arxiv:1407.2907v1 [cs.DS] 10 Jul 2014

Approximate Range Emptiness in Constant Time and Optimal
Space

Mayank Goswanii Allan Grgnlund Kasper Green Larsén Rasmus Pagh

Abstract

This paper studies theapproximate range emptinepsoblem, where the task is to represent a set
S of n points from{0,...,U — 1} and answer emptiness queries of the fofm 6] N .S # () ?” with
a probability offalse positivesllowed. This generalizes the functionality Bfoom filtersfrom single
point queries to any interval length Setting the false positive rate g L and performingl queries,
Bloom filters yield a solution to this problem with spa®énlg(L /<)) bits, false positive probability
bounded by for intervals of length up td., using query time (L 1g(L/¢)). Our first contribution is to
show that the space/error trade-off cannot be improved pgytinally: Any data structure for answering
approximate range emptiness queries on intervals of langtb L with false positive probability, must
use spac€(nlg(L/e)) — O(n) bits. On the positive side we show that the query time can Ipeawed
greatly, to constant time, while matching our space lowemgoup to a lower order additive term. This
result is achieved through a succinct data structure fan-@gyaproximate 1d) range emptiness/reporting
queries, which may be of independent interest.

*Max-Planck Institute for Informatics. Emaiimayank @rpi - i nf . npg. de.

fAarhus University. Email;j al | an@s. au. dk. Supported by MADALGO - Center for Massive Data Algorithsia
Center of the Danish National Research Foundation.

fAarhus University. Email:l ar sen@s. au. dk. Supported by MADALGO - Center for Massive Data Algorithsiia
Center of the Danish National Research Foundation.

$IT University of Copenhagen. Emaipagh@t u. dk. Supported by the Danish National Research Foundationruthee
Sapere Aude program.

http://arxiv.org/abs/1407.2907v1

1 Introduction

The approximate membership problem is a fundamental anestuglied data structure problem. Here we
are to represent a static sebf » distinct points/elements from a univergé] = {0,...,U — 1}. A query

is specified by a point € [U] and the data structure must answeemberwith probability 1 if z € S.

If 2 ¢ S, then the data structure must answet membemwith probability at leasti — ¢, wheres > 0

is a parameter of the data structure and the probability & the randomness used when constructing the
data structure. Hence the name approximate membershige tNat solutions are inherently randomized
as queries for points not i must be answered correctly with a given probability. Theigalis typically
refered to as thé&lse positive rate

While storing S directly requireslg (Z) > nlg(U/n) bits, approximate membership data structures
can be implemented to use onylg(1/=) + O(n) bits, which is known to be optimal [7]. Thus efficient
approximate membership data structures use less spacthégrfiormation theoretic minimum for storing
S directly.

In this paper, we study a natural generalization of the apprate membership problem, in which we
are to handle query intervals rather than single-pointiggerMore formally, we define thapproximate
range emptinesproblem as follows: Represent a sebf n points from a univers@U], such that given a
query intervall = [a; b], the data structure must answem-emptyvith probability 1 if there is a point from
Sin I (i.e. “is SN I # (?"). If I contains no points frony, the data structure must answemnptywith
probability at least — .

The approximate range emptiness problem was first considergatabase applications! [1]. Here ap-
proximate range emptiness data structures were used ® @&temall (approximate) representation of a
collection of points/records in main memory, while maintag the actual (exact) points on disk. When
processing range queries, the approximate represeniatiost queried to avoid expensive disk accesses
in the case of an empty output. The paper takes a heuristioagip to the problem and design data struc-
tures that seem to perform well in practice. Unfortunatayformal analysis or worst case performance
guarantees are provided. Motivated by this lack of thecatinderstanding, we ask the following question:

Question 1. What theoretical guarantees can be provided for the appnaxé range emptiness problem?

Towards answering this question, observe that an approeimsnge emptiness structure solves the
approximate membership problem and hence a space lowed lwdunlg(1/¢) bits follows directly from
previous work. But can this space bound be realized? Or doag@moximate range emptiness data structure
require even more space? What if we require only that thedatature answers queries of length no more
than a given input parametdr? At least forL < u/n, we can beat the triviak 1g(U/n) space bound
as follows: Implement the approximate membership datectstre of [9] on S with false positive rate
¢/L. Upon receiving a query intervdlof length no more thai, query the approximate membership data
structure for everyr € I N [U] and returnnon-emptyif any of these queries retutmember Otherwise
returnempty By a union bound, this gives the desired false positive oteand the space consumption
is nlg(L/e) bits. How much can we improve over this trivial solution? Aural line of attack would be
to design an approximate membership structure where tlaéidos of the false positives are correlated and
tend to “cluster” together inside a few short intervals. His fpossible without increasing the space usage?
Answering these questions is the focus of this paper.

Our Results. In Sectior 2, we answer the questions above in the strongssifjie negative sense, i.e. we
prove that any data structure for the approximate rangeieegst problem, where only query intervals of

length up to a giverl are to answered, must use

1-0(¢)
nlg (L .) —O(n)

bits of space. Thus it is not even possible to shave off a aoh$actor in the space consumption of the
trivial solution, at least foe = o(1). Moreover, the lower bound applies even if only queries afta
exactly L are to be answered. We find this extremely surprising (arapgisinting).

In light of the strong lower bounds, we set out to improve dalef2(L) query time of the trivial solution
above, while maintaining optimal space. In Secfibn 3 wegrea data structure with (1) query time and
spacenlg(L/e) + o(nlg(L/e)) + O(n) bits, thus matching the lower bound up to a lower order term
wheneverL /s = w(1). The data structure answers a query of any lergth L, not only those of length
exactly L, with false positive rate//L. As a building block in our data structure, we also designwa ne
succinct data structure for (non-approximate) range erags queries which may be of independent interest.
This data structure useslg(U/n) + O(nlg’(U/n)) bits of space for storing points from a universé/],
while answering queries in constant time. Hére 0 is an arbitrarily small constant. The data structure is
thus optimal up to the lower order additive term in the spagaga. Moreover, it also supports reporting all
k points inside a query interval i@ (k) time, thus providing a succinct 1d range reporting datacsire.
The best previous data structure was a non-succhtatlg U) bit data structure of Alstrup et al.|[2].

As an additional result, we also prove in Secfior 2.1 that datctures with two-sided errer> 0 (i.e.,
for non-empty intervals, we must answen-emptywith probability 1 —), must use space

nlg(L/e) — O(n)

bits when0 < ¢ < 1/1gU. Thus for small error rate, only lower order additive saginyspace are possible.
Forl/lgU < e < 1/2—Q(1), we get a space lower bound of

nlg(LlgU)
Q —=—= -
181/ 18U
bits, thus ruling out hope of large space savings even withdiged errors. Again, these lower bounds hold
even if only query intervals of length exactlyare to be answered.

Related Work on Approximate Membership. Bloom filters [5] are the first approximate membership
data structures, requiringlg(1/¢) lg e space and having a lookup timelgf1/¢). They have found a vari-
ety of applications both in theory and practice, and we résfereader td [6] for an overview of applications.
In [9] the space usage was reduced to near-optihal o(1))n1g(1/¢) bits and the lookup time to an opti-
mal O(1), while also supporting insertions/deletions in amortiegdected) (1) time. In the static case the
space usage has been further reducedst9 bits from the lower bound [4].

The dynamic case where the sizef the setS is not known in advance was handled(inl[10], where it
was shown that the average number of bits per element in @naptata structure must grow witg Ig n.
A closely related problem to approximate membership is ¢igeval problem, where each element has an
associated data, and data must be retrieved correctly onipémbers. In[4] the authors achieve a query
time of O(1) using a space that is withis(n) of optimal.

2 Lower Bounds

In this section, we prove a lower bound on the space needexhjodata structure answering approximate
range emptiness queries. While the upper bounds presengettiorf B guarantees a false positive rate of

2

e for any query interval of length up to a predefined valyehe lower bound applies evenafly length L
intervals are to be answered. More formally, we show:

Theorem 1. For the approximate range emptiness problemropoints from a universgU], any data
structure answering all query intervals of a fixed lendth< «/5n with false positive rate > 0, must use

at least
Ll—O(e)
s>nlg (.) —O(n)

The proof of Theorerl5 is based on an encoding argument. Thdénel idea is to use an approximate
range emptiness data structure to uniquely encode (andiepegery set of. points into a bit string whose
length depends on the space usage and false positive rdbe dfata structure. Since each point set is
uniquely encoded, this gives a lower bound on the size of titeding and hence the space usage of the
data structure.

For technical reasons, we do not encode every setpafints, but instead only point sets that are well-
separated in the following sense: [Zebe the set of alL-well-separatedsets ofn. points in[U], where a set
S of n points isL-well-separated if:

bits of space.

e For any two distincte, y € S, we havelz — y| > 2L.
e Foranyx € S,we haver > 2L — 1 andz < U — 2L.
Note that there are marfy-well-separated wheh is not too close t@//n:
Lemma2. There are at least(U — 4nL)/n)"™ L-well-separated point sets for ady < U/4n.

Proof. Consider picking one point at a time frobh, each time making sure the constructed set-isell-
separated. For theth point,i = 1,...,n, there ard/ — 4L — 4(i — 1)L = U — 4¢L valid choices for the
location of thei’'th point. Since the same set of points can be constructed wmays using this procedure,
there are at least

n! n

(U — 4nL)" <u — 4nL>"
>)
L-well-separated point sets. O

We now set out to encode any setc 7 in a number of bits depending on the performance of a given
data structure. Assume for simplicity thidtand . are powers o. The encoding algorithm considers two
carefully chosen sets of intervals:

e Thetop intervals is the set ot//L length L intervals 7 = {Ty,..., Ty 1} of the formT; =
[iL; (i + 1)L —1].

e Foreachr € Sandi =1,...,1lg L — 1, thelevel<-coveringintervals ofz are the two intervals:
Gi(z) = [[z/2"] -2+ 271 — Ly |2/20) - 20 + 2071 —1).
ri(x) = [|z/2Y] - 20 + 207 |2 /2t - 20 4 27+ L — 1.
For intuition on why we take interest in these intervals,avles the following:

Lemma 3. Consider the binary representation of a pointe S. If the ¢'th least significant bit ofr is 0
(counting fromi = 1), thenz is contained ir¢;(z). Otherwisex is contained in-;(x). Furthermorel;(x)
andr;(x) contain no other points frors and any top intervall’; contain at most one point frosi.

3

Proof. Rewritex = |[2/2¢] - 2! + (z mod 2°). If the i'th least significant bit ofr is 0 then(z mod 2°) €
{0,...,2°1 — 1}, ie. = € [|lz/2%] - 2% [x/2!] - 20 + 2071 — 1] C 4;(x). Otherwise(z mod 2%) €
{2071 ... 20 — 1} implying z € [[x/2¢] - 20 4+ 27 Y |2/2¢ | - 20 + 20 — 1] C 7y(x).

Next, observe that the intervals(xz) andr;(z) have lengthL and both have an endpoint of distance
less thar2+! < L from z. SincesS is L-well-separated, it follows that no other points can be aimed
in ¢;(x) andr;(x). For the top intervalg’;, the claimed property similarly follows frorf being L-well-
separated. O

We are ready to give the encoding and decoding algorithmalfdr-well-separated point sefs € 7.
For the encoding and decoding procedures, we assume theredsof a data structur® with s bits of
space and false positive rate> 0 for query intervals of lengtd..

Encoding Algorithm. In this paragraph we present the encoding algorithm. 4.t 7 be anL-well-
separated point set. Observe that if we run the randomizadtre@tion algorithm ofD on S, we are
returned a (random) memory representatidnc {0, 1}*. For the memory representatids, the answer
to each query is fixed, i.e. it is the randomized choiceévbthat gives the false positive rate effor
each query interval of length (the memory representation encodes e.g. a particular lastidn from

a family of hash functions). Lettingl(M) denote the number of false positives amongst the top irlterva
T, we get from linearity of expectation th&{A(M)] < U/L. Similarly, let B(M) denote the number
of false positives amongst all the intervdigz) andr;(z) for x € S andi € {1,...,1gL — 1}. We have
E[B(M)] < enlg L since precisely: lg L of the interval;(z) andr;(z) are empty. Since botd(M) and
B(M) are non-negative, it follows from Markov’s inequality andrmion bound that:

1
1—1/y

for any parametety > 1. Since the probability is non-zero, there exists a paiicaiemory representation
M* € {0,1}* for which:

PrlAM) < -eU/L \ BM) < yenlgL| >0

1
*) < .) < .
AM") < — 7 eU/L \ B(M*) < yenlg L

The encoding consists of the following:
1. Thes bits of M*.

2. LetT* be the subset df that returnnon-emptyon M*. We encode the set of top intervalsTg
containings, whereTs is specified as an-sized subset of *. This costdg (I7"1) = 1g (4@
bits.

3. For each interval; € 7g in turn (from left to right), letz be the point fromS in 7. Fori =
lgL—1,...,1inturn, check whether botf)(x) andr;(x) returnnon-emptyon M*. If so, we append
one bit to our encoding. This bit Bif « € ¢;(x) and itis1 if = € r;(x). Otherwise we continue
without writing any bits to the encoding. In total this costeactly B(M*) bits (each bit can be
charged to exactly one false positive).

This concludes the description of the encoding algorithrextNve show that can be uniquely recov-
ered from the encoding.

Decoding Algorithm. In the following, we show how we recover drwell-separated point set from the
encoding described in the paragraph above. The decodingtaly is as follows:

1.

2
3.
4

Read the first bits of the encoding to recover *.

. Run the query algorithm for every queryinwith the memory representatiavl *. This recoverd™.

FromT™ and the bits written in step 2 of the encoding algorithm, weverTs.

. For each interval’; € T (from left to right), letz be the point fromS in T;. This step recovers

x as follows: FromT;, we know all but thdg L — 1 least significant bits of. Now observe that
the definition of/, () andry, 1,1 (x) does not depend on tig L — 1 least significant bits of
x, hence we can determine the intervéls;_,(z) andry, i (x) from 7;. We now run the query
algorithm for 4y, 1,1 (x) andr, 1,1 () with M* as the memory. If only one of them returnen-
empty it follows from Lemmd 3 that we have recovered theL — 1)'st least significant bit of:. If
both returnnon-emptywe read off one bit from the part of the encoding written dgrstep 3 of the
encoding algorithm. This bit tells us whethere (i, (x) or x € 7,1—1(x) and we have again
recovered the next bit of. Note that we have reduced the number of unknown bits ly one and
we now determin€y, ;o2 (x) andriy _o(x) and recurse. This process continues until all bits: of
have been recovered and we continue to the figxt T's.

Thus we have shown how to encode and decode/amgell-separated point seéf. We are ready to
derive the lower bound.

Analysis. The size of the encoding is

IN

s+lg (A(M;) * ") + B(M")

-eU/L +n
n

IN

s+1g <1 1/

s+nlg <e<1 1/ EU/L+n>

+yenlg L

IN

+ yenlg L
n

eU
s+nlg <m> +enlgL+0(n) =

s+l <(1 - 1/67()]nL1—5‘Y> +0(n)

bits. But from Lemma&l2 we have that there are at l¢g$t—4n L) /n)™ distinct L-well-separated point sets.
Hence we must have

eU U—4nL
> Zz 7
s—l—nlg<(1_1/7)nL1_m>+O(n) > nlg< - > =

(1 —1/y)L*=7(U — 4nL)
nlg < i > —O(n).

S

v

For L < U/5n, this is:

s > nlg (“ - 1/7)L1_m> _ o).

€

Settingy to a constant, this simplifies to

1-0(¢)
s>nlg (L > —O(n),

3

which completes the proof of Theorér 5.

2.1 Extension totwo-sided errors

In this section, we extend the lower bound above to the casemftided error, i.e. we have both false
positives and false negatives. The result of the sectidmei$dilowing:

Theorem 4. For the approximate range emptiness problemropoints from a universgU], any data
structure answering all query intervals of a fixed lendth< «/5n with two-sided error rates, must use at
least

s > nlg(L/e) — O(n)

bits of space whefi < ¢ < 1/1g U, and at least

s Q nlg(LlgU)
Igy/. 18U

bitsfor1/1gU <e <1/2—Q(1).

As in the previous section, we use an approximate range eegstidata structure to encode any set of
L-well-separated points. The encoding procedure follovas d¢ifi the one-sided error case closely and we
assume the reader has read Sedtlon 2.

So assume we are given an approximate range emptinessatarstD with s bits of space and two-
sided error rat® < ¢ < 1/2 — Q(1). Our first step is to reduce the error rate using a standankt tdpon
receiving an input set of points, implementk copies ofD on .S, where the randomness used for each copy
is independent. When answering a query, we ask the queryabnoeay of the data structure and return the
majority answer. Since < 1/2 — Q(1), it follows from a Chernoff bound that the error rate is boeddby
£9k) . Thus we now have a data structure uskngpits of space with error rat& = %) for a parameter
k > 1 to be determined later.

Encoding Algorithm. Let S € 7 be anL-well-separated point set to encode. Defing/;(x), r;(x), M,
A(M) andB(M) as in Sectiofl]2. Defin€' (M) as the number of false negatives amongst querigs amd
F(M) as the number of false negatives amongst quétigs andr;(z) over alli andz. From Markov’s
inequality and a union bound, we conclude that there must exset of memory bitd/* < {0, 1}** for
which:

o A(M*

The encoding algorithm first writes down some bits that allmto correct all the false negatives. Following
that, it simply writes down the encoding from the previoustis® (since we have reduced the decoding
problem to the case of no false negatives). Describing fke faegatives is done as follows:

6

1. First we write downg(U/L) bits to specifyC(M*). Following that, we encode th€(M*) false
negatives amongst usinglg (CZ(J]/VIL)) bits.

2. Secondly, we spend(n lg L) bits to specifyF'(M*). We then uség (f;’(‘}\%%) bits to specify the false
negatives amonggt(x) andr;(x). Note that we avoid the explicit encoding §fx) andr;(z) by
mapping a false negativig(z) to the numbef'(¢;(z)) = ranks(x) - 21g L + 2(i — 1) andr;(x) to the
numberl'(r;(z)) = rankg(x) - 21g L 4+ 2(i — 1) + 1. Here rank/(x) denotes the number of elements
in S smaller thanc. Note thatl’(¢;(z)), I'(r;(x)) € [2nlg L] and the claimed space bound follows.

3. Lastly, we run the entire encoding algorithm from Secbassuming the false negatives have been
corrected.
Decoding Algorithm. In the following, we describe the decoding algorithm.

1. From the bits written in step 1 of the encoding procedure,carrect all false negatives amongst
gueries in7 .

2. From the secondary encoding, we recaVéf. Since we have corrected all false negative¥ jrwe
also recovefl’s using steps 2-3 of the decoding procedure in Seéfion 2.

3. We now run step 4 of the decoding algorithm in Sedfibn 2. eBlesthat for each we are about to
recover, we know rankx). Therefore we can use the bits written in step 2 of the engoaligorithm
above to correct all false negatives amongst queiies) andr;(z). Following that, we can finish
step 4 of the decoding algorithm in Sectldn 2 as all false teggmhave been corrected.

Analysis. Examining the encoding algorithm above and the one in Se@jove see that the produced
encoding uses:

s (o) s (ot) 16 (1)) 4 B + otgn)

bits. By the arguments in Sectibh 2, this is bounded by:

ks + g <C((JJ<4L)> tlg @TEL)) tnlg (%) +O(n).

Using the bounds o&’'(M*) and F'(M*), we see that this is at most:

U e oU
ks + 4onlg (TM) +4énlg Llg <%) +nlg <m> +O(n).

Fixing & = max{1, ©(lg; . 1gU)}, the second and third term becon®§:) and we get:

U
ks +nlg (W) + O(n).

For L < U/5n we have at leagt/ /5n)" distinct L-well-separated point sets, thus we must have:

L1_0(5)
ks > nlg 5 —O(n) =
n]g nfilr;o(l/lgU)
s > < «]{fa,l/lgU}) —O(n) N
nlg min 0
s > («]{{Ta,l/lgU}) —O(n)

Whene < 1/1g U we getk = 1 and this simplifies to
s =nlg(L/e) — O(n),

and fore > 1/1g U it becomes:

s O nlg(LlgU) .
1g1/. 18U

3 Upper Bounds

In this section we describe our approximate range emptid@ssstructures. The data structure consists of
a (non-approximate) succinct range emptiness data steuafyplied to the input points after they have been
mapped to a smaller universe. More specifically, we use dutlgrehosen hash function to map the input
points to a universe of size= nL/e, and store them in a range emptiness data structure thabhatant
query time and useslg(U/n) + O(n1g’(U/n)) bits of space for storing points from a universe of size
U. This gives us our main upper bound result.

Theorem 5. For anye > 0, L andn input points from a univers@/], there is a data structure that uses
nlg(L/e)+0(nlg’(L/¢)) bits of space, wher& > 0 is any desired constant, that answers range emptiness
queries for all ranges of length at moktin constant time with a false positive rate of at mast

3.1 Universe Reduction

Letr = nL/e and choose: : [U/r] — [r] from a pairwise independent family. Now define a hash functio
(similar in spirit to the “non-expansive” hash functionsLaial and Sassori [8]) that preserves locality, yet
has small collision probability:

h(z) = (u(|z/r]) +x) mod r .

Lemma6. For z; # x5 we havePr[h(z1) = h(x2)] < 1/r.

Proof. Collision happens if and only ifi(|x1/r]) — u(|z2/7r]|) = 22 — 21 mod r. If |x1/r] = |x2/r]
thenzs — 21 £ 0 mod r, so the collision probability is zero. Otherwise, sinces pairwise independent
u(|z1/r]) —u(|x2/r]) is equal to a given fixed value with probability exactly. O

We storeh(S) C [r] in a (non-approximate) range emptiness data structurendwer an approximate
range membership query on an intervalobserve that the image(Z) will be the union of at most two
intervalsIy, I C [r]. If either of these intervals are non-empty/ifiS) we report “not empty”, otherwise

we report “empty”. Itis clear that there can be no false riegat False positives occur whém S = () but
there is a hash collision among a paint S and a pointy € I. We can bound the false positive rate by a
union bound over all possible collisions:

> Prlh(z) =h(y) <nljr<e .

zeS yel

3.2 Range Emptiness Data Structure

We first describe a range emptiness data structure fons@ésets ofU] that answers queries in constant
time and uses lgU+O(n 1g? U) bits, where) > 0 is any desired constant. Later, we show how to decrease
the space usage tolg(U/n) + O(nlg’(U/n)) bits. The data structure consists of the sorted list of goint
plus an indexing data structure, namely, the weak prefixchedata structure of [3, Theorem 5, second
part]. A weak prefix query on a set of points|iii] is specified by a bit string of length at mostg U and
returns the interval of ranks of the input points that haedipp (when written in binary). If no such points
exist the answer is arbitrary. Given a query rahgeé| we compute the longest common prefiof the bit
representations af andb. This is possible irD(1) time using a most significant bit computation. Observe
as in [2] thath(S) N [a; b] is non-empty if and only if at least one of the following halds

e Alargest point inh(S) prefixed byp o 0 exists, and is not smaller thamn or
e A smallest point inh(.S) prefixed byp o 1 exists, and is not greater than

We can determine if each of these holds by a weak prefix qugrgpbsidering the points in the sorted list
at the position of the maximum and minimum returned rankghdfe are no points with prefixo 0 or

p o 1 the range returned by the weak prefix search is arbitrarythisiis no problem since we can always
check points for inclusion ifw; b]. The space usage for the weak prefix search data structuhe ease of
constant query time, can be ma@¢én 1g’(U)) bits for any constani > 0.

In order to reduce the space usage, we use a standard tricgplinthe universdU] into n subranges
s1,-..,8, Of sizeU/n. We need the well known succinct rank and select data stegthat stores a bit
array of sizen usingn + o(n) bits of space and supports rank and select queries in cortstan [11].
We construct a bit array of size that has a one at positianif there is an input point in the rangg and
zero otherwise, and store it in a rank/select data strudfiyreWe store the data structure from above for
each non-empty range (with universe sizé//n) using exactlyn;(1g(U/n) + a(1g’(U/n))) space where
n; is the number of points iB; anda > 0 is a constant that depends on the data structure. The data
structures are stored consecutively in an atdgy. To locate the data structure for any rangeall we
need is to count the number of points in the ranggefor j; < 7 and scale that number accordingly. For
this purpose we store another array2af bits that for each non-empty range stores a one followed by
n; Zeros in a rank/select data structupg. For a given range; we can compute the starting position for
the corresponding data structureAn, as follows. We compute the number of non-empty rangesith
j < i using a rank query forin D;. Then we do a select query i, for the returned rank and subtract the
queried rank from the result to get the number of points;iwith j; < 7. Finally we scale this number with
(Ig(U/n) 4+ a(1g?(U/n))). The total space usage becomds(U/n) + O(n1g®(U/n)) bits.

A query range is naturally split into at most three parts, & pansisting of a sequence of ranges,
and maximally two parts that do not cover an entire range. dffind a point in any of them we report
“not empty” and “empty” otherwise. The part spanning entiages is answered by computing the rank
difference (number of input points) between the endpoirtherightmost range and the starting index in
the leftmost range spanned by the query with the rank/sdkget structure. The non-spanning parts of the
query are answered by the data structures stored for thespamding subranges (which we locatedinas
described above). The query takes constant time, sincecaimgeach part takes constant time.

9

Extension to Range Reporting. We note that the above data structure supports reporting pdlints
inside a query interval i (k) time: Observe first that when the above data structure retimot empty”,

it actually finds a poinp inside the query interval as well as location in the sorted list of all points in
p’s subrange. We scan these points in both the left and righttitbn, starting ap, and stop when a point
outside the query range is encountered. If all points piinggor following)p in the subrange are reported,
we can find the next subrange to report from using the rank eledtsdata structur®; on the non-empty
subranges (we know the rank of the current subrange). Wdumethat we spend(1) time per reported
point and thusD (k) time in total.

References

[1] K. Alexiou, D. Kossmann, and A Larson. Adaptive range filters for cold data: avoidingsrito
siberia. Proceedings of the VLDB Endowmgef(14):1714-1725, 2013.

[2] S.Alstrup, G. S. Brodal, and T. Rauhe. Optimal statigeareporting in one dimension. Rroceedings
of the 33rd ACM Symposium on Theory of Computpages 476-482, 2001.

[3] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Fast prefiarch in little space, with applications.
In Proceedings of the 18th Annual European Symposium on Allgasi pages 427-438, 2010.

[4] D. Belazzougui and R. Venturini. Compressed static fiams with applications. Ifroceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Atlgmis pages 229-240. SIAM, 2013.

[5] B. H. Bloom. Space/time trade-offs in hash coding wittowhble errors. Communications of the
ACM, 13(7):422-426, 1970.

[6] A.Broder and M. Mitzenmacher. Network applications tddm filters: A surveylnternet mathemat-
ics, 1(4):485-509, 2004.

[7] L. Carter, R. W. Floyd, J. Gill, G. Markowsky, and M. N. Wagn. Exact and approximate membership
testers. IrProceedings of the 10th ACM Symposium on Theory of Compuiaggs 59-65, 1978.

[8] N. Linial and O. Sasson. Non-expansive hashing.Pmceedings of the 28th ACM Symposium on
Theory of Computingpages 509-518, 1996.

[9] A. Pagh, R. Pagh, and S. S. Rao. An optimal bloom filteraepient. IrProceedings of the 16th
annual ACM-SIAM symposium on Discrete algorithrpages 823-829. Society for Industrial and
Applied Mathematics, 2005.

[10] R. Pagh, G. Segev, and U. Wieder. How to approximate avgkRbut knowing its size in advance.
In Foundations of Computer Science (FOCS), 2013 IEEE 54th @rBymposium grpages 80—89.
IEEE, 2013.

[11] M. Patrascu. Succincter. Proc. 49th IEEE Symposium on Foundations of Computer Sei@@CS)
pages 305-313, 2008.

10

	1 Introduction
	2 Lower Bounds
	2.1 Extension to two-sided errors

	3 Upper Bounds
	3.1 Universe Reduction
	3.2 Range Emptiness Data Structure

