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ABSTRACT

We explore possible cosmological consequences of a running Newton’s constant G(✷), as suggested

by the non-trivial ultraviolet fixed point scenario for Einstein gravity with a cosmological constant

term. Here we examine what possible effects a scale-dependent coupling might have on large

scale cosmological density perturbations. Starting from a set of manifestly covariant effective field

equations, we develop the linear theory of density perturbations for a non-relativistic perfect fluid.

The result is a modified equation for the matter density contrast, which can be solved and thus

provides an estimate for the corrections to the growth index parameter γ.
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1 Introduction

Recent years have seen the development of a bewildering variety of alternative theories of

gravity, in addition to the more traditional ones such as scalar-tensor, higher derivative, and dilaton

gravities, just to mention a few examples. Many of these theories eventually predict some level of

deviation from classical gravity, which is often parametrized either by a suitable set post-Newtonian

parameters, or more recently by the introduction of a slip function [1, 2]. The latter has been quite

useful in describing deviations from classical GR, and specifically from the standard ΛCMD model,

when analyzing the latest cosmological CMB, weak lensing, supernovae and galaxy clustering data.

In this paper we will focus on the systematic analysis of departures from GR in the growth

history of matter perturbations arising from a quantum running of G, within the narrow context

of the non-trivial ultraviolet fixed point scenario for Einstein gravity with a cosmological term.

Thus instead of looking at deviations from GR at very short distances, due to new interactions

such as the ones suggested by string theories [3], we will be considering here infrared effects, which

could therefore become manifest at very large distances. We will argue here that such effects are

in principle calculable, and could therefore be confronted with present and future astrophysical

observation. The classical theory of small density perturbations is by now well developed in stan-

dard textbooks, and the resulting theoretical predictions for the growth exponents are simple to

state, and well understood. Except possibly on the very largest scales, where the data so far is

still rather limited, the predictions agree quite well with current astrophysical observations. Here

we will be interested in computing and predicting possible small deviations in the growth history

of matter perturbations, and specifically in the values of the growth exponents, arising from a

very specific scenario, namely a weakly scale-dependent gravitational coupling, whose value very

gradually increases with distance. The specific nature of the scenario we will be investigating here

is motivated by the treatment of field-theoretic models of quantum gravity, based on the Einstein

action with a bare cosmological term. Its long distance scaling properties are derived from the

existence of a non-trivial ultraviolet fixed point of the renormalization group in Newton’s constant

G [4, 5, 6, 7, 8, 9].

The first step in analyzing the consequences of a running of G is thus to re-write the expression

for G(k2) in a coordinate-independent way, either by the use of a non-local Vilkovisky-type effective

gravity action [10, 11], or by the use of a set of consistent effective field equations. In going from

momentum to position space one employs k2 → −✷, which gives for the quantum-mechanical



running of the gravitational coupling the replacement G → G(✷). One then finds that the

running of G is given, in the vicinity of the UV fixed point, by

G(✷) = G0

[

1 + c0

(

1

ξ2✷

)1/2ν

+ . . .

]

, (1.1)

where ✷ ≡ gµν∇µ∇ν is the covariant d’Alembertian, and the dots represent higher order terms in

an expansion in 1/(ξ2✷). Current evidence from Euclidean lattice quantum gravity points toward

c0 > 0 (implying infrared growth) and ν ≃ 1
3 [7].

Within the quantum-field-theoretic renormalization group treatment, the quantity ξ arises as

an integration constant of the Callan-Symanzik renormalization group equations. One challenging

issue, and of great relevance to the physical interpretation of the results, is a correct identification

of the renormalization group invariant scale ξ. A number of arguments can be given in support

of the suggestion that the infrared scale ξ (analogous to the ΛMS of QCD) can in fact be very

large, even cosmological, in the gravity case (see for ex. [5] and references therein). From these

arguments one would then first infer that the constant G0 can, to a very close approximation, be

identified with the laboratory value of Newton’s constant,
√
G0 ∼ 1.6× 10−33cm. The appearance

of the d’Alembertian ✷ in the running of G then naturally leads to a set of non-local field equations;

instead of the ordinary Einstein field equations with constant G one is now lead to consider the

modified effective field equations

Rµν − 1
2 gµν R + λ gµν = 8π G(✷)Tµν (1.2)

with a new non-local term due to the G(✷). By being manifestly covariant they still satisfy some

of the basic requirements for a set of consistent field equations incorporating the running of G.

Not unexpectedly though, the new nonlocal equations are much harder to solve than the original

classical field equations for constant G.

As stated above, physically it would seem at first, based on the perturbative treatment alone

[4, 8], that the non-perturbative scale ξ could take any value (including perhaps a very small one),

which could then possibly preclude any observable quantum effects in the foreseeable future. In

perturbation theory the reason for this is that the non-perturbative scale ξ appears, as in gauge

theories, as an integration constant of the renormalization group equations, and is therefore not fixed

by perturbation theory alone. But a number of recent non-perturbative results for the gravitational

Wilson loop on the Euclidean lattice at strong coupling, giving an area law, and their subsequent

interpretation in light of the observed large scale semiclassical curvature [14, 5], would suggest

otherwise: namely that the non-perturbative scale ξ appears in fact to be related to macroscopic



curvature. From astrophysical observation the average curvature on very large scales, or, stated

in somewhat better terms, the measured cosmological constant λ, is very small. This would then

suggest that the new scale ξ can be very large, even cosmological, and comparable to the Hubble

scale, 1/ξ2 ≃ λ/3. This would then give a more concrete semi-quantitative estimate for the scale

in the G(✷) of Eq. (1.1), namely ξ ∼ 1/
√

λ/3 ∼ 1.51 × 1028cm. It is this option that we want to

explore in this paper.

A scale dependent Newton’s constant is already expected to lead to small modifications of the

standard cosmological solutions to the Einstein field equations. The starting point are the quantum

effective field equations of Eq. (1.2), with G(✷) defined in Eq. (1.1). In the Friedmann-Lemâıtre-

Robertson-Walker (FLRW) framework these are applied to the standard homogeneous isotropic

metric. In the following we will mainly consider the case k = 0 (spatially flat universe). The next

step therefore is a systematic examination of the nature of the solutions to the full effective field

equations, with G(✷) involving the relevant covariant d’Alembertian operator ✷ = gµν ∇µ∇ν . To

start the process, one assumes for example that the matter Tµν has the perfect fluid form,

Tµν = [ p(t) + ρ(t) ] uµ uν + gµν p(t) (1.3)

for which one needs to compute the action of ✷n on Tµν , and then analytically continues the answer

to negative fractional values of n = −1/2ν. Even in the simplest case, with G(✷) acting on a scalar

such as the trace of the energy-momentum tensor T λ
λ , one finds a rather unwieldy expression.

A more general calculation [12] shows that a non-vanishing pressure contribution is generated

in the effective field equations, even if one initially assumes a pressureless fluid, p(t) = 0. After

a somewhat lengthy derivation one obtains for a universe filled with non-relativistic matter (p=0)

a set of effective Friedmann equations incorporating the running of G. It was also noted in [12]

that the effective field equations with a running G can be recast in an equivalent, but slightly more

appealing, form by defining a vacuum polarization pressure pvac and density ρvac, such that for the

FLRW background one has

ρvac(t) =
δG(t)

G0
ρ(t) pvac(t) =

1

3

δG(t)

G0
ρ(t) . (1.4)

with G(t) given by

G(t) ≡ G0

(

1 +
δG(t)

G0

)

= G0

[

1 + ct

(

t

t0

)1/ν

+ . . .

]

. (1.5)

The explicit computations also shows that ct is of the same order as c0 in Eq. (1.1), and t0 = ξ

[12]; in the quoted reference it was estimated ct = 0.450 c0 for the tensor box operator.



Then the source term in the effective tt field equation can be regarded as a combination of

the two density terms ρ(t) + ρvac(t), while the effective rr equation involves the new vacuum

polarization pressure term pvac(t). Just as one introduces the parameter w, describing the matter

equation of state, p(t) = w ρ(t), with w = 0 for non-relativistic for matter, one can do the same for

the remaining contribution by setting pvac(t) = wvac ρvac(t). This more compact notation allows

one to finally re-write the field equations for the FLRW background (and k = 0) as

3
ȧ2(t)

a2(t)
= 8π G0

(

1 +
δG(t)

G0

)

ρ̄(t) + λ

ȧ2(t)

a2(t)
+ 2

ä(t)

a(t)
= −8πG0

(

w + wvac
δG(t)

G0

)

ρ̄(t) + λ . (1.6)

2 Relativistic Treatment of Matter Density Perturbations

Besides the modified cosmic scale factor evolution just discussed, the running of G(✷) given in

Eq. (1.1) also affects the nature of matter density perturbations on very large scales. In computing

these effects, it is customary to introduce a perturbed metric of the form

dτ2 = dt2 − a2 (δij + hij) dx
idxj , (2.1)

with a(t) the unperturbed scale factor and hij(x, t) a small metric perturbation, and h00 = hi0 = 0

by choice of coordinates. As will become clear later, we will mostly be concerned here with the trace

mode hii ≡ h, which determines the nature of matter density perturbations. After decomposing the

matter fields into background and fluctuation contribution, ρ = ρ̄+ δρ, p = p̄+ δp, and v = v̄+ δv,

it is customary in these treatments to expand the density, pressure and metric trace perturbation

modes in spatial Fourier modes, δρ(x, t) = δρq(t) e
iq ·x and similarly for δp(x, t), δv(x, t) and

hij(x, t) with q the comoving wavenumber.

The first equation one obtains is the zeroth (in the fluctuations) order energy conservation in

the presence of G(✷), which reads

3
ȧ(t)

a(t)

[

(1 + w) + (1 + wvac)
δG(t)

G0

]

ρ̄(t) +
˙δG(t)

G0
ρ̄(t) +

(

1 +
δG(t)

G0

)

˙̄ρ(t) = 0 . (2.2)

It will be convenient in the following to solve the energy conservation equation not for ρ̄(t), but

instead for ρ̄(a). This requires that, instead of using the expression for G(t) in Eq. (1.5), one uses



the equivalent expression for G(a)

G(a) = G0

(

1 +
δG(a)

G0

)

, with
δG(a)

G0
≡ ca

(

a

a0

)γν

+ . . . . (2.3)

In this last expression the power is γν = 3/2ν, since from Eq. (1.5) one has for non-relativistic

matter a(t)/a0 ≈ (t/t0)
2/3 in the absence of a running G. In the following we will almost exclusively

consider the case ν = 1
3 [7] for which therefore γν = 9/2. Then in the above expression ca ≈ ct if a0

is identified with a scale factor appropriate for a universe of size ξ; to a good approximation this

should correspond to the universe “today”, with the relative scale factor customarily normalized

at such a time to a/a0 = 1. Consequently, and with the above proviso, the constant ca in Eq. (2.3)

can safely be taken to be of the same order as the constant c0 appearing in the original expressions

for G(✷) in Eq. (1.1). The solution to Eq. (2.2) for wvac =
1
3 can then be written as

ρ̄(a) = ρ̄0

(

a0
a

)3




1 + ca

1 + ca
(

a
a0

)γν





(1+γν)/γν

(2.4)

with ρ̄(a) normalized so that ρ̄(a = a0) = ρ̄0. For ca = 0 the above expression reduces of course to

the usual result for non-relativistic matter.

The zeroth order field equations with the running of G included were already given in Eq. (1.6).

The next step consists in obtaining the equations which govern the effects of small field perturba-

tions. These equations will involve, apart from the metric perturbation hij , the matter and vacuum

polarization contributions. The latter arise from

(

1 +
δG(✷)

G0

)

Tµν = Tµν + T vac
µν (2.5)

with a nonlocal T vac
µν . Fortunately to zeroth order in the fluctuations the results of Ref. [12]

indicated that the modifications from the nonlocal vacuum polarization term could simply be

accounted for by the substitution ρ̄(t) → ρ̄(t) + ρ̄vac(t) and p̄(t) → p̄(t) + p̄vac(t). Here we will

apply this last result to the small field fluctuations as well, and set

δρq(t) → δρq(t) + δρq vac(t) δpq(t) → δpq(t) + δpq vac(t) . (2.6)

The underlying assumptions is of course that the equation of state for the vacuum fluid still remains

roughly correct when a small perturbation is added. Furthermore, just like we had p̄(t) = w ρ̄(t)

and p̄vac(t) = wvac ρ̄vac(t) with wvac =
1
3 , we now write for the fluctuations

δpq(t) = w δρq(t) δpq vac(t) = wvac δρq vac(t) , (2.7)



at least to leading order in the long wavelength limit, q → 0. In this limit we then have simply

δp(t) = w δρ(t) δpvac(t) = wvac δρvac(t) ≡ wvac
δG(t)

G0
δρ(t) , (2.8)

with G(t) given in Eq. (1.5), and we have used Eq. (1.4), now applied to the fluctuation δρvac(t),

δρvac(t) =
δG(t)

G0
δρ(t) + . . . (2.9)

where the dots indicate possible additional O(h) contributions. Indeed a bit of thought reveals that

the above treatment is incomplete, since G(✷) in the effective field equation of Eq. (1.2) contains,

for the perturbed RW metric of Eq. (2.1), terms of order hij , which need to be accounted for in the

effective T µν
vac. Consequently the covariant d’Alembertian has to be Taylor expanded in the small

field perturbation hij , ✷(g) = ✷
(0) +✷

(1)(h) +O(h2), and similarly for G(✷)

G(✷) = G0

[

1 +
c0
ξ1/ν

(

1

✷(0) +✷(1)(h) +O(h2)

)1/2ν

+ . . .

]

. (2.10)

To compute the correction of O(h) to δρvac(t) one needs to consider the relevant term in the

expansion of (1 + δG(✷)/G0)Tµν , which we write as

− 1

2 ν

1

✷(0)
·✷(1)(h) · δG(✷(0))

G0
· Tµν . (2.11)

This last form allows us to use the results obtained previously for the FLRW case in [12], namely

δG(✷(0))

G0
Tµν = T vac

µν (2.12)

with here T vac
µν = [pvac(t) + ρvac(t)] uµ uν + gµν pvac(t). and (see Eq. (1.4)), to zeroth order in h,

ρvac(t) =
δG(t)

G0
ρ̄(t) pvac(t) = wvac

δG(t)

G0
ρ̄(t) . (2.13)

with wvac = 1
3 . Therefore, in light of the results of Ref. [12], the problem has been dramatically

reduced to just computing the much more tractable expression

− 1

2 ν

1

✷(0)
·✷(1)(h) · T vac

µν . (2.14)

Still, in general the resulting expression for 1
✷(0) · ✷(1)(h) is rather complicated if evaluated for

arbitrary functions. Here we will resort, for lack of better insights, to a treatment where one

assumes a harmonic time dependence for the metric trace fluctuation h(t) = h0 e
iωt, and similarly

for a(t) = a0 e
iΓt and ρ(t) = ρ0 e

iΓt. In the limit ω ≫ Γ, corresponding to ḣ/h ≫ ȧ/a, one finds for

the fluctuation δρvac(t)

δρvac(t) =
δG(t)

G0
δρ(t) +

1

2 ν
ch

δG(t)

G0
h(t) ρ̄(t) . (2.15)



The O(h) correction factor ch for the tensor box is then found to be

ch =
11

3

ȧ

a

h

ḣ
, (2.16)

with all other off-diagonal matrix elements vanishing. Furthermore one finds to this order, but

only for the specific choice wvac =
1
3 in the zeroth order T vac

µν , δpvac(t) = 1
3 δρvac(t), i.e. the O(h)

correction preserves the original result wvac =
1
3 .

As far as the magnitude of the correction ch in Eq. (2.16) one can argue that from Eq. (2.17)

one can relate the combination (ḣ/h)(a/ȧ) to the growth index f(a),

ḣ

h

a

ȧ
=

∂ log h(a)

∂ log a
=

∂ log δ(a)

∂ log a
≡ f(a) , (2.17)

where δ(a) is the matter density contrast, and f(a) the known density growth index [15]. Then,

in the absence of a running G (which is all that is needed here, to the order one is working), an

explicit form for f(a) is known in terms of suitable derivatives of a Gauss hypergeometric function.

These can then be inserted into Eq. (2.16). Alternatively, one can make use again of the fact that

for a scale factor referring to “today” a/a0 ≈ 1, and for a matter fraction Ω ≈ 0.25, one knows

that f(a = a0) ≃ 0.4625, and thus in Eq. (2.15) ch ≃ (11/3) × 2.1621 = +7.927. Furthermore, as

an exercise one can redo the whole calculation in the much simpler scalar box acting on T λ
λ case,

where one finds the smaller value ch ≃ +2.162,

Finally one can do the same analysis in the opposite, but less physical, limit ω ≪ Γ or

ḣ/h ≪ ȧ/a. But this second limit is in our opinion less physical, because of the fact that now

the background is assumed to be varying more rapidly in time than the metric perturbation itself,

ȧ/a ≫ ḣ/h. Furthermore, one disturbing but not entirely surprising general aspect of the whole

calculation in this second ω ≪ Γ limit, is its extreme sensitivity as far as magnitudes and signs of

the results are concerned, to the set of assumptions initially made about the time development of

the background. For the reasons mentioned, in the following we will no longer consider this limit

of rapid background fluctuations any further.

To summarize, the results for a scalar box and for a very slowly varying background, ḣ/h ≫ ȧ/a,

give the O(h) corrected expression for δρvac(t) in Eq. (2.15) and δpvac(t) = wvac δρvac(t) with

ch ≃ +2.162, while the tensor box calculation, under essentially the same assumptions, gives the

somewhat larger result ch ≃ +7.927. From now on, these will be the only two choices we shall

consider here.

The next step in the analysis involves the derivation of the energy-momentum conservation to

first order in the fluctuations, and a derivation of the relevant field equations to the same order.



After that, energy conservation is used to eliminate the h field entirely, and thus obtain a single

equation for the matter density fluctuation δ. First we will look here at the implications of energy-

momentum conservation, ∇µ
(

Tµν + T vac
µν

)

= 0, to first order in the fluctuations. After defining

the matter density contrast δ(t) as the ratio δ(t) ≡ δρ(t)/ρ̄(t), the energy conservation equation to

first order in the perturbations is found to be
[

−1

2

(

(1 + w) + (1 + wvac)
δG(t)

G0

)

− 1

2ν
ch

δG(t)

G0

]

ḣ(t)

+

[

1

2ν
ch

(

3 (w − wvac)
ȧ(t)

a(t)

δG(t)

G0
−

˙δG(t)

G0

)]

h(t) =

[

1 +
δG(t)

G0

]

δ̇(t) . (2.18)

In the absence of a running G (δG(t) = 0) this reduces simply to −1
2 (1 +w) h(t) = δ(t). This last

result then allows us to solve explicitly, at the given order, i.e. to first order in the fluctuations

and to first order in δG, for the metric perturbation ḣ(t) in terms of the matter density fluctuation

δ(t) and δ̇(t).

Also, to first order in the perturbations, the tt and ii effective field equations become, respec-

tively,
ȧ(t)

a(t)
ḣ(t)− 8πG0

1

2ν
ch

δG(t)

G0
ρ̄(t)h(t) = 8π G0

(

1 +
δG(t)

G0

)

ρ̄(t) δ(t) (2.19)

and

ḧ(t) + 3
ȧ(t)

a(t)
ḣ(t) + 24π G0

1

2ν
chwvac

δG(t)

G0
ρ̄(t)h(t) = − 24π G0

(

w + wvac
δG(t)

G0

)

ρ̄(t) δ(t)

(2.20)

In the second ii equation, the zeroth order ii field equation of Eq. (1.6) has been used to achieve

some simplification. It is easy to check the overall consistency of the first order energy conservation

equation of Eq. (2.18), and of the two field equations given in Eqs. (2.19) and (2.20).

To obtain an equation for the matter density contrast δ(t) = δρ(t)/ρ̄(t) one needs to eliminate

the metric trace field h(t) from the field equations. This is first done by taking a suitable linear

combination of the two field equations in Eqs. (2.19) and (2.20), to get the equivalent equation

ḧ(t) + 2
ȧ(t)

a(t)
ḣ(t) + 8πG0

1

2ν
ch (1 + 3wvac)

δG(t)

G0
ρ̄(t)h(t)

= − 8πG0

[

(1 + 3w) + (1 + 3wvac)
δG(t)

G0

]

ρ̄(t) δ(t) . (2.21)

Then the first order energy conservation equations to zeroth and first order in δG allow one to

completely eliminate the h, ḣ and ḧ field in terms of the matter density perturbation δ(t) and its

derivatives. The resulting equation reads, for w = 0 and wvac =
1
3 ,

δ̈(t) +

[(

2
ȧ(t)

a(t)
− 1

3

˙δG(t)

G0

)

− 1

2ν
· 2 ch ·

(

ȧ(t)

a(t)

δG(t)

G0
+ 2

˙δG(t)

G0

)]

δ̇(t)



+

[

− 4πG0

(

1 +
7

3

δG(t)

G0
− 1

2ν
· 2 ch · δG(t)

G0

)

ρ̄(t)

− 1

2ν
· 2 ch ·

(

ȧ2(t)

a2(t)

δG(t)

G0
+ 3

ȧ(t)

a(t)

˙δG(t)

G0
+

ä(t)

a(t)

δG(t)

G0
+

¨δG(t)

G0

)]

δ(t) = 0 .

(2.22)

This last equation then describes matter density perturbations to linear order, taking into account

the running of G(✷), and is therefore the main result of this paper. The terms proportional to

ch, which can be clearly identified in the above equation, describe the feedback of the metric

fluctuations h on the vaccum density δρvac and pressure δpvac fluctuations.

The above equation can now be compared with the corresponding, much simpler, equation

obtained for constant G, i.e., for G → G0 and still w = 0 (see for example [16] and [15])

δ̈(t) + 2
ȧ

a
δ̇(t)− 4π G0 ρ̄(t) δ(t) = 0 . (2.23)

It is common practice at this point to write an equation for the density contrast δ(a) as a

function not of t, but of the scale factor a(t). This is done by utilizing simple derivative identities

to relate derivatives with respect to t to derivatives with respect to a(t), with H ≡ ȧ(t)/a(t)

the Hubble constant. This last quantity can be obtained from the zeroth order tt field equation,

sometimes written in terms of current density fractions,

H2(a) ≡
(

ȧ

a

)2

=

(

ż

1 + z

)2

= H2
0

[

Ω (1 + z)3 +ΩR (1 + z)2 +Ωλ

]

(2.24)

with a/a0 = 1/(1 + z) where z is the red shift, and a0 the scale factor “today”. Then H0 is the

Hubble constant evaluated today, Ω the (baryonic and dark) matter density, ΩR the space curvature

contribution corresponding to a curvature k term, and Ωλ the dark energy or cosmological constant

part, all again measured today. In the absence of spatial curvature k = 0 one has today

Ωλ ≡ λ

3H2
0

Ω ≡ 8π G0 ρ̄0
3H2

0

Ω+ Ωλ = 1 . (2.25)

It is convenient at this stage to introduce a parameter θ describing the cosmological constant

fraction as measured today, θ ≡ Ωλ/Ω. While the following discussion will continue with some level

of generality, in practice one is mostly interested in the observationally favored case of a current

matter fraction Ω ≈ 0.25, for which θ ≈ 3. In terms of the parameter θ the growing solution to the

differential equation for the density contrast δ(a) for constant G is

δ0(a) ∝ a · 2F1

(

1

3
, 1;

11

6
;−a3 θ

)

(2.26)



where 2F1 is the Gauss hypergeometric function. The subscript 0 in δ0(a) is to remind us that this

solution is appropriate for the case of constant G = G0. To evaluate the correction to δ0(a) coming

from the terms proportional to ca one sets

δ(a) ∝ δ0(a) [ 1 + caF(a) ] , (2.27)

and inserts the resulting expression in Eq. (2.22), written now as a differential equation in a(t).

One only needs to determine the differential equations for density perturbations δ up to first order

in the fluctuations, so it will be sufficient to obtain an expression for Hubble constant H from the

tt component of the effective field equation to zeroth order in the fluctuations, namely the first of

Eqs. (1.6). One has

H(a) =

√

8π

3
G0

(

1 +
δG(a)

G0

)

ρ̄(a) +
λ

3
(2.28)

with G(a) giben in Eq. (2.3) and ρ̄(a) in Eq. (2.4). In this last expression the exponent is γν =

3/2ν ≃ 9/2 for a matter dominated background universe, although more general choices, such as

γν = 3(1 + w)/2ν are possible and should be explored (see discussion later). Also, ca ≈ ct if a0 is

identified with a scale factor corresponding to a universe of size ξ; to a good approximation this

corresponds to the universe “today”, with the relative scale factor customarily normalized at that

time to a/a0 = 1. In [12] it was found that in Eq. (1.5) ct ≃ 0.785 c0 in the scalar box case, and

ct ≃ 0.450 c0 in the tensor box case; in the following we will use the average of the two values.

After the various substitutions and insertions have been performed, one obtains, after expanding

to linear order in a0, a second order linear differential equation for the correction F(a) to δ(a), as

defined in Eq. (2.27). Since this equation looks rather complicated for general δG(a) it won’t be

recorded here, but it is easily obtained from Eq. (2.22) by a sequence of straightforward substitutions

and expansions. The resulting equation can then be solved for F(a), giving the desired density

contrast δ(a) as a function of the parameter Ω.

To obtain an explicit solution to the δ(a) equation one needs to know the coefficient ca and

the exponent γν in Eq. (2.3), whose likely values are discussed above and right after the quoted

expression for G(a). For the exponent ν one has ν ≃ 1
3 , whereas for the value for ch one finds,

according to the discussion in the previous section, ch ≃ 7.927 for the tensor box case. Furthermore

one needs at some point to insert a value for the matter density fraction parameter θ, which based

on current observation is close to θ = (1− Ω)/Ω ≃ 3.



3 Relativistic Growth Index with G(✷)

When discussing the growth of density perturbations in classical General Relativity it is cus-

tomary at this point to introduce a scale-factor-dependent growth index f(a) defined as

f(a) ≡ ∂ ln δ(a)

∂ ln a
, (3.29)

which is in principle obtained from the differential equation for any scale factor a(t). Nevertheless,

here one is mainly interested in the neighborhood of the present era, a(t) ≈ a0. One therefore

introduces today’s growth index parameter γ via

f(a = a0) ≡
∂ ln δ(a)

∂ ln a

∣

∣

∣

∣

a=a0

≡ Ωγ . (3.30)

The solution of the above differential equation for δ(a) then determines an explicit value for the

growth index γ parameter, for any value of the current matter fraction Ω. In the end, because of

observational constraints, one is mostly interested in the range Ω ≈ 0.25, so the following discussion

will be limited to this case only, although from the original differential equation for δ(a) one can

in principle obtain a solution for any sensible Ω.

It is known that in the absence of a running Newton’s constant G (G → G0, thus ca = 0) one

has f(a = a0) = 0.4625 and γ = 0.5562 for the standard ΛCDM scenario with Ω = 0.25 [15]. On

the other hand, when the running of G(✷) is taken into account, one finds from the solution to

Eq. (2.22) for the growth index parameter γ at Ω = 0.25 the following set of results. For γ one has

γ = 0.5562 − (0.703 + 25.04 ch) ca +O(c2a) . (3.31)

with ch = (11/3) × 2.1621 = 7.927 in the tensor box case (see Eq. (2.15)), and ch = 2.1621 in

the scalar box case. In the Newtonian (non-relativistic) treatment one finds the much smaller

correction

γ = 0.5562 − 0.0142 ca +O(c2a) . (3.32)

Among these last expressions, the tensor box case is supposed to give ultimately the correct answer;

the scalar box case only serves as a qualitative comparison. The ch term is responsible for the

feedback of the metric fluctuations h on the vacuum density δρvac and pressure δpvac fluctuations.

It should be emphasized here that all of the above results have been obtained by solving the

differential equation for δ(a) with G(a) given in Eq. (2.3), and exponent γν = 3/2ν ≃ 9/2 relevant

for a matter dominated background universe. But it is this last choice that needs to be critically



analyzed, as it might give rise to a definite bias. Our value for γν so far reflects our choice of a

matter dominated background. More general choices, such as an “effective” γν = 3(1+w)/2ν with

and “effective” w, are in principle possible. Then, although Eq. (2.22) for δ(t) remains unchanged,

the differential equation for δ(a) would have to be solved with new parameters. Therefore in a little

bit we will discuss a number of options which should allow one to increase on the accuracy of the

above result, and in particular correct the possible shortcomings coming so far from the specific

choice of the exponent γν .

To quantitatively estimate the actual size of the correction in the above expressions for the

growth index parameter γ, and make some preliminary comparison to astrophysical observations,

some additional information is needed.

The first item is the coefficient c0 ≈ 33.3 in Eq. (1.1) as obtained from lattice gravity calculations

of invariant correlation functions at fixed geodesic distance [17]. We have re-analyzed the results of

[17] which involve rather large uncertainties for this particular quantity, nevertheless it would seem

difficult to accommodate values for c0 that are more than an order of magnitude smaller than the

quoted value.

The next item that is needed here is a quantitative estimate for the magnitude of the coefficient

ca in Eq. (2.3) in terms of ct in Eq. (1.5), and therefore in terms of c0 in the original Eq. (1.1).

First of all one has ca ≈ ct, if a0 is identified with a scale factor corresponding to a universe of size

ξ; to a good approximation this corresponds to the universe “today”, with the relative scale factor

customarily normalized at that time to a/a0 = 1, although some large conversion factor might be

hidden in this perhaps naive identification (see below).

Regarding the numerical value of the coefficient ct itself, it was found in [12] that in Eq. (1.5)

ct ≃ 0.785 c0 in the scalar box case, and ct ≃ 0.450 c0 in the tensor box case. In both cases these

estimates refer to values obtained from the zeroth order covariant effective field equations. In the

following we will take for concreteness the average of the two values, thus ct ≈ 0.618 c0. Then for

all three covariant calculations recorded above ca ≈ 0.618 × 33.3 ≈ 20.6, a rather large coefficient.

From all of these considerations one would tend to get estimates for the growth parameter γ

with rather large corrections! For example, in the tensor box case the corrections would add up to

−199. ca = −199.× 0.618 × 33.3 = −4095..

It would seem though that one should account somewhere for the fact that the largest galaxy

clusters and superclusters studied today up to redshifts z ≃ 1 extend for only about, at the very

most, 1/20 the overall size of the visible universe. This would suggest then that the corresponding

scale for the running coupling G(t) or G(a) in Eqs. (1.5) and (2.3) respectively, should be reduced



by a suitable ratio of the two relevant length scales, one for the largest observed galaxy clusters or

superclusters, and the second for the very large, cosmological scale ξ ∼ 1/
√

λ/3 ∼ 1.51 × 1028cm

entering the expression for δG(✷) in Eqs. (1.2) and (1.1). This would dramatically reduce the

magnitude of the quantum correction by as much as a factor of the order of (1/20)γν = (1/20)4.5 ≈

1.398 × 10−6.

A second possibility we will pursue here briefly is to consider a shortcoming, mentioned previ-

ously, in the use of a(t) ∼ a0(t/t0)
2/3 in relating G(a) in Eq. (2.3) to G(t) in Eq. (1.5). In general,

if w is not small, one should use the more general equation relating the variable t to a(t). The

problem here is that, loosely speaking, for w 6= 0 at least two w’s are involved, w = 0 (matter)

and w = −1 (λ term). Unfortunately, this issue complicates considerably the problem of relating

δG(t) to δG(a), and therefore the solution to the resulting differential equation for δ(a). As a

tractable approximation though, one should set instead a(t) ∼ a0(t/t0)
2/3(1+w), and then use an

“effective” value of w ≈ −7/9, which would seem more appropriate for the final target value of

Ω ≈ 0.25. For this choice one then obtains a significantly reduced power in Eq. (2.3), namely

γν = 3(1 + w)/2ν = 1. Furthermore, the resulting differential equation for δ(a) is still relatively

easy to solve, by the same methods used in the previous section. One now finds

γ = 0.5562 − (0.92 + 7.70 ch) ca +O(c2a) . (3.33)

which should be compared to the previous result of Eq. (3.31). In particular for the tensor box

case one still has ch = 7.927. Thus by reducing the value of γν by about a factor of four, the ca

coefficient in the above expression has been reduced by about a factor of three, a significant change.

After using this improved value for the power γν , the problem of correcting for relative scales

needs to be addressed again, in light of the corrected estimate for the growth exponent parameter

of Eq. (3.33). Given this new choice for γν = 1, on can now consider, for example, the types of

galaxy clusters studied recently in [18, 19, 20], which typically involve comoving radii of ∼ 8.5Mpc

and viral radii of ∼ 1.4Mpc. For these one would obtain an approximate overall scale reduction

factor of (1.4/4890)1 ≈ 2.9 × 10−4. Note that in these units (Mpcs) the reference scale appearing

in G(✷) is of the order of ξ ≃ 4890Mpc. This would give for the tensor box (ch = 7.927 )

correction to the growth index γ in Eq. (3.33) the more reasonable order of magnitude estimate

−62.×20.6×2.9×10−4 ≈ −0.37, and for γ itself the reduced value would end up at ≈ 0.19. Clearly

at this point these should only be considered as rough order of magnitude estimates.

Nevertheless this last case is suggestive of a trend, quite independently of the specific value of

ch and therefore of the overall numerical coefficient of the correction in Eq. (3.33): namely that the



correction to the growth index parameter will increase close to linearly (for γν close to one, as we

have argued) in the size of the cluster. Consequently one expects that the deviations will increase

tenfold in going from a cluster size of 1Mpc to one of 10Mpc, and a hundredfold in going from

1Mpc to 100Mpc.

Finally we note the effects discussed in this paper are only relevant for very large scales, much

bigger than those usually considered, and well constrained, by laboratory, solar or galactic dynamics

tests [1, 21, 22, 23]. Furthermore the effects we have described here are quite different from what

one would expect in f(R) theories [24, 25], which also tend to predict some level of deviation from

classical GR in the growth exponents [26, 27, 28]. Future more accurate astrophysical observations

might make it possible to see the difference in the predictions of various models [29, 30, 31, 32,

33, 34, 35]. In conclusion let us summarize that we have attempted here to systematically analyze

the effects on matter density perturbations of a running G(✷) appearing in the original effective,

non-local covariant field equations of Eq. (1.2). The specific form of G(✷) in Eq. (1.1) is inspired

by the non-perturbative treatment of covariant path integral quantum gravity, and follows from

the existence of a non-trivial fixed point in G of the renormalization group in four dimensions.

The resulting effective field equations are manifestly covariant, and in principle besides the non-

perturbative scale ξ there are no adjustable parameters, since the coefficients (c0) and scaling

dimensions (ν) entering G(✷) are, again in principle, calculable by systematic field theory and

lattice methods (see e.g. [5], and references therein). The main body of this paper has then be

devoted to determining what effects the relevant equations can have on structure growth and the

growth indices.
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