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Abstract

■ Perceptual decision-making performance depends on several
cognitive and neural processes. Here, we fit Ratcliffʼs diffusion
model to accuracy data and reaction-time distributions from
one numerical and one verbal two-choice perceptual-decision
task to deconstruct these performance measures into the rate
of evidence accumulation (i.e., drift rate), response criterion set-
ting (i.e., boundary separation), and peripheral aspects of per-
formance (i.e., nondecision time). These theoretical processes
are then related to individual differences in brain activation by
means of multiple regression. The sample consisted of 24 younger

and 15 older adults performing the task in fMRI before and af-
ter 100 daily 1-hr behavioral training sessions in a multitude of
cognitive tasks. Results showed that individual differences in
boundary separation were related to striatal activity, whereas dif-
ferences in drift rate were related to activity in the inferior pari-
etal lobe. These associations were not significantly modified by
adult age or perceptual expertise. We conclude that the striatum
is involved in regulating response thresholds, whereas the in-
ferior parietal lobe might represent decision-making evidence
related to letters and numbers. ■

INTRODUCTION

It has been a fundamental goal of cognitive neuroscience
to link cognitive and neural processes. One of the many
problems in this endeavor is that global cognitive perfor-
mance measures are influenced by many underlying pro-
cesses. For example, the performance measures most
commonly used in experimental psychology, mean reac-
tion times for correct decisions (RT) and accuracy, are
not only a function of the efficiency of the targeted cog-
nitive processes but also of the subjectsʼ response crite-
rion, as speed and accuracy are in a tradeoff relationship:
Hasty decisions are more prone to errors, whereas care-
ful and accurate judgments take more time (Wickelgren,
1977). To deconstruct global cognitive performance mea-
sures and, for example, disentangle criterion setting from
process efficiency, mathematical models can however be
applied. Here, we use Ratcliffʼs (1978) diffusion model
(Ratcliff & Tuerlinckx, 2002) to disentangle the speed–

accuracy tradeoff (Ratcliff, 2002; Ratcliff & Rouder, 2000)
and to relate individual differences in perceptual decision-
making processes to underlying brain regions (Bogacz,
Wagenmakers, Forstmann, & Nieuwenhuis, 2010).

The diffusion model aims to explain data from two-
choice RT tasks in a comprehensive way, utilizing accuracy
information as well as the shape of the RT distribution
for correct and erroneous responses. This is achieved by
assuming that perceptual-decision behavior involves sev-
eral processes that come with associated parameters (Fig-
ure 1). First, the quality of evidence accumulation during
the decision process, the drift rate, is a central parameter.
It describes how quickly information is accumulated in a
random walk-like diffusion process that progresses from
a starting point toward one of two response boundaries,
one for correct and one for wrong responses. Higher drift
rates indicate faster accumulation of evidence; that is, a
more efficient decision process. A second central param-
eter of the model characterizes response criteria. This
more strategic aspect of decision behavior is implemented
by differences in the distance between the response
boundaries, the boundary separation. Wider boundary sep-
aration means more conservative responding because
more evidence needs to be accumulated before a bound-
ary is reached and a response is initiated. Still, another
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parameter is nondecision time, combining the efficiency
of peripheral sensory and motor aspects of the decision
process.

In this study, we applied the diffusion model to data
from a two-choice decision task with numerical or verbal
content. In the numerical task, participants had to judge
whether briefly presented numbers were odd or even. In
the letter task, participants decided whether a selection
of letters were consonants or vowels. Interindividual dif-
ferences in the estimates of the diffusion-model param-
eters were then linked to differences in brain activation
as observed with functional magnetic resonance imaging
(fMRI) during performance of these tasks. In line with
the assumptions of the diffusion model and its theoreti-
cal application to neuroscience (Heekeren, Marrett, &
Ungerleider, 2008), we hypothesized that the drift rate,
indicating perceptual evidence accumulation, should be as-
sociated with activation in stimuli-specific brain regions,
that is, in regions involved in processing of numbers and
letters ( Joseph, Cerullo, Farley, Steinmetz, & Mier, 2006;
James, James, Jobard, Wong, & Gauthier, 2005; Dehaene,
Piazza, Pinel, & Cohen, 2003; Eger, Sterzer, Russ, Giraud, &
Kleinschmidt, 2003; Joseph, Gathers, & Piper, 2003), such
as the left inferior parietal lobe. This prediction is, for
example, supported by studies on monkeys that have
modeled neurophysiological data from intracranial record-
ings as diffusion processes (Ratcliff, Hasegawa, Hasegawa,
Smith, & Segraves, 2007; Ratcliff, Cherian, & Segraves, 2003;
Kim & Shadlen, 1999). In Kim and Shadlenʼs task, mon-
keys had to perform a direction of motion visual discrimi-
nation task while data were recorded in cells downstream
of area MT (lateral intraparietal area, frontal eye fields, su-
perior colliculus, and dorsolateral prefrontal cortex). Their
results suggest that decisions are formed by computing
the difference between the activities of populations of
neurons in area MT that code for opposite directions of
motion, and this decision variable is represented in the
downstream cells. The results from a large number of
studies support the view that decision-making is based
on the integration of noisy sensory evidence that is repre-

sented by sensory neurons (e.g., Smith & Ratcliff, 2004;
Gold & Shadlen, 2001). For the boundary parameter, we
predicted, based on previous studies focussing on the
speed–accuracy tradeoff, an association with activity in the
striatum and the presupplementary motor area (Forstmann
et al., 2008; Ivanoff, Branning, & Marois, 2008; Van Veen,
Krug, & Carter, 2008). The basal ganglia (striatum and pal-
lidum) may implement a generic action-selection mech-
anism that releases those actions from inhibition that are
desirable andmaintains inhibitory control over others (Mink,
1996), thereby acting as a gate-keeper (see also Frank,
2006). Thus, it is plausible to assume that activity in the stria-
tum is related to criterion setting.
To address these hypotheses, we utilized data from a

large-scale study (COGITOStudy; Schmiedek,Bauer, Lövdén,
Brose, & Lindenberger, 2010; Schmiedek, Lövdén, &
Lindenberger, 2010) including younger and older partic-
ipants performing six tests of perceptual speed (includ-
ing the two tasks reported in the present article), three
tests of episodicmemory, and three tests of workingmem-
ory in approximately 100 daily 1-hr sessions. Before and
after the 100-day-long longitudinal phase, extensive data
on two-choice RT performance were collected, allowing
for estimation of the diffusion parameters as well as for
investigating age differences and practice-related changes
in these parameters. In this article, we report data for a
subsample of participants that additionally performed
the two-choice RT tasks in the MRI scanner at pretest
and posttest.
Previous studies on age differences in diffusion-model

parameters have primarily reported that more conserva-
tive response criteria in old age as well as age-related slow-
ing of nondecision time contribute to age-related slowing
of perceptual decision making (Starns & Ratcliff, 2010;
Ratcliff, Thapar, & McKoon, 2001, 2006; Ratcliff, Thapar,
Gomez, & McKoon, 2004; Thapar, Ratcliff, & McKoon,
2003). Practice has been reported to result in faster evi-
dence accumulation and less conservative response crite-
ria, with older adults changing more in these parameter
estimates (Ratcliff et al., 2006). fMRI studies of activation
changes as a function of practice on lower-level sensory/
motor tasks, in contrast to higher-level cognitive tasks such
as working memory, have demonstrated decrease of activ-
ity in task-related areas after practice (Kelly & Garavan,
2005). In addition, activity in brain areas that have been
associated with the so-called resting-state or default-mode
(Raichle et al., 2001) network increase during task perfor-
mance after practice (Mason et al., 2007). This pattern
likely reflectsmore automatic, less attention-demanding, exe-
cution of the task posttraining (Kelly & Garavan, 2005).
Thus, the data reported in this study allow for examining
the generality of the predicted link between regional brain
activation and aspects of perceptual decision-making be-
havior at different average levels of global performance
and of the underlying processing components, across
younger and older adults, and for nonexpert and highly
skilled, less effortful, execution of the task.

Figure 1. An illustration of the diffusion model with one simulated
paths with drift rate v, boundary separation a, and starting point z.
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METHODS
Participants

A healthy subsample consisting of younger (n= 24;Mage =
25.2 years, SDage = 3.2, rangeage = 20.5–31.1 years) and
older (n = 15; Mage = 70.2 years; SDage = 4.0, rangeage =
65.0–80.4 years) adults was recruited for imaging from
a larger study on day-to-day variability and plasticity of
cognitive performance (the COGITO Study; Schmiedek,
Bauer, et al., 2010; Schmiedek, Lövdén, et al., 2010), which
originally recruited participants through newspaper ad-
vertisements, word-of-mouth recommendation, and flyers
circulated in Berlin, Germany. All participants of this par-
ent study were asked to take part in imaging, and those
volunteering were screened for eligibility. Accepted par-
ticipants were right-handed, had normal or corrected-to-
normal vision, and reported no history of cardiovascular
disease (except treated hypertension), diabetes, neuro-
logical or psychiatric conditions, or drug/alcohol abuse.
They reported no use of antiseizure or antidepressant
drugs. Finally, considered participants completed pretest
imaging, cognitive training, and posttest imaging without
producing imaging artifacts or displaying brain abnor-
malities. In terms of global cognitive performance mea-
sures [Digit–Symbol Substitution (DS) and Vocabulary],
selectivity [(MImaging Sample − MTotal Sample)/SDTotal Sample]
was negligible for younger adults (SD = 0.05 for DS and
SD = 0.00 for vocabulary). As expected from the contra-
indications for MRI, the older MRI sample was positively
selected (SD= 1.01 for DS and SD= 0.73 for vocabulary).
Participants were paid between 1450 and 1950 Euros, de-

pending on the number of completed sessions and their
pace of completing them. All participants gave written in-
formed consent. The ethical review board of the Otto-von-
Guericke University of Magdeburg approved the imaging
study and the review board of the Max Planck Institute
for Human Development, Berlin, approved the behavioral
parent study.

Materials and Procedure

Training Phase

Participants practiced computerized tasks individually dur-
ing, on average, 101 (Myoung = 102, SDyoung = 3.1; Mold =
99, SDold = 3.7) sessions. Practiced tasks were adminis-
tered with several stimuli-presentation times at pretest,
which allowed for estimation of time–accuracy functions
used for tailoring subsequent task difficulty by adjusting
presentation times for each individual at the start of train-
ing. Presentation times were subsequently kept constant.
Working memory tasks used included 3-back, numerical
updating, and alpha span. Episodic memory tasks used
included word list recall, object-location memory, and
number–noun pairs. Speed tasks were three comparison
and three two-choice RT tasks. Each ability domain con-
tained tasks with numerical, verbal, and figural–spatial
content. Schmiedek, Bauer, et al. (2010) and Schmiedek,

Lövdén, et al. (2010) describe these tasks in detail. Here
we describe the two-choice RT tasks reported in this arti-
cle in more detail.

The three two-choice RT tasks were based on the
same stimulus layout, the seven lines of the number “8”
as displayed on pocket calculators (Figure 2). Stimuli were
masked with a stimulus that combined this “calculator 8”
with extending lines in all 10 possible directions. Masking
times used at pre- and posttest were 1, 2, 4, and 8 screen
cycles (12, 24, 47, and 94 msec) for younger and 2, 4, 8, and
16 screen cycles (24, 47, 94, and 188 msec) for older adults.
Possible masking times for the daily sessions were 1, 2, 4,
or 8 screen cycles. Depending on pretest performance, two
of these masking times (one fast and one slow condition)
were chosen for each participant to work on during the
training phase, in the following way. For each two-choice
task and each individual, mean accuracies for the different
masking time conditions at pretest were fitted with ex-
ponential time–accuracy functions (including freely es-
timated parameters for onset, rate, and asymptote as well
as a lower asymptote parameter fixed to 0.50). The fitted
values from these functions were used to choose one “fast”
and one “slow” masking time, which were both chosen so
that the predicted accuracy based on the time–accuracy
functions was above a minimum level and below an upper
level. If performance was above the upper level for the
second-but-fastest masking time, then the fastest masking
time was chosen, even if predicted accuracy was below the
minimum level for the fastest masking time. The fast mask-
ing time was chosen based on a minimum level of 0.625
and an upper level of 0.75, whereas for the slow masking
time, those levels were 0.875 and 0.95, respectively.

Each two-choice RT block consisted of 40 stimuli, 20
for the fast and 20 for the slow condition, with randomly

Figure 2. Schematic drawing of the experimental paradigm.
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chosen stimuli out of the two response categories. In the
figural task, participants decided whether the stimuli were
either symmetric or asymmetric to stimuli that were either
the upper or lower two lines to the left and right of the
“calculator 8” (symmetric condition), or the two possible
combinations of one upper and one lower line at the left
and right (asymmetric condition). In the numerical task,
participants decided whether the displayed number was
odd or even. Stimuli were “3,” “5,” and “7,” for the odd
condition and “2,” “4,” and “6” for the even condition. In
the verbal task, participants decided whether letters were
either consonants or vowels. Stimuli were “F,” “H,” and “P”
for the consonant condition and “A,” “E,” and “U” for the
vowel condition. No performance feedback was provided
during the task.

Pretest and Posttest

Participants completed behavioral pretests and posttests
during 10 sessions that consisted of 2 to 2.5 hr of cog-
nitive test batteries and self-report questionnaires. The
pretest brain imaging session was conducted after the be-
havioral pretest and immediately before the longitudinal
practice phase. The posttest imaging session was com-
pleted shortly after the completion of the behavioral
posttest. The sessions were separated by an average of
179 days (Myoung = 180, SDyoung = 21.0; Mold = 179,
SDold = 31.1). Below we describe the assessment of the
two-choice RT performance in more detail.

Behavioral assessment of two-choice RT data. Perfor-
mance on the two-choice RT tasks was assessed within
one behavioral session of about 2.0 to 2.5 hr at pretest
and again at posttest. In these sessions, participants worked
on the verbal, numerical, and figural versions of the task.
Tasks and stimuli were identical for pretest and posttest.
In each session, participants worked on 25 blocks con-
sisting of 40 items each for each task, with breaks after sets
of 5 blocks (length of break determined by participants).
Each block consisted of 20 odd/consonant/symmetric and
20 even/vowel/asymmetric stimuli. Masking times were
distributed randomly, but with equal frequencies (10 items
per masking time) across blocks, resulting in a total of
250 items per masking time and task. At pretest, partici-
pants additionally did first work on two blocks of each
task without masking and then on another three practice
blocks. These blocks were not used in the current analy-
ses. Participants responded on a customized button box
connected to the parallel port for high resolution of RT
measurements.

The diffusion model was fit to the data for each task
and each subject by minimizing a Chi-square value with
a general SIMPLEX minimization routine that adjusts the
parameters of the model until it finds the parameter es-
timates that minimize the Chi-square value (see Ratcliff
& Tuerlinckx, 2002, for a full description of the method).
For each experimental condition, the 0.1, 0.3, 0.5, 0.7, 0.9

quantile RTs for correct and error responses and the cor-
responding accuracy values were entered into the minimi-
zation routine. The quantile RTs and the diffusion model
were used to generate the predicted cumulative probabil-
ity of a response as a function of quantile RTs. By sub-
tracting the cumulative probabilities for each successive
quantile from the next higher quantile, one gets the pro-
portion of responses between adjacent quantiles. These
are the expected values to be compared to the observed
proportions of responses between the quantiles (i.e., the
proportions between 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0,
which are 0.1, 0.2, 0.2, 0.2, 0.2, and 0.1) multiplied by
the number of observations for the Chi-square computa-
tion. Summing over (Observed− Expected)2/Expected for
all conditions results in a single Chi-square value to be
minimized. Estimated parameters were drift rate, bound-
ary separation, nondecision time, across-trial variability in
drift rate (normally distributed), across-trial variability in
starting point (uniformly distributed), across-trial variabil-
ity in nondecision time (uniformly distributed), and the
probability of contaminant responses stemming from a uni-
form distribution. Drift rates were allowed to vary across
masking time conditions. For the analyses reported here,
only the drift rate estimates for the conditions with mask-
ing time of four screen cycles were used, as those matched
the masking time in the scanner session. All other param-
eters were assumed to be invariant across masking time
conditions. As shown in Figure 3, plotting characteristics
of observed data versus theoretical expectations based
on estimated parameters indicated that the model did fit
the data quite well with very few individuals showing de-
viations. No alternative models were tested, so there was
no model selection.

Behavioral task in MRI scanner. The task consisted of
53-sec-long task blocks alternating between the verbal
and the numerical tasks described above, intermixed with
16-sec fixation blocks. Each task block included 16 trials
(8 odd/8 even; 8 consonants/8 vowels) presented with jit-
tered interstimulus intervals between 2000 and 8000 msec.
In total, eight blocks per task were presented, distributed
over four runs. Thus, in total, 128 trials per task were pre-
sented, with randomly chosen stimuli out of the response
categories. Masking times were 50 msec for all participants
and assessments.

MRI procedures. Images were collected with a 3-T Mag-
netom Trio MRI scanner system (Siemens Medical Systems,
Erlangen, Germany). Whole-brain functional images were
collected using a T2*-weighted EPI sequence sensitive to
BOLD contrast (TR = 2000 msec, TE = 30 msec, image
matrix = 64 × 64, FOV = 224 mm, flip angle = 80°, slice
thickness = 3.5 mm, distance factor = 0%, voxel size
3.5 × 3.5 × 3.5 mm3, 32 axial slices). One hundred forty-
seven image volumes were acquired per run all aligned
to AC–PC. Anatomical images were acquired using a T1-
weighted sagittal 3-D spoiled gradient-echo (SPGR) image
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(TR = 24 msec, TE = 8 msec, acquisition matrix = 256 ×
256 × 124, FOV = 250 × 250 mm2, flip angle = 30°, slice
thickness = 1.5 mm) on a GE Signa system (General Elec-
tric, Milwaukee, WI).

fMRI Data Analysis

Preprocessing. The fMRI data were analyzed using the
SPM5 software (WellcomeDepartmentofCognitiveNeurol-
ogy, London, UK). The first three volumes of all EPI series

were excluded from the analysis to allow the magnetization
to approach a dynamic equilibrium.Data processing started
with slice time correction and realignment of the EPI data-
sets. Amean image for all EPI volumeswas created, towhich
individual volumes were spatially realigned by means of
rigid-body transformations. The high-resolution structural
image was coregistered with the mean image of the EPI
series. Then the structural image was normalized to the
Montreal Neurological Institute (MNI) template, and the
normalization parameters were applied to the EPI images

Figure 3. Plots of accuracy and RT quantiles for data (y-axis) and predicted values from fits of the diffusion model (x-axis).
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to ensure an anatomically informed normalization. A com-
monly applied filter of 8 mm full width at half maximum
was used. Low-frequency drifts in the time domain were re-
moved by modeling the time series for each voxel by a set
of discrete cosine functions to which a cutoff of 224 sec
was applied.

Statistical analyses. The single-subject-level statistical
analyses were performed using a general linear model.
We modeled the stimulus onset of the numerical and ver-
bal stimuli. Vectors containing the event onsets were con-
volved with the canonical hemodynamic response function
to form the main regressors in the design matrix (the re-
gression model). The vectors were also convolved with
the temporal derivatives and the resulting vectors were en-
tered into the model. In addition, the design matrix in-
cluded the six realignment parameters to further correct
for head motion. The statistical parameter estimates were
computed separately for each voxel for all columns in the
design matrix. Contrast (t) images were constructed from
each individual to compare the relevant parameter esti-
mates for the regressors containing the canonical hemo-
dynamic response function.

Next, group-level random effects analysis was per-
formed. A full-factorial ANOVA with the within-subject
factors task (numerical vs. verbal) and time point (pretrain-
ing vs. posttraining) and the between-subject factor age
(young vs. old) was performed for each voxel of the con-
trast images. The resulting statistical values of the t con-
trasts were thresholded with p < .05 (family-wise error
corrected) and a cluster threshold of 5 adjacent voxels.

Finally, we combined the results from the mathemati-
cal modeling and the fMRI measurements in order to ex-
plore the neural correlates of the drift rate, boundary
separation, and nondecision time parameters. To do so,
we correlated the diffusion-model parameters derived
for each individual with the task-related percent signal
change of the whole brain (verbal task > baseline, nu-
merical task > baseline) by means of a multiple regres-
sion analysis that included dummy-coded regressors for
task, age, and time point, as well at the parameters of
drift rate, boundary separation, and nondecision time.
The resulting statistical values were thresholded with
p< .05 (family-wise error corrected) and a cluster thresh-
old of 5 adjacent voxels. To address the generality of
observed effects across age and time point, we next in-
cluded the interaction terms between age and time point
on the one hand and the diffusion-model parameters on
the other into the multiple regression. To explore the
task-specific effects of drift rate, we lowered the thresh-
old to p < .001 (uncorrected) with a cluster threshold of
at least 10 adjacent voxels. All resulting statistical maps
were overlaid onto a normalized T1-weighted MNI single-
subject template (colin27).

In order to extract percent signal changes from the acti-
vated clusters of interest, we usedMarsBaR (http://marsbar.
sourceforge.net/, Brett, Anton, Valabregue, & Poline, 2002).

For each subject, region, and condition separately, themean
percent signal change over a time window of 4–6 sec after
stimulus onset was computed.

RESULTS
Behavioral Data

Accuracy and RT during MRI

A repeated measures ANOVA on accuracy with the factors
Task (numerical vs. verbal), Timepoint (pretraining vs.post-
training), and Age group (young vs. old) revealed a signifi-
cantmain effect of Timepoint [F(1, 37)=112.86,p< .001],
reflecting a general improvement over time; a significant
main effect of Age [F(1, 37) = 17.12, p < .001], revealing
higher performance for younger adults; and a significant
main effect of Task [F(1, 37) = 77.17, p< .001], indicating
that the accuracy was higher in the numerical compared to
the verbal task. Moreover, we found a significant Task ×
Age interaction [F(1, 37)=4.30,p<.05], indicating a higher
accuracy difference between the two tasks for older adults;
a Time point × Age interaction [F(1, 37) = 14.41, p< .01],
reflecting a stronger increase in accuracy over time for older
adults; and a Time point × Task interaction [F(1, 37) =
22.06, p < .001], revealing that task differences in accuracy
were reduced after training.
The analysis of RTs revealed a significant main effect of

Time point [F(1, 37) = 53.66, p < .001], reflecting a gen-
eral improvement over time, and a significant main effect
of Age [F(1, 37) = 5.58, p < .05], revealing faster re-
sponses for younger adults. Moreover, we found a signifi-
cant threefold Task × Time point × Age interaction [F(1,
37) = 4.67, p < .05], reflecting a stronger interaction of
Task and Age group in the pretraining session compared
to the posttraining session (Table 1).

Parameter Estimates of the Diffusion Model

We performed a separate repeatedmeasures ANOVA on the
estimates of the diffusion-model parameters (Table 1) of
the data acquired outside the scanner using the same task
with the factors Task (numerical vs. verbal), Time point (pre-
training vs. posttraining), and Age group (young vs. old).
For the drift rate, we found a significant main effect of

Task [F(1, 37) = 42.48, p < .001], indicating that the drift
rate was higher in the numerical compared to the verbal
task; and a significant effect of Time point [F(1, 37) =
10.59, p< .05], reflecting a general improvement over time.
Moreover, we detected a significant Time point × Age in-
teraction [F(1, 37)= 4.76, p< .05], with a stronger increase
in drift rates for the younger compared to the older adults.
The threefold interaction of Task × Time point × Age was
also significant [F(1, 37) = 28.91, p < .001], indicating
larger improvements over time for older adults in the nu-
merical task, which contrast with the larger improvements
in the verbal task for the younger adults. No significantmain
effect of Age group was found.
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The boundary parameter revealed a significant main ef-
fect of Task [F(1, 37) = 15.35, p < .001], with a stricter
decision criterion for the numerical compared to the ver-
bal task, and a significant effect of Time point [F(1, 37) =
36.62, p < .001], reflecting a general reduction in strict-
ness of the boundary over time. Moreover, we found a
significant Time point × Age interaction [F(1, 37) =
11.80, p < .05], with a stronger decline in the boundary
parameter for the younger compared to the older adults.
The threefold interaction of Task × Time point × Age was
again significant [F(1, 37) = 8.01, p< .05], indicating larger
decreases over time for younger adults in the numerical
task, which contrast with the larger decreases in the verbal
task for the older adults. No significant main effect of Age
group was found.
The nondecision parameter revealed a significant main

effect of Time point [F(1, 37) = 154.40, p < .001], reflect-
ing a general reduction in nondecision time, and a signifi-
cant main effect of Age [F(1, 37) = 55.70, p < .001],
indicating shorter nondecision times in the young. More-
over, we found a significant Time point × Age interaction
[F(1, 37) = 8.21, p < .01], with a stronger reduction of
nondecision time for the younger compared to the older
adults.

fMRI Data

Full-factorial ANOVA

A random effects analysis of the factor Time point from the
full-factorial ANOVA containing the factors Task (numerical
vs. verbal) and Time point (pretraining vs. posttraining)
and the factor Age (young vs. old) revealed significantly
more activity at pretest compared to posttest in brain areas
that have been associated with the so-called cognitive
control network. In detail, we found higher pretest com-
pared to posttest activity in dorsal anterior cingulate cortex
(dACC), bilateral insular cortex, left inferior frontal junc-
tion (IFJ), left inferior frontal gyrus triangularis (IFG), and
right fusiform gyrus (Figure 4A and Table 2A). Increased
activity at posttest compared to pretest was found in brain
areas that have been associated with the so-called default
mode network, namely, ventromedial prefrontal cortex

(vmPFC) and the precuneus, as well as the right superior
temporal gyrus (STG) (Figure 4B and Table 2B).

Multiple Regression Analysis with
Diffusion-model Parameters

Next, we examined the predictive effects of the diffusion-
model parameters on the whole-brain activation maps in
a multiple regression model also including the factors
Task, Age, and Time point as predictors.

Table 1. Mean and Standard Deviation of RT and Accuracy from Task Performance in the Scanner

Young Numerical Task Young Verbal Task Old Numerical Task Old Verbal Task

Pretest Posttest Pretest Posttest Pretest Posttest Pretest Posttest

RTs (msec) 742 (123) 584 (107) 793 (130) 593 (99) 824 (169) 697 (94) 814 (208) 710 (95)

Accuracy 0.89 (0.116) 0.94 (0.068) 0.74 (0.133) 0.91 (0.062) 0.73 (0.148) 0.93 (0.060) 0.55 (0.110) 0.83 (0.141)

Drift rate 0.351 (0.114) 0.406 (0.133) 0.230 (0.116) 0.317 (0.121) 0.430 (0.132) 0.578 (0.171) 0.465 (0.124) 0.497 (0.159)

Boundary 0.159 (0.030) 0.083 (0.022) 0.116 (0.029) 0.075 (0.015) 0.124 (0.031) 0.116 (0.080) 0.121 (0.032) 0.097 (0.024)

Nondecision 0.401 (0.039) 0.310 (0.031) 0.386 (0.035) 0.316 (0.033) 0.461 (0.050) 0.403 (0.062) 0.466 (0.048) 0.423 (0.051)

Diffusion-model parameters from behavioral assessment outside the scanner.

Figure 4. Activation map averaged over 39 subjects ( p < .05,
family-wise error corrected, k > 5) mapped onto an averaged image
of the participantsʼ normalized (MNI) T1-weighted images. (A)
Significantly higher brain activity in the pretraining compared to the
posttraining scanning session; (B) Significantly higher brain activity in
the posttraining compared to the pretraining scanning session.
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The absolute level of drift rate was associated, over and
above the other parameters in the model, with interin-
dividual differences in activity in the left inferior parietal
lobule (IPL, BA 40; MNI coordinates: −39 −42 54), indi-
cating that participants with higher drift rates show higher
activity in IPL. Interindividual differences in boundary sep-
aration, on the other hand, were found to uniquely predict
activation in the left striatum (putamen; −18 −6 15), in-
dicating that participants with higher boundary parameters
showed higher activity in the striatum. These correlations
were not influenced by outliers, which the scatterplots in
Figure 5 confirm. The nondecision parameter predicted in-
dividual differences in the left supramarginal gyrus (BA 40;
−45 −33 27).

Even with lowered threshold ( p < .005, uncorrected),
the interaction terms between Age and Time point on the
one hand and the diffusion-model parameters on the
other hand were not significant in the brain regions re-
ported, supporting the generality of the observed effects.
ROI analyses further demonstrate the similarity of these
associations across age groups: When computing the cor-
relation coefficients separately for the age groups, we find
a significant correlation of percent signal changes in the
striatum ROI and boundary parameter for both young
[r(24) = .44, p < .05] and old [r(15) = .73, p < .01] par-
ticipants. Similarly, we found a correlation of percent sig-
nal changes in the left IPL and drift parameter for both
young [r(24) = .51, p < .05] and old [r(15) = .51, p =
.054] participants, although the correlation in the older
participants was only marginally significant.

Because it has been hypothesized that the drift rate
should be associated with brain areas that are responsible
for stimulus-specific information accumulation (Heekeren
et al., 2008), we additionally computed two separate mod-
els, one for the numerical task and one for the verbal task.
When applying a more lenient threshold ( p < .001, clus-

ter of voxels > 10), the resulting brain areas that corre-
lated with the drift rate were the left inferior parietal lobe
(BA 40; −45 −39 −51), the left middle occipital gyrus
(BA 19; −33 −81 30), and the left superior temporal gy-
rus (BA 22;−66−42 15) for the numerical task. For the ver-
bal task, interindividual differences in drift rate predicted
activity in the bilateral inferior parietal lobe (BA 40; −36
−42 54; 51 −27 51) and left ventral premotor cortex (BA 6;
−57 −3 36).
Finally, it can be predicted that the associations between

individual differences in regional activity and individual
differences in the boundary and drift rate estimates should
generalize to individual differences in practice-related
changes. To probe this prediction, we correlated changes
(posttest− pretest) in the diffusion parameters to changes
in the brain areas identified from the multiple regression
analyses. In line with the positive level–level associations,
these change–change associations had a positive direction
(IPL drift rate: r = .19, p = .248; striatum boundary: r =
.53, p < .001).

DISCUSSION

Perceptual decision-making performance (i.e., RT and ac-
curacy) is a function of several underlying cognitive pro-
cesses (e.g., Heekeren et al., 2008). In this study, we applied
Ratcliffʼs diffusion model to deconstruct RT and accuracy
data from a verbal and a numerical two-choice RT task
into three separate parameters: the drift rate, indicating
the accumulation rate of perceptual evidence (i.e., the ef-
ficiency of the decision process); the boundary separation,
reflecting themore strategically influenced response crite-
ria; and the nondecision time, combining the efficiency of
sensory and motor aspect of performance. Interindividual
differences in these parameters were then related to inter-
individual differences in brain activation as observed with

Table 2. Brain Areas Showing Significant Differences between Pre- and Posttest

Area BA Peak Coordinates (MNI) Z-score Extent

(A) Pretraining vs. Posttraining

Rostral cingulate zone 32 −6, 18, 45 6.85 188

Left insular cortex, inferior frontal gyrus 47 −30, 21, −9 5.53 26

Right fusiform gyrus 19 27, −66, −6 5.41 14

Left inferior frontal junction 44 −42, 9, 33 5.39 13

Right insular cortex, inferior frontal gyrus 47 33, 24, −3 4.94 20

Left inferior frontal gyrus triangularis 45 −39, 27, 21 4.93 7

(B) Posttraining vs. Pretraining

Ventromedial prefrontal cortex 10/11 −3, 51, −15 5.44 52

Right superior temporal gyrus 22 60, 3, 3 5.21 9

Precuneus 23 −9, −54, 27 4.83 7
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fMRI during performance of these tasks. In line with our
hypotheses, we found that individuals with higher val-
ues of drift rate show stronger brain activity in areas that
have been reported in processing of numbers and letters,
namely, the left IPL, and that individuals with higher val-
ues in the boundary parameter showed a higher magni-
tude of striatal activity.
The parietal lobe, especially the horizontal segment of

the intraparietal sulcus (HIPS), has been associated with
number processing, and in particular, with the manipula-
tion of numbers, such as in comparison or approximation
(Dehaene et al., 2003). For example, patients with pari-
etal lesions have been reported to suffer from difficulties
in number processing (Dehaene, Dehaene-Lambertz, &
Cohen, 1998). Moreover, the parietal lobe contains an ab-
stract representation of numerical magnitude indepen-
dent of number notation (Eger et al., 2003). However,
the left IPL has also been reported as being specific for
single letter processing ( Joseph et al., 2003, 2006; James
et al., 2005). The fact that the left IPL is involved in both
accumulation of numerical as well as letter information is
supported by the consistent relation between the drift
rate and the magnitude of activation in this region across

separate analyses for the numerical and verbal task. More-
over, several studies have shown that activation in parie-
tal regions correlates with successful memory, suggesting
that the strength of activationmight contribute to the even-
tual decision-making (Wheeler & Buckner, 2003). Hence,
parietal brain regions have been suggested to function as
a mnemonic accumulator, accumulating signal until a cri-
terion is reached and judgments are made, as described
by signal-detection theory (Cabeza, Ciaramelli, Olson, &
Moscovitch, 2008; Wagner, Shannon, Kahn, & Buckner,
2005). Our findings are in line with this evidence and sug-
gest that the IPL might be involved in the accumulation of
perceptual evidence-related letters and numbers.

The association between interindividual differences in
the boundary parameter and the strength of activity in the
striatum is consistent with at least two lines of previous re-
search. First, it has been speculated that the basal ganglia
are critical in speed–accuracy tradeoff (Bogacz & Gurney,
2007; Lo & Wang, 2006) by directly regulating the chain of
neuronal responses leading tomotor acts (Aron et al., 2003;
Band & van Boxtel, 1999; Mink, 1996). For example, the
striatum has been linked to the suppression of movements
during antisaccade tasks (Raemaekers et al., 2002) as well as

Figure 5. Activation map averaged over 39 subjects ( p < .05, family-wise error corrected, k > 5) mapped onto an averaged image of the
participantsʼ normalized (MNI) T1-weighted images. (A) Brain activity (% signal change averaged over pre- and posttraining sessions and over
numerical and verbal tasks) correlated with the drift rate and (B) brain activity (% signal change averaged over pre- and posttraining sessions and over
numerical and verbal tasks) correlated with the boundary parameter. Note that the regression lines are plotted separately for old and young
participants although there is no significant effect of age on the associations.
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to initiating movements in monkeys (Lebedev & Nelson,
1999), therefore suggesting that the striatum is involved
in both initiation and inhibition of motor responses. A sec-
ond line of research has explored the neural correlates of
speed–accuracy tradeoff by instructing participants to
either respond as quickly as possible or as accurately as
possible (Bogacz et al., 2010; Forstmann et al., 2008; Ivanoff
et al., 2008; Van Veen et al., 2008). In terms of the diffusion
model, such manipulations affect the boundary param-
eter of the decision process. When instructing participants
to respond accurately, the boundaries are set wider. More
information must thus be accumulated, assuming an un-
altered drift rate, before a decision can be made, leading
to more accurate and slower responses. In contrast, in-
structing participants to respond as fast as possible should
lead to narrower boundaries. In accordance with our find-
ings, Forstmann et al. (2008) report an association be-
tween the striatum and a caution parameter derived from
a linear ballistic accumulator (LBA) model when compar-
ing performance after speed and accuracy instruction.
Likewise, Van Veen et al. (2008) report an association of
basal ganglia activity with speed–accuracy tradeoff. But in
both of these studies, higher activity in the striatum goes
along with the speed compared to the accuracy instruction,
whereas our results suggest enhanced striatal activity in
relation to higher response caution. However, the activa-
tion reported by Forstmann et al. involved the caudate
nucleus rather than the putamen (as in this study), whereas
van Veen et al. report activity in both the caudate nucleus
and the putamen. The present findings are, however, in line
with findings of higher striatal activation during trials with
a higher probability of response inhibition (Vink et al.,
2005) when considering the boundary parameter as an in-
dicator of cautious responding. In summary, the current
evidence suggests that the striatum is involved in the regu-
lation of response thresholds rather than, or at least in ad-
dition to, the initiation or suppression of responses. This
is in line with a model of decision-making and response
selection by Frank (2006) and Frank and Claus (2006) that
conceptualizes the basal ganglia as a system that gates in-
formation flow from frontal cortex to the motor system.
The circuit is assumed to facilitate or suppress action rep-
resentations in frontal cortex. Two cell populations in the
striatum are assumed to have opposing effects on the se-
lection of an action. Activation in so-called “go” neurons fa-
cilitates the execution of an action considered, whereas
activation in “no-go” neurons suppresses the competing
responses, thereby constituting a gating mechanism in
the striatum. Moreover, our findings are in line with the
suggestion that failures in the fronto-striatal dopaminergic
neural circuits underpin impulsive and compulsive acts
(Fineberg et al., 2010).

As indicated by the absence of interactions between the
observed associations (i.e., drift rate with the IPL and
boundary separation with the striatum) and the factors
Time point and Age, these associations show a fair amount
of generalization over the adult lifespan and over different

levels of task-specific expertise, despite the major effects
these factors had on performance and the parameters of
the diffusion model. Specifically, we observed higher drift
rates and lower boundary parameters at posttest than at pre-
test,which replicates the findings ofDutilh, Vandekerckhove,
Tuerlinckx, and Wagenmakers (2009, see also Ratcliff et al.,
2006).Our data extend those previous findings by showing
larger changes over time in these parameters for younger
as compared to older adults. Consistent with the observed
positive associations between individual differences in level
of activity and level of the diffusion-model estimates, the
corresponding associations between individual differences
in changes also tended togo in the positive direction. Inpar-
ticular, the significant change–change correlation (post–
pretest) between brain activity in the striatum and the
boundary parameter suggests that the striatum may also
play a role in practice-related changes in boundary separa-
tion. Our finding that older adults have considerably longer
nondecision times compared to young adults, on the other
hand, replicate previous studies (Ratcliff et al., 2001, 2006;
Ratcliff, Thapar, Gomez, et al., 2004; Ratcliff, Thapar, &
McKoon, 2004; Thapar, Ratcliff, & McKoon, 2003). Finally,
brain activation during performance of these tasks displayed
changes over time: We found a decrease in task-related
areas (left IFG, left IFJ, bilateral insula, dACC, right fusiform
gyrus) and an increase in the so-called default-mode areas
(vmPFC, precuneus, right STG). This pattern of changes is
likely to reflect more automatic (i.e., less effortful) and per-
ceptual expertise-like performance of the tasks at posttest
(Kelly & Garavan, 2005), but the mean level changes over
time point are difficult to decisively interpret without an
appropriate control group. We thus conclude that individual
differences in striatal activity are related to criterion setting
and that the rate of evidence accumulation for perceptual
decisions of numerical and letter nature is related to stimuli-
specific brain regions in the parietal lobe.
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