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DISTORTION OF NEUTRON STARS

WITH A TOROIDAL MAGNETIC FIELD
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Models of rotating relativistic stars with a toroidal magnetic field have been computed
for a sample of eight equations of state of cold dense matter. Non-rotating models admit
important levels of magnetization and quadrupole distortion accompanied by a seemingly
unlimited growth in size. Rotating models reach the mass-shedding limit at smaller
angular velocities than in the non-magnetized case according to the larger circumferential
equatorial radius induced by the magnetic field. Moreover, they can be classified as
prolate–prolate, oblate–prolate, or oblate–oblate with respect to surface deformation
and quadrupole distortion. Simple expressions for surface and quadrupole deformation
are provided that are valid up to magnetar field strengths and rapid rotation.
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1. Introduction

Neutron stars with a strong toroidal magnetic field have attracted increasing interest

as the magnetically induced distortion of their matter distribution may lead to the

quasi-periodic emission of gravitational waves,1,2 for example, in the case of low-

mass X-ray binaries (LMXBs). Moreover, strong magnetic fields are believed to

power the electromagnetic activity of magnetars, which subsume both anomalous

X-ray pulsars (AXPs) and soft-gamma repeaters (SGRs).3,4 Models of relativistic

stars with a toroidal magnetic field can be obtained within the standard formalism

for stationary and axisymmetric relativistic stars,5 since the electromagnetic stress–

energy tensor then satisfies the same compatibility condition6 as the stress–energy

tensor of an unmagnetized perfect fluid in purely rotational motion. Based on this

finding, numerical models of relativistic stars with a toroidal magnetic field have

emerged7,8 whereas the poloidal case was already studied a long time ago.9

2. Method and results

The neutron star matter is modeled as a perfectly-conducting perfect fluid at zero

temperature, described by a one-parameter equation of state (EOS). For stationary

and axisymmetric models in rigid rotation as considered hereafter, the general-

relativistic line element in spherical coordinates (t, r, θ, φ) can be chosen as

ds2 = −N2dt2 + Φ
2r2 sin2 θ2(dφ−Nφdt)2 +Ψ

2(dr2 + r2dθ2) (1)

with gravitational potentials N , Nφ, Ψ , and Φ that are functions of (r, θ) alone.

The toroidal magnetic field must then ensure that the Lorentz force is the gradient

of a scalar potential, which is the case for B = λ0 (e + p)ΦNr sin θ, where e is the

proper energy density of the fluid, p is the fluid pressure, and λ0 is the magnetization

parameter. The field and matter equations are derived from the perfect-fluid case5

http://arxiv.org/abs/1402.3258v2


September 15, 2014 2:10 WSPC - Proceedings Trim Size: 9.75in x 6.5in main

2

(a)

(cΩ, cB)

(bΩ, bB)

Pol2
APR

BN1H1

BBB2

BPAL12

FPS

GNH3

SLy4

Pol2N10

Pol2R10

Pol2 APR

BN1H1

BBB2

BPAL12

FPS

GNH3

SLy4

Pol2N10

Pol2R10

10−9 10−8
10−7

10−6

(b)

Fig. 1. (a) Solution space restricted to magnetized and rotating Pol2 EOS models between the
non-magnetized limit and the maximum field strength limit. Three distinct classes depending
on the relative strength of magnetic and centrifugal forces can be distinguished. (b) Distortion
coefficients (bΩ , bB) for the surface deformation ǫs and (cΩ , cB) for the quadrupole distortion ǫ

obtained by perturbing non-magnetized and non-rotating models with a gravitational mass of
M = 1.4M⊙. In addition, coefficients for a Newtonian model Pol2N10 with R = 10 km, built upon
a γ = 2 polytropic EOS, and its relativistic counterpart Pol2R10 are shown. The grey-shaded
bands correspond to models of increasing circumferential radius R with a gravitational mass of
M = 1.4M⊙, built with a sequence of γ = 2 polytropic EOSs of increasing polytropic constant κ.

by taking into account additional magnetic source terms, expressed in terms of B,

and the magnetic potential M̃ = λ2
0/(4π) (e + p)Φ2N2r2 sin2 θ, supplemented by

the above relation for B and the EOS.

The numerical models have been computed by means of a multidomain and

surface-adaptive pseudo-spectral code for stationary and axisymmetric relativistic

stars from the lorenea package, extended to the case of the toroidal magnetic field

specified above, and employing its standard sample of nuclear matter EOSs.

All models built with a certain EOS have the same rest mass corresponding to

a gravitational mass of M = 1.4M⊙ in the non-rotating and non-magnetized case.

For the polytropic Pol2 EOS, defined by p = κργ with the polytropic exponent

γ = 2 and the rest-mass density ρ, the adopted polytropic constant κ = 83 (in units

in which c = G = M⊙ = 1) implies a circumferential radius of R = 12 km.

Non-rotating models have been obtained up to large values of λ0 (limited only by

computational resources) for all EOSs, and the surface deformation ǫs = re/rp − 1,

computed from the equatorial coordinate radius re and the polar coordinate radius

rp, as well as the quadrupole distortion ǫ = −(3/2)Izz/I, obtained from Thorne’s

quadrupole moment Izz and the moment of inertia I, attain considerable negative

values as the magnetization is increased. The dimensions of the star even appear to

grow without bounds. In turn, the volume-averaged magnetic field strength 〈B2〉1/2

ahttp://www.lorene.obspm.fr
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always falls off after attaining a maximum value of several 1017 G.

The solution space of magnetized and rotating models, parametrized by 〈B2〉

and Ω
2, has been determined for the Pol2 EOS. Its lower part up to the maxi-

mum field strength limit, beyond which 〈B2〉 decreases, is schematically shown in

Fig. 1 (a). Since the curves of vanishing surface deformation, ǫs = 0, and of vanish-

ing quadrupole distortion, ǫ = 0, are different, the models can be divided into three

classes for which surface deformation and quadrupole distortion are (1) both pro-

late, (2) oblate and prolate, or (3) both oblate, depending on the relative strength

of magnetic and centrifugal forces. In the rotating case, the mass-shedding limit

of a magnetized star is reduced with increasing magnetization in agreement with

the condition of geodesic motion at the stellar equator since the circumferential

equatorial radius is enlarged by the toroidal magnetic field.

Magnetic field strengths and angular velocities of all known magnetars are small

enough that ǫ can be well approximated by a linear function of 〈B2〉 and Ω
2,

ǫ = −cB〈B
2
15〉+cΩΩ

2
0 , with the distortion coefficients cB and cΩ shown in Fig. 1 (b),

adopting normalized variables B15 = B/(1015G) and Ω0 = Ω/s−1. An estimate for

the type II superconducting case10 is then given by ǫ = −cB〈B
2
15〉

1/2〈B2
c2,15〉

1/2 +

cΩΩ
2
0 below the second critical magnetic field strength 〈B2

c2〉
1/2 ≃ 7.6 × 1015 G.

Likewise, ǫs can be computed by using bB and bΩ instead of cB and cΩ . The New-

tonian model Pol2N10 with R = 10 km and its relativistic counterpart Pol2R10

demonstrate that relativistic effects strongly attenuate both the surface deformation

induced by the toroidal magnetic field and the quadrupole deformation in general.

In contrast, the rotational surface deformation is only slightly reduced since the

centrifugal force is more effective at larger distances from the rotation axis where

relativistic effects have already weakened.
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