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TiMO VON OERTZEN

MAX PLANCK INSTITUTE FOR HUMAN DEVELOPMENT

STEVEN M. BOKER

UNIVERSITY OF VIRGINIA

This paper investigates the precision of parameters estimated from local samples of time dependent
functions. We find that time delay embedding, i.e., structuring data prior to analysis by constructing a
data matrix of overlapping samples, increases the precision of parameter estimates and in turn statistical
power compared to standard independent rows of panel data. We show that the reason for this effect is
that the sign of estimation bias depends on the position of a misplaced data point if there is no a priori
knowledge about initial conditions of the time dependent function. Hence, we reason that the advantage of
time delayed embedding is likely to hold true for a wide variety of functions. We support these conclusions
both by mathematical analysis and two simulations.
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1. Introduction

Many phenomena of interest in psychology exhibit intraindividual variability (Baltes, Reese,
& Nesselroade, 1977; Nesselroade & Ram, 2004). That is to say, when variables that indicate a
phenomenon are observed on multiple occasions, their values are likely to exhibit fluctuations—
at some occasions, the variables values will be higher and at other occasions lower. If one wishes
to model this variability, it is necessary to measure each individual sufficiently often to capture
the fluctuations and for a sufficient number of occasions in order to be able to estimate interindi-
vidual differences in this intraindividual variability. The required density of measurement in time
is dependent on how rapidly the phenomenon is fluctuating (Shannon & Weaver, 1949). The re-
quired number of occasions per individual is a function of the statistical power required to detect
the effects of interest (Cohen, 1988). In addition, one may wish to predict individual differences
in coefficients of models of intraindividual variability.

Experimental designs for longitudinal studies range from very short time series (e.g., 3 or 4
observations per individual) with many individuals to long time series (e.g., hundreds of observa-
tions per person) and fewer individuals. Such designs are frequently employed to understand how
a trait-like characteristic of a person (e.g., sex) predicts a within-person coefficient representing
the time-dependent behavior of the individual. Such models are sometimes expressed as multi-
level models where the repeated observations are grouped by individual (Bisconti, Bergeman, &
Boker, 2006; Pinheiro & Bates, 2000).

When only a few observations per individual (e.g., 5) are collected on many individuals (e.g.,
200), there is reduced power to estimate the within-person time series coefficients. However, this
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design has the advantage of a large sample of individuals, and thus the standard error of the mean
within-person time series coefficient may be small. In this example design, 1,000 observations
were made: 5 observations on each of 200 individuals.

When many observations per individual are collected, the estimates of within-person time
series coefficients are more precise. But if a study has a fixed budget and a fixed cost of obtaining
an observation, this means that fewer individuals can be recruited if a greater number of observa-
tions per person are obtained. If the budget allows 1,000 observations, another plausible design
might be 50 observations on 20 individuals. In this case, improved within-person precision comes
at the cost of decreased between-persons sample size. But a more precise within-person measure
requires fewer individuals in order to estimate its mean and variance. Thus, there is a trade-off
between within-person precision and between-persons precision for a fixed budget.

Others have explored trade-offs between number of individuals and number of observations
per individual in multilevel designs (see, e.g., Hox, 2002; Snijders & Bosker, 1999), finding that
the variance and sample size at each level of a multilevel model determines power, and thus
impacts optimal design. The current article presents a method for improving power at the within-
person level when the objective is to fit models to account for intraindividual fluctuations. This
improvement can, for instance, substantially change the optimal balance between the number of
observations per individual and number of individuals in any given experimental design.

Time delay embedding (sometimes called state space embedding) has been used for the esti-
mation of coefficients in models of intraindividual fluctuations (e.g., Bisconti et al., 2006; Butner,
Amazeen, & Mulvey, 2005; Chow, Ram, Boker, Fujita, & Clore, 2005; Deboeck, Boker, & Berge-
man, 2009). Time delay embedding has also been widely used for the estimation of invariants
of nonlinear time series in physics (see, e.g., Abarbanel, 1996; Grassberger & Procaccia, 1983;
Kantz & Schreiber, 1997; Sauer, Yorke, & Casdagli, 1991). The interested reader is referred to
these examples for illustrations of time delay embedding in realistic situations. Due to theorems
of Whitney (1936) and Takens (1985), the dynamics of a time series can be estimated from a time
delay embedding as long as the embedding delay is not poorly chosen. However, others state that
the standard errors for model estimated from overlapping samples time delay embedding may
be underestimated, and estimates are commonly adjusted to account for redundant degrees of
freedom. The current article explores how overlapping samples time delay embedding affects the
precision of estimates of within-person fluctuations relative to an independent samples design.

Both sampling methods, time delay embedding and independent bursts, focus on dynamic
parameters (e.g., frequency of a sine or slope of a linear trend) rather than initial conditions (e.g.,
phase or intercept). In fact, we show that if initial conditions are known, the advantage of time
delay embedding is reduced. In this article, we exemplify the gain on two-change processes,
linear oscillators, and a simple linear trend. We assume that the model parameters are invari-
ant over time (e.g., the frequency resp. slope is constant over time), and measurement error is
homogenous and independent. The latter assumption may not be necessary, as the foundational
mechanisms described in this article are independent of this assumption. However, since these
assumptions are fairly mild, we concentrate on this situation for the scope of this article.

We will begin by describing what we mean by overlapping samples time delay embedding.
We will next derive a reason why overlapping samples time delay embedding method can im-
prove precision of coefficient estimates of intraindividual fluctuations. We will then use two
simulations to compare the precision of coefficients obtained when a model is estimated using
either (a) many short independent longitudinal bursts (essentially a panel design with 5 waves)
or (b) an overlapping samples time delay embedding of a longer longitudinal sample.
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2. Overlapping Samples Time Delay Embedding

Time delay embedding is a method for transforming a time series into a matrix of time-
dependent chunks of data. By transforming a long sequence of data into a set of short time-
dependent chunks, the time-dependence itself becomes the focus of the analysis rather than the
prediction of any particular value at any particular moment in time. That is to say, each row in a
time delay embedded data matrix encapsulates the time-dependence of a short chunk of the time
series.

We will adopt the terminology “burst” (after Nesselroade, 1991) to describe short, inde-
pendent, time-sequential samples from a longer time series. We will use the term “overlapping
samples” to describe overlapping time-dependent samples created using time delay embedding.
Finally, we will use the term “samples” when we are referring to both “bursts” and “overlapping
samples.”

In this article, we are concerned with the effect of time delay embedding on within-person
precision. In order to simplify the exposition, we will assume that there are no between-persons
differences and then compare two extremes of experimental design. Of course, a real world de-
sign would also be interested in between-person differences and thus an optimum design would
include estimates of between-persons variance and fall somewhere between the two extremes
examined here. But, by setting between-persons differences to zero, we can isolate the within-
person portion of the problem and focus our discussion only on issues that have to do with
overlapping samples. Although our exposition makes the assumption of no between-persons
differences, the logic we use also applies to a multilevel case where coefficients can vary by
individual.

At one end of the spectrum of design, one might observe many individuals a few times. For
instance, suppose we observe 200 individuals each on 5 occasions separated by equal intervals
of time, Atr. In such a design, each row in a data matrix corresponds to one individual’s data
and can be considered to be independent. If between-person differences are zero, each row is an
independent sample in which the covariances between the observations and their time derivatives
within each row have the same true scores. Any observed between-row differences in covariances
are thus assumed to be due to error of measurement.

While this experimental design may seem to be assuming a great deal, analyses such as these
are remarkably common in the literature. Consider a panel design with 5 waves that assumes
stationarity and only analyzes mean point estimates and standard errors for coefficients of time
dependence. We argue that this type of design makes the same assumptions that we are making
in the following simplified examples.

Consider how the data might be arranged to analyze this experimental design. A 200 x 5
data matrix, X, can be expressed as
[ xa Xa2 o Xa3) Yo XS |

X210 X(2,2) X(2,3) X(2.4) X(2,5)
X3.1) X3.2) X@3.3) X(3.4) X@3.9)
X@.1) X4.2) X(4.,3) X(4.4) X@s |’ M

L X(200,1)  X(200,2) X(200,3) X(200,4) X(200,5) |

where x(; ;) is the value of the variable x for the ith individual on the jth occasion of measure-
ment. Each of 200 individuals was measured 5 times, so the total number of measurements was
1,000.

At the other extreme, suppose that we observe a single individual on 1,000 occasions sepa-
rated by the same interval of time, At, as in the previous design. According to our assumptions
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of stationarity and no between-persons differences, the expectation of the point estimates for co-
variances between observations and their derivatives is the same as in the previous example if we
arrange the 1,000 observations into a 200 x 5 data matrix as

[ xan xay o Xay Xae o Xas) |
X(1,6) X(1,7) X(1,8) X(1,9) X(1,10)
X(1,11)  X(1,12)  X(1,13)  X(L,14)  X(1,15)
X(1,16)  X(1,17)  X(1,18)  X(1,19)  X(1,20)

2

L X(1,996) X(1,997) X(1,998) X(1,999)  X(1,1000) _|

where x(; ;) is the value of the variable x for the ith individual on the jth occasion of measure-
ment. Since there is only one individual in this design, i = 1 for all observations.

The data matrices in Equations (1) and (2) are of the same order, 200 x 5. But note that
there is time dependence between the last column in each row, x(1, ), and the first column in the
next row, X1, p+1), that is being ignored. Since estimating within-person time dependence is the
objective of our analysis, we are losing information that could be used to help improve precision
of parameter estimates.

Suppose now that we change how the data matrix is constructed and use overlapping samples
time-delay embedding to create a 200 x 5 data matrix X®,

Cxi o owm2 x3 oxia x5
X12  X1,3 X14 XI5 X16
X1,3  X14  X1,5 X6 X7

5) —
X" = X1,4 X1,5 X1,6 X1,7 X1,8 ’ )

L X1,200 X1,201 X1,202 X1,203 X1,204 |

where x(; j) is the value of the variable x for the ith individual on the jth occasion of measure-
ment. Again, there is only one individual in this design, so i = 1 for all observations.! Note that
in contrast to the 1,000 observations required in the first two designs, we now only require 204
observations to construct the 200 x 5 data matrix.

The two data matrices X and X in Equations (1) and (3) are of the same order,
200 x 5. But the overlapping samples time delay embedded matrix, X has two characteristics
that appear to be problematic. First, there are only 204 measurements in X and there are 1,000
measurements in X. So, we would expect that the time-delay embedded matrix, X(S), would pro-
vide model parameter point estimates that would tend to vary more from sample to sample than
would estimates using X. Second, the rows of X® are not independent of one another; in fact,
the data is being reused from one row to the next. Thus, the assumption of independence of rows
is not met.

Intuition would suggest that the lower number of observations and violation of standard as-
sumptions in the time delay embedded matrix would lead to parameter point estimates for models
of intraindividual variability that are less precise than those from the data matrix constructed from
independent rows and to standard errors estimates that are smaller than the empirical variabil-
ity in the parameter point estimates. In fact, we find that each of these intuitions are incorrect

IThe matrix is a Toeplitz-matrix if the rows are reorganized in an inverted order. Such matrices have been used
before to investigate the dynamics of time series (cf. Molenaar, 1985; Nesselroade et al., 2002), using a Toeplitz-matrix
for the covariance matrix of a complete data series. Here, this matrix structure is used for a data matrix of small bursts
taken from a longer time series.
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both in the case of linear change and for the case of a linear oscillator. The remainder of this
article demonstrates why this counter-intuitive result holds, first by deriving sources of impreci-
sion in the case of linear change and the case of a linear oscillator, and then by presenting two
simulations that show that the advantage derived algebraically does hold in practice.

3. Effects of Overlapping Time Delayed Samples

Assume a long data series that follows a known model with one parameter 8 that describes
the behavior of the model. Many local samples of this series are given to estimate 6. If a normally
distributed unbiased measurement error is introduced on any data point x;, then 6 for all samples
that include x; and subsequently the total estimator 6 will decrease in precision.

In a specific situation, the error constitutes a displacement of x; from its true value, and 0
will consequently be displaced, also. If x; is included in two samples, though, the displacement
of 6 will not necessarily be twice as high, as the error in x; may have less influence in the second
sample. Even more, if the displacement of 6 caused by a erroneous x; has different signs in two
different samples, the overall error on 6 may be smaller than if x; would only be included in one
sample, or even cancel out completely.

In the following, we show a situation where such a reduction of the displacement of 6 holds
true for every fixed displacement of x;. As these displacements are caused by unbiased measure-
ment error, the effect will manifest in a higher precision (and not lower bias) of 6. So, assume in
the following that all samples from the data series are accurate, with exception of a single data
point x;, which is displaced by a small error.

3.1. Linear Functions

Consider for example that the original data series is a line, and three local overlapping sam-
ples are taken from it as shown in the three panels of Figure 1. Assume the data point given are
perfect, but the data point marked with an arrow (which is a member of all three samples) is a
little bit too high. In the first panel of Figure 1, where x; is at the end of the sample, the line that
fits the data best has a positively biased slope (dotted line). In the middle panel, x; is at the center
of the panel, and the best fitting line has a positively biased intercept, but no bias in the slope.
In the third panel, where x; is at the beginning of the sample, the situation is inverted: Here, the
slope is underestimated.

\—V_J

FIGURE 1.
Change of estimated slope with unknown intercept. Curly brackets indicate the observed time span. When in a perfect
data set a positive error at the end of a sample is introduced, the slope estimate increases. If the positive error is introduced
in the middle of the sample, the estimate of slope does not change, and if the error is introduced at the beginning of the
sample, the slope estimate decreases. Thus, in a time delay embedding, a small error introduced in a perfect data set
cancels out; indeed, if the estimate is made for each sample separately and the average is taken as overall estimator, the
canceling is perfect.
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This situation is typical for time delay embedding, where each data point (except the first
and last few data points) will be at each possible position in one sample. So, we can expect that
errors in the data set are partially canceling out.

Suppose that intercept and mean are separately estimated by a maximum likelihood esti-
mation and then averaged over the overlapping samples. In practice, the slope would likely be
fixed over the samples, and all samples estimated simultaneously, but arguably the behavior of
the estimator would be very similar. Assume the data set is based on a model given by a linear
curve with added normally distributed error

Xt:I+St+€t (4)

where [ and S are normally distributed intercept and linear slope and e; is normally distributed
with zero mean, no covariances and variance og. To support the intuition evoked by Figure 1,
it will be shown in the following that the biases in a time delay embedding in fact cancel out
perfectly for a small error.

For a given sample xo, ..., x7—1 of length T from the data set, the likelihood of the sample
is
1 TV, — I — S1)?
L(I, S, x)= 7exp<— =0 (1 _ ) ) )
2ozl 20%
and hence the minus two log likelihood, denoted by L(/, S, x), is
=

L(I, S, x) =log(2m) + T log(c}) + — D @ —1—S81)? (©6)

E =0

the gradient of £ with respect to S and / is given by

L 1 = ¢
m(l,S,x)zgg(xt—l—St)<l>. 7

To find the maximum likelihood estimator of 7 and S in the sample, the gradient is set equal to
zero. The constant factor G% does hence not influence the estimator and will be omitted from

E
here on, i.e., we define g(/, S, x) a%—ﬁ](l, S, x) as

T-1

g(l,S,x)::Z(x,—l—Sr)G). ®)

t=0

Analogously, we define H as the Hessian of £ divided by the same constant factor, i.e.,
H(,S, x):=-2%(I,8,x). His then

— 08,1
T—1 [2 "
H(I,S,x):—Z(t 1>. ©)

t=0

We want to investigate the change of the maximum likelihood estimator S and [ on an
infinitesimally small increase of one of the data points x;. The change of the gradient on this
small increase will be the derivative of g w.r.t. x;, which is

98 1. §.x)= (i) (10)

0X7
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To have the gradient return to zero, a change m in S and I has to be made such that the change of
g on this is the negative of the above value. The change of g with respect to I and § is described
by H, i.e., we have to choose m such that

0
Hm +§_o (1)
T
RN m:—H—IG). (12)
The inverse of H is H~! = %,SO we have
m= ﬁdJ(H)— (13)
T—1
1 1 —t T
~mz (% 7)) (9
t=0

T-1

1 T—t
=mt§<;(;_f))' (15)

This vector describes the change of the estimators S and I on a small positive error on x;.

Now assume we have picked some overlapping samples from the model in a time delay
embedding, i.e., in a way that the first sample contains the time points 0, ..., T — 1, the second
1,..., T, and so forth. Assume that the (7" — 1)th data point is biased; then for the ith sequence,
the derivative of the estimators is

1 Il S
2 L 16
|H | (l(l—fi)) (16)
t=0
where t; =T — 1 — i, hence

LS (T=1-G+n
ﬁt;(t(r—wriﬂ))' a7

Taking the average of the first column (the one corresponding to S) for all T overlapping samples,
we get

T—-1T-1

1 .
T YN (T-1-(G+). (18)

i=0 t=0

We express the double sum as a single sum that runs over all values j of (T — 1 — (i +1)), i.e.,
j runs from —(T — 1) to T — 1; each j appears (T — | j|) in the sum, i.e., the above term is equal
to

T-1

1 N
Tl > (T =1, (19)

Jj=—(T-1)

T-1
T|H > (T =)= (T = jp)=0. (20)
j=1
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\—V_J \—V_J

FIGURE 2.
Change of estimated slope with known first point. Curly brackets indicate the observed time span. When in a perfect data
set a positive error is introduced while assuming a known first point, the slope estimate will increase, no matter where
the error is introduced in the sample, to a higher extent if the error is far from the initial point, and decreasingly less the
closer the error is to the initial point. In panel (c¢), the slope is not effected.

FIGURE 3.

Change of estimated frequency with unknown phase. When in a perfect data set a positive error at the end of a sample

(with a half cycle and phase zero) is introduced, the frequency estimate decreases. If the positive error is introduced in

the middle of a sample with phases %, the estimate of frequency does not change, and if the error is introduced at the

beginning of a sample with phases 7, the frequency estimate increases. Thus, in a time delay embedding, a small error
introduced in a perfect data set cancels out. If the error is introduced at a phase which is a integer multiple % and the
estimate is made for each sample separately and then averaged, the canceling is perfect.

This means that the averaged estimator of S does not change on a small error introduced in one
data point of a linear curve if time delay embedding is applied. The biases of the overlapping
samples cancel out each other perfectly.

If part of the global information is given, though, the effect vanishes; consider, for example,
that we know the position of the first data point in each sample, and the estimate the slope only.
Figure 2 illustrates this situation; as can be seen, the estimated slope now would change to higher
values, and only the absolute value of the slope bias is dependent on the position of the error in
the sample.

3.2. Oscillatory Functions

The reasons for a local sampling are usually even more pronounced in oscillatory functions
like sine curves. So, a natural question is whether the canceling effect of bias for time delay
embedding as can be found for linear functions can be found here, also. Figure 3 illustrates the
situation of overlapping samples for a sine curve; again, we assume that perfect data is given,
and a single measurement x; is misplaced by a small positive error, indicated by the arrow. In the
first Panel of Figure 3, the error is at the end of the sample (which in this example is the end of
the first half cycle). The dotted line gives the best fitting sine approximation to the curve, with
freely estimated phase and frequency. We can see that the frequency is decreased.
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In the middle panel, the sample is taken from a quarter of the cycle to three quarters of the
cycle, and the same error is introduced at the middle of the sample. Here, the best fitting sine
curve is the same curve shifted slightly to the right; so the frequency estimate in this sample does
not change.

In the last panel, finally, the frequency is increased to counter the effect of the error. So, it is
reasonable to assume that on average, the biases cancel out, at least partly. To show this, the fol-
lowing is an analogue development of the one given for linear curves. Here, we will concentrate
on the change of the average frequency estimator for a small deviation of an otherwise perfect
sample of the sine curve.

So assume the model is now given by a sine curve with added normally distributed error

x; =sin(@ + fr) + ¢ 21
where f is a parameter representing the frequency and e; is normally distributed with zero mean,
no covariances and variance oé. Again, the likelihood for a given sample x, ..., x7_1 is

1 Tl (x; —sin(@ + f1))>
L®. f.x)= 7exp<— 2o (% O+ /1) ) (22)
27TO’§T 201
and hence the minus two log likelihood £(9, f, x)
T—1
2 1 . 2
L, f,x) =log2m) + Tlog(oE) +— (x, —sin(0 + ft)) . 23)
%F 1=0
We again consider the gradient with respect to the two model parameters f and 6
. . t
o 9(9 fix)= __,% 2 05(9 + f1)(x; — sin(@ + f1)) (1) (24)

again, since the gradient is set to zero to find the maximum likelihood estimators of f and 6, we
omit the constant factor and define g(0, f, x) with g adf—% as

T-1

(0. f.x):=Y_cos(d + f1)(x, —sin(® + f1)) (i) . (25)

t=0

Let H again be the Hessian of £ divided by the same constant, i.e., H (0, f, x) := ag—gf(e, f,x),
which is

T-1 2
H®, f,x) =Y (=sin@ + f1)(x — sin(@ + f1)) — cos’(@ + f1)) (tt i) (26)

=0

Assume a situation where the data set x is perfect. To investigate the change of the maximum
likelihood estimators f and 6 on an infinitesimally small increase of one of the data points x,
consider again the change of g with respect to x,

a—g=cos(9+fr)(t>. 27
X1 1
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Let m again be the vector of changes in f and 6 such that the gradient returns to zero after a
change in x;. Since Hm + 837}’7 =0,wegetm=—H"! g . Since we assumed a perfect data set,
we have x; =sin(@ + ft), which simplifies the expansmn 1 of this term to

28
m = |H| dj(H ) (28)
_cos(@+ f1) ! ’ 1 -\ (<t
—TZ(;COS (9+ft)<_t t2><1) (29)
_COS(9+fT)T t
- T; cos (9+ft)<t(t T)>. (30)

As before in the linear case, m describes the change of the estimator f and 6 on a small positive
error in x;. If we compare to the linear case, we have two differences: The cosine in front of the
sum, which is merely a factor out of the sum and not important, and the squared cosine in the
sum.

Now assume T samples taken in a time delay embedding from 27 — 1 data points, again
with the (T — 1)th data point biased. This bias will change the estimates in the ith sample to

cos(@+if + ft;) t
i Zcos (0+lf+ft)<t(t )>, (31)

where t; =T — 1 — i, hence

cos(0 + (T — 1)f) (i+1)
Vi Zcos 9+(l+t)f)<t(t T+i+1))' (32)

Taking the average estimate of f for all T samples, we obtain

T—1T-1
cos(@ —;|(ZI|— Df) Z ZCOSZ(Q + G+ )T —1—G+1)). (33)
i=0 =0

Again, we express the double sum as a single one running over all values j of T — 1 — (i 4+ ¢).
The jth summand appears T — | j| times, so the above term becomes
cos(@+ (T —1)f) =
(T
TIE] >l

—1jl)cos*(0 + (T — 1) f + jif) (34)
j=—(T-1)

cos(9+(T—1)f) Z (

TIH] —1j)[cos*(0 + (T — 1) f + jf)

j=1
—cos? (0 + (T — D f — jf)]. (35)

As the cosine square is in [0, 1], we see that the effect of the error at least partially cancels out.
An easy bound from above shows that the average bias of the error in this way is at most half as
much as the bias would be if just one sample was taken with the error in it. Perfect cancellation
occurs if the cosine square is symmetric around 6 + (T — 1) f, i.e., symmetric around the position
at which the error was introduced. That is the case if § + (T — 1) f is an integer multiple of 7.
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N
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FIGURE 4.
Change of estimated slope with known first point. When in a perfect data set a positive error is introduced while assuming
a known phase (as is approximately the case if the phases of the samples are linked in a known way), the frequency
estimate will change in the same direction if the samples are made in a time delay embedding.

So, we see that for the sine curve the same effect as for the linear case occurs when a small
error is introduced and samples are taken in a time delay embedding. Cancellation for the sine
is not necessarily perfect, but as the cosine square has even more symmetry points than the sine
curve, it still happens at many positions.

As in the linear case, the effect vanishes when a global embedding is known, for example,
if the phase is known (which fixes the first data point). Figure 4 illustrates this situation: In the
first two panels, the estimated frequency decreases, and stays constant in the last (as the error is
introduced at a data point which was assumed to be known).

4. Simulation Fitting Sine Curves

To illustrate the effect of overlapping samples time delay embedding, we simulated data
to conform to (a) the independent samples case and (b) the overlapping samples time delay
embedding case. We simulated the data as an undamped linear oscillator (i.e., a pure sine curve)
with amplitude equal to one and wavelength equal to 100 observations, i.e., we simulated 100
data points per cycle. In these units, this corresponds to a frequency of 0.01. To this latent score,
we added a homogeneous fixed measurement error for each single data point. The measurement
error was normally distributed with variance 0.01 or 0.05. From this data, we sampled 40, 200,
or 1,000 samples of length five each. For the independent sample case, we simulated each burst
separately. Starting with a uniformly distributed phase between 0 and 27, we simulated five
consecutive measurements with frequency and amplitude described above. For the overlapping
time delay sampling, we simulated N 44 (i.e., 44, 204, or 1004, respectively) consecutive points
with one uniformly distributed starting phase, and then sampled N overlapping samples of length
five.

In both the independent and the overlapping cases, the same method was used to estimate
the frequency. A sine curve was fit to all samples simultaneously, each with an individual starting
phase but the same frequency parameters (so N 4 1 parameters in total), using maximum like-
lihood estimation. For each cell, the simulation was repeated until the standard deviation of the
estimated frequency was no longer changing significantly, but using at least 200 repetitions per
cell.

For a frequency of 0.01, the error variance of 0.01 corresponds to a signal to noise ratio in the
range of 0.000905 (for samples close to the inflexion point of the sine) to 0.72 (for samples close
to the intercept of the sine with the x axis). The average signal to noise ratio is 0.35. Expressed
in reliabilities (i.e. latent variance over total variance), these values correspond to a range from
0.000904 to 0.42, with a mean of 0.26. For an error variance of 0.05, the signal to noise range
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TABLE 1.
Standard deviation of estimated frequency, f', for different homogenous error variance and sample size. “Rows” refers
to the number of rows in the data matrix as described in Equations (1) and (3) (i.e., number of samples) and “Obs” refers
to the total number of observations required to build a data matrix of the given type (overlapping time delay embedding
or independent bursts). In no cell was the proportion of bias of the mean estimated frequency more than 0.005 of the true
value.

Condition Time delay embedding Independent bursts

Error Rows Obs mean (f) SD Obs mean (f) Stdv
0.01 40 44 0.00999 0.000053 200 0.01001 0.000126
0.01 200 204 0.01000 0.000019 1000 0.01000 0.000052
0.01 1000 1004 0.01000 0.000009 5000 0.01000 0.000024
0.05 40 44 0.01003 0.000296 200 0.00998 0.000553
0.05 200 204 0.01003 0.000105 1000 0.01004 0.000254
0.05 1000 1004 0.01003 0.000037 5000 0.01001 0.000106

is 0.00018 to 0.144, with a mean of 0.07. Thus, the simulated time series were of markedly low
reliability, i.e., were contaminated with a great deal of noise. We set the frequency parameter to
be equal in all samples, while estimating a separate phase parameter for each sample.

The assumption of homogenous error can make the data difficult to fit, since some samples
will always be close to the inflexion point and suffer from an extremely bad signal to noise ratio.
The problem becomes more emphasized the lower the frequency is because with low frequencies,
each single data point in a sample close to the inflexion will have the low signal to noise ratio.
We chose the low frequency and the homogeneous error to show that nevertheless the frequency
parameter can be estimated, and the estimation can be improved drastically by constructing an
overlapping samples time delay embedding.

Table 1 gives the results of our simulation. The first two columns give the error variance and
the number of bursts simulated in each simulation cell. Columns three to five report the results
from the overlapping samples time delay embedding, while columns six to eight report the results
of the independent sampling.

In columns three and six, the overall number of simulated data points (respectively, the total
number of observations) are calculated for both sampling methods. For the time delay embed-
ding, this is the number of overlapping samples plus four. For the independent bursts, this is
the number of bursts multiplied by five. In all cells with both sampling methods, frequency was
estimated within half a percent of the true value (see columns four and seven, respectively).

The most important information of Table 1 can be found in columns five and eight, which
report the standard deviations of the estimated frequency for both methods of sampling. Note
that estimation precision was relatively high despite the high error. Nevertheless, precision was
always higher for a time delay embedding, usually more than twice as precise. Note, in addition,
that roughly only a fifth of the data points were needed to create the same number of samples in
the time delay embedding, since four of the five data points were reused from the sample before.
To compare the methods assuming equally many data points, time delay embedding with 200
samples (line two and five, respectively) must be compared to random sampling with 40 samples
(line one and four, respectively), and 1,000 samples to 200 samples. The advantage of the time
delay embedding then becomes even more pronounced.

5. Simulation Using Latent Differential Equations
Time delay embedding is simply a method for setting up a data matrix prior to analysis.

To illustrate that this method can be used with other estimation techniques, we next fit a latent
differential equations (LDE) model (see Boker, Neale, & Rausch, 2004 for a more complete
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FIGURE 5.
Multivariate Latent Differential Equation structural model with three indicators for a damped linear oscillator latent
process.

description of this model) to simulated data and show that the advantage holds for estimation of
frequency and damping parameters for a damped linear oscillator. Each row in the data matrices
in Equations (1) and (3) can be used to estimate the displacement and derivatives at a time ¢
by filter basis functions similar to quadratic growth curve model. The covariances between these
estimated displacements and the derivatives can then estimate the coefficients » and ¢ in a second
order differential equation model for the damped linear oscillator expressed as

X =nx, + X + e, (36)

where x; is the displacement of the variable from its equilibrium value at time ¢ and X; and X, are
its first and second derivatives at time .

The data for the simulation were generated to conform to a factor model as shown in Fig-
ure 5, but with four indicator variables rather than three. The indicator variables were generated
for a damped linear oscillator latent process, and time-independent normally distributed error was
added to each indicator variable. The latent process variable was created by numerically integrat-
ing Equation (36) using Mathematica. Values for each of the coefficients was chosen from the
sets ¢ ={0.0, —0.02} and n = {—0.6}. Thus, we generated two oscillators: one with no damping
and one with mildly negative damping. All indicator variables were simulated with communali-
ties of 0.8, and the four factor loadings were selected as 1.0, 0.9, 0.8, and 0.7, respectively. We
drew samples either using the randomized initial condition method (bursts of 5) or using the time
delayed embedding method so that the resulting data matrices either had 200 or 400 rows. Thus,
we created a 2 x 2 x 2 design with 2 levels of damping, 2 levels of matrix rows, and 2 types of
sampling. For each cell in the simulation design, we simulated 1,000 data sets and fit an LDE
model to each data set.

The LDE factor model was specified as follows. First a loading matrix, L, was constructed
to conform to the four indicators by 5 occasions of measurement per row in the data matrices
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where s is the sampling interval between successive samples, and a, b, and ¢ are free parameters
accounting for the factor loadings of the indicators for the latent process. Next, the structural part
of the model is specified according to the RAM notation (McArdle & McDonald, 1984)

0 0 O
A=|0 0 o], (38)
Ln ¢ O
Ve Cpar O
S=| Crar Var 0 . (39)
| O 0 Vaor

Finally, a 20 x 20 diagonal matrix U is constructed for the residual variances and then the ex-
pected covariances of the model can be calculated as

R=LI-A)"'ST-A) 'L +U. (40)

The structural equation modeling software Mx (Neale, Boker, Xie, & Maes, 2003) was then used
to fit the LDE model to all data sets using full information maximum likelihood as the objective
function.

5.1. LDE Simulation Results

The distributions of 1 and ¢ for the conditions ¢ = —0.02 and N = 500 are plotted against
the normal distribution as a QQ plot in Figures 6a and 6b, respectively. Since each of these plots
approximates a straight line, the distributions of estimates of 7 and ¢ are approximately normal.
The greater the slope of the line, the wider the distribution of the parameters—thus it is evident
that the distributions of n and ¢ for time delay embedding in the top two plots are much more
precise than those of the independent rows sampled cases in the bottom two plots. Note also that



172 PSYCHOMETRIKA

a b
1 1 1 1 1 1
1 1
. - —0.54 i L 0.05
. - —0.56
| * | -0.58 | / - 0.00
i / +—0.60 o
o e L 062 % 8 - —0.05
w N
5 il - —0.64 5 . L _0.10
I c
2 0 S 0
3 L] S L]
-'g —0.54 r Ke) 0.05 ™ |
3 -0.56 - 2
—0.58 - - 0.00 -
—0.60 - -
~0.62 L —0.057 i
—0.64A. - —0104. |
T T T T T T
-2 0 2 -2 0 2
Normal Distribution Normal Distribution
FIGURE 6.

QQ plots of coefficient distributions of (a) n and (b) ¢ versus normal distribution for { = —0.02 and N = 500. The top
row of plots in (a) and (b) are the overlapping time delay embedded data and the bottom row of plots are the independent
rows sampled data.

the mean of the distributions for all four plots are approximately the true values of n = —0.6
and ¢ = —0.02. The pattern of results in these plots are representative of all of the other cells in
the simulation. In all cases, the time delay embedding estimates were considerably more precise
than the independent rows sampled estimates, there was no appreciable bias, and the parameter
estimates approximated a normal distribution.

Table 2 displays the results of predicting the standard deviations of the parameter values
from two of the simulation conditions: number of rows in the data matrix (coded in hundreds)
and whether or not the matrix was constructed as a time delayed embedding (coded as 0 = burst
sampling and 1 = overlapping samples). Thus, for each 100 observations, the simulation predicts
a standard deviation decrease of 0.0032 for n and 0.0047 for ¢. There are also large independent
effects of constructing an overlapping samples time delay data matrix: a decrease of 0.0181 for
the standard deviation of n and 0.0263 for ¢. Note that the effect on the standard deviation of the
parameters of adding one hundred rows to the data matrix is about one fifth the effect of using
time delayed embedding.

The bias of n and ¢ was also modeled and the results are shown in Table 3. Overall, there
was a small, but statistically significant bias for n (bias = 0.005, p < 0.001) and the bias for ¢
was not significantly different from zero. However, there was not a significant effect on the bias
of n or ¢ from whether the matrix was constructed as a time delay embedding.

The gain in precision can be rephrased as a gain in power. For illustrative purposes, assume
a researcher wants to reject the hypotheses that the oscillator in the example is undamped, i.e.,
¢ = 0. Under the assumption that the variance of the parameter estimate is independent from the
true parameter value, a researcher may apply a Wald test (cf. Bollen, 1989). Using a bootstrap
method allows one to get an estimate of the standard deviation of ¢.

In the situation of the simulation above, ¢ was —0.02. When using 500 random bursts of
length 5, the standard deviation of ¢ is 0.0273. Using a significance level of 5%, a one-sided
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TABLE 2.
Standard deviations of 1 and ¢ predicted as a multiple regression from simulation conditions. N is the number of rows
in the matrix in hundreds (i.e., 2 or 5). Embedded is coded O for the independent rows data and 1 for the overlapping
samples time delay embedded data.

n Value SE t p
(Intercept) 0.0369 0.00255 14.480 <0.0001
N (in hundreds) —0.0032 0.00062 —5.082 0.00383
Embedded —0.0181 0.00187 —9.665 0.00020
Multiple R-squared: 0.960, Adjusted R-squared: 0.943

¢ Value SE t p
(Intercept) 0.0520 0.00354 14.693 <0.0001
N (in hundreds) —0.0047 0.00086 —5.421 0.00289
Embedded —0.0263 0.00259 —10.121 0.00016

Multiple R-squared: 0.964, Adjusted R-squared: 0.949

TABLE 3.
Bias for n and ¢ predicted as a multiple regression from simulation conditions. N is the number of rows in the matrix in
hundreds (i.e., 2 or 5). Embedded is coded O for the burst sample matrix and 1 for the embedded matrix.

n Value SE t P
Intercept 0.00560 0.00065 8.562 <0.001
N (in hundreds) —0.00006 0.00016 —0.402 0.704
Embedded —0.00083 0.00048 —1.737 0.143
Multiple R-squared: 0.389, Adjusted R-squared: 0.144

¢ Value SE t P
Intercept 0.00057 0.00233 0.244 0.817
N (in hundreds) 0.00004 0.00057 0.077 0.941
Embedded —0.00066 0.00171 —0.388 0.714

Multiple R-squared: 0.030, Adjusted R-squared: —0.358

Wald test will reject the hypotheses of no damping if the estimated ¢ is smaller than —0.0309.
Considering the distribution described in Figure 6, this will be the case in 28.0% of the cases. In
other words, the power to reject the hypothesis of no damping with a Wald test is only 28.0%,
which is usually considered a rather low power.

When using a data matrix of 500 rows with a time delay embedding, the standard error of
¢ is only 0.0092. In this case, the critical value for the Wald test would be —0.0151. Again
considering the distribution from Figure 6, this corresponds to a power of 70.2%. We can see
that the power is drastically increased even though only a fifth of the samples had been taken.

It is reasonable to assume that the increase in power also holds for other statistical tests than
the Wald test. A more complete investigation of this topic needs to be developed in the future.

6. Discussion

Overlapping samples time delay embedding of a time series improves precision of parameter
estimates in comparison to sampling short independent rows when the assumptions made in this
article are met. There is a surprisingly large benefit to using the time delay embedding method,
but there is a mathematical reason why this benefit appears. If one is interested in modeling
intraindividual variability as a time dependent process then it appears to be a much better strategy
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to put effort into gathering a few more samples for a single longer time series than into gathering
another independent row of data.

Note that in time delay embedding, fewer but consecutive observations are drawn from the
time series, compared to random burst sampling, where more observations are drawn, but in
small consecutive chunks. This seems to fit with the general observation that fewer observations
over more time points can contain more information than many short observations.

We expect that one beneficiary of this method will be models of intraindividual processes
that are formulated as differential equations. Differential equations have long been considered as
appropriate for social science data (Hotelling, 1927), but only recently have sufficient data and
methods for estimation been available. There are now several ways to estimate the parameters
of differential equations such as Equation (36). We expect that the result presented in the cur-
rent article may improve power in some of these methods. For instance, functional data analysis
(Ramsay, Hooker, Campbell, & Cao, 2007) and the approximate discrete method (Oud & Jansen,
2000) are candidate estimation methods that might exhibit improved power when using overlap-
ping samples time delay data matrices.

Note that time-varying covariates can be added to the data matrix in additional columns. The
covariate should be aligned so that the time of occurrence of the covariate is at the time of the
center of the window. For example, in the matrix X O of Equation (3) in the introduction, the
value of the covariate at the third time point would be placed in a sixth column in the data matrix
and then could be used in modeling. If such an approach is taken, a mixed-effects model grouped
by person ID will likely be used.

We caution that overlapping samples time delay embedding is a tool that, like any statistical
tool, could lead to poor results when assumptions are violated. In our simulations, we assumed
that (a) we are interested in modeling fluctuations about an equilibrium and not growth from a
known zero point, (b) the model parameters were invariant over time, (c) the error was homoge-
neous and uncorrelated over time, and (d) the models were linear change and linear oscillators.
Our results show that the time delay embedding method has no advantage when the initial con-
ditions are known and do not need to be estimated. However, more work needs to be done in
order to find out whether the other three assumptions are actually necessary and how robust the
advantage of overlapping samples time delay might be if the assumptions are violated.

Furthermore, we caution that one should not assume that it is always a better strategy to put
one’s money and effort into sampling a longer time series than to gather more independent rows
of data. For instance, suppose one is interested in how short-term regulation changes over the
long term, e.g., how emotional regulation changes as we age. In this case, one must carefully
weigh the power requirements for detecting time-related change in the short-term regulatory
coefficients. More reliable estimates of the coefficients will help, indicating more observations
within a independent row; but longer intervals between independent rows will also improve ones
chance of detecting time-related change in the regulatory coefficients. Additional work needs to
be done in order to integrate multilevel power calculations (e.g., Snijders & Bosker, 1999) with
power calculations for overlapping samples time delay embedding.

In conclusion, we found much to recommend overlapping samples time delay embedding as
a method for improving precision of parameter estimates for models of intraindividual processes
in relatively short and noisy time series such as are commonly seen in social science data. We
have found that this advantage holds in the case of linear change and for a linear oscillator. Other
models for intraindividual process may also benefit from this method, but we have not yet shown
that the advantage holds in general. The advantage of time delay embedding does not appear to
depend on the estimation method used, thus many methods for estimation may be able to take
advantage of this data structuring technique. When applied in situations where the assumptions
made in the present article are satisfied, we recommend considering time delay embedding prior
to estimation of parameters.
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