO(n lgδ(U)) bits for any constantδ > 0.

In order to reduce the space usage, we use a standard trick andsplit the universe[U ] into n subranges
s1, . . . , sn of sizeU/n. We need the well known succinct rank and select data structures that stores a bit
array of sizen usingn + o(n) bits of space and supports rank and select queries in constant time [11].
We construct a bit array of sizen that has a one at positioni if there is an input point in the rangesi and
zero otherwise, and store it in a rank/select data structureD1. We store the data structure from above for
each non-empty rangesi (with universe sizeU/n) using exactlyni(lg(U/n) + α(lgδ(U/n))) space where
ni is the number of points insi andα > 0 is a constant that depends on the data structure. The data
structures are stored consecutively in an arrayAds. To locate the data structure for any rangesi, all we
need is to count the number of points in the rangessj for j < i and scale that number accordingly. For
this purpose we store another array of2n bits that for each non-empty rangesi stores a one followed by
ni zeros in a rank/select data structureD2. For a given rangesi we can compute the starting position for
the corresponding data structure inAds as follows. We compute the number of non-empty rangessj with
j < i using a rank query fori in D1. Then we do a select query inD2 for the returned rank and subtract the
queried rank from the result to get the number of points insj with j < i. Finally we scale this number with
(lg(U/n) + α(lgδ(U/n))). The total space usage becomesn lg(U/n) +O(n lgδ(U/n)) bits.

A query range is naturally split into at most three parts, a part consisting of a sequence of ranges,
and maximally two parts that do not cover an entire range. If we find a point in any of them we report
“not empty” and “empty” otherwise. The part spanning entireranges is answered by computing the rank
difference (number of input points) between the endpoint inthe rightmost range and the starting index in
the leftmost range spanned by the query with the rank/selectdata structure. The non-spanning parts of the
query are answered by the data structures stored for the corresponding subranges (which we locate inAs as
described above). The query takes constant time, since answering each part takes constant time.
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Extension to Range Reporting. We note that the above data structure supports reporting allk points
inside a query interval inO(k) time: Observe first that when the above data structure returns “not empty”,
it actually finds a pointp inside the query interval as well asp’s location in the sorted list of all points in
p’s subrange. We scan these points in both the left and right direction, starting atp, and stop when a point
outside the query range is encountered. If all points preceeding (or following)p in the subrange are reported,
we can find the next subrange to report from using the rank and select data structureD1 on the non-empty
subranges (we know the rank of the current subrange). We conclude that we spendO(1) time per reported
point and thusO(k) time in total.
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