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Abstract
Wedescribe the dynamical preparation of anisotropic crystalline phases obtained by laser-exciting
ultracoldAlkali atoms to Rydberg p-states where they interact via anisotropic van derWaals interac-
tions.We develop a time-dependent variationalmean field ansatz tomodel large, butfinite two-
dimensional systems in experimentally accessible parameter regimes, andwe present numerical simu-
lations to illustrate the dynamical formation of anisotropic Rydberg crystals.

1. Introduction

Highly excited Rydberg states of atoms have unique properties. This includes the size of the Rydberg orbitals
scaling as n2, the polarizabilities as n7 and a long lifetime as n3 with n the principal quantumnumber. These
properties are alsomanifest in interactions betweenRydberg states, e.g. in van derWaals (vdW) interactions
∝ n r11 6, which can be controlled and tuned via external fields. Exciting ground state atomswith a laser to
Rydberg states thus provides ameans to studymany body systemswith strong, long-range interactions [1, 2].
With the atomic ground state and the Rydberg state defining an effective spin-1 2, we can describe themany
body dynamics in terms of amodel of interacting spins [3–5], reflecting the competition between the laser
excitation and vdW interactions, at least in the short time limit where themotion of the atoms can be neglected
(the so-called frozen gas regime).

The studyof quantumphases of a laser excitedRydberg gas of alkali atoms, including its dynamical preparation,
has so far focusedon isotropic vdW interactions, corresponding toRydberg s-states excited in a two-photonprocess.
This includes theoretical studies [6–12] and experimental observations [13, 14] ofRydberg crystals due to the
Rydberg blockademechanism [15–21], and theirmeltingwith increasing laser intensity to a quantum-disordered
phase [22, 23]. The steady state of the systemhas also been studied in presence of dissipation [24–28].

The availability of ultraviolet (UV) laser sources allows now to excite Rydberg p-states in a single photon
transition [29] resulting inmuch larger Rabi frequencies compared to a three-photon process. However, in
contrast to thewell known s-states, the vdW interactions between two atoms in a Rydberg p-state are anisotropic
[30, 31]. The goal of this paper is to investigate the quantumphases and their dynamical preparationwith a laser
pulse protocol for these anisotropic interactions.We are interested in two dimensional (2D) systemswith a
relatively high density of excitations involving a larger number of atoms, and in particular in the dynamical
formation of anisotropic Rydberg crystals. Our studies are performedwithin a time-dependent variationalmean
field ansatz, beyondwhat can be accessed by exact diagonalization (ED) techniques.

2.Model andmethod

2.1. Laser excited interacting Rydberg atoms as an anisotropic spinmodel
Weare interested in the quantumdynamics and the quantumphases of a gas of laser excited Rydberg atoms,
interacting via anisotropic vdW interactions. The setupwe have inmind is represented infigure 1.We assume
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that the atoms are trapped in a 2D square lattice with exactly one atomper lattice site, as obtained in aMott
insulator phase. The atoms are initially prepared in the ground state, denoted by∣↓〉, and coherently excited by a
laser to a Rydberg state∣ ↑ 〉withRabi frequencyΩ and laser detuningΔ (see figure 1(a)). Two atoms i and k both
excited to the Rydberg state∣↑〉 and located at positions ri and rk, respectively, interact via vdW interactions

θ− = −V Cr r r r( ) ( ) | |i k i k i k6 ,
6, whereθi k, is the angle between their relative vector −r ri k and the z direction of

the lattice. These vdW interactions exceed typical ground state interactions of cold atoms by several orders of
magnitude.We are interested in a situationwhere the vdW interaction has a non-trivial angular dependence

θC ( )i k6 , . Such an angular dependence arises, for example, in laser excitation to higher angularmomentum
states, e.g. to Rydbergp-states, as opposed to excitation of s-states where the interactions are isotropic [30]. In the
remainder of this paper wewill illustrate the anisotropic interactions by explicitly considering the stretched state

= 〉n P m| , 3 2j
2

3 2 of Rubidium for which the θC ( )i k6 , is dominated by a termproportional to θsin i k
4

, [31].
Interactions are thereforemuch stronger along the x direction compared to the z direction (see figure 1(b)). The
atomic physics underlying this interactionwill be discussed in detail in section 3 below.

In its simplest form the dynamics of the driven Rydberg gas can be described by an interacting systemof
pseudospin-1/2 particles

∑ ∑ ∑Ωσ Δσ
θ

= − +
∣ − ∣= = = ≠

 ( )
( )

H
C P P

r r2

1

2
, (1)
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i k i k
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6

whereσ = ∣ ↑ 〉 〈 ↓ ∣ + ∣ ↓ 〉 〈 ↑ ∣x
i

i i
( ) andσ = ∣ ↑ 〉 〈 ↑ ∣ − ∣ ↓ 〉 〈 ↓ ∣z

i
i i

( ) correspond to the local Paulimatrices and
= ∣ ↑ 〉 〈 ↑ ∣Pi i is the projection operator on the Rydberg level.We note that in thismodel atoms are assumed to

be pinned to the lattice sites, which is referred to as the frozen gas approximation [2]. For isotropic interactions
spinmodels of this type have been discussed in previous theoretical work [6–11], and have been the basis for
interpreting experiments [13, 14].

Themodeling of the laser excited Rydberg gas as a coherent spin dynamics governed by theHamiltonian (1)
is valid for sufficiently short times, typically tens of μs. First, as we noted above, themodel (1) ignores themotion
of the atoms: laser excited Rydberg atoms are typically not trapped by the optical lattice for the ground state
atoms, and therewill be (large)mechanical forces associatedwith the vdW interactions. In addition, Rydberg
states have afinite life time, scaling as τ∼ n3 τ ∼ n( )5 for low (high) angularmomentum states with n the
principal quantumnumber, and black body radiation can drive transitions between different Rydberg states,
further decreasing the lifetime by approximately a factor of two [32]. The regime of validity has been analyzed in
detail in [33]: there the long time dynamics of laser excited Rydberg gas includingmotion and dissipationwas
treated, including the validity of the frozen gas approximation and the cross over regime.

Figure 1. (a) Setup: the ground state atoms∣ ↓ 〉 are placed in a square optical lattice and are excited to a Rydberg state∣ ↑ 〉 via a
homogeneous laser beamwith Rabi frequencyΩ and detuningΔ. The vdW interactionV between twoRydberg atoms i and k is a
function of their relative distance −r r| |i k but also of the angleθi k, between their relative vector and themagneticfieldBwhich is
set along the zdirection of the lattice. The details of these interactions in thefine structuremanifoldn P2

3 2, in the presence of the
magnetic field are discussed in section 3. (b) Example of angular dependence of theC6 coefficient obtained for a Rydberg state of
Rubidium = 〉P m|25 , 3 2j3 2 . (c) Example of sweep path: initially the atoms are prepared in the ground state∣ ↓ 〉with a negative
detuning Δ <t( ) 00 . The Rabi frequencyΩ and the laser detuningΔ are then slowly varied to reach the final state of the preparation at
time tf.

2
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Weemphasize that the various quantumphases predicted by the spinmodel (1) as a function of the laser
parameters and interactions, and their preparation in an experiment, can only be understood in a dynamical
way. In an experiment all atoms are initially prepared in their atomic ground state,
Φ 〉 = 〉 ≡ ∣ ↓ 〉 …∣ ↓ 〉t G| ( ) | N0 1 , which is the ground state of themany-bodyHamiltonian (1) forΩ = 0 and
Δ < 0. Preparation of the ground state of the spinHamiltonian (1) for a givenΩ andΔ can thus be understood
in the sense of adiabatic state preparation, where starting froman initial time t0 with laser parametersΩ =t( ) 00

and Δ <t( ) 00 we follow the evolution of themany body state for a parameter trajectory to the final time tfwith
Ω Ω=t( )f and Δ Δ=t( )f , see figure 1(c). This dynamical preparation ofmany-body states and quantum
phases of the spin-model (1) in a time-dependentmean field ansatz, in particular in the anisotropic case, will be a
central question to be addressed below.

While our focus belowwill be on the anisotropicmodel, we find it worthwhile to summarize the basic
properties and signatures of the quantumphases (ground states) of the spinmodel (1) for isotropic interactions.
Even for this case, the ground-state phase diagramof theHamiltonian (1) is rather complicated. In the so-called
classical limit,Ω → 0, where all terms in theHamiltonian (1) commute, the ground-state corresponds to the
minimumenergy configuration of classical charges on a square lattice interacting via a r1 6 potential, andΔ
serves as a chemical potential [34]. As noted above, for Δ < 0 this corresponds to the state 〉G| with all atoms in
the ground state. For Δ > 0 afinite density of excited Rydberg atoms is energetically favorable and the
competition between the laser detuning and the vdW interactions results in a complex crystalline arrangement
with a typical distance between excited atoms set by the length scaleℓ Δ≡ C[ ( )]6

1 6. For one dimensional (1D)
systems it is known that all possible commensurate crystalline phases form a complete devilʼs staircase [35]. By
contrast, the problemoffinding the classical ground states in 2D systems ismuchmore complex, as the Rydberg
atoms ideally want to form a triangular lattice tomaximize their distance, whichwill compete with the square
optical lattice for the setup offigure 1. Although an exact solution of this problem is not known in 2D,we expect
a plethora of different crystalline phases in analogy to the 1D case. These different crystalline phases break the
lattice symmetries in different ways and are stable over some parts of the phase diagram [34, 36, 37].

Away from the classical limit,Ω ≠ 0, the crystalline states of Rydberg atoms are expected to be stable for
sufficiently smallΩ. By increasingΩ quantumfluctuationswill eventuallymelt the crystalline phases andwe
reach a quantumdisordered phase. The nature of the corresponding quantumphase-transition has been studied
in 1D [22, 23] and remains an open issue in higher dimensions.

Concerning anisotropic interactions, it is natural to expect that the angular dependence of the vdW
coefficient, θC ( )i k6 , , is responsible for the presence of an anisotropic crystalline phase at smallΩ. In summary,
our goal below is to describe the dynamical formation of such crystals in large butfinite systems similar to
realistic experimental situations, where finite size effects still play an important role, and to compare thefinal
state to the ground state of the system in order to assess the fidelity of the dynamical preparation. To this end, we
developed an approach based on a time-dependent variational principle (TDVP)which proved very useful to
describe the crystalline states for isotropic aswell as anisotropic interactions with a large number of excitations,
i.e. in a parameter regimewhere an exact solution cannot be applied.

2.2. Time dependent variational ansatz formany-body systems
In the followingwe present our variational ansatz and the corresponding equations ofmotionwhichwe use to
describe the dynamical preparation of Rydberg crystals governed by (1). The simplest variational ansatz which is
able to describe crystalline states of Rydberg atoms takes themost general product state form

Φ α β= ⊗ ∣ ↓ + ∣ ↑
=

⎡⎣ ⎤⎦t t t( ) ( ) ( ) , (2)
i

N

i i i i
1

whereN denotes the number of atoms and the coefficientsαi and βi obey the normalization condition

α β+ =| | | | 1i i
2 2 . Crystalline phases correspond to stateswhere the probability β| |i

2 tofind an atom in theRydberg
state at lattice site i is spatiallymodulated and its Fourier components serve as an infinite set of order parameters.
In contrast, in the quantumdisordered phase the Rydberg density is homogeneous and β| |i

2 is equal on all lattice
sites i.

2.2.1. Equilibrium properties of the variational ansatz
Before deriving equations ofmotion for the time dependent variational parametersα t( )i and β t( )i wediscuss
equilibriumproperties of our variational ansatz. Note that the ansatz (2) captures the exact ground- and excited
states of ourmodelHamiltonian (equation (1)) in the classical limitΩ → 0, where all eigenstates are product
states. In the general caseΩ > 0, it is an approximation and its validity will be discussed at the end of this
subsection. In principle wefind the variational ground-state byminimizing the expectation value of the
Hamiltonianwith respect to the variational parametersαi and βi. In the ground-state these parameters can be
chosen to be real and the variational ground-state energy, Φ Φ= 〈 〉E H| | , can be expressed as function of the
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probabilities β=p | |i i
2 as

∑ ∑
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with θ− = −V Cr r r r( ) ( ) | |i k i k i k6 ,
6. The correspondingmean-field equations∂ ∂ =E p p( ) 0i i for the

variational parameters pi take the form
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Note that the number of equations is equal to the number of lattice sites and solving these equations is thus
numerically feasible only for finite systems. For this reasonwe do not attempt tomake predictions about the
phase diagramof (1) in the thermodynamic limit and rather focus on experimentally relevant systemswith a
finite but large number of atoms instead.

There is one notable exception, however: we canmake a statement about themelting transition between the
quantumdisordered phase at largeΩ and the adjacent crystalline phase within our variational (mean-field)
approach. In the thermodynamic limit, the quantumdisordered phase has a homogeneous Rydberg density

= ≡f p p:R i andwe can determine at which point the homogeneous solution becomes unstable to density
modulations. Linearizing themean-field equation (4) in small perturbations around the homogeneous solution

δ= +p f pi R i we find the condition

Ω

Δ Ω
+

− +
=⎡

⎣⎢
⎤
⎦⎥



  )( )
( )

V f

V1

2

min 0, (5)

R

k
k

2 2

0
2 2 2

3 2

where = ∑V V Re ( )i ik
k Ri · i are Fourier components of the interaction potential (note that the density fR of

Rydberg excitations depends onΩ andΔ). Formonotonously decaying potentials some Fourier coefficientsVk

are indeed negative and theminimumofVk in equation (5) thus determines the phase boundary beyondwhich
densitymodulations form.

Wenote that an expansion in small densitymodulations around the homogeneous solution implicitly
assumes that themelting transition is continuous. It is possible that this transition could befirst order, however.
In order to rule out a discontinuousmelting transitionweminimized the variational energy (3) numerically on a
latticewithN=441 sites and found that themelting transition is indeed continuous.

Themomentum k 0 at which the interaction potentialVk isminimal determines thewave-vector at which
densitymodulations form in the crystalline phase. In the isotropic case thisminimum is at

π π= =k k a ak ( , ) ( , )x z
0 0 0 , where a is the lattice constant of the optical lattice. If one approaches the crystalline

phase from the quantumdisordered phase, the leading instability is thus always towards a crystalline state with
Neel-type order, which breaks aZ2 lattice symmetry. Only at smallerΩmore complicated crystalline states
appear, which aremost likely separated by first order phase transitions4. Consequently, within our variational
approach the quantumphase transition between the disordered and the crystalline phase is always in the Ising
universality class for isotropic interactions, independent ofΩ andΔ.

For an anisotropic interaction potential with angular dependence θC ( )i k6 , , present for example between

∣ ↑ 〉 = = 〉n P m| , 3 2j
2

3 2 states of Rubidium as discussed in section 3, theminimum is at awave-vector

π= ak ( , 0)0 . Again, if we approach the crystalline phase from the quantum-disordered regime, crystalline
orderwill formonly in x-directionwith a period of two lattice spacings, whereas no crystalline order is present in
z-direction. This transition is again continuous. The system thus decouples into an array of quasi 1DRydberg
gases. Upon further decreasingΩ, we expect a transition to a state with incommensurate, floating crystalline
order in z-direction, in analogy to 1D systems [22, 23]. The system remains long-range ordered in x-direction,
however, and finally settles into a commensurate, genuinely 2D crystalline state at sufficiently smallΩ.We leave
a detailed investigation of this two-step directionalmelting transition open for future study.

The phase boundary obtained from (5) is shown in figure 2 for both isotropic aswell as anisotropic
interactionswith the angular dependence represented infigure 1(b). As in the anisotropic case the interactions
aremuch stronger in the x direction compared to the z-direction, the corresponding phase-boundary

4
Note that transitions between states with different symmetries are generically first orderwithin Landauʼs theory of phase transitions. Direct

second order transitions require fine tuning to amulticritical point [38].

4
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significantly differs from the isotropic curve and is very close to the one obtained for a 1D system.Note that the
mean-field phase boundary has an unphysical re-entrance behavior at negative detunings. This is because our
variational ansatz vastly overestimates the ground-state energy in the quantumdisordered phase atfiniteΩ,
where pair-correlations are important.

Indeed, our product ansatz of (2) does not describe correlations between local density fluctuations of
Rydberg atoms

δ δ = −P P P P P P , (6)i k i k i k

and thus δ δ〈 〉 ≡ΦP P 0i k for our variational wave-function. Deep in the crystalline phase these correlations are
weak and decay exponentially with distance, however.We can give an upper bound on the strength of such
density density correlations and consequentlymake a statement about the validity of our ansatz by estimating
the strength of local density fluctuations

δ = −( )P P P1 . (7)i i i
2

Accordingly, density–density correlations are negligible deep in the crystal, where〈 〉Pi is either close to zero or
one. As a consequence we expect our ansatz to be valid also at finiteΩ as long aswe are deep in the crystalline
phase. At sufficiently largeΩ, where the system enters the quantumdisordered phase and quantum correlations
become predominant, our ansatz is not a good approximation for the exact ground-state wave function.

2.2.2. Time-dependent variational ansatz and Euler–Lagrange equations
One of themain goals of our paper is to describe the dynamical formation of crystalline states of Rydberg
excitations in a large butfinite systemduring a slow change of the laser parameters. For this reasonwe
incorporate our ansatz into a time-dependent variational approach, where the formation of Rydberg excitations
is described by the time evolution of the variational coefficientsα t( )i and β t( )i and governed by theHamiltonian
(1). Considering an initial conditionwhere all atoms are in the ground state 〉G| , i.e.α = ∀ ∈t i N( ) 1 ( {1,..., })i 0

andΩ =t( ) 00 , Δ <t( ) 00 , we use the TDVP [39] to derive the equations ofmotion for the variational
coefficients during a slow change ofΩ andΔ as in typical dynamical state preparation schemes [8, 9, 14]. The
TDVP states that the time-evolution of the variational coefficients satisfy the least action principle whichmeans
that they can be derived using the Euler–Lagrange equations:

α α

β β

∂
∂

= ∂
∂

∂
∂

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

t

L L

t

L L

d

d ˙
,

d

d ˙
,

i i

i i

* *

* *

where L is the Lagrangian

Φ Φ Φ Φ Φ Φ= − − 
L d d H

i

2

i

2
.t t

Figure 2.Mean-field phase boundary between the quantum-disordered and crystalline phase(s) obtained from (5). The blue solid line
represents the case of anisotropic interactions with the angular dependence θC ( )6 of Rubidium = 〉nP m| , 3 2j3 2 atoms (see
figure 1(c)). The red dashed line shows the phase boundary for isotropic interactions. For comparison, the black dotted line represents
themean-field phase boundary of a one-dimensional system.
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leading to a set of N2 nonlinear coupled equations

∑

α Ω β Δα

β Ω α Δβ
θ

β β
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= − +
−≠

  
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i ˙
2 2
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i ˙
2 2

. (8)

i i i

i i i
k i

i k

i k

k i

6 ,

6

2

Wenote that these equations conserve the normof thewavefunction for all times, i.e. α β+ =t t| ( )| | ( )| 1i i
2 2 . IfΩ

andΔ do not evolve in time, the expectation value of the energy Φ Φ= 〈 〉E H| | is also a conserved quantity.
However, this is not the case for a dynamical state preparation and the final energy depends crucially on the
parameter trajectory.

In a perfectly adiabatic situationwewould obtain the variational ground-state forΩ t( )f and Δ t( )f at the end
of the time evolution. Since our sweep protocols are limited to timescales smaller than the lifetime of the
Rydberg state, the preparationwill not be perfectly adiabatic andwe discuss deviations from adiabaticity in
section 4.1.We note that given the phase diagram shown infigure 2 and the typical parameter sweepwe consider
(figure 1(b)), the systemhas to undergo a quantumphase transition from the quantumdisordered phase to the
crystalline phase at some point in the preparationwhichmay reduce the adiabaticity of the preparation
significantly. In thefinite systems that we consider in the rest of this work, afinite-size gap is always present
which reduces this problem, however.

Finally, we note that our ansatz (2) is particularly suited to study the experimentally relevant situationwhere
the Rydberg laser is switched off at the end of the parameter sweepΩ =t( ) 0f , because it captures the exact
ground-and excited states of theHamiltonian (1) in the classical limitΩ = 0, as discussed above. In section 4.1
we also estimate the typical Rabi frequencyΩ at which our ansatz fails by comparing our approach to the exact
solution of the Schrödinger equation.

In the next section, we explain in detail the implementation of themodelHamiltonian (1)with Rydberg
atoms excited to∣ ↑ 〉 = = 〉n P m| , 3 2j

2
3 2 Rydberg states in order to provide realistic parameters for our

numerical section 4.

3. Anisotropic interactions for Rydberg atoms in p-states

In the followingwe discuss the derivation of ourmodelHamiltonian (equation (1)) from amicroscopic
Hamiltonian

∑ ∑ ∑= + +
= = = ≠

⎡⎣ ⎤⎦H H H H
1

2
, (9)

i

N

A
i

L
i

i

N

k k i

N

V
i k

mic

1

( ) ( )

1 1,

( , )

describing vdW interactions betweenN alkali atoms laser excited to the∣ ↑ 〉 ≡ = 〉nP m| , 3 2j3 2 Rydberg state.
Wefirst focus on the Rydbergmanifold and their interactions and then discuss the laser excitations. Thefirst
termof (9)

∑ ω μ= +⎡⎣ ⎤⎦H g B m m m , (10)A
i

m

nP B j z j j j
( )

j

3 2

accounts for the energies of the Zeeman sublevels 〉 ≡ 〉m nP m| | ,j j3 2 with ∈ − …m { 3 2, , 3 2}j as illustrated in
figure 1.Here, ω nP3 2

is the energy difference between the atomic ground state, S5 1 2, and thenP3 2 Rydberg

manifold in the absence of externalfields. The second termofHA
i( ) describes the lifting of the energy degeneracy

of thenP3 2 Rydbergmanifold due to amagnetic field = BB ez (see figure 1), with μ =h 1.4B MHz/G the Bohr
magneton and gj the Lande factor for =j 3 2. Note, that the quantization axis of the corresponding eigenstates is
given by the direction of themagnetic field,B, and is aligned in plane along the z-axis, see figure 1. In order to
neglect higher order shifts and to preventmixing between different fine-structuremanifolds the energy shifts
Δ μ=E g B mm B j z jj

have to bemuch smaller than thefine-structure splitting −E EnP nP3 2 1 2
of the Rydberg

manifolds. Typically, the fine structure splitting is of the order of tens ofGHz, e.g. 7.9 GHz for n= 25.
Away fromFoerster resonances two laser excited Rydberg atoms dominantly interact via vdW interactions

[1, 2]. In general, these vdW interactions,V̂vdW, willmix different Zeeman sublevels 〉m| j in thenP3 2 manifold

[40]. Let us denote by = ∑ 〉〈P m m m mˆ | , , |i j i j i j, a projection operator into thenP3 2 manifold, then the dipole–

dipole interactionsV̂dd will couple to intermediate states, α β α β= 〉〈α βQ̂ | , , |, , which have an energy difference
δαβ. In second order perturbation this gives rise to
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∑
δ

=
αβ

α β

αβ
V P

V Q V
Pˆ ˆ

ˆ ˆ ˆ
ˆ, (11)vdW

dd , dd

whereV̂vdW is understood as an operator acting in themanifold of Zeeman sublevelsWe note, that in the absence

of an externalmagnetic field, →B 0, the new eigenenergies obtained fromdiagonalizingV̂vdW are isotropic.
Anisotropic vdW interactions can be obtained by lifting the degeneracy between the Zeeman sublevels e.g.

with amagnetic field. For distances large enough, such that the off-diagonal vdWcouplingmatrix elements of
(11) aremuch smaller than the energy splitting between the Zeeman sublevels, it is possible to simply consider
interactions between = 〉nP m| , 3 2j3 2 states and neglect transitions to differentmj levels. Typically, for
Rydberg p-states the off-diagonal vdWmatrix elements are of the same order as the diagonal interactionmatrix
elements. Pairwise interactions between two atoms excited to the∣ ↑ 〉 = = 〉nP m| , 3 2j3 3 state are then
described by theHamiltonian

= − ∣ ↑ ↑ ∣ ⊗ ∣ ↑ ↑ ∣H V r r( ) , (12)V
i k

i k i k
( , )

where θ− = 〈 〉 = −V V Cr r r r( ) , | ˆ | , ( ) | |i k i k i k
3

2

3

2 vdW
3

2

3

2 6 ,
6 the vdW interaction potential, giving rise to the

second termof (1). Here,θ = ∢ −B r r( , )i k i k, is the angle between the relative vector and the quantization axis
given by themagnetic field directionB (see figure 1).

The second termof (9),HL
i( ) , accounts for the laser excitation of Rubidium 87Rb atoms prepared in their

electronic ground state, whichwe choose as∣ ↓ 〉 = = = 〉S F m|5 , 2, 2F
2

1 2 , to the∣ ↑ 〉 = = 〉nP m| , 3 2j3 2

Rydberg states. This can be done using a single-photon transitionwith Rabi frequencyΩ, scaling asΩ ∼ −n 3 2.
Using aUV laser source it is possible to obtain Rabi frequencies of severalMHz in order to excite Rydberg states
around ∼n 30 with a large density of excitations. The single particleHamiltonian governing the laser excitation
of atom i is

Ω= ∣ ↑ ↓ ∣ + ∣ ↓ ↑ ∣ω ω− − − ( )( ) ( )H t( )
2

e e , (13)L
i

i
t

i
tk r k r( ) i · i ·L L L Li i

whereω ω Δ Δ= + +EL nP 3 23 2
is the laser frequency detuned byΔ from the atomic transition (including the

magnetic field splitting) and k L is thewave vector of the laser. Unwanted couplings to Zeeman levels with
≠m 3 2j due to the laser can be prevented by using a detuning Δ Δ Δ≪ −E E| | | |3 2 1 2 or by using circular

polarized light propagating along the quantization axis, i.e. ∼k ẑL , which couples∣ ↓ 〉only to the =m 3 2j

state. In a frame rotatingwith the laser frequency and after absorbing the position dependent phase into
∣ ↑ 〉 → ∣ ↑ 〉−ei i

k ri ·L i one obtains thefirst termof (1).

As an example, we consider the n=25Rydberg state, i.e.∣ ↑ 〉 ≡ = 〉P m|25 , j3 2
3

2
. For the corresponding

diagonal vdWmatrix element we obtain using themodel potential from [41]

θ θ θ μ= − +( )C h( ) 6.33 sin 0.267 sin 0.269 MHz m . (14)6
4 2 6

Thus, π μ=C h( 2) 6.35 MHz m6
6 and μ=C h(0) 0.269 MHz m6

6. The dominant θ∼sin4 term arises from

dipole–dipole transitions tonS1 2 states, while residual interactions atθ = 0 and deviations from the θ∼sin4

shape originate from couplings toD-channels as discussed in [30]. The lifetime of the Rydberg state is τ μ≈ 29 s
[32].We emphasize that althoughwe only consider the example of a specific, strongly anisotropic,P3 2 Rydberg
state in this work, our formalism can also be applied to describe the crystals obtained for other Rydberg states.
Moreover, considering in particular other values of n orP ,1 2 D3 2 states, the function θC ( )6 takes the same form
as in equation (14) [30], with different coefficients.

Wefinally note that it is also possible to switch from the anisotropic configuration defined above to an
isotropic configurationwhere the angle θ is fixed to a constant value π

2
. In this configuration, themagnetic field is

rotated from the z to the y-direction (see figure 1) and the Rydberg state which is excited by the laser∣ ↑ 〉 is in this
case = 〉n P m| , j y

2
3 2

3

2
.

4.Numerical results

In the followingwe present our numerical results obtained by propagating the equations ofmotion (8) along
different parameter trajectories Ω Δt t( ( ), ( )) in order to describe the dynamical state preparation of Rydberg
crystalline phases. To this endwefirst estimate the domain of validity of our approach based on theTDVP
comparing in the case of small systems our results to the ED solutionwhich is obtained from the Schrödinger
equation.We then present the results of our approach for large systems ( >N 500) with large densities of
Rydberg excitations where ED techniques cannot be applied.
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4.1. Validity of the variational approach for small systems
It is instructive to start by considering small systemswhere an exact numerical solution is available which allows
us to estimate the validity of our approach. Thefirst situationwe have inmind is the classical limit (Ω = 0) of the
model (1) for a 1D systemwhere the number of excitations takes the formof the stair case as a function of the
number of atomsN (obtained by varying the chain length = −L N a( 1) , for afixed lattice spacing a) [35]. As its
existencewas recently demonstrated experimentally [14]we consider as afirst illustration of our approach the
same parameters as in [14]with the notable exception that we choose a larger sweep time =t 32f μs instead of

=t 4f μs in order to describe the dynamical preparation of states which are as close as possible to the ground

state of the system.Wenow test our approach by comparing the exact number of excitations ne for theses
parameters, obtained after a truncation of theHilbert space [8, 12, 27, 42], to the one corresponding to our
variational ansatz. The result is shown infigure 3 as a function of the number of atomsNwhere the laser sweep is
represented in the inset. Our approach describes verywell the excitation stair case and apart from somedefects
(for example forN=8) compares verywell with the exact solution (red crosses).Wefinally emphasize that as the
sweep time is increased, our solution converges towards the exact classical ground state, as expected.

Our approach describes the key feature of the 1D systembut as it relies on amean-field approximation of the
many-bodyHamiltonian (1), its domain of validitymay strongly depend on the dimension of the system. As a
second illustration of our variational approachwe consider, therefore, a small 2D systemofN=16 atoms, in an
isotropic configurationwhere an ED solution based on the truncation of theHilbert space is still available.

Our goal here is to show the influence of thefinal Rabi frequencyΩ t( )f on the validity of our approach. To

this end, we consider three different sweeps of the Rabi-frequencyΩ and detuningΔ along the paths shown in
figure 4 corresponding to threefinal Rabi frequenciesΩ π =t( ) (2 ) 0, 1, 4f MHz at a positive detuning

Figure 3.Number of excitations ne of the final state of the preparation as a function of the numberN of atoms obtained after a sweep
time of32 μs withΩ =t( ) 0f , Δ π =t( ) (2 ) 0.7f MHz and aRydberg state = 〉S m|43 , j1 2

1

2
. Blue circles represent our variational

approach, red crosses the exact solution obtained by the Schrödinger equation and the same sweep. Inset: laser parametersΩ π(2 ) and
Δ π(2 ) as a function of time tused for the dynamical state preparation.

Figure 4.The three different parameter sweep paths (a), (b), (c), corresponding to thefinal Rabi frequenciesΩ π =t( ) 2 0, 1f and
4 MHz. The left plot shows the three paths in parameter space, whereas the right plots showhow the parameters evolve as a function of
time. Initially, all atoms are in the ground state withΩ =t( ) 00 and Δ π = −t( ) (2 ) 10 MHz.
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Δ π =t( ) (2 ) 2f MHz. In all three cases we start at a negative detuning Δ π = −t( ) (2 ) 10 MHz and zero Rabi
frequency and compute themean distribution of excited Rydberg atoms at the end of the sweep, which is given
by β| |i

2.We choose a lattice spacing a=532 nmand the Rydberg level∣ ↑ 〉 = = 〉P m|25 , 3 2j3 2 corresponding

to aC6 coefficient (14) where due to the isotropic configuration considered here, the angle θ isfixed to
π
2
. The

sweep time is μ=t 16 sf which is lower than the lifetime of the Rydberg excitations τ ≈ 29 μs [32].
Figure 5 showsfinal distributions of Rydberg atoms computed using our TDVP approach (upper panel) as

well as ED (lower panel) for the three sweeps (a) (b) (c). Note that in contrast to the 1D case, the variational
ansatz describes the sweep to the classical limitΩ =t( ) 0f perfectly well, even though our approach propagates
thewave-function through the non-classical regionΩ > 0, where our ansatz is not strictly valid. In a perfectly
adiabatic situation corresponding to → ∞t f , thefinal state obtainedwith our time-dependent variational
approachwould coincide with the variational ground state, which is the exact ground state in this case. The fact
that our results for afinite sweep time compare verywell with the exact solution suggests that deviations from
adiabaticity are negligible. For such a small system size, the competition between the laser excitation and the
vdW interactions results in a regular pattern of four Rydberg atoms placed at the corners of the system.We also
obtain a good agreement forΩ π =t( ) (2 ) 1f MHz and the corresponding pattern is notmodified compared to

the classical limit. However, forΩ π =t( ) (2 ) 4f MHz, our ansatz overestimates the ground state energy
considerably, even though the distribution of excitations looks similar to the exact result. It is also instructive
to study how the systembehaves during the sweep. Figures 6(a) and (b) show a comparison of Rydberg
density fR and energy as function of time during the parameter sweep for the three sweep protocols shown in
figure 4. Again a substantial difference between TDVP and ED is only visible for sweeps to largefinal Rabi
frequencies.

The results shown infigures 5 and 6(b), (c) allow to assess the validity of our approach for a realistic
dynamical state preparation.We are also interested in estimating the typical value of the parametersΩ,Δwhere
our ansatz can describe the ground state of themodel (1), regardless of the details of the dynamical state
preparation. To this endwe consider a very large sweep time =t 150f μs to ensure that the equations ofmotion
(8) lead to the formation of the variational ground state whereas the solution obtainedwith ED results in the
exact ground state.We then estimate the regime of validity of the variational ground state as follows: we compute

Figure 5.Comparison of TDVPwith ED.Upper panel: distribution of Rydberg atoms for isotropic interactions after the three
parameter sweeps shown infigure 4 using the TDVP approach. Lower panel: same as in the upper panel but calculated using ED. For
small final Rabi frequencies the results obtained by both approaches are basically indistinguishable. The corresponding energies per
particle are =E h0.603, 0.556, 0.204 MHz for (a), (b), (c) in the upper panel and = −E h0.602, 0.548, 0.049 MHz for (d), (e), (f) in
the lower panel.
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the Rydberg density at the end of the parameter sweep using both TDVP and ED and plot the relative difference
of fR between the two approaches as a function of the final Rabi frequencyΩ t( )f at the end of the sweep. Results
are shown infigure 6(c) for four differentfinal detuningsΔ.We see that for afinal detuning Δ π =t( ) (2 ) 2f

MHz the difference Δf fR R starts to deviate from zero if the sweep protocol samples Rabi frequencies which are
larger thanΩ π >t( ) (2 ) 1f MHz. Accordingly, for Δ π =(2 ) 2 MHzour variational ansatz is correct as long as

Ω π ≲(2 ) 1MHz.Wenote, however, that this criterionwas obtained for a small system and potentially depends
on system size.

4.2. Isotropic Rydberg crystals
Now that we have assessed the regime of validity of our ansatz for a small system and checked in particular that it
can quantitatively describe the dynamical preparation of Rydberg crystals in small 2D systems, let us now
present our results for large system sizeswhere an exact numerical treatment is not possible.

Wefirst describe the formation of Rydberg crystals in an isotropic configuration. In analogy to the
experimental setup [14], we start from a circular (cookie shaped) distribution ofN=777 ground-state atoms
considering the three sweeps path shown infigure 4 keeping the other parameters of the last subsection
unchanged.

Let usfirst comment on our choice of sweep paths (figure 4). In order to prepare a statewhich is as close
as possible to the variational ground-state, it is particularly important to circumvent the region around the
critical pointΩ Δ= =0, 0 [7] during the sweep into the crystalline phase. Indeedwe found that the energy
of thefinal state increases substantially if the initial negative detuning is chosen too small. On the other hand,
if the initial detuning is too large, the length of the sweep path in parameter space is long and the rate of

Figure 6.Comparison between TDVP and ED. (a)Density of Rydberg atoms fR as a function time t during the sweep for the three
paths shown infigure 4. (b) Energy as function of sweep time. (c) Graph shows the difference in the Rydberg density Δf fR R after an
adiabatic parameter sweep as calculated fromTDVPwith respect to ED as a function of the finalΩ πt( ) (2 )f and for four different
final detunings Δ π =t( ) (2 ) 1, 2, 3, 4f MHz. For Δ π =t( ) (2 ) 2f MHz the difference ΔfR of the Rydberg density between the two
methods starts to deviate from zero ifΩ π ≳t( ) (2 ) 1f MHz, indicating the breakdown of our variational approach.

Figure 7. Influence of the sweep time tf and of the initial detuning Δ t( )0 on the energy E at the end of the sweep for the case of isotropic
interactions andΩ =t( ) 0f and Δ π =t( ) (2 ) 2f MHz. E0 represents theminimumof the energy obtained for =t 16f μs and
Δ πt( ) (2 )0 =−1 MHzwhich corresponds to the first path infigure 4. The results show that thefidelity to stay in the ground-state
during the parameter sweep decreases if Δ t( )0 is too small or the sweep time is too short.
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change of the parameters during the same sweep time is increasing such that the sweep becomes less adiabatic
again. This is shown infigure 7wherewe plot the energy of the final state obtained forΩ =t( ) 0f and

Δ π =t( ) (2 ) 2f MHz as a function of the initial detuning, for different sweep times.We found that the

optimal choice of the initial detuning is Δ π = −t( ) (2 ) 10 MHz. In this case our sweeps are almost adiabatic
in the sense that the energy of the states at the end of the sweeps is less than three percent above the ground-
state energywhichwe found by an independent optimization of the variational wave-functions using a
homotopy-continuationmethod [43].Note that we chose to plot the energy of thefinal state rather than the
fidelity (i.e. thewave function overlap ψ ψ〈 〉t| ( )| |f GS with the ground state ψ 〉| GS ) infigure 7, because thefidelity
is very sensitive to imperfections of the crystalline state. Indeed, a crystal with a single defect would have afidelity
equal to zero.

Results for thefinal distribution of Rydberg excitations at the end of the sweep are shown infigure 8.We note
that for all three sweep protocols we obtain a single crystalline patternwhich respects the symmetries of the
cookie-shaped atomdistribution. The shape of the crystal is pinned by the boundary effects and the variational
ground-state that wefind is non-degenerate and unique.We emphasize that, due to the presence of the optical
lattice, the system is not rotationally invariant but only symmetric with respect to a rotation of 90°. This is in
contrast to experiments, where different symmetry-related, almost degenerate crystal configurations are
observed from shot to shot [14]. Also note that our equations ofmotion for the variational parameters (8)
preserve symmetries during time evolution. If degenerate, symmetry related ground states exist for a given set of
parametersΔ andΩ, the time evolution passes through a bifurcation point, which signals the presence of the
phase transition to the crystalline state. At this point tiny numerical errors will pick out one of the degenerate
ground states. It is important to emphasize, however, that we always found a unique, symmetric variational
ground-state for the parameters considered here.

Ideally, thefirst sweep to afinal Rabi frequencyΩ =t( ) 0f shown infigure 4(a) prepares the ground-state of
the classical Isingmodel, if the sweepwere perfectly adiabatic. In this case the arrangement of excited Rydberg
atomswould correspond to theminimumenergy configuration of classical charges with a r1 6 potential and the
probability to be in the Rydberg state is either zero or one in this limit. From figure 8(a) one can see that the
probability to be in the Rydberg state is∼0.8 rather than 0 or 1 on some sites, indicating deviations from
adiabaticity. Nevertheless, a crystalline arrangement of Rydberg atoms is clearly visible. The average density of
Rydberg atoms is fR= 0.09 in this case, which is in accordance with an average distance between two excitations

on the order of Δ ≈ −π⎡⎣ ⎤⎦( )C 2 36 2

1 6
.

For the case of sweeps tofinite final Rabi frequenciesΩ t( )f away from the classical limit (figures 8(b)
and (c)), quantum superpositions between ground-state and excited atoms are present, and the probability
to be in theRydberg state is thus no longer restricted to zero or one. For increasing finalΩ quantum
fluctuations are stronger and the average number of Rydberg excitations increases, while the average excitation
probability decreases. At large enoughΩ the crystalline arrangement finallymelts and one enters a quantum
disordered regimewhere the average excitation probability is equal on all lattice sites. This trend is visible in
panel (c).

Note that the complex crystalline arrangement of Rydberg atoms is strongly dependent on the size and of the
shape of the system. In an infinite system the excited atomswould ideallymaximize their average distance, which
would result in a triangular lattice of Rydberg atoms. Due to the underlying square optical lattice strong

Figure 8.Distribution of Rydberg excitations at the end of the three parameter sweep protocols (a), (b), (c) shown infigure 4 for the
case of isotropic interactions. Plotted is the probability β| |i

2 to be in the Rydberg state on each lattice site. The corresponding energies
per lattice site are =E h0.86, 0.82, 0.52 MHz. The crystalline arrangement of Rydberg atoms is clearly visible. In the classical limit
Ω → 0 (left) the excitation probabilities are close to either zero or one, whereas quantum superpositions with intermediate values of
β| |i

2 appear atfiniteΩ (middle, right).
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commensurability issues arise, however, in particular if the average distance between excitations is on the order
of a few lattice spacings.We observe that the crystalline structure is strongly pinned by boundary effects in our
case and the crystalline structures in the classical limit thus do not resemble thosewhich supposedly exist in the
thermodynamic limit [34].

4.3. Anisotropic Rydberg crystals
Wenowdescribe the preparation of anisotropic Rydberg crystals. In this case, themagnetic field is set along the
z-direction of the optical lattice, as shown infigure 1(a), keeping the other parameters such as sweep paths, atom
distribution and the Rydberg level unchanged. Accordingly, the interaction betweenRydberg atoms is
anisotropic and stronger in x- than in z-direction.

Results for the three sweep paths are presented in the upper panel offigure 9. As in the isotropic case, the
crystal progressivelymelts asΩ is increased. Note, however, that the anisotropy is visible in all cases and the
crystalline structuremeltsfirst in theweakly interacting z-directionwhile translational symmetry is still broken
in the strongly interacting x-direction. Again, we observe that the formof the Rydberg crystal is strongly pinned
by boundary effects, similar to the isotropic case.

In the classical limitΩ = 0, wefind an anisotropic crystal with an average distance between excitations on

the order of Δ ≈π⎡⎣ ⎤⎦( )C 36 2

1 6
in the x-direction and of Δ ≈ −⎡⎣ ⎤⎦C (0) 1 26

1 6
in the z-direction. Again, the

results for the sweep to the classical limitΩ =t( ) 0f indicate that the preparationwas not perfectly adiabatic.

Indeed, the excitation probabilities differ from0or 1 at the end of the parameter sweep, as in the case of isotropic
interactions. The deviations from adiabaticity are evenmore pronounced for anisotropic interactions, as wefind
non-classical excitation probabilities on the order of∼0.5 in this case. This can be attributed to the fact that the
excitation gaps are smaller compared to the case of isotropic interactions, due to the substantially weaker
interaction in z-direction.

In order to estimate the fidelity of the dynamic state preparation schemewe plot the distribution of Rydberg
atoms obtained after a directminimization of the ground-state energywithin our variational ansatz in the lower
panel offigure 9. Comparing this to the distributions obtained after the parameter sweep it is apparent that a
number of defects are created due to the not fully adiabatic sweep protocol. Again, the crystalline arrangement is
not strongly affected by the rather short sweep time, however.

Figure 9.Upper panel: distribution of Rydberg excitations at the end of the three parameter sweep protocols (a), (b), (c) shown in
figure 4 for the case of anisotropic interactions. Corresponding energies per lattice site are =E h0.79, 0.74, 0.30 MHz. Lower panel:
distribution of Rydberg excitations obtained after a directminimization of the variational ground-state energy. The Rabi frequencies
and detuningsmatch the parameters at the end of the sweep protocols in the upper panel. Corresponding ground-state energies per
particle areE=0.77, 0.72, 0.29h MHz.Defects in the crystalline arrangement due to the small non-adiabaticity of the sweep protocols
are clearly visible in the left panel.
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5. Conclusion and outlook

In the present workwe have developed a time-dependentmeanfield theory tomodel the dynamical preparation
of anisotropic Rydberg crystals with atoms in 2Doptical lattices. In additionwe have presented results of
numerical simulations relevant for experimentally realistic system sizes, in the limit of patterns with a large
number of Rydberg excitations.

We note that the anisotropic character of the vdW interactions has been seen experimentally in a recent
Rydberg-blockade experiment involving Rydberg s and d-states [44]. In contrast to the present work, wherewe
considered the anisotropic vdW interactions between single Zeeman levels of the Rydberg states, i.e. in the limit
of large Zeeman splitting, in these experiments vdWcouplings involving transitions between Zeeman levels can
be important. This interplay leads to several new physical phenomena, whichwill be presented in a future work.
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