Seed island formation by forced magnetic reconnection
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Neoclassical tearing modes observed in experiments often grow from seed magnetic
islands induced by triggers like sawteeth. The formation of seed islands is studied in this paper
using both the reduced MHD and two-fluid equations, with the trigger being modelled by
externally applied resonant magnetic perturbations. In the linear phase the growth rate of the
driven mode is found to be the same as that of the trigger. A slowly growing trigger drives a
tearing mode, while a fast one drives a kink-like mode, which becomes a tearing mode later
when the trigger's growth slows down. A finite ion sound Larmor radius (ion Larmor radius by
using electron temperature) and electron inertia are found to lead to a larger seed island for a
given external perturbation. The electron diamagnetic drift and plasma rotation, if increasing

the relative rotation between the trigger and the driven mode, decrease the seed island width.



1. Introduction

It is well known that for a sufficiently high bootstrap current fraction, neoclassical tearing
modes (NTMs) limit the plasma pressure or even cause disruptions in tokamak experiments,
being an important issue for a fusion reactor [1-12]. NTMs observed in experiments often
grow from small seed magnetic islands generated by triggers like sawteeth [3-12], as expected
from theoretical predictions [13-24]. Small amplitude tearing modes are predicted to be
stabilized by the electron diamagnetic drift and the ion polarization current in their linear and
early nonlinear phases even for a positive A’, where A’ is the tearing mode stability index [13-
22]. In addition, the Glasser effect also provides a stabilizing effect [5,23,24]. When a
sufficiently large seed island is driven by a trigger, it can be further destabilized by the
perturbed bootstrap current to develop into a large amplitude NTM [1-12]. For the drift-tearing
mode driven by the electron temperature gradient, a sufficiently large trigger is also found to
drive a small amplitude mode into a NTM [25,26]. Due to nonlinear and toroidal effects, a
seed island for a NTM can be generated by instabilities of different helicities. For example, an
internal m/n=1/1 kink mode will drive non-linearly its second harmonic, the 2/2 component,
and also the 3/2 component perturbation due to toroidicity in tokamak plasmas (m and n are the
poloidal and toroidal mode numbers respectively) [6,9]. Edge localized modes (ELMs),
resistive wall modes or other instabilities could also act as triggers to drive seed islands
[5,8,10].

According to the modified Rutherford equation, the critical island width for the NTM's
onset is described by the ion polarization current and the transport model, leading to a critical
seed island width being close to the poloidal ion gyroradius, which is about a few centimetres
for ASDEX Upgrade and DIII-D [5-11,15-20]. Because of its small size the seed island width

cannot be directly measured in experiments. Theoretical investigation is required to look into



the seed island physics, to understand existing experimental results and to provide predictions
for ITER. The seed island formation can be regarded as a process of forced magnetic
reconnection, a subject of concern in laboratory plasmas, magnetotail and coronal plasmas [27-
41], being similar to the penetration of resonant magnetic perturbations (RMPs) into a plasma
[27-37]. The seed island growth was studied analytically earlier using the reduced MHD
equations [27]. In the present paper both the reduced MHD and two-fluid equations are utilized
for a more complete understanding of the seed island formation. The triggers are modelled by
externally applied RMPs.

In Section 2 our theoretical model is described. The numerical results obtained from
reduced MHD equations are presented in Section 3, and a corresponding heuristic linear
analysis is included in the Appendix for understanding and comparison with numerical results,
which reveals that the driven mode is of a kink-like type for a sufficiently fast growing trigger.
The finite ps (ion Larmor radius by using electron temperature) effect on the seed island growth
is given in Section 4. In Section 5 the electron inertia effect and the relative rotation between
the trigger and the driven mode, caused by the electron diamagnetic drift and by plasma
rotation, are further taken into account with ASDEX Upgrade and reactor relevant parameters

as input. Finally, the discussion and summary are presented in Section 6.

2. Theoretical model

The large aspect-ratio tokamak approximation is utilized. The magnetic field is defined as
B=Bu(e-eoki/ko)+Vyxe, where y is the helical flux function, ke=m/r and k=n/R are the wave
vector in ey (poloidal) and e (toroidal) direction, r and R are the minor and the major radius,
and the subscript 0 denotes an equilibrium quantity. The plasma velocity is given by v=ve,
+Vxe, where ¢ is the stream function.

The two-fluid equations utilized here include the mass conservation equation, the



generalized Ohm's law, and the equation of motion in the perpendicular (after taking e:Vx) and

the parallel (to magnetic field) direction. Normalizing the length to the minor radius a, the time
t to the resistive time Tr=a’lo/no ( Mo is the characteristic resistivity), the helical flux y to aBo, v
to a/tr, and the electron density n. to its value at the magnetic axis, these equations become [34]

dn,

7=dlvuj—vu(nevu)+vl(Divlne)+Sn, (1)
dy . nd
—=E,-nj———+QV n_, 2
dt 0 TU Vel. dt [|""e ( )
dU .
E:_Szvuﬁyijwm, 3)
dv
I _

where
d/dl=é’/0”t+vl Vl, (5)
j=-V . 2w-2nBo/(mR) (6)

is the parallel plasma current density, and

U=-V/’¢ (7)
is the plasma vorticity. S=ty/t4, Ta=a/Va is the toroidal Alfven time, and n is the normalized
resistivity. Eo is the equilibrium electric field, S. the particle source, and S. the poloidal
momentum source leading to an equilibrium poloidal plasma rotation. di=®ce/Vei, ®ce 1S the
electron cyclotron frequency, Q=Bd:, B=4nP/Bo’, and P=P, is the electron pressure. Cs, Ve

u, and D, are the normalized ion sound velocity, electron-ion collisional frequency, plasma
viscosity, and perpendicular particle diffusivity. A constant electron temperature T. is

assumed, and the cold ion assumption is made.

3. Results obtained from reduced MHD equations



Before presenting the results obtained from the two-fluid equations, it is helpful to first
have a look at the seed island formation within the framework of the reduced MHD equations,
which are obtained by neglecting the electron inertia and the density gradient in the generalized
Ohm’s law, the third and the fourth terms on the right hand side of equation (2). In this case
only equations (2), (3) and (5)-(7) are solved by using the initial value code TM1, which has
been used for modeling the nonlinear growth of drift-tearing modes and the plasma response to
RMPs earlier [25,33,34].

A monotonic profile for the safety factor q is assumed with the q=2 surface located at
r=0.628a, and the local magnetic shear length L,=q/(aq)=0.336. Only a single helicity,

m/n=2/1, is considered. The plasma is stable against m/n=2/1 classical tearing modes if there is
no externally applied trigger (r.A'=-1.2). The trigger for driving the seed island is taken into
account by the following boundary condition,
W= Yaexp[yt+ i(mb+ngp)] 8)

for W,<W,max, and v, is kept constant in time after y,=\,max 1S reached, where y,=\mna /aBy; is
the normalized amplitude of the m/n component of y at r=a, ¥, is the growth rate of the trigger,
and 0 and ¢ are the poloidal and toroidal angle. It is assumed to model growing ELMs or
resistive wall modes as triggers. The boundary conditions for the stream function ¢ and the
plasma vorticity U are ¢=U=0 at r=a.

Figure 1 demonstrates the time evolution of the y, with m/n=2/1 (dashed curve), which
grows exponentially in time with y=2x10"/tz from y,=10"" until y,m=10" is reached at
t=6.92x 10”1x, and afterwards it is kept constant in time. The solid curve shows the induced
m/n=2/1 component of the normalized helical flux, y=y21/aBy, at the q=2 surface, being much

smaller than that at the plasma edge. y=1.34x10?y, at t=6.92x107tr. A small value of ;s is

given at t=0 in the calculation as the initial input. The dotted curve shows the normalized



helical flux at the gq=2 surface using vacuum assumption. The following parameters,
S=1.97x10%, u=0.21(a*rr) and n=5.74, have been used, where 1 is the normalized plasma
resistivity at q=2 surface. It will be seen from the following results that the input value of y,
(and S) for figure 1 corresponds to the case that the driven mode is a tearing mode type. The
duration of the growing phase of the trigger is determined by the values of yr, . and Wamax

defined by equation 8. The value of y, is chosen here such that it is sufficiently small, while
the growing phase of the trigger is not too long.

Corresponding to figure 1, the time evolution of the normalized growth rate of the driven
mode, ytr, calculated from (dy2i1/dt)/y2n at the =2 surface is shown in figure 2 by the solid
curve. The dashed curve is the same as the solid one except for a smaller value of y,o (=10")

and y(t=0), and these two curves overlap with each other from t=0 to 6.92x107tz. Three

different phases are seen from figure 2:
(4) Initial phase: in which the value of y approaches 7y, as the initial input quantities for our

numerical calculations are not eigenfunctions of the linear reduced MHD equations. The
duration of this phase is in the order of 1/yr when a sufficiently small initial input yy(t=0) is
utilized in calculations.

(B) Linear phase: in which the mode growth rate is the same as y;. The duration of this phase is

determined by the initial RMP amplitude y, for fixed values of yr and W, mx, as can be seen

from the difference between the solid and dashed curves. The duration of the linear phase is
longer for the dashed curve with y,,=10" than that for the solid one with y,=10"".

(C) Non-constant growth rate phase: in which the mode growth rate deviates from y;. For the
solid and dashed curves in figure 2 this phase begins when y, reaches a constant, and
afterwards y decreases in time. For a sufficiently large yr and y,max, however, this phase begins

earlier before y, reaches a constant due to nonlinear effect, as can be seen from the change of



the radial location of the resonant surface to be shown in figure 7.

Corresponding to figure 1, the growth of the m/n=2/1 magnetic island is shown in figure 3,
where r- is the island edge at r>r; at the helical angle passing through the island's o-point, and r.
is the corresponding island edge at r<r,. The island width reaches about 0.01a at the end of the
linear phase, as indicated by the vertical dashed line.

Figures 1-3 show an example for an originally stable m/n=2/1 mode driven to grow by the
trigger. Depending on plasma parameters and the trigger's growth rate, in the linear phase the
driven mode can be of either a tearing mode type or not. The local radial profiles of the
normalized 21 (W21/aBo) in the linear phase are shown in figure 4a for different values of S
with y=10°/1z. For a larger value of S, corresponding to a smaller T, in our calculations, yy is
larger than zero across the resonant surface (r,=0.628a), being typical for a tearing mode. With
decreasing S (increasing T,), W21 becomes negative at r<r,, showing the feature of an ideal
mode. Above results seems to be counter-intuitive. This is due to the normalization of the time
to the resistive time Tg, so that the value of tr is fixed in our calculations, and a larger S value
corresponds to a smaller ta rather than a larger tr. The results shown in figure 4a are expected
from (A17)-(A20) in the Appendix, which reveal that a negative y», at r<r, corresponds to a
driven kink mode, existing for a shorter growth time of the trigger compared to the local
resistive diffusion time across the singular layer around the resonant surface. In the following
the case with 21 changing sign across the resonant surface will be called as the driven kink or
kink-like mode due to the similarity between the wave-function given by (A19) and (A20) in
the Appendix and those shown in reference 42 for the m/n=1/1 internal kink mode. While the
case with y,; having the same sign across the resonant surface will be called as driven tearing
or tearing mode. For figure 4a the perturbed helical flux at the edge, y., equals 2.2x10°,

exceeding the W1 at q=2 surface by two orders of magnitude for all four cases.



Corresponding to figure 4a, radial profiles of the normalized stream function, ¢»1/a’tg, are
shown in figure 4b. For larger S values, ¢.1 changes sign across the resonant surface, being
typical for a tearing mode. With decreasing value of S, ¢ approaches the typical behaviour of
a kink mode. The corresponding plasma current density perturbation is found to have a broader
radial profile for smaller values of S, being consistent with (A22) in the Appendix.

In figure 5 the boundary between the driven tearing and driven kink mode in their linear
phase is shown in the S and ysta plane by the dashed curve. The driven kink mode regime is
found for t4y>cSs'?, being consistent with (A18) in the Appendix, where S&=Sn¢/; is the value
of S at q=2 surface. From the dashed curve in figure 5 one finds ¢=1.02 and c,=c/(k;")** =0.88.

The parameters ¢ and ¢, are defined in the Appendix.

4. Effect of finite p

Finite p, is known to speed up the forced magnetic reconnection, where p=T¢/(mi®.i), ®.i 1$
the ion cyclotron frequency, and mi; is the ion mass [38-41]. Following reference [38], the finite
pseffect is studied here at first by neglecting the equilibrium electron density gradient, the ion
parallel velocity and the electron inertia in Equation (1)-(4). These effects will be included in
the following Section. When the plasma viscosity and perpendicular particle diffusivity are

assumed to be small, one finds from equations (1) and (3) that equation (2) becomes

d .
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where p«= ps/a=(Qd1)"?/S.
To compare with results obtained from the reduced MHD equations (ps=0), in figure 5 the

boundary between the driven tearing and driven kink mode in the linear phase is shown in the S
and ysta plane for ps=0.02a by the solid curve. The finite p, effect extends the tearing mode

regime to larger values of ;.



The local radial profile of the m/n=2/1 component of the normalized plasma current
density in the linear phase is shown in figure 6a for ps/a=0.02, 0.0067 and 0 with =101z,
which is more peaked around the resonant surface for a larger ps, enhancing the magnetic
reconnection as expected [38-41]. The corresponding radial profiles of the m/n=2/1 component
of plasma vorticity, U1, and stream function, ¢21, are shown in figure 6b and 6c, respectively.

The nonlinear growth of the m/n=2/1 island is shown in figure 7 with ystr=10 for p=0.02a
(solid curve) and O (dotted curve). The vertical dashed line shows the time when , reaches
Wama=10". During the linear phase the modes are of the kink-like type for both cases due to
the large value of yy, as can be seen from Figure 5, and the mode growth rate is the same as yr in
this phase, similar to that shown in figure 2. For the driven kink mode there is little magnetic

reconnection, since Y21 is very small at the resonant surface and changes sign across it, similar
to that shown in Figure 4a for lower S values. Therefore, the island width is quite small during

the growing phase of the trigger. This is different from the case for a slowly growing trigger as
shown in figures 1 and 3 with yr=2x10°, for which the island width significantly increases
during the linear phase and is much larger than that for figure 7 when y, =\, mx=10 is reached,
since the driven mode is of the tearing mode type for a low value of y;. The outwards shift of
the island edges from t=10tx before \, reaches a constant in figure 7 is due to the m/n=0/0
component of nonlinear plasma current density perturbation, which moves the q=2 surface
slightly outwards. Significant magnetic reconnection begins when y, reaches a constant,
Wama=10", as indicated by the vertical dashed line, and the mode changes from a driven kink
into a driven tearing type. Afterwards the island width grows to about 0.01a in a time scale 10
51, being faster for p,=0.02a than that for p,=0. As expected, finite p, effects are more
significant for larger values of ys.

For yitr=10’, the nonlinear growth of the normalized m/n=2/1 island width, W/a, is shown
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in figure 8 for p/a=0.02, 0.01, 0.0045 and 0. The vertical dashed line shows the time when v,
reaches a constant value, W, mx=10". Due to the large y; value utilized, the island begins its fast
growth from that time and grows faster for a larger p..

Compared to the mode driven by a trigger as discussed so far, the finite p, effect on
spontaneously growing tearing modes is quite different. This is shown in figure 9, where the
time evolution of the island width is given for py/a=0.02, 0.002, 0.00067 and 0. For these
calculations another equilibrium plasma current density profile is used for which the m/n=2/1
mode is unstable even for y,=0 due to a positive A’ value (r,A=11). The faster island growth
for a larger p, here is due to a larger linear growth rate. Detailed numerical calculations for
spontaneously growing tearing modes show that, if the value of p, is sufficiently large, the
dependence of the growth rate (~p,*°) and linear layer width (~ps**) on p, agrees with that of

the semi-collisional tearing mode theory in reference [41].

5. Results for realistic plasma parameters

NTMs triggered by sawtooth crashes and fishbone activity had been identified before from
ASDEX Upgrade experimental data [7]. Efforts have also been devoted to identify if m/n=2/1
modes are triggered by ELMs. However, up to now only a few cases have been found on
ASDEX Upgrade for which the 2/1 NTM onset might be correlated with ELMs.

To understand why 2/1 modes are not easily triggered by ELMs on ASDEX Upgrade, we
further carry out our simulations based on typical ASDEX Upgrade experimental parameters
except mentioned elsewhere. The toroidal magnetic field is Ba=2T, and the plasma minor and
major radius are a=0.5m and R=1.7m, respectively. At the resonant surface the electron

temperature T.=2keV, and the electron density n=3x10""m>. The local electron diamagnetic

drift frequency is about f+=-2kHz. These parameters lead to S.=2.65x10°, Q=9.43x10%,
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C=2.05x10"(a/ty), d,=3.12x10", v¢=2.2x10%s, and p/a=0.0065. Assuming the perpendicular
plasma viscosity to be at an anomalous transport level, e.g., 0.2m?/s, one finds p=18.8(a*1z) in
normalized units. Furthermore, D,=p/5 is taken.

It is observed from in-vessel magnetic probes on ASDEX Upgrade that type-I ELMs
typically grow in a time scale about 50us and last for about 2ms [43]. The amplitude of the
resulting m/n=2/1 component perturbation is estimated to be about y,=10* or smaller. To
model them, the time evolution of the m/n=2/1 component trigger is taken to be similar to that
shown in figure 1 with 1/y=50us and W, mx=10". After y,=10" is reached, the external field
perturbation is kept constant for another 2ms.

The nonlinear growth of the m/n=2/1 island driven by the external field perturbation
described above is shown in figure 10 for different values of plasma rotation frequency,
fe=2kHz and 10kHz, where ft is the equilibrium plasma rotation frequency at q=2 surface
introduced by the momentum source in equation (3). fg>0 refers to the plasma rotation in the
ion diamagnetic drift direction. Here the full set of the four-field equations, equations (1)-(4),
are utilized, including the electron inertia. The ratio between the current skin depth, de=C/wy.,
and p, equals 0.30, where C is the light velocity, and m,. is the local electron plasma frequency.
For fe=-f+-=2kHz, the driven mode frequency (f=f:+fz=0) is the same as that of the trigger's, so
that the resulting island is the largest. In this case the seed island width reaches about 0.02a at
t=1.1x10"*tr, which corresponds to the time that a constant y,=10* has lasted for 2ms. At this
time the 2, value at the q=2 surface equals 0.06y,. The vertical dashed line shows the time
when vy, reaches y,m. For fe=10kHz, being typical for ASDEX Upgrade discharges with
neutral beam injection in the plasma current direction, the island width is only about 0.007a
(0.35cm) due to the shielding effect of plasma rotation, since the relative frequency between the

trigger and the driven mode is f=f«+fz=8 kHz. For the case =0, obtained by taking zero
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equilibrium electron density gradient, the seed island width reaches 0.013a at t=1.1x10"*tr. The

shielding effect is somewhat smaller as f=fz=2kHz. Before y, reaches \,max, the island growth
is about the same for different rotation frequencies. This might be due to a shorter growth time
of the trigger, 1/y=50us, compared to the mode rotation period (125us for a relative rotation
frequency 8 kHz). Results obtained from the reduced MHD equations are also shown in figure
10 for fg=5kHz. In this case the island width is much smaller than the one obtained from two-
fluid equations.

It is seen that the seed island generated by an (simulated) ELM is small for typical ASDEX
Upgrade parameters when taking into account the frequency difference between the mode and
the trigger. The island width is much smaller than the poloidal ion gyroradius, which is about a
few centimetres for ASDEX-Upgrade. This might explain why m/n=2/1 NTMs triggered by
ELMs are rarely seen in ASDEX Upgrade experiments.

To look into the effect of electron inertia, the nonlinear growth of the m/n=2/1 island is
shown in figure 11 for two cases, including (m.>0, solid curve) and neglecting (m.=0, dotted
curve) the electron inertia, with fg=f..=0. The island width is about the same as that for fg=-

f-.=2kHz shown in figure 10. Electron inertia effect leads to a slightly larger island in this case.

The dashed curve is obtained from the reduced MHD equations with fe=0. The finite p, effect
causes the major difference from the reduced MHD equations.

The effect of the trigger's amplitude on the m/n=2/1 island growth, obtained from the four-
field equations, is shown in figure 12 for f=f:e=0 With Y. m=107, 2x107, 5x107, 10, and
2x10™*. The other parameters are the same as those for figure 10. The island width at t=1.1x10"
‘g, the time that a constant y, has lasted for 2ms for y,m.=10"* is not linearly proportional to
the value of Yomwx. With increasing y,m. by 10 times from 107 to 10, the island width is

increased by 2.7 times. There is a slight difference in the time when , reaches y,m.x in figure
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12 for different values of Wama, but the difference is only 0.64x10°1tx between the two cases
Waman=107and 2x10™,

The duration of the trigger perturbation is found to be important for the induced seed island

width. If we assume here a time trace for a trigger perturbation to be a short pulse of the form

Ya =yaexp{yt/[1+(t/w)}, (10)

then y, grows exponentially for (t/ty)’<<1. In the opposite case it decays to y.,=10". , has a
maximum Y, m.. at t=ty(i-1)"". The time evolution of y, (x10?) is shown in figure 13 by the
dashed curve using 1/y; =50us, Wamx=10"* and i=8. The corresponding growth of the m/n=2/1
island is shown by the solid curve for fe=f+=0, obtained by neglecting the electron inertia. The
induced island width is about three times smaller than that shown in figure 11 for this case of a
short lasting trigger perturbation. Inclusion of the electron inertia is found to only slightly
increase the island width, similar to the case given in figure 11. The island width obtained from
the reduced MHD equations is also shown by the dotted curve. The island decays slowly after
the trigger disappears because of the low plasma resistivity.

Assuming parameters relevant for a fusion reactor, Bo=6T, a=2m, R=6m, p=0.2m?s,
D,=p/5, T.=10keV and n.=10"m" at the resonant surface, one has S;=1.94x10", Q=1.8x10°,
C=2.05x10%(a/tg), d,;=3.14x10%, 1,.=4202s, u=210(a*/1g), vs=6.59x10%/s, and p,=0.0012a. In
figure 14 the growth of the m/n=2/1 island, obtained from the two-fluid equations, is shown for
fe=f«=0 (solid curve). For this case the same trigger perturbation as that for figure 10 has been
applied. The induced seed island width reaches about 0.003a at t=6.4x107tg, which
corresponds to the time that the trigger perturbation y,=10"* has lasted for 2ms. The vertical

dashed line shows the time when v, reaches its maximal value y,mx=10". The dotted curve is
obtained from the reduced MHD equations. When a finite frequency difference between the

driven mode and the trigger is taken into account, the driven island is found to be even smaller,
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as expected. In the linear phase the driven modes are found to be the kink-like type for both
cases. The even smaller induced island compared to the ASDEX-Upgrade case considered
above is due to the reduced values of plasma resistivity and p, in this case. This is consistent

with corresponding analytical results based on reduced MHD equations [27].

6. Discussion and summary

The theories for spontaneously growing tearing modes have been well established in the
cold-ion limit and are characterized into to the collisional, semi-collisional and collisionless
tearing mode in the linear phase for different plasma parameters [41,44]. The key difference
between a spontaneously growing mode and a driven one is in the linear growth rate, being
determined by the plasma parameters and the equilibrium current density profile for
spontaneously growing modes but by the trigger's growth rate for driven modes, as seen from
figure 2. If there is no additional drive, the ideal kink modes with m>1 are known to be stable
if their resonant surfaces are well inside the plasma. Sufficiently fast growing magnetic
perturbations due to ELMs or other instabilities can however drive the kink-like mode to grow.
This mode only exists during the fast growing period of the trigger and becomes a tearing mode
later when the trigger's growth slows down. In this case a trigger having a larger amplitude and
lasting for a longer time period after y,=y.max is reached leads to a larger seed island, since
there is little magnetic reconnection for the driven kink mode during the fast growing phase of
the trigger, as seen from figures 7 and 14. This is different from the driven tearing mode shown
in figure 3, for which the island significantly grows during the growing phase of the trigger.

The theory of small island physics is quite complex [13-24]. A small island is predicted to
be stabilized by several effects, e.g., the ion polarization current, when its width is smaller than
a marginal width being close to the poloidal ion gyroradius. Experimentally it is very difficult

to directly measure the width of small islands. If the vacuum assumption is made for obtaining
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the magnetic field perturbation at the resonant surface from that at magnetic probes for
calculating the island width, the field perturbations at these two places are of the same order of
magnitude for m=2. Our numerical results show that they differ by one or two orders of
magnitude during the fast growing phase of the trigger, indicating the strong plasma shielding
in this phase.

It should be mentioned that electron temperature perturbations are neglected here. The
small island driven by the electron temperature gradient and its transition into NTMs can be
found in separate papers [25,26]. Calculations of the seed island formation triggered by
sawtooth crash will be carried out in the future.

In summary, the growth of seed magnetic islands driven by magnetic triggers is studied
using the four-field equations. The trigger is modelled by externally applied RMPs. It is found
that:

(1) In the linear phase a slowly growing trigger drives a tearing mode, while a fast one drives a
kink-like mode. The kink-like mode becomes a tearing mode later when the trigger's growth
slows down.

(2) Comparing with the results obtained from reduced MHD equations, finite p, effects extend
the driven tearing mode regime to a wider range of plasma parameters and lead to larger seed
islands in the nonlinear phase. Electron inertia effect also increases the seed island width.

(3) Plasma rotation or electron diamagnetic drift, when increasing the relative rotation between
the trigger and the driven mode, decrease the seed island width as expected. For typical

ASDEX Upgrade parameters and a frequency difference 8 kHz between the trigger and the

driven mode, the generated m/n=2/1 seed island is about 0.007a (0.35c¢m) for W, mn=10". When
neglecting the frequency difference, the seed island width is about 0.02a (1cm), being close to
the poloidal ion gyroradius.

(4) For a fusion reactor like ITER, if one neglects the frequency difference between the trigger



16

and the driven mode and assumes that \,m=10* lasts for 2ms, the generated m/n=2/1 seed

island is about 0.003a (0.6cm), being much smaller than the poloidal ion gyroradius.
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CAPTION

Figure I = Time evolution of the external perturbation y, with m/n=2/1 (dashed curve), which

grows exponentially in time with y=2x 10’1z until y,=y.mx=10", and afterwards it is kept

constant. The solid curve is the induced m/n=2/1 component of the normalized helical flux,

y=y2/aBy, at the q=2 surface, being much smaller than that at the plasma edge. The dotted
curve shows the normalized helical flux at the =2 surface using vacuum assumption.

Figure 2 Corresponding to figure 1, the solid curve shows the time evolution of the
normalized growth rate of the driven mode, ytr, calculated from (dy2i1/dt)\y21 at g=2 surface.
The dashed curve is the same as the solid one except for a smaller y,o (=107"*) and s at t=0.
Three different phases are seen: (A) Initial phase: y approaches yi. (B) Linear phase: vy is the
same as V. (C) Non-constant growth rate phase: y deviates from y; due to the deviation from
the exponential growth of the trigger, beginning when v, reaches a constant. For a sufficiently
large vr and W.me, however, this phase begins earlier before y, reaches a constant due to
nonlinear effect.

Figure 3  Growth of the m/n=2/1 island corresponding to figure 1, where r- is the island edge
at r>1; at the helical angle passing through the island's o-point, and r. is that at r<r,. The island
width reaches about 0.01a at the end of the linear phase, as indicated by the vertical dashed
line.

Figure 4  (a) Local radial profiles of the normalized w21, W21/aBy, in the linear phase with

¥=10%7x. For a larger S (smaller T4, as the tx value is fixed in calculations), 2 is larger than

zero across the resonant surface at r=0.628a, being a tearing mode type. With decreasing S
(increasing ta), Y21 is positive for r>r, but negative for r<r,, showing the feature of an ideal

mode. (b) Corresponding radial profiles of the normalized stream function, ¢i1/a’tz. It changes
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sign across the resonant surface for a large S but takes the same sign for a smaller S.

Figure 5 Boundary between the driven tearing and driven kink mode in the S and yst4 plane
for ps=0.02a (solid curve) and O (dashed curve) in the linear phase. For ps=0 the driven kink
mode regime exists for t,y>cS,"”, as predicted by (A18) in the Appendix, where c=1.02, c¢,=c/

(k;)** =0.88, and S=Sny/n,. The finite p; effect extends the tearing mode regime to large y¢
values.

Figure 6  Local radial profiles of the m/n=2/1 component of the normalized current density in
the linear phase for ps=0, 0.0067a and 0.02a with y=10°tx (a), which is more peaked around
the resonant surface for a larger p;. Corresponding radial profiles of the 2/1 component of
plasma vorticity, Uz, and stream function, ¢, are shown in (b) and (c), respectively.

Figure 7 Nonlinear growth of m/n=2/1 island for ysr=10" with p,=0.02a (solid curve) and
ps=0 (dotted). There is essentially no magnetic reconnection in the linear phase due to the large
Ys, as the driven modes are of the kink-like type for both cases. The transition from the kink-like
to tearing mode begins when \, reaches a constant, \y, =10, as indicated by the vertical
dashed line, and the island width grows to about 0.01a in a time scale 10°tg, being faster for
ps=0.02a than that for p.=0. The outwards shift of the island edges is due to the m/n=0/0
component of plasma current density perturbation.

Figure 8 Nonlinear growth of normalized m/n=2/1 island width, W/a, with yrr=10" for
ps=0.02a, 0.01a, 0.0045a and 0. The vertical dashed line shows the time when y, reaches
Wamax=10". The island quickly grows from that time and grows faster for a larger p..

Figure 9  Time evolution of the island width for spontaneously growing tearing modes with
ps/a=0.02, 0.002, 0.00067 and 0. The faster island growth for a larger p; is due to a larger linear

growth rate, being different from the driven mode which linear growth rate is determined by

that of the trigger as seen from figure 2.
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Figure 10 Nonlinear growth of the m/n=2/1 island for fe==2kHz and 10kHz. For fz=-f::=2kHz,

the mode frequency (f=f++fg=0) is the same as that of the trigger's, so that the resulting island
is the largest. The seed island width reaches near 0.02a at t=1.1x10"tg, corresponding to the
time that y,=10 has lasted for 2ms. The vertical dashed line shows the time when vy, reaches
Wamax- For fe=10kHz, the island width is about 0.007a (0.35cm) due to the shielding effect of
plasma rotation. For the case fx=0, the seed island width reaches 0.013a at t=1.1x10"tg due to
f=fz=2kHz. The island width obtained from the reduced MHD equations for fe=5SkHz is much
smaller than that obtained from two-fluid equations.

Figure 11 Nonlinear growth of the m/n=2/1 island obtained from two-fluid equations for two
cases: including (m.>0, solid curve) and neglecting (m.=0, dotted) the electron inertia, with
fe=f:—0. Electron inertia effect leads to a slightly larger island in this case. The dashed curve
is obtained from the reduced MHD equations with fz=0. The vertical dashed line shows the
time when , reaches W, man=10".

Figure 12 The effect of the trigger's amplitude on the m/n=2/1 island growth for fz=f:.=0 with
Vama=107, 2x107, 5x107, 10*, and 2x10™*. The other parameters are the same as those for
figure 10. With increasing W, m.. by 10 times from 10” to 10, the island width at t=1.1x10" 1x
(a constant y, has lasted for 2ms for y,m,=10") is increased by 2.7 times. There is a slight
difference in the time when \, reaches \, max for different values of v, max,

Figure 13 Nonlinear growth of the m/n=2/1 island driven by the y, given by equation (10)
with fg=f..=0 and m.=0 (solid curve). The island width is much smaller than that shown in
figure 11. The waveform of y, (x10%) is shown by the dashed curve, with 1/y; =50us and
Wama=10". The island width obtained from the reduced MHD equation is shown by the dotted
curve. The island decays slowly after the trigger disappears.

Figure 14 Nonlinear growth of the m/n=2/1 island obtained from two-fluid equations for
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fe=f«=0 (solid curve) and reactor relevant parameters. The same trigger as that for figure 10 is
utilized. The induced seed island width reaches about 0.003a at t=6.4x10"tz, which
corresponds to the time that y,=10* has lasted for 2ms. The vertical dashed line shows the

time when ., reaches W.mx=10*. The dotted curve is obtained from the reduced MHD

equations.
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Appendix Heuristic linear analysis from reduced MHD equations

In reference [35] by Hahm and Kulsrud, most analysis is given for the case that a trigger of
a constant amplitude is added as a boundary condition at the beginning in a time scale being
shorter than any value of t4*tr"™, where 0<s<lI. In this case the reconnected flux is calculated at
different time phases, and it is found that the magnetic reconnection occurs on the time scale
about the linear growth time of the resistive tearing mode if the trigger's amplitude is
sufficiently small. Hahm and Kulsrud have also considered another case that the trigger grows
exponentially in time, and the corresponding reconnected flux is found to grow exponentially
too, having the same time dependence exp(sot) as that of the trigger (see Egs. (46) and (47) of
reference 35), while the amount of the reconnected flux at a given time is affected by the
trigger's growth rate, T, and tr.

It will be shown in this Appendix that, if the trigger grows exponentially in time and starts
from a sufficiently small amplitude, in the linear phase a slowly growing trigger drives a
tearing mode, while a fast one drives a kink-like mode, being in agreement with numerical
results shown in Section 3.

When the trigger's amplitude is sufficiently small, the linear approximation is valid, and

Ohm’s law and the equation of motion can be simplified to

VRV — ik||¢1 ==, (A1)

vV i = S%ikyj, +myjo'lr), (A2)
where the perturbed quantities, denoted by the subscript 1, are assumed to be proportional to

exp[yrtr +i(mO+nd)], being the same as the trigger given by equation (8). The prime denotes the
radial gradient, k,=(n-m/q)/R=(n/R)(q'/q)x, and x=(r-r;). The plasma viscosity is neglected
here. All quantities in (A1) and (A2) are in normalized units, as defined in Section2. Only the

normalized growth rate, yt, is explicitly labelled as yr.
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The analysis can be carried out in the inner and outer region separately. In the outer region

away from the rational surface at r=r,, the ideal plasma approximation is valid,

VRV — iku¢1 =0, (A3)
and (A2) becomes

1d d m’ .

=Ly oy my k) = 0 (Ad)

rdr dr r

for large S values. (A3) and (A4) can be utilized to calculate y;, ¢, and A" in the outer region,
to match to those obtained from the inner region.

In the inner region around r,, one can assume ¢,'~¢,/c and ¢,"~/e*>, where ¢ is the singular
layer width. Depending on the trigger's growth rate, three different types of solutions are

possible:

(A) Driven tearing mode under 'constant y'' approximation

When the growth rate of the trigger is sufficiently small, one can assume that j,~ -A'y, /g,

and (A1) and (A2) lead to
YrY: ~ ik, (AS)
YR~ N AYe, (A6)
Yri/E ~ Stk 'A'y, (A7)

where 1, is the normalized plasma resistivity at r=r,. From (AS) - (A7) one finds
e~ [n2A(Sk )?]", (A8B)
W~ [n7A™(Sk) f]"”. (A9)
(A8) and (A9) are the same as those of classical tearing modes under the "constant y"

approximation [44]. The roles of the trigger are to determine the mode growth rate (being the

same as that of the trigger) and the value of A' from (A9). In the outer region y, can be written

in the form
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Wi= Wit Yo, (A10)
where y; is bounded in O<r<a, subject to boundary conditions y; =0 at r=0 and r=a. . is due to
the trigger, bounded in r<r<a and subject to the boundary condition y. =0 at r=r,. The value of

Y. at r=a is given by equation (8). Matching the A' obtained from the inner and the outer
region, one finds

A=A+ yo i, (A11)
where the subscript s corresponds to taking the value at r=r,. A, is obtained from the y;
satisfying (A4) and is the usual tearing mode stability index without the trigger, being
determined by the g-profile and mode numbers [44]. The second term on the right hand of

(A11) is due to the trigger. In order to satisfy (A11), the mode growth rate has to be the same as
that of the trigger. In addition, the reconnected flux, y;, is determined by (A9) and (All),
being larger for a smaller yz when excluding its time dependence exp(yrt) and keeping other

parameters unchanged. A larger y; corresponds to a larger IA'l or shielding current around the
resonant surface.

In the nonlinear phase, A'=(dW/dt)/m [45], and the island growth is found from (A11) to be

2
d_W: 'l W_ (A12)
ndt w?

where W is the island width, and W.>=16(m/r)y../(k,/Bq,) [28,32].

(B) Driven tearing mode with '"Non-constant y "'

It is seen from (A9) that, with increasing value of yr, A' becomes larger, indicating that the
"constant y" approximation is not valid for a sufficiently large yz. In this case one can assume
that ji~ -y./e?, and (A1) and (A2) lead to

YR~ N/E, (A13)
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vro/& ~ Sk, "wi/€ . (A14)
It is found from (AS5), (A13) and (A14) that,

&~ [n/(Sk)]"”. (A15)

ye ~ [n(Sky )], (A16)
This case is similar to the m/n=1/1 internal resistive kink mode and the double tearing mode

[42,46].

(C) Driven kink mode
If the trigger's growth rate is even larger than that given by (A16),
o=ci[ ny(Ski' 1"/ <1, (A17)
the mode growth time is shorter than the resistive diffusion time across the singular layer,

1/y <€’/m;s, where ¢, is a constant of the order of unity. In this case the driven mode cannot be a
tearing mode but becomes a kink-like type. (A17) can be also written in the form

0=cS " (nay)<l, (A18)

)2/3

where c=c,(k;')™”. In the limit § <<I, to the lowest order the solutions in the inner region are

found from (A1) and (A2) to be

¢, = cZ;/R[%+ tan" (x/¢)], (A19)
v, = czilq"{[%+ tan” (x/&)]x+ 25 ¢}, (A20)
= 2,k — A21
]1 25| 8[1+(X/8)2]2 ’ ( )
where
gZTAﬁ//(ku'): 7R/(Sk||') (A22)

is the normalized singular layer width, being larger for a larger y. c»is a constant for matching
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the solution to that in the outer region, and J, is the & given by (A17) with ¢;=1. The first term
on the right hand side of (A20), being proportional to X, is due to the ideal plasma response to
the trigger. The last term in (A20) takes into account the small correction from finite plasma
resistivity, being important only in a thin layer around x=x¢~-4(8:)’s/t where y1 becomes zero.
The location of xo is slightly inside the rational surface as seen from figure 4a, and it
approaches x=0 with increasing y. As Xo<<g, there is little magnetic reconnection. The "pure"
ideal kink mode is in the limit x¢=0, when plasma resistivity approaches zero or when y

approaches infinity for a finite plasma resistivity.
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