
Risk sensitivity as an evolutionary
adaptation
Arend Hintze1,3, Randal S. Olson2,3, Christoph Adami1,3 & Ralph Hertwig4

1Department of Microbiology and Molecular Genetics, 2Department of Computer Science and Engineering, 3BEACON Center for
the Study of Evolution in Action Michigan State University, East Lansing, MI, USA, 4Center for Adaptive Rationality, Max Planck
Institute for Human Development, Berlin, Germany.

Risk aversion is a common behavior universal to humans and animals alike. Economists have traditionally
defined risk preferences by the curvature of the utility function. Psychologists and behavioral economists
also make use of concepts such as loss aversion and probability weighting to model risk aversion.
Neurophysiological evidence suggests that loss aversion has its origins in relatively ancient neural circuitries
(e.g., ventral striatum). Could there thus be an evolutionary origin to risk aversion? We study this question
by evolving strategies that adapt to play the equivalent mean payoff gamble. We hypothesize that risk
aversion in this gamble is beneficial as an adaptation to living in small groups, and find that a preference for
risk averse strategies only evolves in small populations of less than 1,000 individuals, or in populations
segmented into groups of 150 individuals or fewer – numbers thought to be comparable to what humans
encountered in the past. We observe that risk aversion only evolves when the gamble is a rare event that has a
large impact on the individual’s fitness. As such, we suggest that rare, high-risk, high-payoff events such as
mating and mate competition could have driven the evolution of risk averse behavior in humans living in
small groups.

D
ecision making under risk and uncertainty is a topic of inquiry in disciplines as diverse as psychology,
economics, and biology1–4. Although different in several aspects, these different disciplinary accounts all
assume that the likelihood of choosing a risky option is affected by the variability of the option’s possible

outcomes. To test how risk sensitive people are, subjects are usually presented with a monetary gamble where
there is a safe choice and a risky choice. For example, the safe choice rewards the subject with a fixed payoff P with
100% certainty, whereas the risky choice rewards the subject with a higher payoff Q (Q . P) only half of the time.
In the equivalent mean payoff gamble5, the rewards are designed such that the mean payoff of the safe and the risky
action is the same. Because both options have the same mean payoff, no action should be preferred. However,
when people are faced with dicey decisions, a well-documented trend holds6–8: If the stakes are sufficiently high,
people prefer the safe option. They are therefore risk sensitive (risk averse).

The same risk aversion can be observed in animals who, e.g., actively avoid foraging in an area if they cannot
reliably find food there9,10. In addition, it has been proposed that animals actively avoid risk due to the increased
mortality that risky decisions often entail11. When foraging, animals only take risks when the risk of the decision is
outweighed by other factors12–15. Additionally, foraging animals avoid risk when resources are plentiful, but adopt
riskier strategies when resources are scarce16. Further, organisms ranging from bacteria17 to birds18 are suggested
to mitigate risk in their reproductive success via bet hedging19–24. However, in these natural situations risky
behavior often does not compensate for the potential cost of taking the risk. Thus, while these circumstances
could explain the evolutionary advantage of risk sensitive behavior in many natural settings and species, they do
not offer a clear rationale for why humans would be prone to avoiding the risky action in the equivalent mean
payoff gamble where the average payoff of each choice is the same.

Nevertheless one should assume that the risk sensitivity of both humans and animals may be shaped by a
common fundamental principle25. Moreover, there is considerable evidence from cognitive neuroscience that loss
aversion has a neural basis26. Neurophysiological measurements suggests that different regions of the brain
process value and risk assessment27,28. This work also implies that the neural circuitry that encodes risk sensitivity
(or its building blocks such as loss aversion) is phylogenetically ancient. However, the origin of this neurally
encoded risk sensitivity is rarely discussed (but see refs. 11, 29, 30), even though there is strong evidence that risk-
taking behavior has significant genetic components31,32.

This poses a puzzling question: how can evolution select for risk sensitivity in the equivalent mean payoff
gamble if no choice has a higher mean payoff (fitness)?

OPEN

SUBJECT AREAS:

HUMAN BEHAVIOUR

BIOLOGICAL ANTHROPOLOGY

Received
12 June 2014

Accepted
12 December 2014

Published
4 February 2015

Correspondence and
requests for materials

should be addressed to
A.H. (hintze@msu.edu)

SCIENTIFIC REPORTS | 5 : 8242 | DOI: 10.1038/srep08242 1

mailto:hintze@msu.edu


This is not bet hedging. In contrast to the equivalent mean payoff
gamble studied here, it has been shown33–35 that if the risky action
comes with a higher payoff than the certain one, evolution will favor
risk seeking behavior. An alternative explanation might be bet hedging,
where individuals optimize their fitness by sacrificing their mean
fitness to decrease variation on fitness. While geometric mean fitness
maximization or bet hedging can influence the payoffs received36, and
thus contribute to the evolution of risk sensitivity, these strategies do
not affect the payoff in the equivalent mean payoff gamble. Geometric
mean fitness maximization and bet hedging requires multiple games,
which is not allowed in the gamble studied here. One might argue that
not the individual but the population itself is heterogeneous and thus
as a whole hedges the bets. This, however, would require selection to
occur on the population level, which does not explain risk sensitivity in
individuals.

Prospect and expected utility theory. First, the classical economists’
account of risk sensitivity is in terms of the shape of the utility function
in expected utility theory. Specifically, the curvature of the utility
function is interpreted to measure the agent’s risk attitude, and the
more concave the utility function, the more risk averse the agent will
be. A concave utility function corresponds to the notion of diminishing
marginal utility of wealth according to which ‘‘the additional benefit
which a person derives from a given increase of his stock of a thing,
diminishes with every increase in the stock that he already has’’ [Ref. 37,
p. 79]. Second, cumulative prospect theory, perhaps the most influential
descriptive account of decision making under risk in psychology and
behavioral economics, models risk aversion in terms of three different
but related concepts: diminishing marginal utility, loss aversion (i.e., the
pain of losses is felt stronger than the joy of equivalent gains), and
probability weighting (i.e., the elevation of the weighting function and
thus the degree of over/underweighting of small probabilities of gains
and losses, respectively)3,38. While both theories describe the human
preference, it is not clear why such behavior has an evolutionary
advantage in the equivalent mean payoff gamble.

External factors. Of course, the gamble described above is a crude
simplification of human choice, which can be shaped by many other
factors. External factors such as framing39, how the odds are presented40,
or if the decision has to be made from experience or from description41

play a role in human decision making. The relative value of the payoff to
the subject as well as whether the gamble is real or hypothetical can have
an effect on the subject’s preference42. Internal factors such as age43,44,
cognitive ability45, and habits or personal circumstance46,47 influence the
subject’s decision, as well as how the subject weighs the potential value
of losses and gains3. Without downplaying the importance of these
factors, the question remains: Where did this risk sensitive behavior
originate from?

Small population size and risk sensitivity. Previous studies have
reported that in small populations of evolving organisms, the fitness
of riskier behaviors is significantly affected by the variance in the
payoff of the behavior19,48. This observation suggests that strategies
that minimize the variance in the payoff of a gamble should have a
selective advantage only in small populations. Consequently, evolution
in small populations could potentially explain the origin of risk
sensitivity by humans in equivalent mean payoff gambles.

In order to study the evolution of the strategy, we simulate a
population of agents whose choice of strategy is determined genetic-
ally, and inherited by the agent’s offspring. The payoff that the agent
receives is taken as the agent’s fitness. A small probability of mutation
introduces variation, so that alternative strategies from the ancestral
one can be explored. Each agent makes only one decision during its
lifetime that determines its fitness, which means that the agents are
potentially making a life (positive payoff 1/x) or death (zero payoff)
decision. Such a life or death decision is akin to a rare lifetime event
that has a large impact on an individual’s fitness, such as mating and

mate competition49. We use this agent-based simulation to explore
how small a single population has to be in order to have a significant
impact on the evolution of risk sensitivity. Additionally, we imple-
ment an island-based model to test whether larger populations that
were segmented into small groups (with the possibility of migration
between groups) could still select for the evolution of risk sensitivity.
Although this model cannot take into account the complexity of
human evolution nor the exact circumstances thereof, it can address
the plausibility of risk sensitivity as an evolutionary adaptation to
equivalent mean payoff gambles due to small population sizes.

Results
Theory of selection for variance. The tendency for natural selection
to select against variance in offspring number has been discussed
before. Indeed, Gillespie has argued that large variance in offspring
number could be selected against because adverse outcomes (few or
zero offspring) cannot easily be balanced by favorable outcomes (large
broods) for individuals of the same species, because the individuals
without offspring may not get to try the ‘‘offspring lottery’’ again19,48.
Further, Gillespie proposed an approximate mean actual fitness that
takes the variance in the offspring number distribution into account
(see Equation [6]).

To test whether evolution can explain the emergence of risk sens-
itive strategies, we generalize the equivalent mean payoff gamble so
that there are an infinite number of possible choices, parameterized
by the probability x to obtain the high payoff. We choose this payoff
to be 1/x, so that the mean payoff of any choice will be 1. We will call
any of the possible gambles a strategy, and denote each strategy by the
probability x. The choice x 5 1 then implies that the agent chooses
the safest gamble. In this game, there is no limit on how risky the
gamble is, except we do not permit strategies with x 5 0, as they are
not normalizable.

Gillespie’s fitness estimate wact strongly depends on the strategy
choice x (because it determines the variance in the offspring number
distribution) as well as population size (Figure 1A). To illustrate the
phenomenon, imagine one risky strategy (x 5 0.01) and 99 non-risky
strategies (x 5 1.0). The risky strategy wins on average in one out of
hundred gambles and receives a payoff of 100. While the one lucky
gamble makes it 100 times fitter than all others, this win happens
rarely. However, in the small population of 100 organisms, the risky
strategy will have 0.0 payoff and no offspring in 99 out of 100 gambles
(generations), it will thus die out more likely. Only in an infinite
population will this risky strategy never die out. Therefore, small
populations favor, risk averse strategies.

Thus, this theory explains why agents that evolved in small popu-
lations show a preference for risk sensitive strategies, whereas agents
that evolved in larger populations showed no such strategy pref-
erence. We can test the theory directly by measuring the probability
P (the fixation probability) that a perfectly risk-sensitive strategy
(x 5 1) can invade (and replace) a homogeneous population con-
sisting of strategies with choice x # 1. We find that the observed
probability of fixation (shown in Figure 1B for a population size of
N 5 50) agrees qualitatively with the fixation probability calcu-
lated using Gillespie’s fitness in Kimura’s formula (dashed line in
Figure 1B), but not quantitatively. Indeed, an effective fitness of
about half of Gillespie’s estimate reproduces the simulations almost
exactly, which corroborates earlier findings22). Since our computa-
tional model does otherwise not produce controversial results (see
below), we suggest that Equation (3) is quantitatively wrong and
therefore does not represent our model.

Evolution in a single population. Evolution is not explained by
fixation probabilities alone. In nature we find populations con-
taining a range of mutated strategies that adapt in a heterogeneous
background of other mutants. Instead of relying on fixation
probabilities alone, we now investigate how in an agent-based
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model strategies playing the equivalent mean payoff gamble evolve,
assuming a non-zero mutation rate. This is particularly important
because very risky strategies, in case they win, will have very many
offspring in that generation, which all have the chance to mutate.

Each agent in a population is represented by a single probability x
(the agent’s inherited gambling strategy), where x determines the
fitness of the agent. Every agent only plays the gamble once in their
lifetime, so their fitness is determined by polling a random variable X

X~
1
x

p~x

0 p~1{x

�
ð1Þ

exactly once, where p is the probability to receive the corresponding
payoff and x is the agent’s strategy. An agent equipped with a strategy
x . 0.5 is considered risk sensitive, whereas an agent with a strategy x
, 0.5 is considered risk-prone. All else being equal, we expect that
evolution should not prefer any strategy over another, because the
mean payoff of a species (individuals with the same x) should be the
same regardless of x.

If population size does not have a significant effect on the evolu-
tion of risk sensitivity, we would expect the strategy preference of any
individual to drift neutrally, so that at the end of the evolutionary run
(generation 950) the expected mean population strategy is �x~0:5
(the mean of a uniformly distributed random variable constrained
between zero and one). Instead, we observe in Figure 2A that the
mean x converges to 0.6941 6 0.0139 (mean 6 two standard errors).

Similarly, we would expect that if the strategy drifts neutrally, we
should observe x to be distributed in a uniform manner at the end of
the evolutionary runs. Instead, for a population size of N 5 100, we
observe in Figure 2B a distribution that departs significantly from
uniformity (Wilcoxon rank sum test P 5 7.795410222 between this
distribution and a uniform random distribution). This result sug-
gests that population size plays a critical role in shaping what strat-
egies evolve in the agent population.

To further explore the effect of population size on evolved strategy
preference, we ran the evolutionary simulation with different fixed
population sizes. Figure 3 demonstrates that the final evolved strat-
egy depends strongly on the population size. These results highlight
that agents in smaller populations prefer risk sensitive strategies that
receive a lower payoff but with higher reliability. In contrast, agents
in larger populations do not show a preference for risk sensitivity nor
risk-seeking strategies and converge on �x~0:5 because all strategies

perform roughly the same in large populations, that is, the x of
individual strategies drifts neutrally.

Throughout evolutionary history, humans have experienced at
least two population bottlenecks that reduced the human population
to as few as 1,000 individuals50,51. However, a population size of 1,000
individuals is unlikely to be small enough to evolve risk sensitive
behavior as a dominant strategy in the population19,48. Instead, a
more likely explanation is that humans have lived in groups of about
150 individuals throughout their evolutionary history52,53, which
plausibly could have been a small enough effective population size
for risk sensitivity to have evolved.

Evolution in groups. In the previous section, we demonstrated that
agents in small populations evolve a preference for strategies with low
variance in their payoff distribution, i.e., risk sensitivity. The group size
for humans throughout evolutionary history has been proposed to be
around 150 individuals52,53, which suggests that evolving in such small
groups could have been the reason behind the evolution of human risk
sensitivity. However, a small group size and a small population size are
two different things. While humans might have lived in small groups
of 150 individuals, the total population size of humans has been much
larger, and were only at times as low as 1,000 individuals50,51. Even
though selection may occur within groups of about 150, individuals
likely migrated between groups. Migration could have caused selection
to effectively act on much larger groups (or even the entire human
population) negating the selection for a variance effect.

We can simulate such an environment using an island-based
evolutionary model (see Methods), in which individuals live in
groups (the ‘‘islands’’) that randomly exchange individuals with each
other via migration. For example, we can run 1,000 replicate evolu-
tionary experiments with 128 groups of 128 individuals each, with
varying migration rates. In this configuration the total population
size is 16,384 individuals, which according to Figure 3 should result
in agents evolving no strategy preference. Figure 4 shows that regard-
less of the migration rate, the group size and not the total population
size determines whether agents evolve risk sensitive strategies. This
result suggests that even with migration between groups, the effective
population size that selection acts on is determined by the group size
and not the total population size. While this result might seem sur-
prising, one has to take into account that selection happens for each
group separately, and these virtual agents only compete against
agents within their group and not against everyone in the entire

Figure 1 | (A) Fitness (wact) as a function of strategy choice x and population size according to Gillespie’s model Equation (6). Fitness differences

between strategies with different x are far more pronounced in smaller populations. Larger population sizes effectively buffer risky strategies against

immediate extinction when the risky strategy does not pay off. See legend for population sizes. We note that the x-axis is log scale. (B) Fixation probability

(P) of a perfectly risk-sensitive strategy (x 5 1) within a uniform background of strategies with choice x, as a function of x (solid line). Fixation

probabilities were estimated from 100,000 repeated runs, each seeded with a single invading strategy with x 5 1 in a background population of N 5 50

resident strategies with strategy x. The dashed line is Kimura’s fixation probability P(s) 5 (1 2 e22s)/(1 2 e22Ns) (see, e.g., Ref. 55), where s is the fitness

advantage of the invading strategy calculated using Equation (6). Error bars are two standard errors.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8242 | DOI: 10.1038/srep08242 3



population, which explains why the migration rate does not affect the
evolution of risk aversion in this model.

When we change the size of the groups but fix the total population
size (i.e., increase the group size and reduce the number of groups)
while keeping the migration rate at a constant 0.1, we again observe
that the group size critically determines the preferred evolved agent
strategies (Figure 5). Risk sensitive strategies are preferred in smaller
groups and no strategy is preferred in larger groups. This result
recapitulates the results from Figure 3, which shows that the pref-
erence for strategies with low payoff variation (i.e., risk sensitivity)
depends on the effective population size.

Relative value of the gamble. Another way to alter risk sensitivity in
humans is by changing the relative value of the payoff42. When the
gamble is about small amounts of money (i.e., ‘‘peanuts’’ gambles or
hypothetical money), humans tend to be less risk averse, whereas
raising the relative value of the gamble increases risk aversion. In our
evolutionary simulation, agents play the gamble a single time and the
payoff they receive is their only source of fitness. This constraint
effectively turns the gamble into a life or death situation, similar to
a game with extraordinarily high stakes.

To simulate lower-stakes gambles, we add a baseline payoff (b) to
the payoff so that the fitness of the agent becomes

X~
bz 1

x
p~x

b p~1{x
;

�
ð2Þ

where p is the probability to receive the corresponding payoff and x is
the agent’s strategy. Typical gambles humans partake in fall either in
the loss or in the gain domain. In biological systems, on the other
hand, organisms accumulate resources in order to ultimately pro-
duce offspring. The ‘‘gambles’’ these organisms undertake will influ-
ence the number of offspring, which will be positive or zero. Thus, we
cannot differentiate between losses or gains in the same way people
conceive a gamble for money. Therefore, gains and losses must be
considered relative to fitness.

When we run the evolutionary simulation with a population size N
5 100 for various values of b, we observe that the larger the baseline b
becomes, the more often strategies return to an unbiased choice
(Figure 6). This result is expected because fitness differences only

matter if their relative impact is larger than
1
N

54,55. Thus, risk sensitive

strategies will only be selected for when the outcome of the gamble
represents a significant portion of the individual’s fitness when tak-
ing the population size into account.

Figure 2 | Strategy evolution with a fixed population size of 100 individuals and a mutation rate of 1%. (A) Mean strategy �x on the line of descent at

generation 950 over 1,000 replicate runs. Measurements were taken after selection happened, hence the value for generation 1 is not 0.5. The agents on the

line of decent show a preference for risk sensitive strategy. The dotted line indicates the expected value 0.5 for unbiased evolution, i.e., no strategy

preference. (B) The probability distribution of x at generation 950 of the dominant strategy across 1,000 replicate runs. This is identical to the distribution

of strategies within the population at generation 950 (Figure S2), showing that there is no considerable difference between line of descent and population

averages. The agents evolve a significant preference for risk sensitive strategies by generation 950 (Wilcoxon rank sum test P 5 7.795410222 between this

distribution and a uniform random distribution).

Figure 3 | Mean strategy �x at the end of 1,000 evolutionary runs as a
function of population size. Agents in smaller populations (e.g., 50 and

100) demonstrate a clear preference for risk sensitive strategies. In contrast,

agents in larger populations (e.g., size 5,000 and 10,000) display only weak

risk sensitivity or no preference. Error bars are two standard errors over

1,000 replicates. The dotted line indicates the expected mean value for

unbiased choice, i.e., no strategy preference.

Figure 4 | Mean strategy �x on the line of descent at generation 950 as a
function of the migration rate in an island model genetic algorithm with
128 groups with 128 members in each group. Regardless of the migration

rate, it is the group size and not the total population size that determines if

the agents evolve risk sensitive strategies. Error bars indicate two standard

errors over 1,000 replicates. The dotted line indicates the expected value for

unbiased choice, i.e., no strategy preference. A migration rate of 0.5 implies

that half of the agents in each group migrate every generation.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8242 | DOI: 10.1038/srep08242 4



Repetition of the gamble. Thus far, we have only investigated one-
time gambles. What happens when the agents engage in the same
gamble multiple times during their lifetime? On average, repeating
the gamble reduces the variance in the overall payoff the agents
receive, and if games are played infinitely, then the payoffs will
converge to the same mean. In this experiment, we do not consider
situations where agents can change their behavior based on previous
experiences56, but rather focus on unconditional responses. We observe
that the agents no longer evolve a preference for risk sensitivity if the
gamble is repeated several times in a lifetime (Figure 7). At the same
time, the effect of repetition depends strongly on the population size,
such that smaller populations still evolve risk sensitive strategies with as
many as 10 repetitions of the gamble. Therefore, a preference for risk
sensitivity will only evolve for those gambles that are encountered a few
times during an individual’s lifetime.

Discussion
We hypothesized that risk sensitivity in humans could have been an
evolutionary adaptation to living in small groups. We tested this
hypothesis by evolving artificial agents whose fitness is determined

by a single choice during their lifetime in groups of varying size, and
where that choice is encoded genetically and thus heritable. We
observed that a preference for risk sensitivity does indeed evolve,
but only when the group size is sufficiently small. However, our
results differ quantitatively from those predicted19. While this has
been suggested before22, this has not been tested using agent based
modeling. New in our study is the introduction of a mutation rate
that allows strategies to change over evolutionary time scales. Based
on this we find the following novel results: Even with mutations,
small populations are still causing risk aversion to evolve, the relative
value of the gamble still matters, and as expected, repeating the game
has drastic effects on the payoff variance.

Without a mutation rate we would expect a single strategy as the
winner, instead we find a distribution of strategies in the population,
which is not predictable from a zero mutation rate assumption.
These findings align with reports from earlier work that humans
lived in groups of about 150 individuals for a large portion of their
evolutionary history52,53, providing a plausible evolutionary explana-
tion for the risk averse behavior commonly observed in humans. In
other words, these findings provide a quantitative foundation to the
idea that evolution can explain risk sensitivity29. The computational
model inevitably abstracts many nuances of human evolution.
Because of this, however, we are able to show that all organisms
who experienced similar situations could, in theory, have evolved
risk aversion.

Additionally, we find that risk sensitivity is the preferred evolu-
tionary adaptation to life in small groups when these groups are
embedded within much larger groups, even with a large amount of
migration between groups. However, it is important that the risky
decisions occur only rarely during an individual’s lifetime, and where
the outcome of the gamble represents a significant effect on the
individual’s fitness. If the gamble has a negligible impact on fitness
(e.g., only small gains are at stake) or if the risk is encountered
regularly in the individual’s lifetime, then the selective advantage
of risk sensitivity will be lost. Examples of such rare, high-risk,
high-payoff gambles include mating and mate competition49.

Our work does not imply that no risk-seeking strategies can pos-
sibly evolve. What we show is that risk sensitivity evolves on average,
but the distribution of strategies within a population is quite broad
(Figure 2). Thus, while on average agents are risk-averse if they evolve
in a small population, there will always be some agents that are extre-
mely risk-seeking. Such agents can do extraordinarily well by chance
and persist, but their genes are ultimately destined for extinction.

Figure 5 | Mean strategy �x on the line of descent at generation 950 as a
function of the ratio between group size and number of groups. Group

size critically determines the preferred evolved agent strategies, where risk

sensitive strategies are preferred in smaller groups and no strategy is

preferred in larger groups. The x-axis tick labels are formatted as
group size

number of groups
. Error bars indicate two standard errors over 1,000

replicates. The dotted line indicates the expected value for unbiased choice,

i.e., no strategy preference.

Figure 6 | Mean strategy �x on the line of descent at generation 950
depending on the additional payoff (b). The larger the additional payoff b

becomes, the more often strategies return to an unbiased choice. Error bars

indicate two standard errors over 1,000 replicates. The dotted line indicates

the expected value for unbiased choice, i.e., no strategy preference.

Figure 7 | Mean strategy �x on the line of descent at generation 950 for
three different population sizes (50, 500, and 5,000) depending on how
many times the gambles are repeated. The more often the gamble is

repeated during an individual’s lifetime, the less likely risk sensitivity will

evolve as a preferred strategy. Error bars indicate two standard errors over

1,000 replicates. The dotted line indicates the expected value 0.5 for

unbiased choice, i.e., no strategy preference.
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While our model is only haploid and uses a single locus, we do not
expect a diploid model using multiple loci to have qualitatively dif-
ferent results from those presented in this paper. Regardless, gene
flow in diploid organisms in an island model and its impact on the
evolution of risk sensitivity is likely an interesting extension of this
experiment to pursue in future work.

Methods
Single population evolutionary model. We use a genetic algorithm applied on a
population of agents to simulate evolution of the population57. Each agent in this
population is defined by a probability x (the ‘‘choice’’), which encodes the agent’s
strategy. We seed the initial agent population by assigning every agent a random x

drawn from a uniform distribution (0, 1] with a variance of
1

12
. Varying the initial

starting condition has no significant effect on the outcome of the experiments. Every
agent in the population only plays the gamble once in its lifetime to determine its

fitness, where x is the probability to receive a fitness of
1
x

or receive 0.0 fitness with a

chance 1 2 x. The strategy of each agent can only change due to evolution, i.e.,
strategies cannot change during the agent’s lifetime.

Once all of the agent fitnesses are evaluated for a given generation, the agents
produce offspring into the next generation in proportion to their fitness, i.e., we use
fitness proportional roulette wheel selection to determine the next generation of
individuals58, implementing the Wright-Fisher process. Offspring inherit the strategy
x from their parent (no sexual recombination), except that 1% of all offspring are
subjected to mutation. If an offspring is subject to mutation, its new strategy is drawn
randomly from a uniform distribution (0, 1]. We repeat this evolutionary process
every generation with a fixed population size for 1,000 generations.

Theory of selection for variance in offspring number. Gillespie suggested that in
finite populations where the fitness of individuals carries a stochastic component
(modeled by a mean m and a variance s2), the actual realized fitness wact is given
by19, 48:

wact~m{
1
N

s2, ð3Þ

where N is the population size. Because in the equivalent mean payoff gamble agents
receive a payoff

X~
1
x p~x

0 p~1{x

�
ð4Þ

the variance becomes

s2 Xð Þ~ 1
x

{1 ð5Þ

and the actual fitness of a strategy x is

wact xð Þ~1{
1
N

1
x

{1

� �
, ð6Þ

as the mean of X in Equation (4) (in an infinite population) equals 1. The fitness
advantage s of a strategy with x 5 1 versus a strategy x is then

s~
wact 1ð Þ{wact xð Þ

wact xð Þ ~
1=x{1

N{ 1=x{1ð Þ : ð7Þ

We use Equation (6) to compute the actual fitness of a strategy using a given x while
taking the size of the population N into account (Figure 1A), and we use the fitness
advantage (7) in the calculation of the fixation probability using Kimura’s formula in
Figure 1B.

Island-based evolutionary model. In our second set of experiments, we use an
island-based evolutionary model to simulate an environment in which thousands of
individuals are evolving in several small groups. For an overview of island models and
the effect of population size, see Refs. 59, 60. Island models have three parameters:
The size of a single group, the number of groups, and a migration rate defining how
many individuals per group are moved randomly to new groups during each
generation. If an agent is selected to migrate, we randomly select a new group and a
random agent within that group, and switch agents. Thus, our island-based
evolutionary model implements several single population evolutionary models with a
fixed fraction of individuals migrating between the populations every generation. The
migration rate is the probability that an agent will be picked for migration per
generation. For example, a migration rate of 0.1 implies that 10% of the agents in the
entire population are picked to switch (affecting up to 20% of the population, as each
switch affects two agents).

Typically, island models are used to speed up evolution in rugged fitness landscapes
and increase genetic diversity within the population. In this experiment, we are not
concerned with ruggedness nor diversity. Instead, we use an island model because it

best approximates the scenario of individuals evolving in multiple small groups with
some level of inter-group migration.

Retracing the line of descent. At the end of each evolutionary run, we reconstruct the
line of descent (LOD) by picking a random agent in the population and tracing back to
the first generation using only direct ancestors61. This procedure rapidly converges on
the last most recent common ancestor (LMRCA) that swept the population. In our
experiments, we determined that the agents on the LOD at generation 950 most often
represented the LMRCA, thus we used those agents as the final representative agent
for their respective evolutionary run. The LOD between the first agent and the
LMRCA of a population contains all mutations that fixed during evolution, while all
other mutants were outcompeted. Thus, analyzing an evolutionary run’s LOD enables
us to retrace the evolutionary history of the population.
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