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ABSTRACT
We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in

the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic
simulations of a 27-M� progenitor star with a neutrino leakage/heating scheme. We vary the strength of
neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-
driven convection and subsequent development of the standing accretion shock instability (SASI), (3) SASI
dominated evolution. This confirms previous 3D results of Hanke et al. (2013), ApJ 770:66 and Couch &
Connor (2014), ApJ 785:123. We carry out simulations with resolutions differing by up to a factor of ∼4 and
demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case,
since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial
convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the
SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-
stationary angular kinetic energy spectrum E(`) develops in the heating layer. Like other 3D studies, we find
E(`) ∝ `−1 in the “inertial range,” while theory and local simulations argue for E(`) ∝ `−5/3. We argue that
current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity
up to the energy containing scale, creating a “bottleneck” that prevents an efficient turbulent cascade.

Subject headings: hydrodynamics – neutrinos – Stars: supernovae: general

1. INTRODUCTION

Multi-dimensional dynamics is, quite literally, at the heart
of core-collapse supernovae from massive stars. Decades of
theoretical and computational studies have shown that the hy-
drodynamic shock formed at core bounce always stalls and
fails to be revived by neutrino energy deposition in simu-
lations that assume spherical symmetry (1D; Bethe 1990;
Liebendörfer et al. 2005; Thompson et al. 2003; Rampp &
Janka 2000; Sumiyoshi et al. 2005). The advent of de-
tailed axisymmetric (2D) simulations led to the realization
that neutrino-driven convection (Herant 1995; Burrows et al.
1995; Janka & Müller 1996) and the advective-acoustic stand-
ing accretion shock instability (SASI; Blondin et al. 2003;
Foglizzo et al. 2007; Scheck et al. 2008) may both play an
important facilitating role in the neutrino mechanism for core-
collapse supernova explosions. The nonradial dynamics asso-
ciated with these instabilities can increase the time material
spends in the layer near the stalled shock where net neutrino
energy absorption occurs (the “gain layer”). This, in turn, in-
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creases the neutrino heating efficiency and creates conditions
favorable for launching an explosion (e.g., Murphy & Bur-
rows 2008). Rising convective plumes and large high-entropy
bubbles created by SASI-induced secondary shocks can ex-
ert mechanical force on the shock and push it out (Burrows
et al. 1995; Dolence et al. 2013; Couch 2013; Fernández et al.
2014). As recently pointed out by Murphy et al. (2013) and
Couch & Ott (2014), turbulent flow, which is both unavoid-
able and ubiquitous in the gain layer, provides an effective
pressure that adds to the pressure budget behind the shock
and thus further helps the multi-D neutrino mechanism.

The set of recent detailed ab initio 2D neutrino radiation-
hydrodynamics simulations yields successful explosions in
multiple cases and codes (e.g., Marek & Janka 2009; Müller
et al. 2012b,a; Bruenn et al. 2013), but failures in some others
(e.g., Ott et al. 2008; Dolence et al. 2014). One must not rest
on the partial 2D success of the neutrino mechanism. Nature
is 3D, so are core-collapse supernovae, and so is the multi-D
dynamics in their postbounce cores. 3D work was pioneered
by the smooth-particle hydrodynamics simulations of Fryer
& Warren (2002), but grid-based 3D simulations had to await
the broad availability of petascale computing resources and
have become possible only recently. Most current 3D simula-
tions do not yet reach the level of their 2D counterparts in im-
plemented and captured physics, and in numerical resolution.
Yet they are beginning to yield results that elucidate the 3D
hydrodynamics of core-collapse supernovae and differences
between 2D and 3D (e.g., Hanke et al. 2012; Burrows et al.
2012; Murphy et al. 2013; Dolence et al. 2013; Couch 2013;
Ott et al. 2013; Couch & Ott 2013; Handy et al. 2014; Couch
& O’Connor 2014; Couch & Ott 2014; Takiwaki et al. 2014).
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Hanke et al. (2013) and Tamborra et al. (2014) carried out
the only 3D studies to-date with accurate energy-dependent
neutrino transport, which they implement not in 3D, but along
many 1D rays. The angular resolution of these simulations
is ∼2◦ for both hydrodynamics and neutrinos. Current 3D
Cartesian adaptive-mesh-refinement (AMR) simulations with
a more approximate neutrino treatment reach much finer ef-
fective angular resolutions of 0.4◦ − 0.8◦ in the gain layer
(e.g., Couch & O’Connor 2014; Ott et al. 2013; Dolence et al.
2013).

While there is still much tension between the detailed re-
sults (and their interpretation) of current 3D simulations ob-
tained with different approximations and codes, there is con-
sensus that the development of large-scale, high-entropy re-
gions (by neutrino heating or SASI) and, generally, kinetic
energy at large scales is required for a neutrino-driven ex-
plosion to succeed (Burrows et al. 2012; Hanke et al. 2012,
2013; Murphy et al. 2013; Dolence et al. 2013; Ott et al. 2013;
Couch & Ott 2013; Couch & O’Connor 2014; Couch & Ott
2014).

In this work, we systematically study the qualitative and
quantitative dependence of 3D postbounce hydrodynamics on
the strength of neutrino heating and on numerical resolution.
For this, we employ our 3D fully general-relativistic core-
collapse supernova simulation code Zelmani introduced in
Ott et al. (2012) and Ott et al. (2013). This code includes
a three-species neutrino leakage scheme, which allows us to
control the local efficiency of neutrino heating. We carry out
simulations of the postbounce evolution of the 27-M� pro-
genitor model of Woosley et al. (2002), which has been exten-
sively studied in the literature. Its structure results in a high
postbounce accretion rate, which leads to a small radius of the
stalled shock, favoring the development of the SASI (Müller
et al. 2012a; Ott et al. 2013; Couch & O’Connor 2014; Hanke
et al. 2013).

We are particularly interested in (i) the prominence of 3D
neutrino-driven convection and 3D SASI, their interplay, and
their dependence on neutrino heating; (ii) the resolution de-
pendence of postbounce hydrodynamics, neutrino heating,
and the development of an explosion; and (iii) the nature of
turbulence under neutrino-driven convection dominated con-
ditions and its dependence on resolution.

We find three general regimes of postbounce 3D hydrody-
namics: (1) neutrino-driven convection and onset of explosion
(for strong neutrino heating; e.g., Dolence et al. 2013; Ott
et al. 2013; Couch & O’Connor 2014), (2) initially neutrino-
driven convection that subsides and is replaced by a strong
SASI with spiral modes and no explosion (for moderate neu-
trino heating; consistent with Hanke et al. 2013 and Couch &
O’Connor 2014), and (3) complete absence of neutrino-driven
convection, SASI-dominated dynamics with spiral modes and
no explosion (for weak neutrino heating). The results of our
resolution study show that low numerical resolution artifi-
cially damps SASI oscillations in the SASI-dominated case.
In the neutrino-driven convection dominated case, we show
that low resolution leads to artificially favorable conditions
for explosion. The lower the resolution, the less efficient the
cascade of turbulent kinetic energy to small scales (as previ-
ously noted by Hanke et al. (2012) on the basis of their simpler
“light-bulb” simulations). Low resolution simulations have
higher radial convective kinetic energy and enthalpy fluxes,
more buoyant mass in the gain layer, higher neutrino heat-

ing rates, larger average shock radii, and transition to explo-
sion earlier than more finely resolved simulations. Analyzing
the angular spectra E(`) of turbulence in our simulations, we
find a scaling E(`) ∝ `−1 (cf. Dolence et al. 2013; Couch &
O’Connor 2014) at spherical harmonic mode ` that should be-
long to the inertial range of turbulence. By comparison with
the literature on local mildly compressible turbulence, we ar-
gue that our and other global 3D simulations similar to ours
do not resolve the inertial range of neutrino-driven turbulent
convection. Instead, numerical viscosity creates a bottleneck
that hinders the efficient cascade of turbulent kinetic energy to
small scales. Energy is thus kept at large scales, which may,
incorrectly and artificially, promote explosion.

We begin in Section 2 with a discussion of our numerical
approach and lay out our simulation plan in Section 3. In Sec-
tion 4, we present results from our simulations in the strong,
moderate, and weak neutrino heating regimes and provide de-
tailed analyses of neutrino-driven convection, SASI, and tur-
bulence in these simulations. In Section 5, we present and dis-
cuss the results of our extensive resolution study. In Section 6,
we put our results into the broader context of the current dis-
cussion of the multi-D neutrino mechanism of core-collapse
supernovae and conclude.

2. METHODS

We evolve our models in two steps: first in spherical sym-
metry, from the onset of collapse until shortly after bounce,
and from there in full 3D covering the subsequent postbounce
evolution. We perform the spherically symmetric part with
the GR1D code (O’Connor & Ott 2010) until ∼ 20ms after
bounce when the bounce shock has almost stalled. We then
map this configuration to our 3D grid and continue the evolu-
tion in full 3D. We choose this 1D–3D approach to save com-
puter time during the spherical collapse phase and to avoid
having the shock cross the boundaries of the two innermost
mesh refinement levels of the 3D grid, which could generate
significant numerical error (Ott et al. 2013). By mapping at
∼20ms, we miss the earliest part of prompt postbounce con-
vection due to the negative entropy left behind by the weaken-
ing shock. Since we are not interested in studying this prompt
convection, we believe that our approach is appropriate for
the simulations at hand. At the time of mapping, the shock
has reached ∼110km.

The subsequent 3D evolution is performed with the
Zelmani core-collapse simulation package (Ott et al. 2012,
2013). It is based on the Cactus Computational
Toolkit (Goodale et al. 2003) and it uses modules of
the open-source Einstein Toolkit9 (Löffler et al. 2012;
Mösta et al. 2014). We employ a cubed-sphere multiblock
adaptive-mesh-refinement (AMR) system that consists of a
set of overlapping curvilinear grid blocks adapted to the over-
all spherical geometry of the problem (Pollney et al. 2011;
Reisswig et al. 2013). The inner ∼ 532km (along one of
the coordinate axes), which contain the protoneutron star and
the entire shocked region including the shock, are covered
by a cubic Cartesian mesh. This Cartesian region contains
four additional co-centric cubic refinement levels. Initially,
these levels have radial extents (along the coordinate axes)
of (286,161,43,21)km. Throughout the 3D simulation, the

9 http://www.einsteintoolkit.org
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shock is contained on the third finest level whose outer bound-
ary automatically adapts to the shock’s position. In our base-
line resolution, the grid on the finest AMR level has a linear
cell width of 0.354km. The third-finest level containing the
entire postshock region and the shock has a linear cell width
of ∼ 1.416km. This corresponds to an effective angular reso-
lution of 0.81◦ at 100km and 0.54◦ at 150km.

The outer regions are covered by a shell of six angular
grid blocks that stretch to 15,000km. The angular blocks are
arranged such that the two angular coordinate directions at
each lateral edge of each block always coincide with those
from neighboring patches (Reisswig et al. 2013). The an-
gular resolution in those patches is ∼3◦, which is sufficient
since matter in those regions remains spherically symmet-
ric. The radial resolution at the inner boundary of the an-
gular patches is chosen to be the same as that of the coarsest
AMR level, which, for the baseline resolution, is a linear cell
width of 5.67km. The resolution decreases gradually with ra-
dius, reaching 189km at the outer boundary. An important
advantange of this multi-block system is that it does not suf-
fer from any coordinate pathologies unlike standard spherical-
polar and cylindrical grids.

We solve the 3D general-relativistic hydrodynamics equa-
tions in a flux-conservative form (Banyuls et al. 1997) us-
ing the finite-volume general-relativistic hydrodynamics code
GRHydro (Löffler et al. 2012). It is an improved version
of the legacy code Whisky (Baiotti et al. 2005), which it-
self is largely based on the GR-Astro/MAHC code (Font
et al. 2000). We use a customized version of the piecewise-
parabolic method (PPM; Colella & Woodward 1984) for the
reconstruction of physical states at cell boundaries. The prop-
agation of a quasi-spherical shock on a Cartesian grid cre-
ates numerical perturbations that could seed convection at a
possibly unphysically high level (Ott et al. 2013; but see,
e.g., Couch & Ott 2013). To minimize numerical perturba-
tions, we use the original PPM scheme (Colella & Woodward
1984) on the AMR level that contains the shock. We em-
ploy the more aggressive, lower-dissipation enhanced PPM
scheme (McCorquodale & Colella 2011; Reisswig et al. 2013)
on finer levels, since it outperforms the original PPM scheme
in capturing the steep gradients at the edge of the protoneutron
star, and, importantly, maintains the smooth physical density
maximum at the center of the protoneutron star. The intercell
fluxes are calculated via solving approximate Riemann prob-
lems with the HLLE solver (Einfeldt 1988).

We evolve the 3 + 1 Einstein equations with the BSSN for-
mulation of numerical relativity (Baumgarte & Shapiro 1999;
Shibata & Nakamura 1995). We use a 1 + log slicing (Alcu-
bierre et al. 2000) and a modified Γ-driver (Alcubierre et al.
2003) to evolve the lapse function α and the shift vector βi,
respectively. The BSSN equations and the gauge conditions
are evolved using the CTGamma code (Pollney et al. 2011;
Reisswig et al. 2013).

The hydrodynamics and Einstein equations are evolved in
time in a coupled manner using the Method of Lines (Hy-
man 1976). The latter uses a multi-rate Runge-Kutta scheme,
which is second-order in time for hydrodynamics and fourth-
order in time for spacetime evolution (Reisswig et al. 2013).
We use a Courant-Friedrichs-Levy factor of 0.4 in all of our
simulations and the timestep taken on each refinement level is
governed by the light travel time along a linear computational
cell width.

We employ the tabulated finite-temperature nuclear EOS
of Lattimer & Swesty (1991) with K = 220MeV, generated
by O’Connor & Ott (2010)10. During collapse, we use the
parameterized Ye(ρ) deleptonization scheme of Liebendör-
fer (2005) with the same parameters as Ott et al. (2013),
while in the postbounce phase, we use a three-species (νe,
ν̄e, νx = {νµ, ν̄µ,ντ , ν̄τ}) neutrino leakage/heating scheme that
approximates deleptonization, cooling, and heating in the
gain region (O’Connor & Ott 2010; Ott et al. 2012, 2013;
Couch & O’Connor 2014). In essence, the scheme com-
putes the energy-averaged neutrino optical depths along radial
rays based on which local estimates of energy and lepton loss
rates are computed. The 3D implementation of this scheme in
Zelmani is discussed in detail in Ott et al. (2012, 2013). In
contrast to these previous works, we do not include neutrino
pressure contributions in this study, since the implementations
of the neutrino pressure terms are slightly different in GR1D
and Zelmani and tests show that this leads to spurious oscil-
lations of the protoneutron star upon mapping. Neglecting the
neutrino pressure, which contributes ∼10 − 20% of the pres-
sure in a narrow density regime from ∼1012.5 − 1014 gcm−3

(Kaplan et al. 2014), results in a slightly more compact pro-
toneutron star, but should not otherwise affect our results.

We approximate the neutrino heating rate Qheat
νi

in the gain
region by

Qheat
νi

= fheat
Lνi (r)
4πr2 Sν〈ε2

νi
〉 ρ

mn
Xi

〈
1

Fνi

〉
e−2τνi . (1)

Here Lνi is the neutrino luminosity emerging from below as
predicted by auxiliary leakage calculations along radial rays,
Sν = 0.25(1+3α2)σ0(mec2)−2, σ0 = 1.76×10−44 cm2, α = 1.23,
me is the electron mass and c is the speed of light, ρ is the
rest-mass density, mn is the neutron mass, Xi is the neutron
(proton) mass fraction for electron neutrinos (antineutrinos),
〈ε2
νi
〉 is the mean-squared energy of νi neutrinos,

〈
F−1
νi

〉
is

the mean inverse flux factor. fheat is a free parameter, which
we refer to as the heating factor. We estimate 〈ε2

νi
〉 based

on the temperature at the neutrinosphere (see O’Connor &
Ott 2010) and we parameterize

〈
F−1
νi

〉
as a function of op-

tical depth τνi based on the angle-dependent radiation fields
of the neutrino transport calculations of Ott et al. (2008)
and set

〈
F−1
νi

〉
= 4.275τνi + 1.15. The factor e−2τνi is used to

strongly suppress heating at τνi > 1. Further details are given
in O’Connor & Ott (2010), Ott et al. (2012), and Ott et al.
(2013).

3. SIMULATED MODELS

We simulate core collapse and postbounce evolution of the
nonrotating 27-M� solar-metallicity model of Woosley et al.
(2002). We follow collapse, bounce, and the first 20ms in
spherical symmetry using GR1D with a heating factor fheat =
1.05. We then map to 3D and carry out a set of eight full 3D
simulations, varying heating factors and numerical resolution
as discussed below and summarized in Table 1.

We consider strong, moderate, and weak neutrino heating
by dialing in heating scale factors fheat = {1.05,0.95,0.8},
expressed in the following model names: s27MR fheat1.05
(strong heating), s27MR fheat0.95 (moderate heating), and

10 Available for download at http://www.stellarcollapse.
org.

http://www.stellarcollapse.org
http://www.stellarcollapse.org
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Table 1
Key Simulation Parameters and Results.

Model fheat dxshock dθ,dφ tend Rshock,max Rshock,avg Rshock,min Numerical
(km) @100 km (ms) @tend @tend @tend Reynolds

(degrees) (km) (km) (km) Number

s27ULR fheat1.05 1.05 3.784 2.16 160 295 321 224 53.25
s27LR fheat1.05 1.05 1.892 1.08 138 248 202 171 62.06
s27MR fheat1.05 1.05 1.416 0.81 131 233 192 167 68.14
s27 I R fheat1.05 1.05 1.240 0.71 142 229 190 156 70.03
s27HR fheat1.05 1.05 1.064 0.61 142 215 182 158 72.21

s27MR fheat0.95 0.95 1.416 0.81 262 79 70 62 —

s27LR fheat0.8 0.8 1.892 1.08 215 82 72 63 —
s27MR fheat0.8 0.8 1.416 0.81 255 85 71 52 —

Note. — fheat is the scaling factor that controls the neutrino heating rate (cf. Equation 1), dxshock is the
linear cell width on the AMR level that contains the shock, dθ,dφ@ 100km is the effective angular resolution
at a distance of 100km from the origin, tend is the time after core bounce when the simulation is terminated,
and Rshock,min, Rshock,avg, and Rshock,max are the minimum, average, and maximum shock radii at the end of our
simulations, respectively. The procedure for calculating the numerical Reynolds number is discussed in Ap-
pendix B. We quote its approximate value at 90ms after bounce for models whose postbounce hydrodynamics
is dominated by neutrino-driven convection.

s27MR fheat0.8 (weak heating). All of these models have
medium numerical resolution, as denoted by “MR” in their
model names. This is our baseline resolution discussed in §2.

To test for dependence on numerical resolution in
the scenario of strong neutrino heating, we take model
s27MR fheat1.05 as the reference model and re-run it with four
additional resolutions. We characterize these additional sim-
ulations by their linear computational cell width on the re-
finement level that covers the postshock gain layer and con-
tains the shock. Together with our baseline MR (“medium
resolution”) simulation, we have: ULR (ultra-low resolution,
dxshock = 3.784km), LR (low resolution, dxshock = 1.892km),
MR (medium resolution, dxshock = 1.416km), IR (interme-
diate resolution, dxshock = 1.240km), HR (high resolution,
dxshock = 1.064km). Note that for the ULR simulation, we
have simply taken the LR AMR grid setup and moved the
outer boundary of the refinement level covering the shock in
the LR simulation down into the cooling layer. In this way, the
ULR simulation has the same resolution as the LR simulation
in the protoneutron star, but a factor of two lower resolution
in the postshock gain layer. All other simulations have sys-
tematically changed resolution on all refinement levels.

For testing resolution dependence in the case of weak neu-
trino heating, we use model s27MR fheat0.8 as the reference
model and add one more simulation, model s27LR fheat0.8,
with ∼ 30% lower resolution than baseline.

4. RESULTS: DEPENDENCE ON NEUTRINO HEATING

4.1. Overview

The top panel of Figure 1 shows the time evolution of the
angle-averaged shock radius Rshock,avg in our three baseline-
resolution simulations s27MR fheat1.05, s27MR fheat0.95, and
s27MR fheat0.8 with strong, medium, and weak neutrino heat-
ing, respectively. We show only the part of the evolution
tracked in 3D. At early times (t − tbounce . 50 − 60ms) the
shock undergoes some transient oscillations as it relaxes on
the 3D grid, which is reflected in Rshock,avg of all models.

The average shock radius in model s27MR fheat1.05 grows
secularly from ∼ 105km to 125km in the first 90ms of post-
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Figure 1. Top panel: Average shock radius evolution for models with strong
(s27MR fheat1.05), medium (s27MR fheat0.95), and weak (s27MR fheat0.8)
neutrino heating. Model s27MR fheat1.05, due to its strong neutrino heating,
shows the onset of an explosion already ∼100ms after bounce. The models
with moderate and weak neutrino heating fail to show signs of explosion, but
exhibit a transient shock expansion when the accretion rate (Ṁ, dashed ma-
genta line) drops at the time the silicon interface accretes through the stalled
shock. Center panel: Normalized root mean square deviation σshock of the
shock radius from its angle averaged value. Bottom panel: Ratio of the max-
imum shock radius to the minimum shock radius. The with moderate and
weak neutrino-heating exhibit strong periodic oscillations in the shock radius
ratio and in σshock. These variations are the tell-tale signs of SASI activity in
these models.

bounce evolution. Subsequently, the shock expansion ac-
celerates and Rshock,avg reaches ∼ 195km by ∼ 130ms after
bounce, which is when we stop following this model’s evo-
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region. Qnet, η, Mgain all increase with increasing local heating factor fheat.

lution. The maximum shock radius at this time is ∼ 220km.
The expansion has become dynamical and is most likely tran-
sitioning to explosion. In contrast, models s27MR fheat0.95
and s27MR fheat0.8 do not show any sign of explosion within
the simulated time. The average shock radius in these mod-
els decreases gradually until ∼ 160ms after bounce, reaching
∼ 97km and ∼ 75km, respectively. At this point, the sili-
con shell reaches the shock front, leading to a sudden de-
crease of the accretion rate (cf. the accretion rate shown in
the top panel of Figure 1) and thus of the ram pressure ex-
perienced by the shock. This leads to a transient expansion
of the shock by ∼ 10km within ∼ 15ms, after which it starts
retreating again in both models and continues to do so un-
til the end of our simulations. Due to the weaker heating in
model s27MR fheat0.8, Rshock,avg remains always smaller than
in model s27MR fheat0.95, but has the same qualitative evolu-
tion.

The shock radius evolution shown in Figure 1 can be di-
rectly linked to the strength of neutrino heating. We quan-
tify the latter by a set of metrics shown in Figure 2: the
net neutrino heating rate Qnet, the heating efficiency (η =
Qnet (Lνe + Lν̄e )

−1, where Lνe and Lν̄e are the electron neutrino
and anti-electron neutrino luminosities incident from below
the inner boundary of the gain region)11 and the mass Mgain

11 We note in passing that the heating efficiencies shown in our previous
Ott et al. (2013) study were incorrectly underestimated by about a factor of
1.7, because we normalized by the total neutrino luminosity and not just by

in the gain region. The oscillations in these quantities at early
times are a combined artifact of the leakage/heating scheme
and of the shock settling on the 3D grid. Similar features
are present in the leakage simulations of Ott et al. (2013)
and Couch & O’Connor (2014). As expected, the larger fheat
(see Equation 1), the larger net heating, heating efficiency,
and the mass in the gain region. Note, however, how strong
this relationship is: An increase of fheat from 0.95 to 1.05
(∼10.5%) results in approximately twice as high Qnet, η, and
Mgain around 50 − 100ms after bounce. This is a consequence
of the fact that more intense neutrino heating extends the re-
gion of net absorption to smaller radii. It also increases the
thermal pressure and the vigor of turblence (and thus the ef-
fective turbulent ram pressure; Couch & Ott 2014) through-
out this region. This, in turn, pushes the shock out, further in-
creasing the volume of the gain region and leading to more net
neutrino energy absorption. This nonlinear feedback shows
just how extremely sensitive core-collapse supernovae near
the critical line between explosion and no explosion are to the
details of neutrino transport and neutrino–matter coupling.

The general trends in neutrino heating with fheat described
in the above hold throughout the postbounce phase. How-
ever, as the shock radii in models s27MR fheat0.95 and
s27MR fheat0.8 recede and their gain regions shrink, their val-
ues of their neutrino heating variables shown in Figure 2 ap-
proach each other. The sudden reduction of the ram pressure
at the silicon interface, which has a significant effect on the
shock radius (Figure 1), is barely noticable in the neutrino
heating.

We plot the average mass-weighted specific entropy in the
gain region (sgain) on the right ordinate of the bottom panel of
Figure 2. In agreement with what was found in previous work
(e.g., Hanke et al. 2012; Dolence et al. 2013; Couch 2013; Ott
et al. 2013), sgain is largely independent of the shock radius
and the strength of neutrino heating in the postbounce preex-
plosion phase simulated here. We attribute this to two com-
peting effects that affect the averaged quantity sgain: While
strong neutrino heating (larger fheat in our simulations) leads
to locally higher specific entropy in the region of strongest
heating, this is compensated by the overall larger volume (and
mass) of the gain region, which includes material of lower
specific entropy that contributes to the average.

After considering the above range of indicative angle-
averaged and/or volume-averaged quantities, it is now use-
ful to study deviations from averaged dynamics. The center
and bottom panel of Figure 1 depict the normalized root mean
square angular deviation12 σshock of the shock radius from its
mean (Rshock,avg.) and the ratio of maximum and mimimum
shock radius Rshock,max./Rshock,min., respectively. Both diag-
nostics yield qualitatively similar results, but the latter is more
sensitive to small local variations. In the initial settling phase
on the 3D grid, all three simulations shown in Figure 1 exhibit
nearly identical shock deviations from sphericity, which are
due to moderate-amplitude cubed (` = 4–symmetric) shock
oscillations as the models relax from spherical geometry to
our 3D Cartesian grid. Subsequently, the shock deviations be-
gin to differ between models. Model s27MR fheat1.05 (strong
neutrino heating) shows more or less steadily increasing as-

Lνe + Lν̄e .
12 We define σshock in the following way: σshock =

(Rshock,avg.)−1
√

(4π)−1
∫

4π

[
Rshock(θ,φ) − Rshock,avg

]2 dΩ .
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Figure 3. Top panel: The mass Mgain,υ>0 in the gain region with positive
radial velocity (“buoyant mass”) in models s27MR fheat1.05 (strong neutrino
heating), s27MR fheat0.95 (moderate neutrino heating), and s27MR fheat0.8
(weak neutrino heating). Bottom panel: The Foglizzoχ parameter (cf. Equa-
tion 6) as a function of postbounce time for the three models. The horizontal
line at χ = 3 marks the point where convection is expected to develop in the
gain region. We calculate χ on the basis of angle-averaged, but not time-
averaged quantities.

phericity as its shock gradually expands and develops large-
scale deviations from Rshock,avg. driven by expanding high-
entropy bubbles. On the other hand, the shock asphericity
in models s27MR fheat0.95 and s27MR fheat0.8 exhibits strong
oscillations with clear (if temporally varying) periodicity –
a tell-tale sign of an active SASI. In model s27MR fheat0.95
(moderate neutrino heating), the oscillations set in around
∼ 105ms after bounce while in model s27MR fheat0.8 (weak
neutrino heating), they are already present at∼ 80ms. In both
models, the period of the oscillations changes when the silicon
interface reaches the shock front around 160ms after bounce.
We will analyze SASI in these models in more detail in §4.2.

Whenever our simulations experience strong neutrino heat-
ing, i.e. η & 0.05 and Qheat & 1052 ergs−1, we find neutrino-
driven convection in the postshock region. This is quantified
by the top panel of Figure 3, which shows the buoyant mass
in the gain region, Mgain,υr>0, which we define as the mass
of material with positive radial velocity. Mgain,υr>0 correlates
strongly with η and Qnet. Phases of strong neutrino heating
(cf. Figure 2) correspond to strong neutrino-driven convec-
tion. Model s27MR fheat1.05 undergoes convection through-
out its postbounce evolution, while model s27MR fheat0.95 ex-
hibits strong neutrino-driven convection only until ∼ 110ms
after bounce. Convective activity is clearly visible in the 2D
(x-z plane) entropy colormaps of models s27MR fheat1.05 and
s27MR fheat0.95 at various postbounce times in Figure 4. We
will further analyze neutrino-driven convection in our models
in §4.3.

4.2. SASI

There are three defining characteristics of the SASI: (1)
low-(`,m) oscillations of the shock front (e.g., Iwakami et al.

2008), (2) exponential growth of the (spherical-harmonics)
mode amplitudes in the linear phase (e.g., Blondin et al.
2003), and (3) saturation of the amplitudes once they reach
the nonlinear phase (e.g., Guilet et al. 2010). In order to iden-
tify these features in our simulations, we decompose the shock
front Rshock(θ,φ) into spherical harmonics:

a`m =
(−1)|m|√
4π(2`+ 1)

∫
4π

Rshock(θ,φ)Y m
` (θ,φ)dΩ , (2)

where Y m
` are the standard real spherical harmonics (e.g.,

Boyd 2001). We employ the normalization convention used
in Burrows et al. (2012), in which a00 corresponds to the av-
erage shock radius, while a11, a10, and a1−1 correspond to the
average x, z, and y Cartesian coordinates of the shock front,
respectively.

Figure 5 depicts the normalized mode amplitudes alm · a−1
00

for ` = 1 (left panels) and ` = 2 (right panels) for the three
previously introduced models with strong, medium, and weak
neutrino heating. The mode amplitudes grow gradually with
time in magnitude and in this reflect the evolution of the an-
gular deviation σ of the shock radius in Figure 1. The relative
asphericity of the shock is increasing with time in all models.

In model s27MR fheat1.05, the ` = 1 mode amplitudes grow
quickly at 50 − 80ms after bounce, exhibit ∼three periodic
modulations with a period of∼20ms at nearly saturated mag-
nitude, and then begin to increase to larger values. The ` = 2
modes start growing earlier, but show less clear periodicity.
The evolution of the ` = 1 and ` = 2 modes suggest that some
form of SASI is present in model s27MR fheat1.05, but a look
at the top row of specific entropy slices in Figure 4 reveals that
violent neutrino-driven convection is active, fully developed,
and driving the asphericity of the shock front at late times in
this model.

Models s27MR fheat0.95 and s27MR fheat0.8 exhibit strong
SASI oscillations in their ` = 1 and ` = 2 modes that last for
many cycles. The ` = 2 modes actually start growing first and
the initial growth of all modes exhibits exponential character
until they reach saturation on a timescale of ∼50ms. The
oscillation period is ∼10ms and ∼6ms for ` = 1 and ` = 2,
respectively.

From the x − z specific entropy slices shown in Figure 4
one notes that at ∼80ms after bounce, there are signs of con-
vection in model s27MR fheat0.95, but no convective plumes
are visible in model s27MR fheat0.8 with the weakest neutrino
heating. The entropy slices at 150ms after bounce show large
shock deformations with ` = 2 symmetry and no clearly con-
vective features in either model. Interestingly, in both models,
the ` = 2 modes get damped and overtaken by ` = 1 oscillations
at∼170ms after bounce (cf. Figure 5), when the silicon inter-
face reaches the shock, leading to transient shock expansion.
Accordingly, the late-time entropy slices of these models in
Figure 4 exhibit predominantly ` = 1 asymmetry.

Although the accretion of the silicon interface damps the
initially dominant ` = 2 modes significantly (cf. Figure 5),
they again, but only episodically, reach large amplitudes at
later postbounce times. This is uncharacteristic for linear
growth of physical models and may possibly be due to non-
linear interactions with the then-dominant ` = 1 modes.

The ` = 1, m = {−1,0,1} modes shown in Figure 5 have
different phases with respect to each other. This is suggestive
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Figure 4. Colormaps of specific entropy in the x-z plane in models s27MR fheat1.05 (strong neutrino heating; top row), s27MR fheat0.95 (moderate neutrino
heating; center row), and s27MR fheat0.8 (weak neutrino heating; bottom row) at a range of postbounce times. Note that the scale of the region shown is different
for each model. Model s27MR fheat1.05 is dominated by neutrino-driven convection. Model s27MR fheat0.95 shows neutrino-driven convection at early times,
but subsequently shows signs of coherent shock dynamics typical for the SASI. Model s27MR fheat0.8 never develops significant neutrino-driven convection and
becomes dominated by the SASI.

of “spiral” SASI oscillations as identified, e.g., by Blondin &
Mezzacappa (2007); Fernández (2010); Iwakami et al. (2014).
We analyze the vector

a1 = (a1−1,a10,a11) , (3)

which gives the direction and magnitude of the ` = 1 shock de-
formation with respect to the center of the protoneutron star
(Hanke et al. 2013). We visualize the time evolution of a1/a00
with a line in 3D space in the top and bottom panels of Fig-
ure 6 for models s27MR fheat0.95 and s27MR fheat0.8, respec-

tively. Each point on the graph is color coded according to
postbounce time t −tbounce. During the early postbounce evolu-
tion, |a1|/a00 is small and does not exhibit any clear rotational
patterns in either of the models. After the silicon interface has
accreted through the shock, the ` = 1 modes reach large am-
plitudes. It is then (orange–red colors in Figure 6) that a1/a00
clearly describes several complete spiral cycles in both mod-
els. This confirms the spiral nature of the late ` = 1 SASI,
which is qualitatively very similar to what Hanke et al. (2013)
and Couch & O’Connor (2014) found in their 3D simulations



8

20 40 60 80 100 120

−0.01

0.00

0.01

s27MR fheat1.05

t− tbounce [ms]

a 1
m
·a
−

1
00

` = 1, m = −1
` = 1, m = 0

` = 1, m = 1` = 1, m = −1
` = 1, m = 0

` = 1, m = 1

20 40 60 80 100 120

−0.005

0.000

0.005

0.010

s27MR fheat1.05

t− tbounce [ms]

a 2
m
·a
−

1
00

` = 2, m = −2
` = 2, m = −1
` = 2, m = 0

` = 2, m = 1
` = 2, m = 2

` = 2, m = −2
` = 2, m = −1
` = 2, m = 0

` = 2, m = 1
` = 2, m = 2

50 100 150 200 250

−0.04

−0.02

0.00

0.02

0.04

0.06

s27MR fheat0.95

t− tbounce [ms]

a 1
m
·a
−

1
00

` = 1, m = −1
` = 1, m = 0

` = 1, m = 1` = 1, m = −1
` = 1, m = 0

` = 1, m = 1

50 100 150 200 250

−0.02

−0.01

0.00

0.01

0.02

s27MR fheat0.95

t− tbounce [ms]

a 2
m
·a
−

1
00

` = 2, m = −2
` = 2, m = −1
` = 2, m = 0
` = 2, m = 1
` = 2, m = 2

` = 2, m = −2
` = 2, m = −1
` = 2, m = 0
` = 2, m = 1
` = 2, m = 2

50 100 150 200 250
−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

s27MR fheat0.8

t− tbounce [ms]

a 1
m
·a
−

1
00

` = 1, m = −1
` = 1, m = 0
` = 1, m = 1

` = 1, m = −1
` = 1, m = 0
` = 1, m = 1

50 100 150 200 250

−0.01

0.00

0.01

0.02

s27MR fheat0.8

t− tbounce [ms]

a 2
m
·a
−

1
00

` = 2, m = −2
` = 2, m = −1
` = 2, m = 0
` = 2, m = 1
` = 2, m = 2

` = 2, m = −2
` = 2, m = −1
` = 2, m = 0
` = 2, m = 1
` = 2, m = 2

Figure 5. Normalized mode amplitudes a`m · a−1
00 of the shock front as a function of time for ` = 1 (left panels) and ` = 2 modes (right panels). We show

amplitudes for models s27MR fheat1.05 (strong neutrino heating, top row), s27MR fheat0.95 (moderate neutrino heating, center row), and s27MR fheat0.8 (weak
neutrino heating, bottom row). Note that the range in postbounce time shown in the top row for the exploding model s27MR fheat1.05 is different from the
postbounce time covered for the two non-exploding models that develop strong long-lasting SASI oscillations.
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Figure 6. Evolution of the normalized ` = 1 mode vector a1/a00 for models
s27MR fheat0.95 (top panel) and s27MR fheat0.8 (bottom panel). The viewing
directions on each panel are chosen to be perpendicular to the plane of the
spiral SASI motion when it reaches the largest amplitude. The color of the
graphs demark time. Both models exhibit spiral SASI oscillations, but they
are strongest in the model with weakest neutrino heating, s27MR fheat0.8.

of the same progenitor.

It is interesting to ask why we observe an early growth of
the ` = 2 SASI mode in our simulations while ` = 1 is usually
identified to be the most unstable SASI mode. One possi-
ble explanation may be related to the trend found by Foglizzo
et al. (2007) that higher values of ` are favored when the
shock radius is small. Just before the accretion of the silicon
shell interface, the average shock radius Rshock,avg in models
s27MR fheat0.95 and s27MR fheat0.8 is as small as 97km and
75km, respectively. The reduction in ram pressure at the sil-
icon interface lets the shock jump outward, possibly creating
a situation more favorable for ` = 1 oscillations than before.

This might be the reason for the sudden damping of the ` = 2
modes and the development of the ` = 1 oscillations.

In the simulations of the same 27-M� progenitor of Ott
et al. (2013), Couch & O’Connor (2014), and Hanke et al.
(2013), the ` = 1 modes reach large amplitudes before the
accretion of the silicon interface. It dominates over ` = 2 at
least in the early evolution in Couch & O’Connor (2014) and
Ott et al. (2013) (Hanke et al. 2013 do not provide ` = 2 am-
plitudes). In these simulations, the average shock radius is
nearly always above 100km in the early postbounce phase.
It drops below this value early on in our present simulations
with weak (s27MR fheat0.8) and moderate (s27MR fheat0.95)
neutrino heating. Following the above argument, this may
explain why only our simulations exhibit an initially predom-
inantly ` = 2 SASI.

It is worth mentioning that, to the best of our knowledge,
strong excitation of predominantly ` = 2 modes in the 3D case
was observed only in the work of Takiwaki et al. (2012), who
studied the 3D postbounce hydrodynamics in a 11.2-M� pro-
genitor. However, in their simulation, this mode undergoes
only 2 − 3 oscillations during the simulated time, whereas in
our case, we observe ∼ 30 oscillation cycles before ` = 2-
dominated dynamics ceases. The ` = 2 modes also reach large
amplitudes in the 3D simulations of Iwakami et al. (2008),
Ott et al. (2013), and Couch & O’Connor (2014), but their
amplitudes generally do not exceed those of the ` = 1 modes.

4.3. Neutrino-Driven Convection

Neutrino heating in the gain region establishes a negative
radial entropy gradient (e.g., Herant et al. 1992) and thus can
drive convection. In stable stars, convection occurs on a sta-
tionary background. Not so in the postshock region of a core-
collapse supernova: material accreting through the stalled
shock is advecting towards the protoneutron star with veloc-
ities up to a few percent of the speed of light. In order for
convection to fully develop, convective plumes must not only
be buoyant with respect to the rest frame of the background
flow, but must be able to rise in the laboratory (coordinate)
frame against the background advection stream.

Depending on accretion rate (determined by progenitor
structure; e.g. O’Connor & Ott 2011), strength of neutrino
heating (i.e. steepness of the entropy gradient), and initial size
of the perturbations entering through the shock from which
buoyant plumes can grow, one can identify three different
regimes of convection: (1) dominance of advection, plumes
do not even become buoyant in the rest frame of the accretion
flow; (2) plumes are buoyant in the rest frame of the accre-
tion flow, but are still advected out of the gain region into the
convectively stable cooling layer; (3) plumes are fully buoy-
ant and rise against the accretion flow. As we shall see, our
simulations cover all three of these regimes.

We analyze buoyant convection in our simulations with
the Ledoux criterion (Ledoux 1947) and express its compo-
sitional dependence in terms of the lepton fraction Yl :

CL = −

(
∂ρ

∂P

)
s,Yl

[(
∂P
∂sT

)
ρ,Yl

(
dsT

dr

)
+

(
∂P
∂Yl

)
ρ,sT

(
dYl

dr

)]
,

(4)
where sT = s + sν is the sum of entropies of the matter s and
neutrino field sν , while Yl = Ye +Yνe −Yν̄e is the lepton fraction.
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radius. Note the differing temporal and radial scales chosen for different models.
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Since our leakage/heating scheme does not track the neutrino
distribution function, we set Yl = Ye and sν = 0 in Equation (4).
This is a very good approximation in the gain region, where
neutrinos are almost free streaming, but is less accurate in
the protoneutron star where neutrinos are trapped at densi-
ties above ∼ 1012 gcm−3. A fluid parcel is convectively sta-
ble if CL ≤ 0 and unstable otherwise. In the latter case, the
linear growth time of small perturbations to buoyant plumes
is given, approximately, by the inverse of the Brunt-Väisälä
(BV) frequency,

ωBV = sgn(CL)

√
|CL|g
ρ

, (5)

so ωBV > 0 implies instability. Here g is the local free-fall ac-
celeration, which we approximate as −GM(r)r−2 in our post-
processing analysis, where M(r) is the mass enclosed within
radius r. A similar approach was used in, e.g., Buras et al.
(2006b); Takiwaki et al. (2012); Ott et al. (2013).

In addition, we compute the Foglizzo χ parameter
(Foglizzo et al. 2006),

χ =
∫ Rshock

Rgain

ωBV

|υr|
dr , (6)

where υr is the radial velocity in the gain region. χ can be
interpreted as the ratio of the advection timescale to an av-
erage timescale of convective growth. Any small linear seed
perturbation (coming, e.g., from turbulent convection in nu-
clear burning shells; e.g., Arnett & Meakin 2011; Couch &
Ott 2013, 2014) accreting through the shock can at most grow
by a factor of ∼ exp(χ) during its advection through the gain
region. For such linear-scale perturbations, Foglizzo et al.
(2006) found that χ& 3 is necessary for convection to develop
in the gain region. The situation is different for large seed per-
turbations for which the time integral of buoyant acceleration
is comparable to the advection velocity (Scheck et al. 2008).
In this case, a seed perturbation may develop into a buoyant
plume and stay in the gain region instead of being advected
out. The results of Scheck et al. (2008) suggest that seed per-
turbations of∼ 1% may be sufficient to allow fully developed
convection even when χ < 3. Fernández et al. (2014) pointed
out that χ is quite sensitive to the way it is calculated. We fol-
low the recent works of Ott et al. (2013); Couch & O’Connor
(2014); Hanke et al. (2013), who all used instantaneous angle-
averaged quantities to compute χ via Equation (6).

If convection develops (either in regime 2 or 3, which we
introduced earlier in this section), its vigor can be measured
using the anisotropic velocity υaniso defined as (Takiwaki et al.
2012)

υaniso(r) =

√√√√〈ρ[(υr − 〈υr〉4π
)2

+υ2
θ +υ2

ϕ

]〉
4π

〈ρ〉4π
, (7)

where 〈.〉4π denotes an angular average at a fixed radius r.
υaniso measures the magnitude of the velocity component that
is not associated with a purely spherically-symmetric radial
background flow. υaniso is high in regions of large angular
variations in υr and large nonradial velocities υθ and υϕ.

Convective activity in our simulations can be diagnosed via
Figure 3 (showing the amount of buoyant mass and Foglizzo
χ), Figure 4 (showing colormaps of 2D x − z entropy slices

at various postbounce times), and Figure 7 (showing the evo-
lution of radial profiles of the angle-averaged Brunt-Väisälä
frequency ωBV and υaniso).

In all models, within milliseconds of bounce, a convectively
unstable region with a steep negative entropy gradient devel-
ops inside the radial shell ranging from ∼ 25km to ∼ 40km
due to the propagation of the gradually weakening shock. In
our simulations, this phase occurs already during the 1D evo-
lution with GR1D (not shown here). This leads to the devel-
opment of strong prompt convection within ∼ 20ms after the
start of the 3D simulations, as is evident from the υaniso pro-
files shown in Figure 7. The χ parameter (Figure 3) is gener-
ally < 3 in all models, but prompt convection develops never-
theless from numerical perturbations, which are & 1% at the
time the profile is mapped from 1D to 3D and settles on the 3D
grid (cf. the discussion in Ott et al. 2013 about perturbations
from the Cartesian computational grid). Prompt convection
smoothes out the negative entropy gradient on a timescale of
5 − 10ms, leading to a rapid weakening and then to complete
disappearance of convection. The latter is most apparent from
the dramatic decrease in buoyant mass shown in the top panel
of Figure 3.

Deleptonization at the edge of the protoneutron star creates
a negative lepton gradient within 30 − 40km. It drives con-
vection in the protoneutron star, setting in at 35 − 50ms after
bounce (Figure 7). Protoneutron star convection is similar in
all models, since it is independent of neutrino heating in the
gain region.

In model s27MR fheat1.05, neutrino heating creates a neg-
ative entropy gradient in the region between ∼80km and
the shock, leading to a convectively unstable layer, as ap-
parent from the upper left panel of Figure 7. This triggers
and sustains convection in the postshock region starting at
t − tb ∼ 50ms, at this early time aided by additional entropy
perturbations coming from variations in the shock radius. The
amount of buoyant mass (top panel of Figure 3) has a local
maximum when convection first starts and exceeds this max-
imum only once the explosion begins to develop in model
s27MR fheat1.05. The Foglizzo χ parameter shown (bottom
panel of Figure 3) suggests that much of the convection, while
clearly visible in the entropy slices of this model shown in
Figure 4, is not fully bouyant in the coordinate frame (regime
2). Only at t & 100ms after bounce does χ grow beyond the
linear-theory threshold value of 3 and the amount of buoyant
mass increases, indicating that convection is now fully buoy-
ant and convective plumes begin to push out the stalled shock,
driving both its expansion and asymmetry (regime 3). These
general trends agree well with what was found by Burrows
et al. (2012), Couch (2013), Dolence et al. (2013), Ott et al.
(2013), and Couch & O’Connor (2014) for 3D simulations
with strong neutrino heating that yielded explosions.

In model s27MR fheat0.95 with moderate neutrino heating,
the buoyant mass peaks when neutrino-driven convection first
develops and then gradually declines with time. While we see
clear signs of convection in the entropy snapshot at∼80ms af-
ter bounce in Figure 4, convective plumes never become fully
buoyant in the coordinate frame in this model and regime 3
of fully developed buoyant convection is never reached. At
150ms after bounce, convection has all but disappeared and
the buoyant mass has plummeted. At this point, the SASI has
taken over from neutrino-driven convection as the dominant
hydrodynamical instability (cf. §4.2). It is the driving agent
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Figure 8. Top panel: Angular spectra E(`) of the angular kinetic energy den-
sity of convective turbulent motion (Equation 9) in model s27MR fheat1.05
at a range of postbounce times before the onset of shock expansion. We
overplot lines indicating `−5/3 (Kolmogorov) and `−1 scaling. The energy
containing range is near ` = 5 − 10 and should be linked by the inertial range
to the dissipation scale at large `. E(`) is most consistent with `−1 scaling
in the “inertial range,” which suggests that numerical viscosity affects the
efficiency of kinetic energy from large to small scales. Bottom panel: An-
gular spectra E(`) for model s27MR fheat0.8 (weak neutrino heating) at var-
ious postbounce times. In this SASI-dominated model, turbulence is driven
by shear and entropy gradients associated with secondary shocks. The E(`)
spectrum is highly nonstationary at all `.

for the large anisotropic motions visible at late times in Fig-
ure 7.

Finally, in model s27MR fheat0.8 with weak neutrino heat-
ing, convective instability is weak and only intermittent. As
in the other models, the amount of buoyant mass peaks at
∼50ms after bounce, but convection weakens quickly and is
almost gone at 80ms after bounce, as is obvious from the en-
tropy snapshot of this model shown in Figure 4. SASI domi-
nates the postbounce hydrodynamics in this model and is re-
sponsible for the strong anisotropic dynamics diagnosed via
υaniso in Figure 7 at later postbounce times.

4.4. Turbulence

Turbulence has recently moved into the center of attention
in core-collapse supernova theory and simulation (Murphy &
Meakin 2011; Murphy et al. 2013; Couch & Ott 2014). In
the absence of very rapid core rotation and strong magnetic
fields (the most likely scenario for the vast majority of mas-
sive stars; Heger et al. 2005; Ott et al. 2006), there is no phys-
ical source of viscosity in the postshock gain layer that could
prevent neutrino-driven convection from developing into full-
out high Reynolds number turbulence (see Appendix A for
a more detailed discussion of physical viscosity in the gain
layer). Similarly, shear flows and entropy gradients due to
periodic shock shape variations driven by the SASI will seed
turbulence behind the stalled shock.

A growing number of core-collapse supernova studies an-
alyzing turbulence are showing that one of the key differ-

ences between 2D and 3D simulations is the well known (e.g.,
Kraichnan 1967) inverse and unphysical 2D turbulent cascade
that drives kinetic energy toward large scales in 2D instead
of toward small scales in 3D (e.g., Hanke et al. 2012; Do-
lence et al. 2013; Takiwaki et al. 2014; Couch 2013; Couch
& O’Connor 2014; Couch & Ott 2014). Simulations bear
out that kinetic energy at large scales is favorable for explo-
sion, which may explain why 2D simulations appear to ex-
plode more easily than 3D simulations in many studies. More-
over, work by Murphy et al. (2013) and Couch & Ott (2014)
demonstrated that the effective pressure generated by turbu-
lent stress in the postshock region is an important contribution
to the overall pressure behind the shock and likely pivotal in
launching an explosion against the preshock ram pressure of
accretion.

Turbulence in the postshock region of core-collapse super-
novae is anisotropic in the radial direction and quasi-isotropic
in nonradial motions (Murphy & Meakin 2011; Murphy et al.
2013; Handy et al. 2014; Couch & Ott 2014). It is mildly com-
pressible (reaching preexplosion Mach numbers of∼0.3−0.5;
Couch & Ott 2013) and only quasi-stationary. In the fol-
lowing, we focus on the kinetic energy spectra of turbulence
in our simulations and compare neutrino-driven convection
dominated and SASI-dominated regimes of postbounce hy-
drodynamics.

We study the spectrum of turbulent motion in our sim-
ulations by decomposing the kinetic energy density of the
nonradial motion into spherical harmonics on a spherical
shell in the gain layer. Following previous work by Hanke
et al. (2012), Couch (2013), Dolence et al. (2013), Couch &
O’Connor (2014), and Handy et al. (2014), we define coeffi-
cients

ε`m(t) =
∮ √

ρ(θ,φ)υtY m
` (θ,φ)dΩ , (8)

where υt =
√
υ2
θ +υ2

φ and where we average the
√
ρυt part

within the radial shell r ∈ (R1,R2). In our analysis, we use
R1 = 0.7Rshock,min, R2 = 0.8Rshock,min, where Rshock,min is the
minimum shock radius at the time we carry out the spatial
averaging. The total angular kinetic energy density at a given
` is then

E(`) =
∑̀
m=−`

ε2
`m. (9)

In order to calculate E(`) at time t, we additionally average
E(`) over the time interval (t − ∆t, t + ∆t), where we take
∆t = 5ms in our analysis. We note that in the turbulence lit-
erature, it is more common to express the turbulent energy
spectrum in terms of the wave number k instead of `. How-
ever, since we are decomposing the nonradial motion on a
spherical shell, spherical harmonics are the natural choice of
basis. We expect E(`) to be a power law ∝ `−α, with α vary-
ing between different ranges in `. Any power-law spectrum
E(k) ∝ k−α corresponds to E(`) ∝ `−α in the limit of large
` (e.g., Chapter 21 of Peebles 1993) and, as pointed out by
Hanke et al. (2012), the power-law indices of E(`) and E(k)
should correspond well to each other already at `& 4.

Studies of 3D turbulent flows in various scenarios have
shown that the spectrum of turbulent motion E(`) consists of
three different regions (e.g., Pope 2000). The energy of turbu-
lent flow is supplied in the energy-containing range at large
spatial scales comparable to the size of the turbulent region
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by creating large-scale turbulent eddies with ` of ∼ few. In
the energy containing range, E(`) is typically nearly constant
or increases mildly with `. The inertial range is the range in
` in which energy cascades (i.e. is transferred) from large-
scale eddies down to small scales and E(`) decreases with
`−α,α > 1. In the dissipation range, the dependence of E(`)
on ` is significantly steeper than in the inertial range, typically
E(`)∝ exp(−`) (e.g., Pope 2000). Our simulations do not con-
tain any physical viscosity (which would, in any case, be ex-
tremely small in the postshock gain layer, cf. Appendix A)
and dissipation is due to the numerical viscosity inherent to
our hydrodynamics scheme.

In Kolmogorov theory of isotropic, incompressible, station-
ary turbulence (e.g., Landau & Lifshitz 1959), E(`)∝ `−5/3 in
the inertial range. For the case of neutrino-driven convection
in the gain layer, we expect a similar or even steeper scaling,
since (1) turbulence is more or less isotropic in the nonradial
directions considered here (Murphy et al. 2013), (2) turbu-
lence has sufficient time to fully develop, since the preexplo-
sion, stalled-shock phase lasts for many turnover cycles, and
(3) higher Mach-number (more compressible) flow generally
leads to a more efficient turbulent cascade to small scales, and
thus a steeper power law (e.g., Garnier et al. 2000).

The top panel of Figure 8 shows E(`) at various postbounce
times in model s27MR fheat1.05, whose gain-layer hydrody-
namics is dominated by neutrino-driven convection due to
strong neutrino heating (cf. §4.3). While there are variations
in E(`) in the low-` energy-containing range, at ` & 10 the
spectra are quite steady after t − tb ∼ 80ms, indicating that
the flow is at least quasi-stationary at intermediate and small
scales in this model. E(`) should peak at ` corresponding to
the size of the convectively unstable gain region. At 90ms
after bounce we infer from the top right panel of Figure 7 a
radial extent of the turbulent region of H ∼ 70km and a typi-
cal radius of R∼ 90km (the center of the convective region).
The value of ` at which the spectrum E(`) peaks should cor-
respond to the number of eddies with diameter H that fit into
the turbulent region, `peak ∼ (2πR)/H − 1≈ 7. This is close to
what is realized by the spectrum at 90ms after bounce shown
in Figure 8 for this model. At smaller scales (larger `), the
spectrum should first exhibit an extended inertial range region
with E(`)∝ `−5/3 before steepening in the dissipation range at
very large `. This, however, is not borne out by Figure 8. At
intermediate ` of 10−40, the spectrum is much shallower than
`−5/3 and most consistent with `−1 and steepens only at `& 40
and quickly surpasses the `−5/3 scaling. This kind of spec-
tral behavior is qualitatively and quantitatively consistent with
what was found for neutrino-driven turbulence in the simu-
lations of Dolence et al. (2013), Couch & O’Connor (2014),
and Couch & Ott (2014), who all used numerical methods and
Cartesian grid setups very similar to ours.

The bottom panel of Figure 8 shows E(`) at various post-
bounce times in the SASI-dominated model s27MR fheat0.8
(weak neutrino heating). Anisotropic motions in this
model (and at postbounce times &150ms also in model
s27MR fheat0.95 whose E(`) is not shown) are driven by en-
tropy and vorticity perturbations caused by the SASI, which
is much more intermittent than neutrino heating. This is re-
flected in the turbulent kinetic energy spectra that vary at
all scales with postbounce time and do not reach the quasi-
stationarity that we observe for neutrino-driven turbulent con-
vection in the top panel of Figure 8. The variations in E(`)

in the SASI-dominated model can be directly correlated with
the strength of the SASI. For example, the overall magnitude
of E(`) grows from 90−150ms after bounce, which coincides
with the increasing strength of the SASI oscillations seen in
Figure 5 for this model. At ∼180ms, E(`) at large scales is
decreased as a result of damped SASI oscillations shortly af-
ter the silicon interface advects through the shock (cf. §4.2).
While there is much variation in the overall magnitude of
E(`), the scaling of E(`) is significantly shallower than `−5/3

and closer to `−1 at the scales one would naively be tempted
to identify with the inertial range. This is in agreement with
the neutrino-driven turbulent convection case.

Several authors (e.g., Dolence et al. 2013; Couch &
O’Connor 2014) have argued that the `−1 scaling observed in
contemporary 3D simulations could be due to the physical na-
ture of the postshock turbulent flow that deviates significantly
from the assumptions of Kolmogorov turbulence. Our inter-
pretation is different. An inertial range scaling with `−α with
α≤ 1 is unphysical, since in the limit of infinite resolution, the
integral turbulent energy is divergent. Neutrino-driven turbu-
lence is essentially isotropic in the nonradial directions, it is
quasi-stationary, and only mildly compressible. Local high-
resolution studies of driven turbulence in this regime gener-
ally find an inertial range with α' 5/3 for the incompressible
transverse flow component and α > 5/3 for the compressible
part (e.g., Schmidt et al. 2006). Those simulations and simu-
lations of turbulence in other regimes (e.g., Porter et al. 1998;
Sytine et al. 2000; Kaneda et al. 2003; Dobler et al. 2003;
Haugen & Brandenburg 2004; Kritsuk et al. 2007; Federrath
2013), however, also find the appearance of a shallower re-
gion with α ∼ 1 near the end of the inertial range before the
transition to the dissipation range. This corresponds to ineffi-
cient energy transport at these scales and is referred to as the
bottleneck effect. This is understood to be a physical feature
of turbulence that is related to a partial suppression of non-
linear interactions of turbulent eddies of different scale near
the regime of strongest dissipation (Yakhot & Zakharov 1993;
She & Jackson 1993; Falkovich 1994; Verma & Donzis 2007;
Frisch et al. 2008).

Sytine et al. (2000) carried out a resolution study with lo-
cal compressible (Mach 0.5) turbulence simulations using the
original PPM solver of Colella & Woodward (1984). Their
Figure 11 shows that their local simulations with 10243 and
5123 cells resolve an inertial range with α = 5/3. The bottle-
neck with α < 5/3 appears at the end of this range. However,
with decreasing resolution, the bottleneck shifts to progres-
sively lower wavenumbers, consuming more and more of the
resolved inertial range. Already at 2563, the inertial range is
gone and energy injection and dissipation scales are joined
directly with 1 . α < 5/3. On the basis of their results and
previous work by Porter et al. (1998), Sytine et al. (2000) ar-
gue that the numerical viscosity of their PPM scheme provides
dissipation that affects the flow directly on spatial scales from
2 to ∼12 times the width of a computational cell. This should
be the equivalent of the dissipation range. On somewhat larger
scales, from ∼12 to ∼32 cell widths, the flow is still affected
by the viscosity of PPM indirectly, creating the observed bot-
tleneck effect.

Our numerical hydrodynamics scheme is very similar to the
PPM implementation used by Sytine et al. (2000), but likely
more dissipative, because we do not employ the original ex-
act Riemann solver of Colella & Woodward (1984), but the
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Figure 9. Top panel: Evolution of the average shock radii for five different
resolutions in the strong neutrino heating regime ( fheat = 1.05; see Table 1
for simulation details). Lower resolution leads to larger shock radii. Bottom
panel: Evolution of the normalized root mean square deviation σshock of the
shock radius from its angle averaged value for the same five models.

more dissipative HLLE solver (cf. §2). The numerical vis-
cosity of our scheme is thus larger than in the scheme of Sy-
tine et al. (2000) and 32 cell widths is only a lower bound on
the scale that is affected by numerical viscosity in our simula-
tions. In our fiducial medium resolution simulations for which
we present E(`) in Figure 8, the cell width is ∼1.4km and the
region that is turbulent has a radial extent of ∼70km (cf. Fig-
ure 7). Hence, we have (in the best case) 70km/1.4km ≈ 50
cells covering the turbulent region (of which∼32 are affected
by numerical viscosity), which is much less than the 512
linear cell width needed by Sytine et al. (2000) to resolve
some inertial range. We conclude that at the resolution em-
ployed here, we cannot reasonably expect to resolve the iner-
tial range in the turbulent gain layer. All that we are seeing
here, and that the simulations of Dolence et al. (2013), Couch
& O’Connor (2014), and Couch & Ott (2014) show, is the
contamination of the turbulent energy spectrum by numerical
viscous effects all the way up to the energy containing range.
Turbulence is thus not resolved in these and in the present 3D
simulations. This conclusion is further supported by the low
numerical Reynolds number of Re∼70 that we find in Ap-
pendix B for our simulations, suggesting that our simulations
are somewhere in between perturbed laminar flow and turbu-
lence. Couch & Ott (2014) estimated Re ∼ 350 via a simple
comparison of the size of the convective region with the linear
grid spacing (e.g., Pope 2000). Using their approach, we find
Re∼ 180. Authors carrying out simulations on spherical grids
have argued that they see α closer to 5/3 and resolve the in-
ertial range (Hanke et al. 2012; Handy et al. 2014). However,
the angular and radial resolutions employed in these studies
are significantly lower than the effective resolutions provided
by our 3D Cartesian grids and it is not clear how turbulence
could be resolved in their simulations if not in ours.

5. RESULTS: DEPENDENCE ON NUMERICAL RESOLUTION
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Figure 10. Time evolution of the net neutrino heating Qnet (top panel), heat-
ing efficiency η (center panel), mass in the gain region Mgain (bottom panel,
left ordinate), and the average entropy in the gain region sgain (bottom panel,
right ordinate) for the case of strong neutrino heating and five different reso-
lutions. Low resolution results in artificially efficient neutrino heating and in
an overestimate of the mass in the gain region.

5.1. Strong Neutrino Heating,
Convection Dominated Regime

We explore the impact of numerical resolution in the regime
of strong neutrino heating and neutrino-driven convection
dominated 3D hydrodynamics by running simulations of the
s27 progenitor with a total of five different resolutions with
linear cell width in the postshock gain layer varying by al-
most a factor of four. Our baseline s27MR fheat1.05 model has
a resolution on the AMR level containing the postshock re-
gion and the shock with linear resolution dxshock = 1.416km.
This correponds to an effective angular resolution at a radius
of 100km of d(θ,φ) = 0.81◦. In models s27ULR fheat1.05
(“ultra-low resolution”), s27LR fheat1.05 (“low resolution”),
s27IR fheat1.05 (“intermediate resolution”), s27HR fheat1.05
(“high resolution”), this is 3.784km, 1.892km, 1.240km, and
1.064km, respectively. These correspond to effective angu-
lar resolutions at a radius of 100km of 2.15◦, 1.08◦, 0.81◦,
0.71◦, and 0.61◦, for ULR, LR, IR, HR, respectively (see also
Table 1).

Figures 9 and 10 give a concise summary of the effects of
resolution on the postbounce hydrodynamics and on the de-
velopment of a neutrino-driven explosion. The overall trend
is very clear: the lower the resolution, the larger the average
shock radius, the higher the neutrino heating rate, the greater
the heating efficiency, and the larger the mass in the gain layer.

While these overall trends are robust, there are some in-
consistencies in detail of note. The mean specific entropy
in the gain layer (bottom panel of Figure 10) appears almost
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Figure 11. Comparison of buoyant mass (top panel), buoyant momentum
(center panel), and radial convective enthalpy and kinetic energy fluxes (bot-
tom panel, cf. Equation 10) for simulations with five different resolutions of
the strong neutrino heating case. Higher-resolution simulations, in particu-
lar in the first ∼100ms after bounce (before shock expansion sets in), have
smaller Mgain,υ>0, Pgain,υ>0, and FC + FK than lower resolution simulations.

completely independent of resolution. The asphericity of the
shock front, measured by the normalized root mean square
deviation σshock of the shock radius in the bottom panel of
Figure 9 has no systematic resolution dependence in its mag-
nitude and variations. The fiducial MR simulation is an outlier
with the overall smallest σshock. The shock radius, neutrino
heating, heating efficiency, and mass in the gain region are
very similar in the LR and MR models (differing in dxshock
by ∼30%) and at the end of its evolution, the MR simulation
actually has a slightly larger shock radius than its LR counter-
part. On the other hand, the IR and HR simulations, which dif-
fer only by∼15% in resolution, are consistent with each other
in all quantities except σshock. The MR/IR simulation pair dif-
fers in resolution by ∼15%, yet their results are much farther
apart than those of the LR/MR pair that differs by ∼30% in
resolution. These variations about the general trend are in-
dicative of the possibility that many if not most (or all) of
our simulations are not yet in the convergent regime and that
perhaps much higher resolutions in the convectively unstable
layer may be needed to accurately and in a converged man-
ner capture the postbounce hydrodynamics of neutrino-driven
convection dominated core-collapse supernovae.

Hanke et al. (2012), Couch & O’Connor (2014), and Taki-
waki et al. (2014), who carried out less extensive 3D param-
eter studies with similar or lower resolutions, found the same

trends with resolution observed in our simulations. Handy
et al. (2014), on the other hand, found improved conditions
for explosion with increasing resolution. However, they stud-
ied angular grid spacings from 24◦ down to only 2◦. Their
highest resolution roughly corresponds to our ULR case. At
such coarse resolutions, which suppress nonradial convective
motions, it is not at all surprising that the conditions become
more favorable for explosion as increasing resolution begins
to allow nonradial motions. The Handy et al. (2014) simula-
tions thus probe the resolution dependence of 3D postbounce
hydrodynamics in a completely different regime than our sim-
ulations.

Figure 11 provides further evidence for why lower reso-
lution simulations are (of course artificially) favorable for
neutrino-driven explosions. The lower the resolution, the
larger the amount of buoyant mass (defined as the mass in the
gain region with positive radial velocity) and the greater the
amount of positive momentum in the gain region. The more
mass is truly buoyant (and thus in regime 3 of neutrino-driven
convection discussed in §4.3), the greater the neutrino heat-
ing rate and efficiency (cf. Figure 10). Note, however, that
by comparing the total mass in the gain region given in the
bottom panel of Figure 10 with the buoyant mass in the top
panel of Figure 11, one finds that that the truly buoyant mass
is at most ∼20% of the mass in the gain region. We expect
that this fraction will sensitively depend on progenitor struc-
ture and will be higher in progenitors with lower postbounce
accretion rates than in the 27-M� progenitor that we study
here.

The bottom panel of Figure 11 shows the time evolution
of the sum of the angle-averaged “turbulent” radial fluxes of
enthalpy (FC, also known as “convective flux”) and kinetic
energy (FK) near the shock. We follow Hurlburt et al. (1986)
and Handy et al. (2014) and define

FC =
∫

4π
ρυr

(
ε+

P
ρ

)′
r2dΩ,

FK =
∫

4π
ρυr

(
1
2
υiυi

)′
r2dΩ, (10)

where ρ is the density, υr is the radial velocity, ε is the in-
ternal energy, P is the pressure, and υi is the ith component
of velocity. All primed quantities represent variations about
the angle-averaged mean. We evaluate the angular integrals
in Equation 10 at each time at a radius that corresponds to
the instantaneous minimum shock radius. A number of stud-
ies (e.g., Burrows et al. 1995; Dolence et al. 2013; Ott et al.
2013; Handy et al. 2014; Couch 2013; Couch & Ott 2014)
have argued that buoyant convective/turbulent bubbles are lo-
cally important in driving shock deformation and expansion.
Murphy et al. (2013) and Couch & Ott (2014) have shown that
the additional effective ram pressure due to turbulence is cru-
cial for the relative ease of explosions in 2D and 3D compared
with the 1D case. All these effects are related to the convec-
tive/turbulent flux of kinetic energy and enthalphy in the gain
layer and near the shock (cf. Yamasaki & Yamada 2006). Fig-
ure 11 reveals that the sum FC + FK near the shock decreases
with increasing resolution, creating less favorable conditions
for explosion.

The radial convective/turbulent fluxes are dominated by
flow at large and intermediate scales. In Figure 12, we plot
angular turbulent kinetic energy spectra E(`) (cf. equation 9)
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Figure 12. Left panel: Angular spectra of the turbulent kinetic energy density for five different resolutions at 90ms after bounce in the strong neutrino heating
case. The turbulent transport of energy to small scales becomes increasingly efficient with increasing resolution. Decreasing resolution leads to an onset of strong
dissipation at smaller `. Right panel: Compensated (`5/3 rescaled) turbulent spectra. The dashed line indicates the range in ` where we expect the inertial range
and where the spectrum should be flat if E(`)∝ `−5/3 were realized as predicted by theory.

in the gain layer at 90ms after bounce for all resolutions. The
left panel shows the plain E(`) spectra, while the right panel
shows “compensated” spectra that are rescaled by `−5/3 as is
customary in studies of Kolmogorov turbulence. A flat graph
in the region where the inertial range is expected would in-
dicate consistency with Kolmogorov turbulence. Given the
spatial scale of the gain layer in our simulations, we would ex-
pect the energy containing range to be around `∼ 7 (cf. §4.4)
which should be followed by an inertial range with E(`) ∝
`−5/3 before dissipation sets in. None of our simulations, not
even the HR case, exhibits any inertial range. Where the iner-
tial range should be, E(`) is most consistent with an `−1 scal-
ing, which is indicative of a bottleneck due to viscous contam-
ination because of insufficient numerical resolution (cf. §4.4).

Figure 12 does not clearly show large differences of E(`) in
the energy-containing range with changing resolution. How-
ever, note that at low ` the spectra are not fully stationary (see
Figure 8). One should also recall that we here project out the
radial part and that the important radial kinetic energy and en-
thalpy fluxes decrease with increasing resolution, which indi-
cates less total energy/power at large scales (Figure 11). The
figure does, however, clearly demonstrate that transport of tur-
bulent energy to small scales becomes increasingly efficient
as the resolution is increased. The energy contained at large
` increases systematically with resolution and even appears to
converge as the resolution gets close to the HR case. How-
ever, the resolution decrements between the various shown
simulations are not constant and the three highest simulations
differ only by ∼15% in resolution, while MR and LR differ
by∼30% and LR and ULR differ by a factor of two. Since no
inertial range is realized, we do not consider any of our stud-
ied resolutions to be in the regime in which the flow is truly
turbulent. The HR simulation, at∼90ms after bounce, covers
the entire postshock region with ∼2403 computational cells,
but only the outer ∼70km are actually convectively unstable
and are effectively covered by 70.0km/1.064km ≈ 66 linear
cell widths. According to Sytine et al. (2000) this resolution
may still be a factor of &7−8 too low for resolving the inertial
range.
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Figure 13. Top panel: Comparison of the average shock radius evolution in
the MR and LR simulations of the SASI dominated fheat = 0.8 model with
weak neutrino heating. The MR and LR resolutions differ by ∼30%. The
shock radius evolution is almost independent of resolution in this model and
until ∼200ms after bounce. Then, the shock in the higher-resolution (MR)
simulations expands somewhat, possibly related to the appearance of large-
scale ` = 1 SASI modes at this time (cf. Figure 14). Bottom panel: The
normalized root mean square deviation σshock of the shock radius from its
angle averaged value in the MR and LR simulations. The oscillations in
σshock, which are due to the SASI, are much stronger in the MR simulation,
indicating that the SASI is weaker in the LR simulation (cf. Figure 14).

5.2. Weak Neutrino Heating, SASI Dominated Regime

We investigate resolution dependence in the weak neutrino
heating, SASI dominated case by comparing our baseline-
resolution simulation s27MR fheat0.8 with a simulation car-
ried out with lower resolution, s27LR fheat0.8, which uses the
same resolution of the LR simulation in the previous section.
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Figure 14. Comparison of select normalized mode amplitudes a`m · a−1
00 of

the shock front between the LR and MR simulations of the SASI dominated
fheat = 0.8 model. The top panel shows the ` = 2,m = 2 mode and the bottom
panel shows the ` = 1,m = −1 mode. The qualitative evolution of the modes
are nearly independent of resolution and behave as discussed in §4.2 for this
model. However, the magnitude of the mode amplitudes is generally lower in
the lower-resolution simulation. The resolutions differ by ∼30%.

MR and LR resolutions differ by ∼30% (cf. Table 1). Addi-
tional simulations with further decreased or increased resolu-
tion would be advisable but were not possible for the SASI
dominated case within the limitations of our computational
resources.

The top panel of Figure 13 compares the evolution of the
average shock radius in the MR and LR simulations. They
are qualitatively and quantitatively nearly identical and signif-
icantly closer to each other than the LR and MR simulations
in the strong neutrino heating case discussed in the previous
Section 5.1. We also find (but do not show here) that net neu-
trino heating, neutrino heating efficiency, and the mass in the
gain region are essentially identical in the MR and LR models
throughout the simulated postbounce time.

While the average shock radius evolves nearly identically
in the MR and LR cases, we find that deviations from the
average due to SASI oscillations are smaller in the LR case.
This is apparent from the bottom panel of Figure 13, which
shows the normalized root mean square deviation σshock of the
shock radius from its angle-averaged value. The oscillations
in σshock are due to the SASI and their amplitudes are much
smaller in the LR simulation. Figure 13 depicts the evolution
of the normalized ` = 2,m = 2 and ` = 1,m = −1 amplitudes
(Equation 2) of the shock front as representative examples of
the ` = {1,2} mode families in the LR and MR simulations.
The evolution of these modes is qualitatively similar in both
LR and MR simulations, but the LR simulation shows sys-
tematically lower mode amplitudes in both ` = 1 and ` = 2
until ∼160ms after bounce. At that time, the silicon inter-
face advects through the shock, leading to its transient expan-
sion, and to a profound change in the SASI mode structure
(cf. §4.2). In the LR simulation, the ` = 2 mode amplitudes
decay less than in the MR case, but the ` = 1 modes do not

grow as strongly as in the MR case. This deviation between
MR and LR SASI dynamics has an effect on the average shock
radius, whose MR and LR evolutions depart from each other
towards the end of the LR simulation at∼200ms after bounce.

Our results show that the weak neutrino heating, SASI dom-
inated regime of 3D postbounce hydrodynamics is sensitive to
resolution and this sensitivity is strongest in the development
and non-linear dynamics of the SASI. Sato et al. (2009) have
shown that for SASI to reach convergence, the numerical res-
olution must be sufficiently high to capture the full advective-
acoustic cycle of entropy/vorticity perturbations that advect
through the postshock region, are reflected at the protoneu-
tron star, and propagate back up to the shock. The LR simula-
tion (dxshock = 1.892km) has evidently too low resolution, but
since we only have two resolutions at hand, we cannot with
confidence say that the MR simulation (dxshock = 1.416km) is
in the convergent regime for the SASI.

6. DISCUSSION AND CONCLUSIONS

Core-collapse supernovae are fundamentally three dimen-
sional (3D). The 3D simulations presented in this paper add
to the growing set of modern 3D simulations that are begin-
ning to elucidate the many facets of postbounce hydrodynam-
ics in neutrino-driven core-collapse supernovae. Our results –
in agreement with Hanke et al. (2013) and Couch & O’Connor
(2014) – show, beyond reasonable doubt, that 3D postbounce
hydrodynamics can be dominated by neutrino-driven convec-
tion or by the standing accretion shock instability (SASI) or
can involve both at the same time or at different times.

SASI is not an artifact of axisymmetry (2D), but is, at least
in current 3D results, generally associated with high post-
bounce accretion rates, with moderate or weak neutrino heat-
ing, and with failed 3D explosions in progenitors that explode
in 2D (Burrows et al. 2012; Ott et al. 2013; Hanke et al. 2013;
Couch & O’Connor 2014). An interesting open question is
now if 3D SASI-dominated core-collapse supernovae can still
yield explosions or if their progenitors are part of the possi-
bly large fraction of massive stars that simply do not explode
and result in black holes (Kochanek 2014b,a; Clausen et al.
2014). Hanke et al. (2013) found an explosion in at least one
SASI-dominated case of a 25-M� progenitor, but that sim-
ulation used an artificial contracting inner boundary, dialed-
in inner boundary neutrino luminosity, and a gray neutrino
transport scheme. Their more sophisticated energy-dependent
radiation-hydrodynamics 3D simulation of the same 27-M�
progenitor studied here shows SASI-dominated dynamics and
does not appear to yield an explosion.

There is broad consensus now that high (kinetic) energy at
scales comparable to the size of the postshock gain layer is
favorable for shock expansion and explosion. More (buoy-
ant) nonradially moving mass in the gain layer increases the
efficiency of neutrino heating (e.g., Buras et al. 2006a; Mur-
phy & Burrows 2008). Large-scale convective radial fluxes of
buoyant material, associated with buoyant high-entropy bub-
bles (due to neutrino-driven convection or SASI) can deliver
heat and do mechanical work on the shock (Burrows et al.
1995; Yamasaki & Yamada 2006; Hanke et al. 2012; Dolence
et al. 2013; Couch 2013; Ott et al. 2013; Handy et al. 2014;
Couch & O’Connor 2014). The effective pressure of turbu-
lence at large scales adds to the thermal pressure in the post-
shock region and facilitates larger shock radii and thus helps
explosion (Murphy et al. 2013; Couch & Ott 2014).
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If it is indeed energy/power/dynamics at large scales that is
needed to revive the stalled shock, then the results of our res-
olution and turbulence study in this paper do not at all bode
well for the plain vanilla neutrino mechanism in 3D. We stud-
ied effective angular resolutions in the postshock gain layer
from ∼2◦ (which is the resolution used in Hanke et al. 2013
and the highest resolution considered by Handy et al. 2014)
to ∼0.6◦. Going from the lowest to the highest resolution,
the neutrino heating rate drops precipitously (by ∼25%), and
so do the total amount of mass in the gain layer, the amount
of buoyant mass, and the convective fluxes of kinetic energy
and enthalpy. The result is a smaller average shock radius
and a slower transition to explosion with increasing resolu-
tion. Our model with strong neutrino heating still shows at
least the onset of an explosion even in the highest resolution,
but in a more critical case, a low-resolution simulation may in-
correctly predict an explosion where a higher-resolution sim-
ulation does not.

Our results, in agreement with the results of the simpler
“light-bulb” simulations carried out by Hanke et al. (2012),
show that the higher the resolution in 3D, the more efficient
becomes the turbulent cascade of nonradial kinetic energy to
small scales. Moreover, comparing our results for the turbu-
lent energy spectra with what is expected from turbulence the-
ory and local simulations of mildly compressible turbulence,
we find that even our highest-resolution simulation does not
resolve the inertial range of turbulence. Instead, the realiza-
tion of turbulence in our simulations is likely affected by nu-
merical viscosity all the way up to the scale of energy injec-
tion. This reduces the efficiency of the turbulent cascade to
small scales and results in a shallow scaling of the angular en-
ergy spectrum. The same is likely true also for the simulations
of Dolence et al. (2013) and Couch & O’Connor (2014), who
find similarly shallow scalings.

In our highest-resolution simulation, the turbulent gain
layer is covered by ∼66 linear computational cell widths. Sy-
tine et al. (2000) argue that the numerical viscosity of the PPM
scheme affects regions of up to∼32 cell widths and that &512
linear cell widths across a mildly compressible turbulent re-
gion are necessary to resolve any inertial range with PPM.
This would, in the best case, correspond to ∼7 − 8 times our
current resolution in the gain layer. Though should our con-
clusion be correct, then obtaining neutrino-driven explosions
will just get harder when such higher-resolution simulations
(or simulations with higher-order numerical schemes) become
available that resolve the inertial range and efficiently trans-
port energy to small scales. The standard neutrino mechanism
may then need help to somehow corral energy at large scales
and/or a source of additional heating. For example, large-
scale perturbations from precollapse aspherical shell burning
were shown by Couch & Ott (2013) to boost the vigor of tur-
bulence and thus could help. Magnetic fields could help con-
verge flow to long-lived high-entropy bubbles (Obergaulinger
et al. 2014) and the dissipation of Alfvén waves propagating
from a magnetized protoneutron star into the gain layer may
be an additional source of heat (Suzuki et al. 2008). Moderate
rotation in combination with the magnetorotational instabil-
ity could also lead to additional heat input into the gain layer
(Thompson et al. 2005).

Work in the immediate future will need to be directed to-
wards better understanding turbulence in the core-collapse su-
pernova context. This can be addressed first with local sim-

ulations that adopt flow conditions characteristic of the gain
layer and resolve a significant inertial range. Such simula-
tions should be able to test the conclusions we have drawn
on the basis of our global simulations. Subsequently, high-
resolution semi-global simulations could be used to test the
ramifications of not resolving the inertial range.
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APPENDIX

A. DISSIPATION OF TURBULENT MOTION

The parameter that is used to indicate the onset of turbulence is the physical Reynolds number

Re =
`u
ν
, (A1)
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where ` is a length scale of the flow, u is a velocity scale of the flow, and ν is the physical kinematic viscosity. Laboratory
experiments show that the transition from laminar to turbulent float occurs at Re∼ 102 − 2×103, depending upon the geometry
of the experimental boundaries (cf. Arnett et al. 2014).

The kinematic viscosity is related to the efficiency of momentum transport by particles in the fluid. Employing the Chapman-
Enskog procedure to first order on the Boltzmann equation gives the kinematic viscosity

ν =
5
8

√
πmT
σtρ

, (A2)

where σt is the transport cross-section for particles in the fluid (cf. Mekjian 2013). Therefore, particles which have the smallest
total cross section but large average momentum (i.e. electrons are unlikely to contribute) will be responsible for the viscosity in
the medium. Clearly, neutrons will have the smallest interaction cross section due to their neutrality. Therefore, the kinematic
viscosity in the postshock region is given by Mekjian (2013) (assuming the thermal DeBroglie wavelength is greater than the
neutron s-wave scattering length asl = −17.4fm),

νN ∼ 0.2
(

ρ

1010 gcm−3

)−1( T
10MeV

)1/2

cm2 s−1. (A3)

The convectively unstable gain layer has a typical length scale of ∼107 cm and typical velocities of ∼109 cms−1. Hence, for
ρ = 1010 gcm−3 and T = 10MeV, we obtain an estimate for the physical Reynolds number of

Re≈ 1017 , (A4)

which is larger than what would be predicted just using the Braginskii-Spitzer viscosity (Braginskii 1958; Spitzer 1962) and
clearly implies the system should be turbulent.

Momentum exchange due to neutrino emission, absorption, and scattering has also been invoked as a source of viscosity
that can damp turbulent convection in core-collapse supernovae and protoneutron stars. The neutrino viscosity in the opaque
and semi-transparent regimes was estimated by, e.g., Burrows & Lattimer (1988); Keil et al. (1996), and Thompson & Duncan
(1993). Here we provide an estimate of the relevance of neutrino viscosity in the gain region, where neutrinos stream relatively
freely.

The momentum deposition rate due to neutrino absorption in the gain region can be estimated as

Ṗ∼ 2.7
Lνe

4πr2c
σ0

mb

(
εν

mec2

)2

, (A5)

where Lνe is the electron neutrino luminosity emerging from the neutrinosphere, nuclei are assumed to be dissociated, and
neutrino–nucleon interactions from Burrows et al. (2006) are employed (electron scattering is neglected). Since most of these
neutrinos propagate in the radial direction, momentum will mostly be deposited in that direction. This will not dampen stochastic
turbulent flow, for which momentum needs to be exchanged between turbulent eddies. However, Ṗ can still be used as an upper
limit for momentum exchange between different turbulent eddies. Using (A5), one can estimate the timescale for momentum
change in the gain region due to Ṗ:

τP ∼
P
Ṗ
∼ 106ms

(
Lνe

1052 ergs−1

)−1( r
100km

)2( εν
10MeV

)2( υ0

0.01c

)
,

where P is the characteristic momentum of the largest turbulent eddies in the gain region and υ0 is their characteristic velocity.
The latter is roughly equal to υaniso (Equation 7). The timescale of convective motion of eddies of size λ in the gain region can
be estimated as

τ (λ)∼ 3ms
(

0.01c
υ0

)(
λ

10km

)
, (A6)

For λ ∼ 10km, which is a reasonable estimate for the eddy scale, we get τP� τ (λ), implying that momentum exchange due to
neutrinos is unimportant at large scales. At smaller scales, the characteristic turbulent eddy velocity is given by (e.g., Pope 2000)

υ(λ) = υ0

(
λ

λ0

)1/3

, (A7)

where λ0 is the size of the largest eddies. Combining (A6) and (A7), we get τP ∝ λ1/3. The characteristic timescale of turbulent
eddies scales with λ as (e.g., Pope 2000)

τ (λ) = τ (λ0)
(
λ

λ0

)2/3

, (A8)

i.e., τ (λ) decreases with λ faster than τP does, hence τP remains much larger than τ (λ) for any λ. In other words, momentum
exchange due to neutrinos cannot damp turbulence in the gain region.
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B. EFFECTIVE REYNOLDS NUMBER

Our simulations do not include any explicit physical viscosity but rely on the viscosity of the numerical scheme to model the
unresolved scales of the turbulent cascade, in accordance with the implicit large eddy simulation (ILES) paradigm (Garnier et al.
2000). The ILES procedure has been shown to be robust and accurate for a number of turbulent flows as long as the effective
Reynolds number, defined as

Re =
υ0l0
νN

, (B1)

νN being the “numerical viscosity”, is sufficiently large, e.g., (Zhou et al. 2014). That is, as long as there is a sufficient separation
between the energy-containing scale l0 and the dissipation scale lD. How large the scale separation should be in order for the
ILES procedure to reach convergence (in a statistical sense), is problem dependent. Nevertheless it is useful to measure the range
of scales covered by our simulations in a quantitative way. This will also ease the comparison with future simulations.

Unfortunately, estimating the effective Reynolds number in ILES calculations is not trivial because the numerical viscosity
does not really behave like a physical viscosity, that is, it cannot easily be associated with a given kinematic viscosity coefficient
νN . Instead, it is a complex nonlinear function of the hydrodynamic quantities. Nevertheless, in the framework of Kolmogorov’s
theory of turbulence, it is possible to construct measures of the Reynolds number that do not explicitly depend on νN . In particular,
our estimate of the Reynolds number is based on the Taylor length (e.g., Pope 2000):

λ2 =
5E
Z
, (B2)

where Z is the enstrophy

Z =
∫ ∞

0
k2 E(k)dk , (B3)

and E is the total energy

E =
∫ ∞

0
E(k)dk =

1
2
ρ0υ

2
0 . (B4)

In the incompressible limit, the average kinetic energy dissipation rate is related to the enstrophy via the relation

ε = 2νZ , (B5)

where ν is the kinematic viscosity. Furthermore, in Kolmogorov’s theory of turbulence the energy dissipation rate is assumed to
be

ε = Cρ0
υ3

0

l0
, (B6)

where C is of order one (here assumed to be C = 1) and l0 is the integral scale, i.e., the scale of energy containing eddies.
Substituting (B5), (B6), and (B4) into (B2) and using the definition of the Reynolds number, we obtain

Re = 5
(

l0
λ

)2

. (B7)

We compute the enstrophy in our numerical data as

Z =
∞∑
`=0

R−2
0 ` (`+ 1)E(`)≈

`=120∑
`=0

R−2
0 ` (`+ 1)E(`) , (B8)

where R0 = 100 km is the radius at which the spectra are computed and we restrict our calculation to `≤ 120, because, for `& 120,
the floating point precision necessary to compute the associated Legendre functions can exceed the limits of the double precision
employed in our analysis code. In computing (B8), we used the fact that the k2 factor in the Fourier expansion corresponds to
(minus) the Laplacian in the physical space and that, by definition,

R2
0∆Y`m = −`(`+ 1)Y`m , (B9)

so that a k2 factor in the Fourier expansion corresponds to a R−2
0 `(`+ 1) factor in the angular expansion.

E is computed in a similar way to Z, summing the angular expansion coefficients of the energy (Equation (9)) up to ` = 120.
From the values of Z and E, we can infer λ = 16.5 km for model s27HR fheat1.05 at 90ms after bounce. The Taylor length is
sometimes interpreted as being the radius of the smallest coherent structures of the turbulent flow, so it is not surprising that we
find λ to be roughly 13 cells, close to the scale at which we expect numerical dissipation to be too strong for coherent structures
to persist.

The integral scale is computed as
l0 =

π

`0 + 1
R0 , (B10)
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Table 2
Reynolds Number.

Model lD/dxshock l0 [km] λ [km] Re

s27ULR fheat1.05 0.92 68.80 21.08 53.25
s27LR fheat1.05 1.56 65.37 18.55 62.06
s27MR fheat1.05 1.82 60.97 16.52 68.14
s27 I R fheat1.05 2.05 62.57 16.45 70.03
s27HR fheat1.05 2.33 61.55 16.20 72.21

Note. — lD/dxshock is the ratio between the dissipation
length, as measured from (B12) from the Re and of l0, and the
grid resolution on the refinement level containing the shock,
see Table 1. l0 is the integral length (B10). λ is the Taylor
length (B2). Finally Re is the effective numerical Reynolds
number computed from (B7).

where we compute `0 via

`0 ≈
1
E

120∑
`=0

`E(`) . (B11)

We find, for model s27HR fheat1.05, `0 = 4.1 corresponding to l0 = 61.5 km. The corresponding Reynolds number is Re = 72.

As a sanity check, we can use another identity for Re (Pope 2000):

Re =
(

l0
lD

)4/3

, (B12)

from which we find the effective dissipation scale to be lD ≈ 2.5 km. This value is of the same order as the grid spacing, meaning
that the two estimates (B7) and (B12) for the Reynolds number are roughly consistent with each other, which lends additional
credence to our estimate of Re.

Table 2 collects lD, l0, λ and Re as computed from different resolutions. As expected, the effective Reynolds number increases
slowly with resolution: the integral scale, l0, stays roughly constant (with the exception of the s27ULR fheat1.05 model), while λ
decreases. The dissipation scale, and hence the numerical viscosity at the grid scale, seems to be increasing with the resolution. A
similar effect was also reported, at much higher resolutions and for different problems, by Donzis et al. (2008) and Aspden et al.
(2009). Its origins are unclear (Aspden et al. 2009), but it is again a reminder that numerical viscosity can behave very differently
from the physical viscosity. The Reynolds numbers reported in Table 2 are disappointingly low, but this is not unexpected given
the very low resolution (∼66 linear cell widths across the turbulent region in even our highest-resolution simulation) that our
global simulations provide.

Note that, since we restricted our calculation of Z to `≤ 120, we are systematically underestimating the enstrophy. This means
that we might be underestimating the actual value of the effective Reynolds number (Couch & Ott 2014). However, we point
out that our measure is probably also affected by other uncertainties, such as in the determination of l0, and, more importantly,
by possible systematic errors coming from the fact that we rely on the validity of Kolmogorov theory of turbulence, which has
not yet been verified in the context of neutrino-driven convection. Given all of these uncertainties, our estimate of the Reynolds
number should only be taken as an order of magnitude indication. We remark that other approaches for measuring the Reynolds
number have been proposed (e.g., Fureby & Grinstein 1999; Aspden et al. 2009; Zhou et al. 2014). However, these rely either on
uncertain estimates of the numerical viscosity or on explicit measures of the kinetic energy dissipation rate. The latter are difficult
to carry out in complex simulations where gravity, radiation, and compressible effects are all present and must be accounted for.


