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Abstract

We consider the one-loop correction to the energy of the folded spinning string
solution in the AdS; part of AdSs x S°. The classical string solution is expressed
in terms of elliptic functions so an explicit computation of the corresponding
fluctuation determinants for generic values of the spin appears to be a non-
trivial problem. We show how it can be solved exactly by using the static-
gauge expression for the string partition function (which we demonstrate to be
equivalent to the conformal gauge one) and observing that all the corresponding
second-order fluctuation operators can be put into the standard (single-gap)
Lamé form. We systematically derive the small-spin and large-spin expansions
of the resulting expression for the string energy and comment on some of their
applications.

PACS numbers: 11.25.Tq, 11.25.—w, 11.15.Kc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Classical string solutions in AdSs x S°, or non-topological solitons of the string sigma model,
play an important guiding role in the study of gauge—string duality. One of the basic examples
is the folded spinning string in AdS [1, 2]. The classical string energy is a non-trivial function
of the spin, interpolating between the flat-space regime, E ~ /S + - - -, for small spin and the
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scaling AdS regime, E = S+aln S +- -, for large spin. The dual gauge-theory interpretation
of the latter was suggested in [1] and since then was used and verified in many papers.

The form of this spinning string solution is determined by an elliptic sn function (a solution
of the sinh-Gordon equation). Computing the quantum correction to its energy in AdSs x §°
string theory is thus a non-trivial problem, first addressed in [3]. In [3] the one-loop correction
to the energy E;(S) was expressed in terms of the determinants of the bosonic and fermionic
fluctuation operators with elliptic-function potentials. It was explicitly computed only in the
large-spin limit when the solution simplifies drastically (elliptic-function potentials become
constant). Recently, attempts were made to compute the first few leading terms in E,(S) in
the small S [9] and the large S [10] expansions.

The aim of the present paper is to solve the problem addressed in [3], i.e. to present the
general analytic expression for the one-loop correction E;(S) for an arbitrary value of the
spin. This would enable us to systematically expand E; in the small § or large S limits.

The study of the large S expansion of string energy is important for several reasons,
e.g. (i) for comparison with the Bethe ansatz predictions (see, e.g. [4-7]); (ii) for further
verification of the reciprocity property at strong coupling [8, 10]; (iii) for understanding the
on-set of finite size (exponential or ‘wrapping’) corrections in the anomalous dimension of
the corresponding twist two-gauge-theory operator (cf [11-13]) and the problem of orders
of large-spin/large-coupling limits. The study of the small S expansion may shed light on
quantum corrections to quantum string states or ‘short’ operators [9, 14].

It is also interesting to compare the explicit form of the one-loop string correction derived
directly from the string theory action with the expression coming out of the approach based on
classical integrability of the string sigma model [15, 16]. The two should match in general (see
[17] and references therein) but detailed comparison may teach us important lessons about the
workings of the integrability in the case of cylindrical world-sheet topology.

We shall start in section 2 with a summary of the basic relations for the classical spinning
string solution of [1, 2]. Then in section 3 we shall review the approach of [3] to the
computation of the one-loop correction E; to the string energy. In addition to having elliptic-
function potentials in the quadratic fluctuation operators, a complication of the conformal-
gauge expression for the one-loop partition function of the string sigma model expanded near
this solution is a mixing of the three AdS; modes. This mixing is absent in the static gauge
[3], and we go beyond the discussion in [3] by arguing that the conformal-gauge and the static-
gauge expressions are indeed equivalent (in particular, the string correction in the static gauge
is also UV finite). This allows us to use the static-gauge expression for E; in which all 8+8
bosonic and fermionic fluctuation modes are decoupled as a starting point of our investigation.

A further crucial observation made in section 3.3 is that all second-order fluctuation
operators in this stationary soliton problem can be put into the standard single-gap Lamé
ordinary differential operator form on a circle. As discussed in section 4, this allows us to
compute their determinants in an explicit way. In section 4.1 we review several equivalent
forms of the general expression for the determinant of the second-order ordinary differential
operator O = —d2 + V(x) on a circle: in terms of the discriminant, in terms of the quasi-
momentum and in terms of the ¢-function or resolvent. In section 4.2 we specify these
relations to the case of the Lamé potential V = 2k?sn’(x|k?). Then in section 4.3 we apply
this formalism to the case of the fluctuation operators whose determinants appear in the string
one-loop correction Ej.

In section 5 we first demonstrate that the resulting expression for E; is UV finite as
expected. We then check the equivalence between the conformal-gauge and the static-gauge
expressions for E; by numerically evaluating the ‘mixed’ conformal-gauge determinant and
comparing it with its static-gauge counterpart that we found analytically. We also plot £ and
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compare it with its large-spin and small-spin asymptotics derived analytically in sections 6
and 7. In section 6 we also check the reciprocity constraints on the few leading terms in the
large-spin expansion of the energy.

Some concluding remarks are made in section 8. One natural extension that we plan
to address in the future [18] is to repeat the analysis of the present paper in the case of the
(S, J) folded string solution with an extra orbital momentum in S° [3] . This problem is more
complicated in that even the static-gauge expression for the fluctuation Lagrangian has now
two mixed fluctuations and thus the standard expressions for the Lamé operator determinant
cannot be directly applied.

There are several appendices containing notation and technical details. In appendix A
we summarize the basic definitions for the elliptic functions, and describe the Landen
transformation used to convert certain fluctuation operators to the Lamé form. Appendix B
describes the Gel fand—Yaglom numerical method for computing determinants of second-
order differential operators, including the case of coupled operators. Appendix C contains
the details of the relevant elliptic-function expansions needed for studying the small-spin
and the large-spin limits, while in appendix D we evaluate the leading correction due to
the (exponentially suppressed) contributions that we neglect in the main calculation. In
appendix E we consider an alternative approach to the expansion of the one-loop energy in
the large-spin limit. Appendix F relates our exact results to the perturbative expansion of the
associated determinants.

2. Review of the folded spinning string solution in AdS;

The folded spinning string in AdS3 space

ds?> = — cosh® p dr* + dp? + sinh? p dp? 2.1
is a classical closed string solution given by [1]

t=«krt, ¢ = wr, p=p(c)=p(c+2m), 2.2)

where «, w are the constant parameters. The equation of motion in conformal gauge’ and its
solution with initial condition p(0) = 0 are®

0% = k?*cosh? p — w?sinh? p, (2.3)

k
sinh p(0) = ———— cn(wo + K|k?), p'(0) = k sn(wo +K|k?), (2.4)
V1 — k2
where K = K (k?) is the complete elliptic integral of the first kind [30], with elliptic modulus
given by k = 5.9 Here p varies from O to its maximal value pg, which is related to the useful
parameter 1 or k by

2
w 1
cotthozK—251+nEp. (2.5)
The periodicity implies an extra condition for the parameters
2 L0 d
2 = / do = 4 P (2.6)
0 0 +/k2cosh? p — w?sinh? p

7 We use Minkowski signature in both target space and world sheet, so that in conformal gauge ./—g g% = n® =
diag(—1, 1).

8 To construct the full (27 periodic) folded closed string solution one should glue together four such functions p (o)
on 7 intervals and cover the full 0 < o < 27 interval.

9 See appendix A for notation. We adopt here the Abramowitz—Mathematica notation for the modulus of the elliptic
functions.
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integrating which one finds (see (2.5))

2k 2
Kk = —K, o =—K. 2.7)
b4 bid

The corresponding induced 2D metric on the (t, o) cylinder and its curvature are

32 In 12 2 2.2
_% — 24 % (2.8)
P o

The two conserved momenta conjugate to ¢ and ¢ are the classical energy and the spin:

8ab = 0(0)ap, R® =
2 do 2 do

Ey = ﬁx/ - cosh’ p = VAE, S = «/Xw/ 7 sinh? p = VAS. 2.9
0 vs 0 1

Using (2.3) and (2.6) we get the following explicit expressions in terms of the complete elliptic
integrals K = K(k?) and E = E(k?) (see appendix A):

2k
2 1
S:;(l_sz—K). Q2.11)

To find the energy in terms of the spin, one is to solve for k (or n) in terms of S and then
substitute it into the expression for the energy £. This can be easily done in the following two
limiting cases:

(i) large-spin or long-string limit: pg — 0o,i.e.n — Qork — 1
(i1) small-spin or short-string limit: pg — 0,i.e.n - coork — 0

In the ‘long-string’ limit when the string’s ends are close to the boundary of AdSs, the
spin is automatically large and the parameter 1 is expanded around zero as
2 In(8nS) -3
== —— 4. 1. 2.12
S Y n < (2.12)
Substituting this in (2.10) one obtains for the energy the well-known logarithmic behaviour
[1, 3, 10]:
In87S)—1 In(8xS) —1
2728
where the leading In S term is governed by the so-called scaling function (cusp anomaly) and
the subleading ones can be shown to obey non-trivial reciprocity relations [8, 10].

In the ‘short-string’ limit, when the string is rotating in the small central (p = 0) region

of AdSs;, the spin is small and the parameter 7 is large
1 1 7 117
—=25--8+-8 - —
n 2 8 64

This results in the usual flat-space Regge relation [1, 3, 9]

=S+ +e, S>1, (2.13)

St n> 1. (2.14)

Eo=V25(1+38+--), S« 1. (2.15)

These small- and large-spin expansions of the classical energy &) are shown in figure 1,
compared to the exact relation. A similar plot for the one-loop correction is provided below,
see figure 8.
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Figure 1. Plot (blue, solid curve) of the classical energy & as a function of the spin S, compared
with the large-spin expansion (red, dotted curve) in (2.13), and the small-spin expansion (gold,
dashed curve) in (2.15).

3. One-loop correction to the spinning string energy

As discussed in [3], one can compute the leading quantum correction to the energy of this
solution by expanding the action to quadratic order in fluctuations near the classical solution

~ A 2 ~ o~
I = —£/dl’/ do(Lg+ LF), (3.1)
4 0

and computing the corresponding partition function expressed in terms of determinants of the
quadratic fluctuation operators. Then (switching to the Euclidean time t — it) the one-loop
correction to the energy can be found from the 2D effective action I" by dividing over the time
interval (t =« 1)

r
kT’
where Z is given by the ratio of the fermionic and bosonic determinants.

Since the above rigid spinning string solution is stationary, the coefficients in the

fluctuation Lagrangian do not depend on 7. Then the relevant 2D functional determinants may
be reduced to 1D determinants as in

E, = TE/d‘L’—>OO, '=—-InZ 3.2)

+00 dQ
Indet[—3; — 37 + M*(0)] = T/ 7 Indet[—3; + Q> + M*(0)], (3.3)
o 2T
i.e. we may introduce I" defined by
0 dQ
r=7 —T. (3.4
—eo 2T
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3.1. Conformal gauge

Following [3] one may use either the conformal gauge or the static gauge to compute the
fluctuation Lagrangian and thus the corresponding one-loop partition function. The bosonic
fluctuation Lagrangian reads

L5 = —8,70°T — u2T + 0,00°P + 13" + 9,p0°p + 112

+4p (k sinh pdof — @ cosh pdod) + 8aBu0"Bu + 15 By + 0aL50Ls. (3.5)
,u12=2,0’2—/<2, ué:Zpa—a)z, M/2)=2,0/2—a)2—/<2, M%:Zpﬂ.
(3.6)

Here 8, (u = 1, 2) are the two AdSs fluctuations transverse to the AdSs subspace in which the
string is moving, while ¢; (s = 1, ..., 5) are fluctuations in S°. The three AdS; fields (7, 5, @)
are coupled so that the corresponding 1D determinant in (3.3) will involve the following 3 x 3
matrix differential operator acting on the three fields X = (7, p, @) (aftert — i 1, 3, — iQ):

92 — Q* —2p% + 3 2Qx sinh p 0
Oypgp = —2Q« sinh p -2+ Q*+2p"? — w? 2Qw cosh p
0 —2Qw cosh p —02+ Q2 +2p?% — w? — k2

(3.7

In addition to the coefficients being dependent on o according to (2.4), this mixing
makes finding the determinant of this operator a non-trivial problem. Taking into account
the contribution of the two massless conformal-gauge ghosts, the bosonic contribution to
[ =T3+Trin(3.4) may then be written as

[ = 1(IndetO,, +2IndetOp + 3 In detOp), (3.8)

Op = =32+ Q*+20", Op = -2 + Q% (3.9)
The fermionic part of the quadratic fluctuation Lagrangian can be put into the form [3]

Lr=2i(Uy9,¥ —iur¥Yys¥), wr=p, (3.10)

where y, are 2D gamma matrices (times a unit 8 x 8 matrix) and y3 = diag(/, —1). It may
be interpreted as describing a system of 4+4 2D Majorana fermions with o -dependent masses
+p’. Squaring the corresponding Dirac operator, the fermionic contribution to the 2D effective
action I in (3.4) can be written as (see also [9])

['r = —1(41IndetOy, +41IndetOy, ), (3.11)

Oy, =32 +Q%+ “21/&’ ,ufbi = +uf +pur =+p" + 0" (3.12)

3.2. Static gauge

Another approach considered in [3] was to start with the Nambu action and use the same
classical solution but impose the static gauge on quantum fluctuations: 7 = p = 0.!° In this
case the remaining AdS; mode ¢ is decoupled and is described by

L™ = 0,69°% + g, (3.13)
10 The classical solution of section 2 is also the solution of the Nambu action as the induced metric is conformally
flat. We may define the static gauge by the condition that T and o are such that ¢ and p have their classical values, i.e.

do not fluctuate.
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2K w?

,0/2
Then the static-gauge analogue of (3.8) takes the form (the masses of other modes are the
same as in the conformal gauge but there is no ghost determinant contribution)

fig =2p"+ (3.14)

s 1
fie = 5 (IndetO; +21ndetOp + 5IndetOy), (3.15)
2 2,72
Op=—02+ Q2 +202+ =, (3.16)
p/

while the fermionic contribution to the one-loop partition function is the same as in (3.12).

The advantage of the static-gauge expression for the effective action is that here all
fluctuation modes are decoupled and are described by elliptic differential operators of the
same type, —92 + V(o). On general grounds, one may expect to find the same expression for
the on-shell one-loop partition function in the two gauges.'! In this case one should get the
following relation between the determinants of the conformal-gauge operator O,y in (3.7)
and the static-gauge operator Oy (3.16):

detO,,y = detO,(detOp)?, (3.17)

where Oy is the massless operator in (3.9)."> A concern about this equality was raised in
[3] based on the fact that while the conformal-gauge one-loop partition function is UV finite
[21], the static gauge one apparently contains an extra divergent term. Indeed, observing that
the one-loop logarithmic UV divergence of In Z is given by the sum of mass-squared terms
and that f1;, in (3.14) may be written in terms of the curvature of the induced metric (2.8) as
fig, = /—g(4+R®), one finds that this extra divergence is proportional to [ dr do\/—gR®.
This is proportional to the Euler number of the world surface, so one may suggest [3] that it
may be cancelled by the contribution of some extra ‘topological’ factor representing the ratio
of measures in the Polyakov and Nambu path integrals.

However, this extra divergence actually vanishes in the case of a cylindrical world sheet
appropriate for computing the correction to the energy of a closed string state: since \/—gR?®
is a total divergence, as long as the induced metric and thus its curvature is defined to be
periodic in o, the integral over o should vanish.!?

As we shall explicitly show in section 5 below, the effective action in the static gauge given
by the sum of (3.15) and (3.11) is indeed UV finite. Moreover, we shall also verify relation
(3.17), i.e. demonstrate the equivalence of the conformal-gauge and static-gauge results for the
finite one-loop correction to the folded string energy. In [3] this equivalence was seen only in
the long-string (infinite-spin) limit when solution (2.2) approaches the following asymptotic
solution [19] (w — k > 1):

1
t=kKrT, ¢ =«kr, L =Ko, k=—InS> 1, (3.18)
T

for which p’ = k = const, R® = 0 and relation (3.17) can be easily checked.

1T For example, in the case of string theory in flat target space the static-gauge Nambu and conformal-gauge Polyakov
one-loop partition functions (with non-trivial boundary conditions on a disc) are indeed the same [20].
12 Here we assume that one of the massless decoupled modes is time-like, like time mode in O,4.

13 More explicitly, here the relevant integral is fozﬂ do(Inp’)" = [(Inp')' 13" = [/;T/,/]g/z+[%,,/]g/2+[%/,/ 13,/2”+[%/,,]§72ﬂ,
where p” = (k2 — ®?)sinh pcoshp, p’ = £/k2cosh? p — w? sinh? p. While there is an apparent singularity at

the turning points were p’ = 0, this integral should vanish. One may consider using a suitable regularization of the
turning points to make this vanishing manifest.
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Proving (3.17) analytically for any « by direct approach appears to be non-trivial. One
indirect way to demonstrate (3.17) is to note that since the corresponding quadratic fluctuation
operators appear in the linearized (near folded string solution) form of the string equations of
motion in the two gauges, one may be able to relate these operators by relating the two sets of
equations.

The conformal-gauge equations for small fluctuations following from (3.5)

(87 — 82)7 + wiT + 2« sinh pd. p = 0 (3.19)
(97 — 82)p + u2p + 2(x sinh pd, 7 — w cosh pd, §) = 0 (3.20)
(97 — 82) + 1y + 2w cosh pd. p = 0, (3.21)
should be supplemented with the conformal-gauge conditions (Virasoro constraints)
—k cosh? pd;7 + (w?> — k%) sinh p cosh pp + p'9,p + w sinh? pd,¢ = 0 (3.22)
—ik cosh? pd,7 + wsinh? pdy¢ + p'9;p = 0. (3.23)

The latter should allow one, in principle, to eliminate the two modes (say 7 and @) in terms
of the third one (p), getting an effective equation for the latter. Since the p-background does
not depend on t and since the above equations are linear, we may do this elimination at the
Fourier mode level, i.e. replacing 7 — €'**7(0), ¢ — e ¢(0), p — €**p(0). Then (3.22)
and (3.23) imply (changing to the Euclidean time notation, i.e. Q — i)

_ sinhp  _, 5 ) 2 -

= 0, —2p' 0 +k-—w° — Q7)p, 3.24
2KQ(" PO +K°— )P (3.24)

- coshp , , , 2 2 -

¢ =- ) (07 +20'0, — K7 + 0 — Q%) p. (3.25)

Substituting this into the equations of motion (3.19)—(3.21) we find that one of them is satisfied

automatically while the other two become equivalent to the following fourth-order differential

equation for p, i.e. O¥p = 0, where

OW =8¢ 4 2(0* +1> — Q> —4p"") 32 — 8p'p" 8y + k™ + (2 + 0H)* + 21 (Q* — ).
(3.26)

Remarkably, this operator can be factorized as a product of two second-order operators as
follows:
oW =00, O1 = (0) 040, O, =p'0s(p)~", (327

where O, and O, are the same as the static-gauge operator in (3.16) and the massless mode
operator in (3.9), respectively. The algebraic o’ and (o)~ factors may be attributed to a
change of normalization of the corresponding fluctuations.'* This way we see how the static-
gauge operator Oz emerges from the mixed conformal-gauge fluctuation operator, i.e. provides
support for relation (3.17).

In section 5 below we shall verify that the effective action in the static gauge is indeed
UV finite, and we demonstrate the equivalence (3.17) between the conformal-gauge and the
static-gauge results for the finite one-loop correction to the folded string energy by computing
the corresponding functional determinants.

14 A similar discussion could be given at the level of path integral with the conformal-gauge condition accounted for
by two delta-functions (as appropriate if one starts with the Nambu path integral). The step analogous to (3.24) and
(3.25) would then produce an extra detQy factor as required for balance of degrees of freedom. For a discussion of
the equivalence of conformal-gauge and static-gauge partition functions in a simpler case of a homogeneous string
solution, see also [23].

8
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Vp(o)

Figure 2. Potential Vg in (3.29), for k = 0.5, 0.9, 0.99 and 0.999, from bottom to top.

3.3. Lamé form of the second-order fluctuation operators

To summarize, the simplest starting point for computing the one-loop correction to the folded
string energy is thus its representation in terms of the one-loop effective action in the static
gauge given by the sum of (3.15) and (3.11), i.e. is expressed in terms of the determinants of
the following three types of operators defined on periodic functions f = (8, ¢, V¥+):

O = =32+ Vs(o) + Q2 f(o) = f(o +2m), (3.28)

where (using the form of the classical solution (2.4))

Vg = 20" = 20’ (G|k?), & =wo +K, (3.29)
2 2.2
Vo =202+ 2 = 225026 [K2) + 207 ns* (5 1K), (3.30)
0
Vy, = p? £ 0" = k?sn*(G1k?) £ kwcn(G]k?) dn(G|k?). (3.31)

These potentials are plotted in figures 2, 3 and 4 where we have chosen four particular values
of the elliptic modulus k = *- = 0.5, 0.9, 0.99, 0.999.
It is convenient to introduce the rescaled spatial variable (cf (2.7))

2K
X =wo = —a, (3.32)
T

and write Og as (we ignore a trivial overall constant factor)
2522

Op = =02 + 220> (x + K|K?) + =

o (3.33)

which is now defined on the periodic functions 8(x) = B(x + 4K). The expression in (3.33)
is recognized as being a Lamé differential operator in the single-gap form (which will be
reviewed in the next section).

Remarkably, all other fluctuation operators entering the effective action, i.e. Oy and Oy,
whose structure is apparently much more involved, can also be cast into the single-gap Lamé
form. Their transformation has several steps involving rescaling the coordinate and the elliptic
modulus in a special way, see (A.18)—(A.21) for Oy, and (A.22)—(A.31) for O, .
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80 +

60 -

40

20

H
o
W
A
J
[o)}

Figure 3. Potential Vy in (3.30), for k = 0.5,0.9,0.99 and 0.999, from bottom to top. Note that
singularities appear at the turning points where o = (n + %)n.

Awanwe
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IV Y I i ST W SV I/ p
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Figure 4. Potentials Vy, (red) and Vy,_ (blue) in (3.31), for k = 0.5, 0.9, 0.99 and 0.999, from
bottom to top. Note that V(o) are identical in from, but are displaced from one another by a
half-period 7 ; they are self-isospectral [26].

We can summarize the results as follows: each (static-gauge) fluctuation operator is a
single-gap Lamé operator with the following periodic eigenvalue problem:

[—07 +2K% sn’(x k%) + Q2] fa (x) = Afa(x), fax) = falx + L), (3.34)

where x is a rescaled o variable with period L, and k and  are the rescaled modulus and
Euclidean frequency in (3.29)—(3.31), namely,

(a) for the bosonic operator Og:

2K - o (7Y
x="0+K, k=k, P=(=) . L = 4K; (3.35)
T

10
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4k

o7 and

(b) for the bosonic operator Oy: the elliptic modulus is k=

~

. _ . 2vk i, Q\* . ~
x="—0+iK, k=kzi, Q? = (”—~) +k2, L =4K: (3.36)
b4 1+ 2K
(c) for the fermionic operators Oy, :
K K
—0 + —, for ¥,
x=17 2
K 3K
—o+——, for y_ (3.37)
T 2
_ o 2vk - Q\’ . ~
Poio 2k o= (25 + &2 L =2RK.
1+k K

Here K = K(k?), and k' = +/1 — k2, see appendix A for notation and details.

As we shall discuss in the next section, the remarkable feature of this Lamé spectral
problem (3.34) is that it can be solved exactly, and hence the corresponding determinant can
be computed analytically (with aresult that is independent of constant shifts in the coordinates).

4. Determinants of single-gap Lamé operators

Below we shall first review the method that allows one to compute the determinant of a single-
gap Lamé operator without having to solve the corresponding spectral problem explicitly. We
will then apply this technique to the computation of determinants of the fluctuation operators
discussed in the previous section.

4.1. Floquet theory of determinants of second-order one-dimensional operators

Consider the following eigenvalue problem for an ordinary differential operator, O =
—d2 + V(x), with a periodic potential:

[-02+ V)] f(x) = Af(x), Vx+L)= V(). 4.1y

For either periodic or antiperiodic boundary conditions on f(x), we find a discrete spectrum
of eigenvalues {A,}, and the associated determinant is then formally given by detO = [, A,.

Given a general potential V (x), it is of course difficult to find the eigenvalues, and even
given the eigenvalues, the infinite product must be regulated. Both difficulties can be overcome
in the following way. Consider two independent solutions f »(x; A) to (4.1) satisfying the
conditions

f1(0; A) =1, f1(0; A) =0,
, 4.2)
f(0; A) =0, 0 A) =1,
where f' = 0, f. Then the discriminant A(A) of the operator O is defined as [31]
A(A) = fi(L; A) + fr(L; A). (4.3)

The periodic and the antiperiodic eigenvalues are given by the following (in general
transcendental) equations:

+2 (periodic)

-2 (antiperiodic) 4.4

A(A) = {

Remarkably, the determinant can be computed without knowing these eigenvalues explicitly.
Indeed, the Hill determinant, i.e. the ratio of determinants with non-zero Vand V = 0, has a
simple expression in terms of the discriminant [31]:

11
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det[—37 + V(x) — A] _ AA) -2 (periodic) 4.5)
det[—92 — A] —4 sin2(LVA/2) .

det[ 97 + V(x) — A] __ A2 (antiperiodic) (4.6)
det[—02 — A] 4 cos*(LV/A/2) ‘

In what follows we shall always assume that determinants we consider are normalized to the
trivial free determinant det[—af], and thus omit the resulting A- and V-independent overall
constant (such constants will cancel in the string partition function due to the balance of the
degrees of freedom). Then we may write the above relations simply as

A(A) —2 (periodic)
A(A)+2 (antiperiodic)
It is useful to relate this representation for the determinant to a familiar physical notion of
‘quasi-momentum’. By the Floquet-Bloch theory [31], equation (4.1) has two independent
solutions of the form fi(x) = e*'PM¥y, (x), where x.(x) are periodic, so that under
translation through one period the Bloch solutions fy (x) change by a phase

frGo+ L) =W £ () 4.8)

where, by definition, p(A) is the ‘quasi-momentum’. Then A(A) = 2cos(L p(A)), and we
can rewrite (4.7) in terms of the quasi-momentum as follows [31]:

—4in? (% p(A)) (periodic)

detp ap[—07 + V(x) — A] = { 4.7

detp ap[—0; + V(x) — A] = 4.9)

L
+4 cos? (E p(A)> (antiperiodic)

Thus, knowing the quasi-momentum p(A) amounts to knowing the discriminant and also the
determinant.

Another interesting and useful relation is the link between the determinant and the
discriminant through the contour integral representation for the spectral zeta function. For
definiteness, let us consider the case of the periodic boundary conditions. Then the spectral
zeta function is

! y C L [uaas
o(s) = m/ydAA Sx InAM) 2] = Zni/ydAA R(A), (4.10)

where the resolvent
A'(A)
R(A) = ——— (4.11)
A(A) -2

has simple poles exactly at the values of A corresponding to the points of the periodic spectrum.
The contour y in (4.10) runs counterclockwise above and below the positive real axis enclosing
all poles of the resolvent. Wrapping the contour along the branch cut along the negative real
line gives [25]

£(s) = _Si“;”s) /oo dA A~ R(—A). (4.12)
0

According to the zeta function definition of the functional determinant
det[ 92+ V(x)] =e ¢ © (4.13)
to compute the determinant we need to know
/ = 9 [A(0) —2]
-¢'(0) = — dA— In[A(—A) —2]=ln ————. (4.14)
0 A [A(—00) — 2]

12
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Here we subtracted the divergent term In[ A (—o00) — 2] by assuming that we again divide by
a ‘free’ reference determinant. Then finally

detp[—07 + V(x)] = A(0) — 2. (4.15)

Shifting the potential by a constant — A, we reproduce the representation in (4.7).

The important feature of the above expressions is that the determinants can be calculated in
closed form without computing any of the eigenvalues. There is yet another way to compute the
determinants, known as the Gel’fand—Yaglom method [28, 35], which for periodic systems
reduces essentially to a numerical evaluation of the discriminant giving the determinants
via (4.7). This method is described in appendix B, where we also consider systems of
coupled equations, which will be important for demonstrating explicitly the equivalence of
the computation in the conformal and static gauges.

It is useful to illustrate the above general relations on the simple example of the constant
potential

V(x) = m?, x € (0,L). (4.16)

Then the two independent solutions in (4.2) are f1(x; A) = cosh(vm? — A x) and fo(x; A) =
sinh(v/m2 — A x)/+/m2? — A. Therefore, discriminant (4.3) and determinants (4.9) are

A(A) = 2cosh(L vVm? — A), 4.17)
4 sinh? <%\/m2 — A)
4 cosh? (%\/mz — A) .

detp ap(—0; +m* — A) = (4.18)

The quasi-momentum in (4.8) here is p(A) = +/A — m?2, so these relations are consistent
with (4.9). Furthermore, in this case we know the explicit eigenvalues (n € Z):

2 2
m? + (nTn> (periodic)
A, = 5 (4.19)
) Cn+ m L
m- + —I (antiperiodic).

Then expressions (4.18) also follow from the infinite product representations for the sinh and
cosh functions, combined with zeta function regularization.
4.2. Case of the single-gap Lamé potential V (x) = 2k* sn’(x|k?)

The important example which is our main interest here is provided by the single-gap Lamé
operator in (3.34), i.e.

[—02 + 2k s> (x[kD)] £ (x) = Af (x). (4.20)
The two independent Bloch solutions of (4.20) here are [30]
H(x ta) T2 Z(@)
=———¢e" 7Y, 4.21
S (x) o0 e (4.21)

where H, ©, Z are the Jacobi eta, theta and zeta functions defined in (A.10), and @ = «a(A)
is given implicitly by

) L+k>2—A
sn(alk?) = [ 5. (4.22)

13
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Figure 5. The discriminant A(A) for the Lamé potential V (x) = 2k?sn(x|k?) with k = 0.9.
The three band edges occur at the points A, Ay, A3 where A(A) cuts the lines 2, while

the remainder of the periodic/antiperiodic spectrum consists of points where A(A) touches the
lines £2.

Using the period properties of the Jacobi functions (A.12) we see that
fr +2K) = = fr () €724 = £ (x) X5, (4.23)
which defines the quasi-momentum as
b1

p(A) =iZ(|k®) + e (4.24)

Therefore, from (4.9) we immediately find analytic expressions for the determinants.
Assuming the period is L = 2K, we find

_ —4 cosh?[KZ (a|k?)]
det'F 5291 —02 + 2% sn? (x [k%) — A] = 4.25
leap [0+ AT = Al =1 K Z @ k)] (*+:29)
where the relation between A and « is given by (4.22). On the other hand, for the period
L = 4K, we find
det =" [—92 + 24%sn (x|k?) — A] = 4sinh®[2KZ («[k?)]. (4.26)

Note that this is the same as the product of the periodic and antiperiodic determinants (4.25)
with the period 2K, as it should be.

The periodic potential in (4.20) has a special property that its band spectrum has only
a single gap, and is known therefore as a one-gap potential, as illustrated in figure 5. The

spectrum has three band edges (which are also the lowest eigenvalues of the periodic spectrum
of the problem on the interval 4K):

Ay = k2, Ay =1, Ay = 1+k°. (4.27)

One can rewrite the relation between A and « in (4.22) in terms of the band edges as follows:

ksn(a; k%) = \/% (Al +As+ A3) — A. (4.28)

The resolvent is

R(A) = 4 In[A(A) — 2] = L o B p(A) . (4.29)
dA dA 2

14
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We can also express dp/dA simply in terms of the band edges:
dp A—pu

YN VNI [N N IV vy

(4.30)

where

1 1 (r
w= E(A] + Ay + Az —(V)), (V) = Z/ V(x)dx. (4.31)
0
To see this, note that from (4.8)
d dp d dZ(a)k?) d E(?) d
dp _dpde A7) do () gaon ey o B de
dA  dadA do dA K(k?) ) dA
where we have used the definition (A.16) of the zeta function. Also, from (4.28) we have
da 1 . 1
dA  2k2dn(a|k?) en(alk?) sn(alk?) 2 /(A; — A)(As — A)(As — A)
Finally, for the potential V (x) = 2k? sn?(x|k?) we find for L = 2K

1 [t E(k?)
Vy=— [ dx2k’sn’(xk*) =2(1—- — ), 4.32
(V) L/o x2k” sn”(x|k) < K(k2)> 4.32)
and the same for L = 4K. Thus, taking into account (4.27), we get
E(k?)
=2+ —. 4.33
M + K&) (4.33)

Thus we obtain a compact expression for the resolvent of the single-gap Lamé potential with
period L in terms of the quasi-momentum p(A) and the band edges as

A—p coth <LP(A)) .

L
R(A) = 5

2 /A = M) (As— M) (A; — A)

(4.34)

4.3. Results for determinants of static-gauge fluctuation operators

Let us now apply the above results to the case of the fluctuation operators defined by (3.34)—
(3.37). The results in equations (4.22) and (4.25)—(4.26) are actually all that we need in
order to write down exact analytic expressions for the determinants of these operators. The
analytically known eigenvalues or band edges can be obtained from (4.27) with the appropriate
shifts (A; — A; —Q?) and rescalings, and an analogous procedure applies to the corresponding
resolvents in (4.34).

The results can be summarized as follows.

(a) For the g operator, in view of (3.35), the determinant reads

detO4 () = 4sinh?[2K Z (ag k)], (4.35)
1+k2+(22)°
sn(ag; k%) = +2K) (4.36)

The band edges are obtained from (4.27) by shifting and rescaling

i 2K\ ? ) ) 7\?
Ai==) A +QH =7+ Q% Q== (4.37)
T 2K

15
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Table 1. The lowest (analytically known) eigenvalues of the fluctuation operators.

B ¢ Fermions
A= +Q* K+ Q° Q? Q2
A= +Q* ?+Q2 (w—Kk)?+Q? %(w—x)2+§22
Ay =03+ @ +17+Q> (0+x)+ Q7 1(@+K)?+Q?
i K2+w2% —(wz—K2)+2a)2% —%(wz—xz)+“’;%

where the rescaled A; have been defined as ‘characteristic frequencies’ Q7. One thus gets
the eigenvalues in the first column of table 1 that can now be re-expressed in terms of the
parameters of the classical solution:

A A A 2K 2 2 ~2 ~2 2 ~2
(A, Ao, A= — ) (+Q%1+Q% 1+k°+Q7%)
T

= (k2 + Q% ? + Q2 kP + 0’ + Q%) (4.38)
. 7 4k
(b) For the ¢ operator in (3.36) we have k> = T and thus
detOy () = 4 sinh?[2K Z (o [K3)], (4.39)
3 1+(22)
sn(ay k%) = # (4.40)

The band edges are obtained from (4.27) by shifting and rescaling

~\ 2
_ 2K - - Q\ .
A=) a+D) =2+ Q2 = (”—~> +R2, (441

b4 2K
getting thus the eigenvalues in the second column of table 1.

(c) For the ¥ operators in (3.37) the elliptic parameter is k> = ﬁ, and we get

detOy (R) = —4 cosh?[KZ (ay |k?)], (4.42)
1+ (22)°

sn(ay [k%) = # (4.43)

Since the determinant is independent of the constant shifts of coordinates like the one in
(3.37) (see, e.g. appendix B) the expressions for the determinants of Oy and Oy, are the
same and therefore we will not distinguish them in what follows. The band edges follow
from (4.27):

- K ? _ _ TQ\?* .
Ai=[=) A+ =2+ 92=<%> +RAL (4.44)
T
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5. Exact expression for the one-loop correction to string energy

As follows from the above discussion (see (3.2), (3.15), (3.11), (4.35), (4.39), (4.42)) the
one-loop correction to the energy of the folded spinning string may be written as
1 [> det®O
Ei=—— [ d2n Sl
4k J_oo detO, det”Op det’Oy

where k = i—k K, K = K(k?) (see (2.7)) and the determinants as functions of 2 have the

following explicit expressions':

5.1

1+k2+(22)?

detOp = 4sinh’[2KZ(aplk?)]  where sn(aplk?) = p = (5.2)
N y 3 J1+ (22
detOy = 4 sinh?[2KZ (ay|k?)] where sn(aylk?) = # (5.3)
7Q\2
2% 72 P2 + (%)
detOy = —4cosh"[KZ (ay [k7)] where sn(ay |k7) = T (5.4)
det®y = 4 sinh*[7 ] (5.5)

The computation of E| is thus reduced to inverting the transcendental equations for g, ag, g,
finding the corresponding values of the Z-function (A.15). The integral is then a function of
k=% and Q. 16 Doing the integral over  we then end up with a function of & only or the spin
(2.11). Tt is straightforward to evaluate the €2 integral numerically, as discussed below.

5.1. UV finiteness

Let us first check that the resulting expression for E; is indeed UV finite, i.e. the integral
over Q2 is convergent at infinity. The large €2 behaviour of the determinant factors in (5.1)
can be very easily extracted from the general large Q2 behaviour of the associated resolvents.
Changing the variable from A to —Q?, we define

R(Q) = —2QR(—?) (5.6)

Then we find from (4.34) that the general structure of the expansion is

RQ) =r+ L+ 2409, @ 5.7

( )—V0+@+§+ ( ), — 0 (5.7)
1 - _ _

ro = 271, r1=2n[ﬂ—§(Al+A2+A3)]=2n(V). (5.8)

Therefore, the large 2 behaviour of the log determinant is
IndetO = ryQ — % +OQ7Y), Q- oo (5.9)

Using the corresponding values of i and £; of the three non-trivial fluctuation modes given
in table 1, we find (we have also used the elliptic identities (A.28) and (A.29))

15 The determinant of the massless operator Oy is found by taking the regularized infinite product of its eigenvalues
I =02+ Q2.
16 Note that in the limit when k = 0, i.e. potentials vanish, all determinants take the same value as detQy, i.e. Ej in
(5.1) vanishes.
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Figure 6. Comparison between the left-hand side and the right-hand side of equation (3.17)
for k = \%0 The circles represent the numerical Gel’fand—Yaglom result for the determinant
detO;,¢ of the three coupled fluctuations in conformal gauge, while the solid line is a plot of the
corresponding analytic static-gauge expression, given by the product of the determinant (5.3) for
the massive fluctuation ¢ and the square of the determinant (5.5) of a massless mode. To emphasize
the precision of the agreement we have plotted the oscillatory form, as a function of i 2.

IndetOp =27Q +4w(K —E)Q™' + O(Q7Y), (5.10)
IndetOy = 27Q +8w(K —E)Q~' + O(Q7), (5.11)
IndetOy =27Q+20K -E)Q™' +0(Q7?), (5.12)
IndetOy = 272+ O(Q73). (5.13)

The leading (quadratically divergent) terms cancel in (5.1) due to the balance of world-sheet
degrees of freedom in (5.1). The subleading (logarithmically divergent) terms also cancel in
the combination appearing in (5.1), 2 x 4 +8 — 8 x 2)(K — E)Q~! = 0. We thus confirm
that the static-gauge result for the one-loop energy is indeed UV finite, as was argued in
section 3.2.

5.2. Equivalence between the static-gauge and conformal-gauge results

To check the equivalence between the static-gauge and conformal-gauge results one needs
to verify the factorization relation (3.17). This can be done numerically, as follows. To
evaluate the left-hand side of (3.17) we used the Gel’fand—Yaglom method (for details, see
appendix B) to compute numerically the determinant of the operator O, in (3.7) as a function
of Q for various values of k. The right-hand side of (3.17) can be computed directly using
the expression for the determinant of O, found above (5.11). We find perfect agreement. In
figure 6 we have plotted the expressions on both sides of (3.17) as functions of  for k = —
Similar agreement is found for any .

3l

5.3. General form of the one-loop correction E;

Going back to the complete expression for Ej in (5.1) it is useful, in order to safely expand in
one of the interesting limits analysed below, to separate there the contributions of the massless
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E;

Figure 7. Plots of E| as a function of k: the blue, solid, curve is found numerically from the
exact expression (5.18) for generic values of k; the green, dotted, curve is found from an analytic
expansion in the k — 1 or large-spin limit, using the first two terms in (6.36); the red, dashed,
curve is found from an analytic expansion in the Kk — 0 or small-spin limit, using the first two
terms in (7.7). The agreement is excellent in both extreme limits.

modes of O (i.e. Q%) and the lowest eigenvalues (A in table 1) of Og, Oy and Oy,. Then, we
get

1 > det' O,,)3
B =—— [m : ( ° "’2) S— +h(§2):| (5.14)
4k J_o det’' Oy (det’Og)*(det' Og)
where
_ det(’),gyd,,,/, _ detOy
det/Olgylﬁqw = 1_\—1, det/O() = 7 (515)
() = 21In(2) — 2In(Q? + £2). (5.16)
Using that
/ dQh(Q?) = —4nk (5.17)
—00
the one-loop correction to the energy (5.1) takes the form
| det' 0,)8
Ei=1—— | do1l (det Oy) (5.18)

ami | oo T del O, (det Op)? (del Op)S
This expression is straightforward to evaluate numerically for various values of k or the spin
S in (2.11), and thus to plot Ej.

To gain more analytic control over the form of E; as a function of the spin & we may
consider the expansion of it in the large-spin (‘long string” or k — 1) limit or in the small-spin
(‘short string’ or k — 0) limit. This will be done in detail in sections 6 and 7 respectively. In
figure 7 we present together the results—the plots of £ (k) found analytically in the large-spin
expansion (right-most green curve) and in the small-spin expansion (left-most red curve) and
also the plot of the exact E; found numerically from (5.18) (blue curve connecting the two
asymptotic ones). As one can see, already the few leading terms in the two respective analytic
expansions give a very good approximation to the exact result.
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Figure 8. Plots of E; as a function of the classical spin S. The solid, blue curve is the exact result,
compared with the red (dotted) curve representing the large-spin expansion, see (6.41), and with
the gold (dashed) curve representing the small-spin expansion found below in (7.11)—(7.12).

6. Large-spin expansion

This limit (see (2.12)) is defined as k — 1 or, equivalently, n — 0 in (2.5).

6.1. Leading order

In this subsection we will compute the leading term in the k — 1 expansion of £} in (5.1) and
also comment on first exponential subleading terms.
At the leading order the classical solution is approximated by
1

! " 16
0 & Ky, o =0, w R KR K, ko= —In— — oc0. (6.1)
T n

If we use these limiting expressions directly in the fluctuation operators, then we conclude
that their potential terms become constant:

Opo = —82 + 23 + Q2 Opo = —0% + 4Kt + Q% Oy.o=—+15+Q* (6.2
and thus we find from (5.1) [3]

1
E® = —
2K()

[o.¢]

3 [ +ag 2w+ 24 sVE — 8\ 4] (6.3)
n=—00
where we performed the integration over 2 before commuting the determinants defined on
a unit circle. Using the Euler—MacLaurin formula to transform the sum into an integral one
finds

Ko
where the leading term is the result of [3] and the subleading term appeared in [22].
Let us now see what we get if we start instead with the exact expressions for the
determinants (5.2)—(5.4). Using the expressions collected in appendix C (see (C.8)—(C.10)),
we get at the leading order

1 5
EV = — [—3K§ In2— =+ (’)(ez”’“))] : Ko — 00, (6.4)
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2K (K*) Z (ap|k?) =~ micox with x = [2+—, (6.5)
Ko
s N Q2
2K (k*) Z (g |K?) & micoy with y= [4+ =, (6.6)
Ko
3 N Q2
Kk Z (ay |k*) ~ mioz with z= [1+—, (6.7)
Ko

which would give, once substituted into (5.2)—(5.4), the following expressions for the
determinants:

detO4(Q?) ~ 4 sinh?[mkox] (6.8)
detO,(Q%) ~ 4 sinh?[mkpy] (6.9)
detO,, (Q?) ~ —4 cosh?’[mkpz]. (6.10)

Integrating logarithms of (6.8)—(6.10) over 2 one gets the result that may also be represented
as

o0 2

E ~EY = L > \/n2+4/(§+2 n2 + 2 +5vVn? -8 <n+l> +k3|.  (6.11)
2[(0 e 00 2

Here the shiftn — n + % in the fermionic contribution is due to the cosh? instead of the sinh?

form of the determinant (6.10)."” While this shift does not affect the result for the two leading

terms in (6.4), it formally changes the form of the subleading corrections (which should not,

however, be trusted in the approximation used to arrive at (6.11)).

Indeed, there is of course no contradiction as the approximation used to derive (6.4) was
supposed to be valid only for the leading term in the large x( expansion, i.e. the expressions
for the subleading terms should not be trusted a priori. Still, let us briefly comment on the
exponential corrections to the first two leading terms in (6.4) comparing what follows from
(6.3) to what follows from (6.11). As was found in [27] using ¢ -function regularization of the
sums in (6.3)

5 1 1
EV = 3kpIn2 — — — =) —[K,(47nio) + V2K, 2V 21 nig) — 4K 2mni)),
12K0 T el n
(6.12)
where K is the Bessel function of the second type:
o m
f dxv/x2 —m2e % = —_ K, 27wkm). (6.13)
" 2k
The K terms represent the exponential corrections since
T
Ki(y) — /z—e_y[l +00( I, y — 0. (6.14)
Yy

17 This shift may be formally interpreted by saying that fermions have antiperiodic boundary conditions, so that
In det(73§ +Q%+ /cg) = Z:f_oo In[(n + %)2 +w?+ I(g]. This interpretation is more of a curiosity and should not
be taken literally as this expression was derived in the large k¢ limit where the distinction between the periodic and

antiperiodic fermion boundary conditions is not actually visible.
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Repeating the same computation in the case of (6.11) one finds that

oo
EO=E"+ Z[(—l)" — 11K, 2 nko). (6.15)
n:l
6.2. Beyond the leading order

To find subleading corrections in large « let us add and subtract the leading-order contribution
(6.4) from expression (5.1):

1 5
E = [mg In2— =+ 0<n2>] FEMY oo (6.16)
K
oo DS
EM — 0 / dIn 2. 6.17)
4k Dﬁ D¢

Here we have defined the following ratios of determinants
detO,g D det(9¢ dCtO,/,

= s = y D = 6 18
g det(’)ﬂ 0 ? 7 detOy0 V7 detOy 6-1%)
and introduced € = £ which is the argument the integrand according to (6.5)—(6.7).
Expanding the arguments of the determinants, one finds (see (C.8)—(C.10))
2K Z(ap|k*) ~ mwicox — 2tanh™" x (6.19)
2R Z (k) ~ mioy — 2 tanh™! % (6.20)
KZ (ot |k*) ~ 7ioz — tanh ™ 2 6.21)
and therefore
inh2[2K Z (org | k> 241 2 g
Dy = S ERZI] [x S coth(mcox)] (6.22)
sinh*[mkox] x2—-1 x2-
inh2[2K Z (ary | K2 244 4 ?
D, = sin .[ : (@plkD] [y2 S y coth(mcoy):| (6.23)
sinh*[7 Koyl y -4 y-—4
cosh?[KZ (ay [k2)] 1 )
Dy = ~ 1 — ztanh(mwkz)]". 6.24
v cosh?[ k7] 1— Zz[ (o)} (029

Neglecting the tanh and coth terms in the square brackets for large « one finds that the second
contribution in (6.16), first contribution at next-to-leading order, results in

— 8 — —4 = -1
) Ko /*“dm <1—¢1+92) (1—«/2+92> (2—«/4+§22>
) N —— n

4k 1+V1+02 1+vV2+Q2 2+ /4 4+ Q2
6
=1+—1In2, Ko —> 00, (6.25)
T

where we set k¥ & ko. The same result for this subleading coefficient was found in [24] using
the integrability (algebraic curve) approach (see also [10] and [7]). As discussed in [10] this
correction should be due to the near turning point contribution that is lost in the naive approach
that treats the potential terms perturbatively.
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Proceeding to the next order ~ n = k=2 — 1, the evaluation of the various functional
determinant ratios gives

(x —1)? 2 n 2(x*-2) )
Dg=—>|1l+—n———5+0 , 6.26
P (x +1)2 X" Ko x(x2 —1) () (6.26)
»v-27 [ 4 n 4 2 ]
Dy=——=|1l+—-n———+0@)|, (6.27)
P (y+2p y ' Koy
-z 1 n 1 2
D, — 14— 210w, 6.28
v 1+Z[ 2 mkoz (n)] (6.28)
so that
D} i, - Q
In — :e(Q)+n[f(Q)+&]+-~-, (6.29)
DﬁD¢ TTKQ
where e(Q) is the integrand in (6.25). The functions f(Q) and g(Q) are
f(Q) = i : : (6.30)
VI+Q2 2+ V4+Q2 '
(Q) + s + 4 (6.31)
8 = = - = = .
VI+$2 (1+Q)V2+Q2 V4+ 2
and their integrals take the values
+00 +00
/ dQ () = 121n2, / dQ g(Q) = —2(w +61n2). (6.32)
—00 —00
We conclude that to order 5 the large « expansion of the one-loop energy reads
1 5 6
E =— [—3K§ In2— —+ (1 + —ln2> Ko
K 12 T
1 1 6 )
——|3kgln2 — = (1+—In2 ) [n+0O0®m) ]|, Ko — 00. (6.33)
b4 2 b4
Here we did not expanded explicitly the overall factor of %,
1 1 1 2
—=— [1 + - <1 - —> n+ (9(172)] , n=16e"" > 0. (6.34)
K Ko 4 T Ko

The coefficient of the leading 1 correction is in agreement with the one found in [10], while
the next % term is a new result.

In going to higher than first orders of expansion in 7 there is a potential problem of
accounting for the contributions of terms like coth(wkox) — 1 in (6.22)—(6.24) we have
dropped above. For example,

2 204 404 606
672’(0”1»\/(1)2 l_nQ Tt 3wt 270
16 ’
and similar terms also arise in the expansion of the reference determinants, see (6.14). Such
terms need to be resummed, and, while there is the possibility that all such terms may cancel,
this is not clear at the moment. In appendix D we present the evaluation of the leading large «

correction to the one-loop energy due to these contributions, while in appendix E we consider
a different type of expansion in the k — 1 limit.

+ + 6.35
Ko 2/(5 12/(3713 ( )

23



J. Phys. A: Math. Theor. 43 (2010) 165402 M Beccaria et al

Ignoring this complication, we have found that the one-loop energy has the following
structure of large-spin expansion:

Ko €0,—1 C1,—1
E,=— Col1ko + Coo + + | Ciikp+Cio + n
K Ko Ko

+ <c21/<0 +ep+ 2L ) n*+ <C31Ko +o30 + —03"‘) o+ O(n“)} , (6.36)
Ko Ko
where the explicit values are
6 5
co1 = —3In2, coo=14+—In2 Co,—1 = — 7> (6.37)
T 12
1 3In2
c11 =0, cijop=——1In2 Ci,—1 = —+—2, (6.38)
T 21 b4
T 3 1 39In2 13 631n2
R _ , =2 22 639
A=TH Tt 0= 16" 32m 2T Tear T 32n2 (6.39)
T 3 3 13In2 29 85In2
= — +—1In2, = _ , =t —. 6.40
GrEp TRt NO=T T e 1= J0907 T 6an? (6.40)

For completeness, we report here the first few orders in the large-spin expansion of the one-loop
energy as found using (2.12) in (6.36):

3In2. - w+6In2 Sm
El = — 1n$+ - >
T T 121118
_l_ 241n21n5_47r+361n2+ Sm _L (6.41)
S| =n T 3’8 S?
S =8nS, S>» 1.

6.3. Test of reciprocity

With expressions (6.36)—(6.40) at hand, we are able to the confirm and extend the analysis of
[10], in which the reciprocity relations between the coefficients in the large-spin expansion of
the energy (or twist 2 anomalous dimension at strong coupling) [8, 32, 33] were checked up
to order 7.

To do this one needs to determine the functions'®

A(S)=A0+LA1 + .- A():go(S)—S, A] 251(8), (642)
Vi

as the functions of the spin S, which as at the classical level is obtained by replacing the
parameter 1 with its expansion n = 7(S) in terms of the spin (2.14). One is then to compute
the function P defined by

AS) =P (8 + %A(S)) . (6.43)

The test of reciprocity amounts to the check of parity of P(S) under S — —S. Solving the
functional equation in (6.43) as
— 1

1d\"!
PO =24 (‘§£> [AS)T. (6.44)

k=1

18 £9 and &) are the classical and the one-loop energies rescaled by a factor string tension.
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. . . 1
and expanding the function P in 7

P=P0+%Pl+-~-, (6.45)
one finds
Po(S) = fj % (—%%)H (A&, (6.46)
k=1
Pi(S) = i% (—%%)k_l [kAo(STAL(S)]. (6.47)
k=1 """

Working out P; and looking at all terms which are odd under S — —& we find that they
vanish if the following reciprocity constraints hold:

1 1

Clo = —Cot, Cl—1 = =—C00; 31 = —Ca1, (6.48)
T 2
1 1
€30 = —C0 — —Co1 + —C21, (6.49)
67 T
= + : : + ! (6.50)
€31 = —Co—1+ 5 C01 = o Co0 + 5 —C20- .

As usual, the coefficients of terms with odd powers of n = % +---1in (2.12) are determined by
coefficients of terms with even powers of 1. Using the list of explicit coefficients found above
(6.37)—(6.40), we find that these relations are indeed satisfied.

7. Small-spin expansion

The small-spin or short-string limit [9, 14] is realized by sending n — oo or k — 0 (see
section 2).
The general expansion of the determinants, see (C.13)—(C.18), has the form

DO+ LDV @)+ DD 4 ... - 1
detO = D@+ DV @+ PP @+ f=(B9.9), (7.1)
where
DY () = DY (@) = DY () = 4sinh?(7 L), (7.2)

27 sinh(2m 2) | 47 Q2 sinh(27 2) 1 47 Q sinh (27 2)
D(I)QZ—, D()QZ—, D()Q:—,
p (D) Q s (D) Q2 +1 v () 42 + 1
@) 7?coshQrQ) 7B +6Q% +2)sinh(2w Q)
Dg (&) = 2 - 503
Q 4(Q° + Q3) -
PO@) = 472Q% cosh(2r Q)  7QRB(Q? +4)Q% + 1) sinh(27 Q) (7.3)
¢ - (22 +1)2 2(22+1)3 ’
@ TQA8(QY + Q%) + 1)sinh(Qr Q)  4m2Q2 cosh(27 )
Dy () = - 2 3 + 2 2
2422+ 1) 4Q%2+1)
The first correction to the quantity entering the effective action (5.1) is
det® O 127(2Q% — 1) coth(7 2 1
In i 7( ) coth(r<2) (—) (7.4)
detOydet?Opdet’ Oy 1 QR+ 1)(AQ2+1) n?
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which is integrable at 2 — oo but has a pole at Q2 = 0, i.e. produces an IR divergence. Such
an IR effect disappears by integrating separately the lowest eigenvalues (see table 1), which,
in fact, behave as zero modes around €2 ~ 0 (in the case of the 8 fluctuation this only happens
in the short-string limit n — 00):

AV =@+ % +o AP =@, A =@ (1.5)
This is equivalent to use definition (5.18) for the one-loop correction to the energy. Indeed,
with definition (5.15) the quantity one is to evaluate

1 (det' Oy)® 12[4Q* +5Q% + (222 — 1)Q coth(r Q) + 1]

" 4et' 0, (del O)2(del Op)° 1 Q2AQ* +5Q2+ 1) T
is now finite and can be integrated to give 27 (8 In2 — 3). On the other hand, the contribution
of the lowest eigenvalues has been shown to give a finite number at (5.17) at all orders
inl/n.

Going to one further order in the large 1 expansions of the determinants and adding all
together one finds for the expansion of the one-loop energy (5.18)

1 o det' O0)8
Er=1-— [ dgn—— 9O
4k J_o (det'Og)2det' Oy (det’ Op)?

e (3 (13,23 -2
_1+K[<2 41n2>77 (1 S In2 8@(3));7

(7.6)

27 17 9 15
—|—-——=+-In2+— — -3 H1. .
< TR 3,24“(3)+ 32§(5)>n +0@ )] (7.7)
Here we did not expand explicitly the factor
1 1
-= N [1 + Z"_l + O(n_z)] . (7.8)

Substituting the expansion of 7 in terms of the spin (2.14), we can finally obtain the following
small-spin expansion of the one-loop correction to the energy:

E =E™ + E™, (7.9)
Ef =v2S([2 —4m2]+[-Z+3m2+3c3)]S (7.10)

+[&2 - Bm2- 2:03) - L¢(5)]S*+0(SY), (7.11)
EM™ = 14+0(S). (7.12)

We have separated E|, as in [14], into an ‘analytic’ part (with S-dependence similar to
the classical energy (2.15)) and a ‘non-analytic’ part, containing ‘would-be IR singular’
contributions of the lowest eigenvalues.

We conclude that the procedure adopted in this paper leads to the same structure of
the small-spin expansion of the one-loop energy as found in [9]. The coefficients of the
transcendental terms proportional to In2 and ¢ (3) in (7.11) are exactly the same as in [9] (see
equation (4.37) there). The coefficients of the rational terms are, however, different.

Let us note that a separate treatment of the zero-mode contribution in [34] also led to
a different result for (7.12) (cited in equation (3.60) in [14]). References [9, 34] used the
standard ‘near-flat-space’ perturbation theory treatment of the determinants in the conformal
gauge. A disagreement with our present results is apparently due to the prescription adopted
in [9, 34] for projecting out the zero mode contributions. As discussed in appendix F, a
somewhat different prescription would lead to the same result as the one that one obtains using
the small-spin perturbation theory for the static-gauge determinants.
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8. Conclusions

In this paper we have found an exact expression for the one-loop correction to the energy of
the folded string spinning in the AdS; part of AdSs x S°. The main technical advancement is
that we have shown that all the fluctuation operators, in the static gauge, have the single-gap
Lamé form. As a result, their determinants can be computed in a closed form. We have
verified explicitly that, as expected, the one-loop energy correction is the same in the static
and the conformal gauges, even though the structure of the two fluctuation determinant ratios
appears to be quite different.

The analytic expressions for the fluctuation determinants permitted us to carry out
improved expansions in the small- and large-spin limit; the latter allowed us to verify that the
reciprocity relations continue to be satisfied at strong coupling. Perhaps more importantly,
our demonstration that the semi-classical fluctuation problem is governed by simple finite-
gap operators gives a new perspective on the role of integrable systems in the analysis of
quantum corrections in such string models. In fact, finite-gap fluctuation operators are
naturally described in terms of the algebraic curves of Riemann surfaces associated with
the finite-gap spectrum [36], making the connection with the classical integrability (algebraic
curve) approach of [15, 16] explicit.

The integrability approach to semi-classical quantization relies on the classical integrable
structure of the theory. The investigation of the monodromy of the Lax connection [37] for
the AdSs x S superstring action leads to the derivation of a spectral curve for any solution
of the classical string equations of motion [15]. This is an example of the general finite gap
description of classically integrable theories [38] which, reformulated in terms of a Riemann—
Hilbert problem, leads to certain integral equations for each finite-gap curve associated with a
classical solution. The same finite-gap integral equations happen to appear in the continuum
limit of the (discrete) algebraic Bethe ansatz equations [39].

Starting with the classical algebraic curve describing a particular solution one can develop
a semiclassical quantization [16, 40] by deforming the cuts defining the algebraic curve
(adding extra roots) [41, 42]. Fluctuations are then perturbations of the cuts, and the one-loop
correction to the energy is given as usual by the sum of the energy shifts (or characteristic
frequencies) due to these fluctuations. Alternatively, one may try to guess the quantum
extension of the classical finite gap integral equations, having as the guiding principle the
gauge-theory information implying a description in terms of an asymptotic Bethe ansatz [39].
Improved by the phase [43, 44] extracted from the one-loop string data of [45], the Bethe
ansatz result for the one-loop correction to string energy was shown [46] to agree, for a
generic classical superstring solution, with the approach based on extracting the characteristic
frequencies by perturbing the algebraic curve. This general equivalence was recently extended
to also include the exponentially suppressed finite size effects with the asymptotic Bethe ansatz
starting point replaced by an appropriate thermodynamic Bethe ansatz (see [17] and references
therein).

Comparing this integrability approach to the one of the present paper, note that even if we
did not explicitly refer to the classical integrability of the string sigma model, we ‘rediscovered’
the integrability at the one-loop level via the connection with the integrable, finite-gap, Lamé
equation.

In addition to stimulating the study of detailed relation between the two approaches at
the one-loop level [18], the findings of the present papers have a methodological merit of
explicitly illustrating on a rather important and non-trivial example of how the integrability
of the AdSs x S° superstring sigma model is extended from the classical to the semiclassical
one-loop level.
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This connection is, of course, not surprising from a general perspective: given a set of
integrable classical equations, the linear problem for small fluctuations near a given solution
is found by considering a small variation of the original nonlinear equations and should
thus be essentially controlled by the original classical integrable structure. However, the
technical details of such connection may be quite intricate. The small fluctuation problem
is, in general, described by a complicated coupled set of linear differential equations, i.e. by
a matrix differential operator, while the standard examples of integrable spectral problems
involve second-order ordinary differential operators with their integrability related to a special
type of their potential terms. The general study of which kind of integrable matrix differential
operator spectral problems are associated with nonlinear string sigma model type classical
equations appears to be an interesting open problem.

The extension of our present results to the case of a spinning folded string with a non-zero
angular momentum in $° is currently under investigation [18].
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Appendix A. Relevant elliptic-function properties and identities

A.l1. Complete elliptic integrals

The complete elliptic integrals of the first and second kind are defined as functions of their
modulus 2 as follows:

b

K(k?) = K = /2 401 — K2sin6)""2, ER?) =F = /2 6 (1 — K2 sin? 0)'7% (A1)
0 0
One also defines the complementary modulus

K?=1-k* and K& =K =K( —k?) = / do(1 —k?sin’0)"2. (A.2)
0
A.2. Jacobi elliptic functions

Defining the Jacobi amplitude as
[
¢ = am(u|k?), where u = / do(1 — k?sin’6)~1/2 (A.3)
0

the Jacobi elliptic functions sn, cn, dn defined by

sn(u|k?) = sin g, cn(ulk?) = cos @, dn(u|k?) = (1 — k?sin® @)/ (A.4)
are doubly periodic functions of u, with real-valued periods that are either 2K (dn) or 4K
(sn and cn) and purely imaginary periods that are either 2i K’ (sn) or 4i K’ (cn and dn). The
fundamental period-parallelogram for the Jacobi elliptic functions is, therefore, the rectangle

with corners at (0, 4K, 4iK’, 4K + 4iK'), where zero occurs for real values of u (at 2K and
4K) while singularities occur for imaginary values of u (at i K’ and 3iK').
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Other Jacobian elliptic functions useful for us are

cn(ulk?) . sn(ulk?)
dulk®) = ———, dulk®) = ———~ A5
cd(ulk”) ) sd(ulk”) anal) (A.5)
k2 — , d k2 e — A.6
ns(ulk”) TS nd(u k") TS (A.6)
Useful relations between the squares of the functions are
—dn®(u|k?) + k% = —k*cn®(u|k?) = k> sn®(u|k?) — k* (A7)
—k? ndulk?) + k?* = —k*k"? sd>(u|k?) = k* cd(u|k?) — k. (A.8)
A useful representation for sn(u|k?) is
o0
s n T
sn(ulk) = 2 37 (~1)" tanh (R(u - an)) . (A.9)

n=—0oo

A.3. Jacobi eta, theta and zeta functions

The Jacobi H, ® and Z functions are defined as follows in terms of the Jacobi 9 functions:

Tu Tu m 94(%. q)
Hulk®) =0 (=.q), OWlk®) =4 (=, q), Zwk?) = — k)
W) = 1 (2.9) i) = 4 (3. 9) ) = 3 9 er )
(A.10)
where
K/
g = q(k*) =exp <—7r—> . (A.11)
K
Useful periodicities for them are
H(u +2K|k*) = —H (u|k?), (A.12)
O + 2K k%) = Ou|k?), (A.13)
Z(u +2K|k?) = Z(u|k?). (A.14)

Useful representations for Z (u|k?) are the integral representation

_ v [1-e2 E@ !
7 Lev Ik 2)152) — / _ Al
(sn™ (y[k7)[k7) A dr 1—¢2 K(k2) \/(] —12)(1 — k212) (A.15)

and
14 E(kz)
C12y 20,12
Z(o; k%) —/0 du dn“(u; k°) — ]K(kz)a' (A.16)
We also recall the following series representation:
oo
b4 b4 b4
Z(ulk*) = — tanh ( =— u —2nK) ). A.17
W) = =t + o n;w an (sz(“ n )) (A.17)
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A.4. Landen transformations useful for folded string fluctuation operators

(a) Bosonic fluctuation ¢. Consider the bosonic fluctuation (3.28)—(3.30):

Op = —32 + 20°k*sn*(wo + K|k?) + 20%ns* (wo + K|k?).
In the potential in Oy one can use
1 — cn(Qu|k?
sn®(ulk?) = 1= cnQulk) ns(u|k?) = isn(u + iK'|k?) (A.18)

T 1+ dnQulk?)’
and perform the Landen transformation

sn((1 +K)ulk?) = (1 + &) sn(u|k?) cd(u|k?) (A.19)
with k defined in (A.25). Rescaling the variable
_ 2wo
6= —— (A.20)
1+k

one obtains the single-gap Lamé operator

292

s ik B
Op = —0%+F2sn (z + 11 - |k2) Ry (A21)
+ /

4K
with periodicity ¢(z) = ¢(z + 4]I~{) in the rescaled variable z = %g o. Note that the
imaginary shift of x makes the potential singular, as it must be from the original form
(3.30), where singularities are manifestat o = (n + ) 77, n € N. Such an imaginary part,
however, does not affect the discussion leading to the determinant expression'”.
(b) Fermionic fluctuations. Consider the fermionic fluctuations (3.28)—(3.31):
d2
Oy, = it k*sn’(wo + K|k?) £ k wen(wo + K|k?) dn(wo + K|k?) + Q2.
o

One can use the Landen transformation

sn((1 +K)ulk?) = (1 + &) sn(u|k>) cd(u|k?), (A.22)
en((1 + K)ulk?) = ndw|k?) — (1 + K)sn(u|k>)sd(u|k?), (A.23)
dn((1 + K)ulk®) = ndu|k*) — (1 — K)sn(u|k?)sd(u|k?), (A.24)
where
k—l_ly o Bk (A.25)
Y T (1 +k)? '
and the relations of the parameters with the new modulus & are
1 -k - — - 4
LN 2 KO (A.26)
1+k w+K (w+K)?
Rescaling then the variable
N wo _ KO’ (A 27)
YTIR x '
and exploiting the relations
) 1+k_ -, 5 1 N
K(k?) = TK(k ), E(?) = ﬁ(]E(k Y+ KKME?)  (A.28)
+ /

19 n particular, it does not affect the monodromy of the potential.
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and
E(k? 2 E®&? .
&) _ _ [ (~ ) +k’2], (A.29)
K(k2)  (1+k)? | KKk?)
one obtains two single-gap Lamé operators
- K|. o Q2
Oy, = —02 + 2k sn? <y +3 kz) —R+ (A.30)
’ K
s 3K\ ., ., 72Q2
Oy = =%+ 280 (y + 7) 2 -+ T (A31)
K
where the new elliptic parameter is P o= ﬁ, R = K(k?), and the periodicity

Y1 (y) = Y1 (y +2K) is in the new variable y = £o.

Appendix B. Determinant via the Gel’fand-Yaglom method

For a periodic potential, we can compute the determinant via the discriminant as in (4.7).
In certain special cases, the discriminant can be found exactly because we know the explicit
solutions fj » in (4.2). This is the case, for example, for the constant potential V (x) = m?, and
also for the single-gap Lamé potential V (x) = 2k sn”(x|k?). But in our comparison between
the static gauge and conformal gauge we will need the determinant for coupled operators,
and here we can use the Gel’fand—Yaglom theorem. To introduce this, we first state it for
uncoupled operators, and then for coupled operators.

For the uncoupled equation (4.1) with periodic or antiperiodic boundary conditions, the
Gel’fand—Yaglom method [28, 35] is simply an evaluation of the discriminant. That is, we
numerically (or analytically, in special cases) evaluate the discriminant, using initial value
boundary conditions (4.2) for the two independent functions f; »(x; A). Note that here A is
just a parameter, so we solve a homogeneous problem, with initial value conditions, which is
numerically trivial. In fact, we can specify the initial conditions at any arbitrary point X, and
simply evolve through one period to evaluate the discriminant. That is, we can take initial
conditions

[ A) =1 [GEA) =0
(& A) = 0; L& A) =1
Then the Gelf’and—Yaglom theorem states that the determinant with period L is
det$Y(A) = A(A) —2
=fiGG+L; A)+ fHL(X+L; A) —2. (B.2)

We can illustrate this method for the single-gap Lamé system, by taking two linear
combinations of f, and f_ in (4.23):

Si(x) =my fo(x) +my fo(x), f2(x) =ny fo(x) +ny f-(x) (B.3)
such that the (B.1) are satisfied and « is given by (4.22). One finds

B.1)

L f® _A® . L@ AW
mp=——-—, 1= ny=-"—=, Ny = ———— (B.4)
D(x) D(x) D(x) D(x)
where
D(x) = f{(%) f-(X) — fL(X) fr(R). (B.5)
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Exploiting the monodromy

(x4 2K) = — fu(x) eTHE@R) fix +2K) = — fi(x) eT2EZ@R), (B.6)
frx +2K) = — fu(x) P2 i &
it is then easy to check that the expression for the determinant (B.2) yields

detp = 2 cosh[4K Z(a|k*)] — 2 = 4sinh? [2K Z (a|k?)] (B.7)

as before (4.26). Note the important observation that this result is independent of the initial
point X. A specific example of the linear combinations (B.3) satisfying (B.1) at the initial
point X = 0 are the solutions [29]

sn(a|k?)

f1) = filx) = f- (), fr(x) = n@lk?) dn(oz|k2)(f+(x) + f-(x)). (B.8)

For a system of coupled equations, the Gel’fand—Yaglom theorem generalizes in a
straightforward manner. Consider (4.1) with V(x) now an n x n matrix, and f(x) an
n-component column vector. Then we define 2n independent solutions fl(a) (x; A) and

;”)(x; A),fora =1,2,...,n, with the initial conditions expressed as a 2n x 2n matrix:
O e APON AYOA) e (O (5.9)
308 o BP0 B0 0 70 A)

Then the Gel’fand-Yaglom theorem states that the infinite-dimensional determinant can be
expressed as a finite dimensional determinant:

detp[—E)f +V(x)— A] = —dety,x2n

DL n)y - @A) LN e A
X [}1_ <f1<1>EL-A; fl(n)EL_A; fl(”’((LA)) fl(”)’EL- Ai)} (B.10)
’ 7 2 ’ 2 ’ 2 ;

Again, this is completely straightforward to evaluate numerically. This was used to evaluate
the determinant of the coupled operators in the conformal-gauge example discussed in
section 5.

Appendix C. Relevant expansions of elliptic and Jacobi functions

C.1. Expansions of Kand E (k — 1)

The expansion of the complete elliptic integrals in k> for k — 1 reads (with L = In4/k’)

KE&)=L+3(L-DK*+ 2 (L-Dk*+Z(L-2)K0+--. (C.1)
EG)=1+3(L-DE?+ 2 (L-B)k*+ B (L -+ (L — BB+ ...
(C.2)
Also
Ek?) 1 (1 1 1>,2(1 3 3 1),4
=—4+|lz-——+ =+ = — =+ k
Kk2) — L \2 2L 4L? 16 32L 128L2 " 16L3
1 3 11 5 1 )
+<§_@_768L2+256L3+64L4>k6+”" €3
This gives
1 9 7\ , 25 37\ ,
K:KO—E(nKO—Z)n+%(nKO—§>n _%G—[KO_E))? +--e (C4)
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C.2. Expansion of the Jacobi zeta function Z (k — 1)

Consider the integral representation of the Jacobi zeta function (A.15):
) = Zn™ (). (C5)
We find for the asymptotics for k — 1 (setting L = In %)

o 1/y d 1, 1k,2/>’ dr 1 k’ny dr
VEYTT e 28 YTt f, a=;eer st )y 1=

+k/4/yd[ [_ 1 1=52+2* 1 =3+ 147+
0

16 (1—)2 320 (1 —12)3
L] 34 1342 11
12802 (1 — 122 16L31—¢2 |’

(C.6)
which gives

1 1 1 1
fO)=y— T artanh(y) + Ek/z [—y + — <L2 + artanh(y)) ~ 512 artanh(y)]

2L \1—y
1 1 —2y?2 1 1 —7y?
+ i =2 + — yd =7 + 5 artanh(y)
16 L—y2 4L\ (1 —y?)?
1 8 1
t52 (1——yy2 — 5artanh(y)) - artanh(y)j|
1 1 —2y2+2y* 1 3 —20y? +57y*
K _w.,._ X r y)+11artanh(y)
32 (1—y2)2 8L 3(1 = y2)3
1 [9y(5—9y?)
TP < 1,27 — 23 artanh(y)
1 4y 1
T b 2 — 9artanh(y) | — 30 artanh(y) | +---. (C.7)

Using the above results, one can read off the expansions of the relevant quantities appearing
in the static-gauge fluctuation determinants:

2K Z(glk?) ~ komrx — 2tanh™" x + 77 (ko x® — x* — Ko +2) Ui
korx(x2 —1) 32K§n2x3(x2 —1)2
X [K8n3x6 — 13k 2x® + 21komx® — dic i3 xt + 30x i x — Tlicorrx*
+32x* + 3k x? — 19k + 66K x> — 80x” — 16K07 +32] + -+ -
(C.8)
2
2K(E2)Z(a¢|I€2) ~ komy — 2 tanh™! % + nZ(KIS;;; D + 167t72]y3a)2
X (K3N3y4 - 13K§712y4 + 21Kyt — 4/(3713y2 + 56K§712y2
— 116kgry® +32y* + 128kom — 128) + - - - (C.9)
K(D)Z (&) ~ komz —tanh~ !z 47 (ngo;zl) 64/{3712;2(# - (K3n3z4 — 13K§n2z4
+21komz — K3n3z2 + 14K§7r212 — 29k 7% + 827 + 8o — 8) e,
(C.10)

where x, y, z are defined in (6.5)—(6.7).
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C.3. Expansions of K and E (k — 0)

The first few orders of the k — 0 expansions for the elliptic integrals K and € read

T

9 25 1225
K = = 4+ Za2 g 2D g2 2856 4 222708 4 09) (C.11)
2R T Y52t T 327es
3 5 175
Bk =T T2 2 2 e - T s o). (C.12)
2 7% Tt 5128 32768

C.4. Expansion of the Jacobi zeta function Z (k — 0)

As an efficient way to evaluate the small-spin expansion (k — 0,7 — 00) presented in
section 7 is to first compute the expansion of 3 Z(«a|k?)/dS2, where the dependence of Z on Q
is via ¢ as the solution of (5.2)—(5.4), and then perform an indefinite integration over 2.

Using (A.16) valid for 0 < o < K, after some straightforward manipulations one can
write

dZ (a|k? 1 a k?
@) _ sn(@lk) [1 — Ksn(alk?) — —} .
G194 V1 —sn2(alk?)y/1 — k2sn2(alk?) 02 K
(C.13)
Considering the determinant for beta modes
) 2 ) 1 TQ\?
detOp = 4sinh”[2KZ («]k)], sn(a|k”) = z 1+k%+ K (C.14)

one can see that sn(a|k?) > 1. So before proceeding with the short-string expansion, one
needs the following transformation:

a=pB+K+iK/, (C.15)

which gives

sn(Blk?) = <1 (C.16)

This affects the determinant in the following way:

(C.17)

2 2
detOp = 4 sinh? [2KZ(ﬂ|k2) _ g SMBIK) dn(BIKT) in] .

cen(Blk?)
Substituting the explicit expression for sn(8|k?) given by (C.16) into (C.13), expanding then
for large 1 and integrating back in €2, one can easily evaluate the expansions for the relevant
determinants. In the case of the fluctuation 8 it is finally

1 27 sinh(27 2
detOp = 4sinh*[2KZ (ag]k*)] = 4sinh® (7 Q) + _M
n

Q
1 2 cosh(2n 3Q% + 6Q% +2) sinhQr Q 1
1 - cosh(2m )_rr( ) sinh(277 ©2) vo(L). i
7]2 QZ 4(95 + 93) 773
Applying this approach to the fermion determinant
2 [y 72 72 1 72\’
detOy = —4cosh [KZ(oelk )], sn(a|k?) = A 1+ T (C.19)
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by using o = B + K +iK with

sn(pIE) = (C.20)
gives
- s
— 4 sinh? [szwéz) - Ksn(ﬂl’f:();;()ﬂlléz)} ’ o

where the term iz /2 flips the cosh to sinh. The expansion of this expression in 1/5 gives

©) 1w 1 o
detOy(2) = DY () + ;Dw (Q) + FD¢ (Q) +-- (C.22)

with
DY () = 4sinh(7 <), (C.23)

W 47 Q2 sinh (2 2)
D, () = i (C.24)
DO = 4722 cosh(2r Q) 7Q(48Q%(1 +Q2) + 1) sinh(27 ) (€.25)

VT (1+4Q2)2 2(1 +4Q2)3 ' '

Appendix D. Exponentially suppressed contributions

As explained below (6.24) and around (6.35), in performing the large-spin expansion on the
exact determinants we systematically adopted an approximation based on the replacement
tanh(---) — 1. The neglected terms are exponential in the large quantity k¢ and give back
powers of 7, see (6.35). Lacking a better complete control of this approximation, we present
in this appendix the evaluation of the leading large «( correction to the one-loop energy due
to the above replacement. It is clear that such leading correction comes indeed from the
fermion determinant that has the following leading order in the formal small 7, i.e. large spin,
expansion:

02
Dy1o = 5 [1 — ztanh(ko2)]° 2= [1+—, (D.1)
-z K
and which we treated in the following approximated way:
1 1-z
DI = ——(1—-2)?%= : D.2
¥,LO l—zz( 2) 142 (D.2)
The effect of this approximation in the one-loop energy is
1 o0 p 4K0 *©
AE,=——8- dQ(InD —In DY) = —— dQF (£2; ko), D.3
1 yo— /700 (InDy 10 —In V.LO ) s (€2; xo) (D.3)
where
2 2\’
_ 1 —v1+Q tanh(meoy 1+ Q)
F(2; k9) =In . (D.4)

-1+
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=]
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Figure D1. Shape of the function F($; ko) at kg = 1.

T(ko)

2.0r

1.5+

11 O

0.5F

L L L L Ko
0 5 10 15 20
Figure D2. Numerical evaluation of the integral /(o) = ¢ IJ% e27ko f0°° dQ F(Q; ko) and

comparison with the leading analytic prediction 1 (dashed line).

The function F(2; ko) has the generic shape shown in figure D1. The point where it goes to
—oo is where the numerator inside the logarithm vanishes. This happens at approximately

Qe 0, (D.5)

The large o analysis must be done carefully since the two regions © < Q" and Q@ > Q"
contribute the above integrals with opposite signs and large cancellations.
The final result is the estimate

[o¢]
/ dQF(Q; ko) = 8w /kge 0 + ..., (D.6)
0
whose accuracy is shown in figure D2. In terms of the one-loop energy, it is
32
AE, = =320 ¢ 20 ... = O(n* n'/? p). (D.7)
K

The peculiar half-integer exponent of Inn suggest that a systematic resummation of these
corrections is needed possibly taking into account mixing with similar terms coming from the
expansion of Bessel functions K; in equations (6.12)—(6.15). We did not evaluate the next
correction, but figure D3 suggests that

© a
dQF(Q; ky) = (871 K +—+~->e_2”"0+~~, (D.8)
/(; 0 0 \/Eo

for some constant a. This term has the same form as the Bessel K; corrections.
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-0.05
—-0.10F
T S
-0.20t

-0.25

-0.30"

Figure D3. Numerical evaluation of the quantity xo (1 (ko) — 1).

Appendix E. Large-spin limit with a different approximation

The analysis of the large-spin limit in section 6, leading to the large-spin limit expansion

(6.36), agrees extremely well with the exact numerical dependence of the one-loop energy

on the elliptic parameter k, as can be seen from figure 7. However, this expansion neglected

exponential terms in the k — 1 limit, as explained in section 6.1, and the significance of these

neglected terms at smaller values of k is not clear. In this section we consider another type of

approximation that leads to a different type of large-spin expansion of the one-loop energy.
Start from the effective action

T det®O
F:——/dQlog v (E.1)
4 Jr detO, det“Og det’ Oy
and integrate by parts (we also set 7 = 1)
1
I = = / dQ2 Qg [8log det®y, — logdetOy — 2log detOp — 5log detO
T JR
= SF‘/, - F¢ - 2[‘5 - SF() (E2)
We now systematically apply the approximate substitutions
log(4 sinh? x) — 2|x|, log(4 cosh? x) — 2x, (E.3)

which also correspond to neglecting exponential terms, but now the approximation is made
before integrating over 2. Then, the effective action can be computed exactly, i.e. without
any leftover integral. As an example, let us consider the contribution from the ¢ mode. We
convert the integral over €2 into an integral over the spectral parameter o as follows:

1 [® ~ ~
Tp=— f dQQdg log(4 sinh? 2K Z (g k%))
47 J_oo

R e -
~ = | dQQ0IeZ(aylk?)

T Jo

LS -
- dar Q0 Z (g [K%)

T

Qo

~\ 2 i]K/
(?) / daQ |:dn2(a|7€2) - %] , (E.4)
Q =/ —dn®(a|k?), (E.5)
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and o is the value associated with 2 = 0. The spectral parameter cy takes values along the
straight line joining K + iK' toiK/, so it is convenient to write

a=K+iK - B, (E.6)
and use the identity
dn2(K +iK — B[&%) = & — )sc2(Bk?). (E.7)
We find
~\2 = ~
~ [ 2K “ A | E e o
Py k' | — dBsc(Blk”) | = +k“'sc™(Blk7) | . (E.8)
T 0 K
A similar treatment leads to
Fw ~ %F(p, (Eg)
within this approximation, and the following contribution from the 8 modes:
2K\* (K E
| PR (-) / dBv/ (1 — k2)nc2(Blk2) — 1 [— +(1 =K% scz(ﬂ|k2)] ) (E.10)
b sn—! (k|k2) K

It is convenient to introduce the variables
sy = sn(Blk?), sg = sn(B|k?). (E.11)

The integrals can be computed in closed form, and after a long calculation, one finds

(k= 1) , 1 4(K — E)K fnit
Iy =— K + log(1 — + e, E.12
p 7 Ko —— log(1 —sy) + T (E.12)

-1,
Ty = K

1 2K-E)K
+
2 sg—1

72

log(1 — sp) + Tg™e. (E.13)

The integrals are divergent at s4, s — 1, which is simply the individual UV divergence.
Introducing a cut-off Q,,x with

2K2(k?)
Spomax = 1 — o A=k +-- (E.14)
max
2R (®?)
Sp.max = 1 = —o5— -k + (E.15)
max
=1- K 1 —% E.16
Spman = 1= 5 5o — (L =k + - (E.16)

max

one checks that the pole cancels against the free field contribution which is

1 Cnax
[y=— dQ Qg log(4 sinh? (7 2))
47[ _Qmmx
Qmmax 1
~ f dQQ=-Q% (E.17)
0 2
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Figure E1. Plots of E; as a function of k: the blue (solid) curve is found numerically from the
exact expression (5.18) for generic values of k; the green (dotted) curve is found from an analytic
expansion in the k — 1 or large-spin limit, using the first two terms in (6.36); the purple (dashed)

curve is the first two terms in the alternative k — 1 expansion (E.19).

The logarithmic divergence cancels in the sum of the various mode contributions. The full

k4
k

N K(k?) ) 4 1
~ ﬂK—(k“)[élK(k YE(k )IrnIF(arcsm -

result is quite compact and reads

+ K& (r + 2K(kY(k*> = 2Ink — 1 — 61n2))
1

+4K(kHE(K>) ( In(8k) — (1 +k2) ImIF( arcsin T k4))} ) (E.18)

Since this compact expression is written in closed form in terms of elliptic functions, its k — 1

expansion can be computed and the result to order O(n*) is

6log?2 1 3log?2 1 3log?2
>~k |1+ o8 —3K§10g2+ Kol —— — o8 +— + o8 n
T Fid T 27 w2
i 3log?2 1 1 391og2 13 1 631og?2
+ |k _X_ 208 +Kko| —+—+ il I n’
L 32 32 16 2xm 327n 64w 2m? 3272
29 29 85log 2} \

[,(1 m 3log2
+ kg | =+=+ + Ko
L7 \9%6 32 32 32 3xm 167
51 25 1026310g2)

[, 1 1157  693log2
tig|l e+ — + ————
512 96rm 16384

3 1 13log2
—_ + + +
1927 64n2  64x2

+ | Kp —
L 64 4096 8192
4397 149 16403 1og2
_ _ _ bl (E.19)
327687  384m? 1638472
Recalling that E; = I'/«k, we see that this expansion is very similar to, but not precisely

the same as, the k — 1 expansion found in (6.36). A comparison of these two different

approximations is presented in figure E1. Both agree with the exact result at large spin, but
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we see that the expansion in (6.36) provides a better approximation as k — 1. Nevertheless,
the approximation considered in this appendix may be of interest as it provides a closed-form
expression.

Appendix F. Static-gauge determinants in perturbation theory

We repeat here an evaluation of the determinants in the short-string limit adopting the standard
perturbation theory method of [9].
The basic idea is to compute

Indet(—9% + Q%+ V) = Indet(—3> + Q*) + Tr
2+ Qz

1 1
_ETr<—a2+s22 —a2+92 ) (FD

evaluating the traces on the following basis: |n) = J%TT e, neZ,0 €[0,27]. Inall cases,
we define

1 2

Vn,m =

do "MV (o) (F.2)
27

and also
IndetO; = Indet(—d* + Q%) + X/, =@ 0,v). (E.3)
For the 8 mode, we have (see (3.33) and the rescaling (3.35))

2K(k2)\? 2K (k2 2
Vﬂ=< ( )> 2k25n2(Lo k2)=—sin2c7+~~, (F.4)
T T n
and the non-zero matrix elements
1 1
Vn,n = Vn,n:l:Z = -5 (E.5)
n 2n
Thus
Xp=13 (F.6)
ﬂ_nnezn2+92' ’

For the ¢ mode, we have (see (A.21) and the rescaling (3.36)%°)

22 ~
o= (20 [t (F0
b4 b4

122> - ];2} 4 cos(20) + 4 sin>(20) + - - -
Nz n

(E.7)
and the non-zero matrix elements
Vi = z, Vinto = i, Vints = —l. (F.8)
S ’ v ’ n
Thus
2 1 1 1
X"’Zﬁgm(l_(n+2)2+92_(n—2)2+92>' (F.9)

20 The imaginary shift in the argument of the elliptic sine in (A.21) is irrelevant for the determinant calculation since
it does not change the monodromy. For the check proposed here it is useful to consider the analytically continued
potential (F.7).
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For the ¥ mode (see (A.30)—(A.31) and (3.37)), we have

1 1
Vy = ———coso +—sin’o +---, (F.10)
v V1 n
and the non-zero matrix elements
1 1 1
Vﬁm = T ‘Q,nil = T = v;ﬂiﬁ = - - (FZII)
2n 2m 4n

Thus

X _1Z (! 1 1 1 F12)
VT e 2 A+12+Q2 4mn—-12+Q2)° '

nez

For the combination, we have

8X, —2Xp — Xy = IZ : : + :
T T o s 2 (124 Q2 (- 1)+ 2

2 1 1 1
+Z§n2+92 ((n+2)2+§22 " (n—2)2+s22)'
Evaluating the infinite sums over n, we find
127 (2Q% — 1) coth(7 )
n QR+ 1)EQ2+1)
This is the same as Eq. (7.4) showing that the old-fashioned way of calculation is in perfect
agreement with the the procedure adopted in this paper.

Comparing now this with the calculation in conformal gauge of [9], one can see that the
difference is due to the second-order contribution of the 1/,/5 term from the ¢ field. Itis

2 Z 1 1 N 1 _ 21 coth(r 2) (F.14)
N = n2+R2 \(n+22+Q2 n—22+2) Q(Q2+1) '

nez

8X, —2Xp — X, =

(F.13)

Now, reconsider equation (3.32) of [9] which reads

/dQZ 2 i82 + 82 =0 (F.15)
o 2+ 2+ @+ 2+ (@02 '

upon doing a shift in €2 in the last two terms. Actually, one could perform first the sum over
modes of the above integrand thus getting

Z[ 2 iQ iQ ] 27w coth(rQ2)

— + = . F.16
n2+ Q2 P2+ (Q+1)? n2+(Q-1)? Q2+ ( )

nez
This means that avoiding the shifts in equation (3.32) of [9] one recovers full equality with
the static gauge.
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