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Abstract. Coupling the full-wave solver TORIC (Plasma Phys. Contr. Fusion

41, 1, (1999)) and the bounce-averaged quasilinear Fokker-Planck solver SSFPQL

(Nucl. Fusion 34, 1121, (1994)) allows to determine the suprathermal ion populations

produced by ion cyclotron heating of tokamak plasmas, while taking into account their

effects on wave propagation and absorption. By using new numerical methods for the

evaluation of the coefficients of the wave equations in non-Maxwellian plasmas and

the transmission of data between TORIC and SSFPQL, the interface between the two

codes has been made very efficient and accurate. As an example, we have re–analysed

a minority heating scenario in the ASDEX Upgrade tokamak. The results illustrate

the differences between the quasilinear evolution of fundamental and first harmonic

ion cyclotron heating due to the fact that the latter is a finite Larmor radius effect.

They also suggest that the main missing element for fully satisfactory self-consistent

simulations of ion cyclotron experiments in toroidal devices is the absence of a detailed

model for the losses of suprathermal ions due, for example, to interactions with low

frequency turbulence or magnetohydrodynamic instabilities.

PACS numbers: 52.35.Hr, 52.50.Qt, 52.55.Fa, 52.65.-y



Advances in numerical simulations of ion cyclotron heating 2

1. Introduction

The numerical simulation of radio-frequency (RF) heating and current drive in fusion

plasmas has reached the state in which self-consistent solutions can be achieved by

iterating between a solver of the wave equations and a solver of the quasilinear kinetic

equation. In this paper we present a tool which implements this iteration for waves in

the ion cyclotron (IC) range of frequencies, the package TORIC-SSFPQL [1].

TORIC [2, 3] solves Maxwell’s equations in axisymmetric toroidal plasmas,

assuming a constitutive relation (linear relation between high-frequency field and high-

frequency plasma current) obtained from the linearized Vlasov equation by expanding

the field in toroidal and poloidal Fourier components. The model includes propagation

and damping of externally launched fast waves (FW), and of ion Bernstein (IBW) and

ion cyclotron waves excited by linear mode conversion (LMC) near ion-ion resonances.

The absorption channels are fundamental and first harmonic IC heating of ions, and

Landau and transit time damping of electrons. The integral constitutive relation is put

into differential form in the radial direction by assuming wavelengths large compared

to the thermal ion Larmor radius; large Larmor radius corrections, however, are taken

into account to adequately describe IBWs [4]. Optionally, damping of the FW at higher

IC harmonics can be simulated, although not simultaneously with mode conversion [5].

Recent applications of the TORIC code can be found in [6].

The Fokker-Planck quasilinear solver SSFPQL [7] evaluates the steady-state

quasilinear distribution function of ions heated at the fundamental and first harmonic

IC resonance by balancing the bounce-averaged quasilinear operator (QLO) with the

linearized collision operator describing collisions with a Maxwellian background plasma.

The solution is obtained as a truncated series in Legendre polynomials. A special Bessel

function identity is used to guarantee that the truncated expansion of the QLO remains

positive definite up to a sufficiently high energy. This approach does not allow to deal

with the most energetic ions generated by IC resonances, or to follow transients when

the hf power is modulated in time, or switched on and off. On the other hand, it is very

fast and easy to implement. With some further limitations to be discussed below, most

of them common to all models based on surface averaging, the information provided by

SSFPQL on the radial profiles of the quasilinear distribution functions of ICRF heated

plasmas and on the collisional exchanges between the heated and background ions are

fully adequate for most purposes.

The TORIC-SSFPQL package is not the first effort to combine a model for wave

propagation and absorption with a model for the evolution of the ion distributions. The

PION code [8], although using a very simple model for the power absorption profiles and

a one-dimensional Fokker-Planck solver ‘corrected’ for anisotropy and other effects, has

proven to be an excellent interpretative tool [9, 10]. Dumont et al. [11] have explored the

consequences of suprathermal populations on wave propagation and absorption in a slab

model of toroidal plasmas. The most advanced self-consistent simulations in toroidal

geometry have been recently made by combining the full-wave toroidal code AORSA
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with the quasilinear-Fokker-Planck code CQL3D [12, 13]. It is also worth mentioning

that the importance of high energy ions in fusion plasmas [14, 15] has stimulated a

considerable effort to determine the evolution of the most energetic populations created

by IC resonant interactions. Since these ions tend to be trapped on banana or non-

standard orbits making large radial excursions which do not justify bounce-averaging,

orbit following and Monte Carlo methods have been developed [16, 17], and applied

for self-consistent simulations [18, 19]. The Monte Carlo approach, however, is really

efficient only in the high-energy domain. Deviations from local thermal equilibrium,

on the other hand, influence wave propagation most in the intermediate energy range,

where Monte Carlo simulations are relatively slow and noisy. In this range bounce-

averaging is justified, and has the advantage of producing directly smooth distribution

functions, as needed by wave solvers.

A first attempt to iterate between TORIC and SSFPQL was presented in [1].

In that work, the distribution function of minority ions was approximated by the

superposition of two anisotropic Maxwellians, representing the thermal part and the

suprathermal tail, respectively, whose parameters where fitted as well as possible to

the solution evaluated by SSFPQL following the classical solution of Stix [20]. With

this representation of the quasilinear distribution function the coefficients of the wave

equations can be reevaluated analytically, making the iteration of TORIC very simple.

Although capturing the main features of self-consistency, this approach was limited to

minority heating scenarios, and a quantitative estimate of the accuracy was not possible.

To combine TORIC and SSFPQL for general IC heating scenarios we have now made a

number of improvements to both codes, and implemented an efficient interface between

them. These developments are the object of the present paper. We begin in section 2

by briefly recalling the main features of SSFPQL. In sections 3 and 4 we then describe

the modifications which have been made to make it suitable for coupling with TORIC.

They include: a ‘source’ to ensure compatibility of the linearized collisional operator

with a steady state with different ion and electron temperatures; accounting for the

contribution of the r.h. circular field component E− to the QL diffusion coefficient [8];

and optional extensions to take into account toroidal trapping and broadening of the

power deposition profiles by the finite radial width of ‘banana’ orbits.

In section 5 we recall how the coefficients of the wave equations have to be modified

when the distribution functions are not Maxwellians. In these coefficients, the familiar

Plasma Dispersion function [21] of the Maxwellian case has to be replaced by singular

integrals over moments of the distribution functions. An efficient and accurate numerical

scheme for the evaluation of these integrals has been implemented by expanding an idea

of Valeo [22]; it is explained in section 6. In the same section we also briefly present

the interface between SSFPQL and TORIC, designed to be as simple and robust as

possible. Section 7 presents some applications of the package, followed by conclusions

in section 8.
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2. The steady-state Fokker-Planck Quasilinear solver SSFPQL

The code SSFPQL solves the steady-state quasilinear kinetic equation for IC heated

ions

0 =
(

∂Fi

∂t

)

coll
+
(

∂Fi

∂t

)

QL
+ Si (1)

in which energy losses to the background plasma described by the linearized collisional

operator balance the gains described by the quasilinear operator and, if required, a

source or sink Si.

1) The linearized collisional operator describing test particles colliding with a

background Maxwellian plasma is
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Here v is normalized to vthα = (2Tα/mα)1/2, the thermal speed of species α in the

background plasma, and µ = v‖/v is the cosine of the velocity pitch angle. The

coefficients are defined as
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with γiβ = vthi/vthβ and
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with uβ = γiβ v, in terms of the basic function
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4√
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In these expressions
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4π Z2

i Z
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β e
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i v
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thi
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∑

β

νiβ (6)

(νi actually cancels out from the equations).

As mentioned in the Introduction, the distribution function is expanded as a

truncated series in Legendre polynomials of the velocity pitch angle,

Fi(v, µ, t) =
N
∑

n=0

F i
n(v, t)Pn(µ) (7)
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The linearized collisional operator is diagonal in this representation:
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2) The quasilinear operator describing ion cyclotron resonant interactions is

approximated as
(
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with the following expression for the quasilinear diffusion coefficient (QLDC) Dp
ql for

heating at the p-th harmonic

Dp
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(p = 1 for fundamental, p = 2 for harmonic IC heating) where ξ⊥ = k⊥vthi/Ωci and

w = v⊥/vthi, and

λP =

(

E−
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)
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(11)

The sum in eqn (10) is over poloidal and toroidal modes. The perpendicular wavevector

k⊥ of the fast wave and the field amplitudes E± of the circularly polarized electric

field components are to be taken at the resonance point separately for each Fourier

component. In principle, D0 ≡ 1. On each magnetic surface, however, D0 is reevaluated

by imposing that the h.f. power absorbedWM should be identical to the surface-averaged

power per unit volume gained by the ions according to TORIC when evaluated with the

same distribution function. In the present context, this is more than simple convenience,

as will be discussed below.

Recalling u = vµ, w = v
√

1 − µ2, the QLO (9) can be rewritten in spherical

coordinates as
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(12)

Because of the anisotropy of the QLDC, in the Legendre representation this operator

is not even approximately diagonal. As a consequence, achieving convergence of the

expansion (7) to a positive definite distribution function requires some care. The

simplest approach, consisting in developing the squared Bessel function in powers of

the argument, and evaluating the coefficients of the Legendre expansion term by term,

although analitycally straightforward, converges too slowly to be of any practical use ‡
‡ This was already well-known to Killeen and coworkers, who abandoned the Legendre expansion

technique originally used for mirror plasmas [23] to develop the first FP kinetic solver including the IC

quasilinear operator discretized in two velocity coordinates, in order to circumvent this problem [24].

As recently as 1997, the convergence of the Legendre expansion has been studied in the limit of negligible

ion Larmor radius, |J0(k⊥v⊥/Ωci)|2 = 1 and, not surprisingly, has been found unsatisfactory [25].
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Instead, we use the multiplication theorem of Bessel functions to develop
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Substituting (7) into (12) and using this identity, we obtain for each n
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with coefficients
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and the quantities Qp,k
ij (n,m) are integrals over products of two Legendre polynomials

weighted with powers of µ2 and 1 − µ2 §
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These integrals can be evaluated iteratively using the recurrence relations of the

Legendre polynomials. These relations are presented in Appendix 1A.

3) Presently implemented in SSFPQL is an isotropic source term which allows

background steady-states in which different charged species have different temperatures;

it will be discussed in the next section. A more general source term describing neutral

beam injection is in preparation.

§ For simplicity, here the spectrum of toroidal modes excited by the antenna is assumed symmetric, so

that the quasilinear distribution functions is symmetric in v‖, except for the neoclassic effect due to finite

banana orbits mentioned in section 4. SSFPQL, however, allows also for non-symmetric distribution

functions, as occurring when the antenna excitation is asymmetric, and, more importantly, when IC

heating is performed together with unbalanced neutral beam injection.
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3. A discussion of the SSFPQL model

In this and the next section we describe the most important improvements that had

to be made to the SSFPQL code in view of coupling it with TORIC. We also briefly

discuss the limitations of the SSFPQL model, while at the same time trying to make it

plausible that the code is fully adequate for self-consistent simulations of IC heating in

tokamaks. For this purpose, we will have to recall some aspects of the relations between

the properties of the quasilinear distribution functions and the coefficients of the wave

equations in the IC range of frequencies which are well-known, but are, nevertheless,

occasionally overlooked in this context.

1) In the absence of RF heating, the linearized collisional operator (2) admits a

steady-state solution only if all charged species have the same temperature, a situation

seldom occurring in practice. Ideally, one would like to be able to evolve the solution of

the kinetic equation itself to reproduce the observed temperature profiles. In the absence

of a realistic model for energy losses, however, this is manifestly impossible. Instead,

we take the profiles as given, either from experiment or from a transport code, and we

add to eqn (2) the source (or sink) required to make them the steady-state solution. A

simple calculation shows that the appropriate source for species i is, on each magnetic

surface,

Si(v) = νi

∑

β

νi/β

νi

(

Ti

Tβ

− 1
)(

4γiβ√
π
e−u2

β − 2vΨ(uβ)
)

e−v2

π3/2
(18)

the summation being over all background species, including the electrons. It is not

difficult to check that Si(v) automatically preserves the density.

2) The need to include the contribution of the r.h. circularly polarized field

component E− to the QL diffusion coefficient for high-energy ions has been stressed

in [8]. In the equations of the previous section this contribution is explicitly included.

Comparing solutions of the kinetic equations with and without this term confirms the

importance of this term. Here we should also mention, however, that eqn (10) is

an approximation. Comparison with the ‘exact’ expression for Dp
ql in terms of the

fields evaluated by TORIC (e.g. section 4 of [26]) suggests that eqn (10) is likely to

overestimate somewhat the contribution proportional to E−. Unfortunately, coding the

exact Dp
ql is a rather complicated task, so that translating this guess into a quantitative

statement must be left for future work.

3) Very few Legendre polynomials (up to order 4 or 6) need to be included

in the expansion (7) to obtain fully converged profiles of the collisional exchanges

between the heated species and the background plasma. For coupling with TORIC,

on the other hand, the truncated series (7) itself must be an accurate representation

of the QL distribution function up to sufficiently large energies, a much more stringent

requirement. The convergence of the Legendre polynomial expansion, therefore, deserves

some discussion.

The key for the success of the Legendre expansion is the identity (13). As mentioned
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Figure 1. Example of convergence of the Bessel function identity (13) for nearly

parallel velocity, µ = 0.999. The envelope is the exact Bessel function on the l.h. side

vs ξ⊥v; from left to right the truncated expansion with 5, 10, 15, and 20 Legendre

polynomials.

in [7], the rh side of this equation reduces to its first term when µ = 0, and, therefore,

the series converges very rapidly for nearly perpendicular velocities, and as long as

v‖ <∼ v⊥. More and more terms are needed, on the other hand, to reach convergence

as µ approaches unity (v‖ ≫ v⊥). To give an idea of this behaviour, in figure (1) the exact

l.h. side is plotted in the typical range of the argument, together with the series truncated

at 5, 10, 15, and 20 terms, for µ = 0.999. The series (7) representing the solution of

the kinetic equation behaves similarly, except that the number of terms required for

convergence is larger, and, not surprisingly, increases with increasing D0, i.e. when the

hf power absorbed per particle increases. For typical values of the parameters in IC

heating experiments, the number of terms required remains nevertheless acceptable in

a quite large velocity domain.

It is actually not possible to achieve convergence in the whole velocity space. Above

a certain energy the oscillatory behaviour of the Legendre polynomials finally takes

over, and the truncated series (7) becomes meaningless in a domain around the v‖-

axis. While the boundary of the domain where this occurs can in principle always be

pushed to higher energies by increasing the number of terms kept, in practice problems

of numerical accuracy put an upper limit to the order of the Legendre polynomials

which can be included (N <∼ 60 working in double precision). Thus SSFPQL cannot be

used to follow the most energetic ions produced in the experiments. It is important to

realize, however, that the limiting factor in this respect is not so much the failure of the

Legendre expansion at large energies, but, rather, the breakdown of the bounce averaging

approximation leading to eqns (9)–(11). Indeed, most of the ions which reach energies

exceeding the capability of SSFPQL are on trapped orbits making radial excursions

so large that any ‘bounce averaged’ model is in principle inadequate, even with the

corrections for finite banana width discussed in the next section.

Fast ions produced by ICR heating are very interesting [14]: they can relatively
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easily be ‘seen’ by appropriate diagnostics, influence the low frequency stability of

the plasma, can be exploited to investigate the behaviour of fusion α-particles in the

future reactor, and so on. As mentioned in the introduction, sophisticated Monte Carlo

and ‘orbit averaging’ techniques have been developed to understand their behaviour.

The failure of SSFPQL to describe the most energetic of these ions, on the other

hand, does in no way interfere with its usefulness for self-consistent simulations of

wave propagation and absorption. The reason is that, as is well known and as will

be recalled in section 5, the coefficients of the wave equations depend on integral

functionals of the distribution functions, rather than on the functions themselves.

Although these integrals (particularly those which determine absorption) are far from

being insensitive to the presence of suprathermal populations, they clearly are heavily

weighted towards the region of velocity space around and up to several times the thermal

energy. SSFPQL is reasonably accurate in a range in which Fi decreases by 6 to 12 orders

of magnitudes (depending on the collisionality and the hf power available per ion). The

error introduced by not accounting for the exponentially few ions beyond this range is

small, and completely negligible compared, for example, with the error implicit in using

the approximation (10) for the QL diffusion coefficient.

These considerations indicate that in view of building a simple yet accurate model,

different approximations are justified in the evaluation of the coefficients of the wave

equations and in the solution of the kinetic equation. As a consequence, complete

consistency between TORIC and SSFPQL cannot be expected. The renormalization

of the coefficient D0 of the QLO is, therefore, required to achieve convergence of the

iterations between the two codes.

4. Accounting for toroidal effects in SSFPQL

1) Equation (10) neglects the toroidal modulation of the parallel velocity in the toroidal

magnetic field. In reality, ions transit through resonance only as long as their pitch

angle satisfies

µ2
eq =

v2
‖eq

v2
≥ µ2

cr = 1 − Beq

Bres
(19)

where subscripts “eq” and “res” refer to values at the points where the magnetic surface

under consideration crosses the outer equatorial plane and the IC resonance, respectively,

and µcr denotes the velocity pitch angle at the equatorial plane for which reflection occurs

at resonance. Taking into account trapping introduces in the QL diffusion coefficient

an additional factor W(ψ, v, µ − µcr) peaked around µcr. The full expression for W in

terms of the Airy function [27, 28] is rather complicated. For a proof-of-principle that

toroidal trapping could be taken into account in SSFPQL, we have used the very rough

approximation

W = W(µ− µcr) =
1

1 + e−α(µ−µcr)
(20)

where α simulates the exponential decay of the squared Airy function for ions reflecting

before reaching the IC resonance. This allows to capture with a modest numerical
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effort (cfr. the last paragraph of Appendix A) the main features of toroidal trapping, in

particular the ‘ears’ in the contour plots of Fi due to the accumulations of ions barely

missing the IC resonance (see later, e.g. Fig (11)).

Roughly speaking, eqn (20) is equivalent to neglect the change of the parallel

velocity while an ion transits through resonance, an approximation which is manifestly

wrong for those ions which are reflected just there, but is consistent with the

approximation (10) of the QLDC. For the purpose of coupling SSFPQL with the wave

solver, moreover, the consequences of the inaccurate treatment of the transition between

resonant and non-resonant ions can again be expected to be reduced by the integral

nature of the coefficients of the wave equations. Nevertheless, we have not considered

it worth-while performing a full iteration of this rough model of toroidal trapping with

the solution of the wave equations, for the following reason. Using eqn (20) (or, for this

matter, a more accurate expression for W) gives the distribution function Fi(v, µ, ψ, 0)

at the outer equatorial plane ϑ = 0. To build the coefficients of the wave equations

(cfr. the next section), Fi should be remapped to each poloidal position taking into

account energy and magnetic moment conservation. The details of the distribution

function, on the other hand, influence propagation and absorption only in a relatively

narrow region around the position where magnetic surfaces cross the IC resonance.

The deformation of Fi due to the toroidal modulation of v‖ becomes much smaller

when remapped to this position: in particular, the excess trapped ions reflecting before

resonance do not contribute, by definition, to the distribution function at the resonance

itself. As long as the detailed dynamics of ions reflecting close to resonance is not taken

into account, therefore, implementing the rather lengthy and cumbersome remapping

procedure does not bring any significant improvement to the SSFPQL model.

2) An even more important limitation of eqn (10) is the assumption that ions are

tied to a magnetic surface. For trapped ions, this not entirely true already in the upper

range of the energies which most influence wave propagation and absorption. The radial

excursions of these ions have two consequences [9]: they broaden the power absorption

profiles, and expose the ions to regions of higher collisionality during a non negligible

fraction of their orbits.

As long as the width of the banana orbits does not exceed a fraction of the typical

gradient length of density and temperature, these effects can be taken into account by

recalling that the distribution function is not a function of the radial coordinate ψ, but

of the third adiabatic invariant (closely related to the toroidal angular momentum) of

the particles [29]

ψ̄P g = ψP g −
mc

Ze

[

Rv‖ cos Θ − ωB

∮

R cos Θ ds
]

(21)

Here tanΘ = Bpol/Btor, ψPg is the poloidal flux at the position of the guiding center,

ωB = (
∮

ds/v‖)
−1 is the transit (or bounce) frequency, and ds is the element of the

magnetic field line along which the guiding center would be moving in the absence of

perpendicular drift. The integral in eqn (21) vanishes for trapped particles, while for
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passing particles the two terms in the brackets very nearly cancel each other. We can

therefore approximate

ψ̄P g ≃ ψP +
(~b× ~∇ψP ) · ~v⊥

Ωci
− mc

Ze
HtpRv‖ cos Θ (22)

where ψP is the poloidal flux at the radial position of the ion, and we have introduced

the Heaviside function Htp which is unity for trapped particles and zero for passing ones.

This approximation amounts to neglect the excursions of the guiding center of a passing

particle from its average radial position, and breaks down only for a small population

of particles near the boundary between passing and trapped. If ψ = r/a is used as

radial coordinate instead of ψP , we will have, neglecting the classical diamagnetic term

compared to the neoclassical one,

ψ̄g ≃ ψ −Htp
KBv‖
Ωci

KB =
BR cos Θ

FP (ψ)
(23)

with B the local confining magnetic field and FP (ψ) = dψP/dψ ≃ 2π2(ab/q)ψ, where a

and b are the horizontal and vertical radius of the plasma and q the safety factor.

Assuming that most trapped particles nevertheless explore a relatively small fraction of

the plasma radius, we can ‘correct’ the quasilinear distribution function for the finite

width of the trapped ion orbits by writing, to lowest significant order in the inverse

aspect ratio,

Fi(v, µ, ψ) =
∑

n

F i
n(v, ψ)Pn(µ) +

KB v

Ωci

∂F i
0(v, ψ)

∂ψ

µ3
H

3
µ (24)

where

µH ≃
(

a

2R0

)1/2

ψ1/2 (25)

Note that once the expression for KB is inserted in eqn (24), the added term is of

order (r/R)1/2 ρi/a, except for the fact that ∂F i
0/∂ψ must vanish on the magnetic axis.

As pointed out e.g. in [30], this correction represents a ‘hf-induced’ momentum transfer

to the ions, akin to the bootstrap current, which exists even if the toroidal power

spectrum of the waves is symmetric.

Although eqn (24) was derived to describe broadening of the distribution function

by the finite radial excursions of trapped particles, used in the iterative scheme of

interactions between TORIC and SSFPQL it also allows to correct for the resulting

changes in collisionality. Indeed, at the next iteration of SSFPQL, to the accuracy of

the Taylor expansion the collisionality of the particles giving rise to the second term in

eqn (25) will be evaluated at the corrected position. It turns out, however, that under

realistic conditions this correction has a very small influence on wave propagation and

absorption, since it becomes important only at energies so large that are reached by

an exponentially small number of ions. This is a fortunate circumstance, because soon

above such energies the Taylor expansion (25) (and surface averaging itself) becomes

rapidly questionable, and more sophisticated techniques must be used.
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5. Ion-Cyclotron frequency range wave equations in non-Maxwellian

plasmas.

The coefficients of the wave equations solved by TORIC are closely related to the

elements of the dielectric tensor of hot plasmas, whose expressions for arbitrary

distribution functions can be found e.g. in Section 14 of [31]. In the IC range of

frequencies it is sufficient to write these coefficients in the reduced Finite Larmor Radius

(FLR) approximation (the only exception occurs for the description of ion Bernstein

waves, to be briefly discussed below). In reference [32], moreover, it has been shown

that in the IC range of frequencies the deviations of the electron distribution function

from Maxwellian have an insignificant influence on the coefficients of the wave equations.

This is due to the large e/m ratio of the electrons, together with the fact that, in contrast

with the lower hybrid case, in the IC range electron absorption occurs mostly in the

thermal domain. Taking this into account, and using the notations of [2], the coefficients

affected by deviations from local thermal equilibrium are

L̂ = 1 +
ω2

pe

Ω2
ce

−
∑

i

ω2
pi

ω2
π
∫ ∞

0
w dw

(

− x0

∫ ∞

−∞

F i
⊥(w, u)

u− x1
du
)

λ̂
(2)
i =

1

2

ω2
pe

Ω2
ce

v2
the

c2
+
∑

i

ω2
pi

Ω2
ci

v2
thi

c2
π

4

∫ ∞

0
w3 dw

(

− x0

∫ ∞

−∞

F i
⊥(w, u)

u− x2
du
)

(26)

where

Fα
⊥(u, w) = −w

(

∂Fα

∂w
+
k‖vthα

ω
ΘvFα

)

(27)

Here u = v‖/vthα, w = v⊥/vthα (here vthα is the thermal speed of species α in the

background plasma), and

ΘvF = w
∂F

∂u
− u

∂F

∂w
(28)

is the derivative operator over the velocity pitch angle, which vanishes for isotropic

distributions. Finally

xp =
ω − pΩcα

kmn
‖ vthα

kmn
‖ =

m+ qn

Rhs
, hs = 1 +

N2
ϑ

q2R2
(29)

(Nϑ =
√
gϑϑ is the elements of the metrics of toroidal coordinates which reduces to the

minor radius r in the limit of circular magnetic surfaces). We stress that k‖ has to be

separately evaluated for each poloidal Fourier component of the wave fields.

A further important simplification follows from the fact that for ions the inequality

k‖vthi/ω ≪ 1 is always satisfied by a large margin in the IC range. Neglecting, therefore,

the second term in eqn (27), it is convenient to rewrite eqns (26), after integration by
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parts and for a real frequency ω, as

L̂ = 1 +
ω2

pe

Ω2
ce

−
∑

i

ω2
pi

ω2

[

− x̄0 P
∫ ∞

−∞

F
(0)
i (u)

u− x̄1

du− iπ x̄0 F
(0)
i (x1)

]

λ̂(2) =
1

2

ω2
pe

Ω2
ce

v2
the

c2
+

1

2

∑

i

ω2
pi

Ω2
ci

v2
thi

c2

[

− x̄0 P
∫ ∞

−∞

F
(2)
i (u)

u− x̄2

du− iπ x̄0 F
(2)
i (x2)

]

(30)

where we have introduced the moments of the distribution function with respect to the

perpendicular velocity

F (2s)(u) = 2π
∫ ∞

0
Fi(u, w)w2s+1 dw (31)

(s = 0, 1; in the following, these moments will be called for brevity “reduced distribution

functions”; the functions in the brackets of eqns (30) are known as Generalized Plasma

Dispersion Function, GPDF).

To take into account large Larmor radius effects, the definition of F (2) in the terms

describing IB waves should be modified as follows

F (2)(u) =
16π

ξ2
⊥

∫ ∞

0
Fi(u, w) J2

2(ξ⊥w)w dw (32)

with ξ⊥ = k⊥vthi/Ωci, k⊥ being the local perpendicular wavevector of the IB wave. This

would be numerically rather demanding; in practice, however, the approximation (30) is

sufficient throughout. In the critical regions where mode conversion between Fast and IB

waves occurs eqns (30)-(31) are still quantitatively justified. Far from mode conversion,

on the other hand, where for IB waves k⊥vthi/Ωci >∼ 1, parallel dispersion is negligible, so

that the local dispersion relation of IB waves is influenced mainly by the perpendicular

pressure, rather than by the details of the distribution function. Thus eqns (30)-(31)

give a fair approximation over the whole range where IB waves are propagating.

6. Numerical evaluation of the plasma response

According to eqns (30)-(31), the task of evaluating the coefficients of the IC wave

equations for non-Maxwellian plasmas splits into two steps: the evaluation of the

moments (31), and that of the singular integrals (30). To justify our approach for the

solution of these tasks, let us first make a few comments on the results of the previous

section.

1) The moments (31) can be evaluated with a standard integration scheme. Since

F i(v) is provided by the kinetic solver in a spherical region, the accuracy by which these

integrals can be evaluated inevitably degrades somewhat in the upper velocity range.

This can be tolerated, as long as the result is accurate in the domain important for

propagation and absorption of the waves.

2) The evaluation of the singular integrals of the type

Z(xp) =
∫ +∞

−∞

F (u)

u− xp
du Im(ω) → 0+ (33)
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where F (u) stays for any of the moments defined in eqn (31), is more difficult: the

imaginary part requires only the knowledge of the moments F
(2s)
i (u), but an ad-hoc

algorithm must be developed for the real part, which is a principal part integral in the

sense of Cauchy. These singular integrals are needed by the wave solver not only for a

large number of values of the argument xp (we recall that each Fourier component of

the field has its own phase velocity, which varies from point to point on each magnetic

surface), but also on a dense mesh of the radial coordinate ψ. In practice, the number

of evaluations needed can easily exceed 107 to 108. Clearly, an efficient algorithm is

needed to keep the numerical burden within acceptable limits.

3) The radial smoothness of the functions Z(x) is as important as the accuracy, since

any irregularity of the coefficients of the wave equations is interpreted as a scattering

center for the waves. ion Bernstein and shear waves, when propagative, are particularly

sensitive to this effect.

An algorithm which satisfies all the conditions imposed by these considerations has

been developed by expanding an idea of Valeo [22]. The real part of the integral (33)

can be rewritten

G(x) = P
∫ +∞

−∞

F (u)

u− x
du = lim

ǫ→0

( ∫ x−ǫ

−∞
+
∫ +∞

x+ǫ

)

F (u)

u− x
dx

= lim
ǫ→0

∫ ∞

0

[

F (y + x+ ǫ)

y + ǫ
− F (−y + (x− ǫ))

y − ǫ

]

dy =
∫ ∞

0

F (x+ y) − F (x− y)

y
dy

(34)

G(x) is known as the Hilbert transform of F (x). We note that under the assumption

that F (u) is continuous and continuously differentiable the last form is free from

singularities, since then

lim
y→0

F (u+ y) − F (u− y)

y
= 2F ′(u) (35)

Let us now assume that the kinetic solver has calculated F (uj) = f
(0)
j on the current

magnetic surface at the points of an equidistant parallel velocity mesh. It is then

expedient to evaluate G(x) at the same points x = uj, and then interpolate, e.g. with

cubic splines, according to the needs of the wave solver. On the jth interval of the

u mesh we can approximate F (u) by a linear function

F (u) ≃ f
(0)
j + f

(1)
j (u− uj) uj ≤ uj+1 = uj + ∆ (36)

where, to guarantee continuity,

f
(1)
j =

f
(0)
j+1 − f

(0)
j

∆
(37)

We can then write

F (u) ≃
∑

j

[

f
(0)
j + f

(1)
j (u−uj)

]

θj(u) θj(u) =



















1 if uj ≤ u ≤ uj+1

0 elsewhere

(38)
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Inserting this into the definition of G, and denoting with a prime a summation excluding

the two intervals adjacent to the point xj = uj, we get

G(uj) ≃
∑′

k

{

[

f
(0)
k + f

(1)
k (uj − uk)

]

log
uk − uj + ∆

uk − uj

+ f
(1)
k ∆

}

+ f
(0)
j+1 − f

(0)
j−1 (39)

To evaluate the last two terms we have put the contribution of the two intervals adjacent

to uj in the last form of eqn (34), and we have approximate the derivative of F by

a centered difference. Note that the weights in this summation depend only on the

difference uj − uk, and are, therefore, a one-dimensional array which, moreover, needs

to be evaluated only once, since the values of its elements are manifestly independent

from the mesh step. Eliminating f
(1)
k , we can rewrite (39) as

Z(uj) ≃ f
(0)
j+1 − f

(0)
j−1 +

∞
∑

k=1

{

Ck

(

f
(0)
j+k − f

(0)
j−k

)

−Dk

[(

f
(0)
j+(k+1) − f

(0)
j+k

)

−
(

f
(0)
j−(k+1) − f

(0)
j−k

)]}

(40)

with

Ck = log
k + 1

k
Dk = k log

k + 1

k
− 1 (41)

The coefficients have the symmetries C−(j+1) = −Cj , D−(j+1) = −Dj , and tend (slowly)

to zero for large j.

The above procedure only enables to evaluate the generalized Z functions inside the

velocity interval in which SSFPQL solves the kinetic equations, and the moments (31)

can be evaluated with sufficient accuracy, typically |u| ≤ 7 to 8. Outside this range the

number of resonant ions is very small, the imaginary part of Z is negligible, and the

real part can be evaluated using the asymptotic development

Z(x) ≃ −1

x

∫ +∞

−∞
F (u)

(

1 +
u

x
+
u2

x2
+ . . .

)

du (42)

With some attention to the way the summations in eqn (40) and (42) are truncated,

the evaluation of the Hilbert transform with this algorithm is both fast and accurate:

a relative error <∼ 10−6 is easily obtained by applying this technique to the case of a

Maxwellian distribution, in which independent and very accurate algorithms for the

evaluation of Z are available.

For the efficiency of the whole approach, care is also to be devoted to the interface

between the quasilinear kinetic solver SSFPQL and the wave solver TORIC. It would

not be reasonable, to begin with, to solve the kinetic equations on all the magnetic

surfaces required by the wave solver. Instead, we let the kinetic solver evaluate F (uj)

on a radial mesh sufficient to ensure a smooth radial variation, leaving to the wave

solver the task of interpolating in the radial variable ψ. It is also easily seen, on the

other hand, that to interpolate the functions F (uj) themselves would be cumbersome,

and would pose serious accuracy and smoothness problems. It is far more convenient to

determine on each magnetic surfaces of the SSFPQL mesh a best fit to the moments (31)
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of the solution of the kinetic equation and to the corresponding Hilbert transforms using

an appropriate set of basis functions with a moderate number of parameters. We then

let the wave solver interpolate radially these parameter to reconstruct functions and

integrals as required for the evaluation of the stiffness matrix of the wave equations.

With due care to the choice of the interpolating functions, this approach can be made

both robust and efficient. It also keeps within very moderate bounds the amount of

information to be transmitted from the kinetic to the wave solver.

Concretely, the w2s-moments of distribution function are fitted by exponentials of

the form

F (2s)(u) ≃ e−[Ks+asu2/Λs
n(u)] (43)

where Ks is a normalization constant, and Λs
n(u) a polynomial of order n in u. The

Hilbert transform are interpolated by rational functions,

G(2s)(u) ≃ uP s
n(u)

1 + u2Qs
n(u)

(44)

where P s
n and Qs

n are polynomials of order n. In this case, a special initialization of

the fitting procedure has been implemented to avoid situations in which numerator

and denominator would change sign almost simultaneously inside the interval where the

fitting is to be used. The coefficients of the fitting polynomials are then determined using

standard routines adapted from [33]. In both cases polynomials of 4th to 6th order give

excellent fits (typically, with relative error <∼ 10−4 in the entire range −8 <∼ u <∼ +8),

while the accuracy improves only slowly by using polynomials of higher order.

The numerical implementation is greatly simplified by letting SSFPQL evaluate the

moments (31) of the quasilinear distribution functions, their Hilbert transforms with the

algorithm (39), and the coefficients of the fitting polynomials in eqns (43) and (44), on

each magnetic surface as soon as the kinetic equation on that surface has been solved.

The coefficients of the fitting polynomials evaluated at the points of the radial mesh of

SSFPQL (typically 100 magnetic surfaces) are read by TORIC, and interpolated with

cubic splines on the much finer radial mesh required to solve Maxwell equations. The

whole procedure demands a few seconds, compared with several minutes for the solution

of the Fokker-Planck equations, and a similar or longer time for the solution of Maxwell

equations. Finally, on each magnetic surface of its own radial mesh, and for each poloidal

Fourier mode of the wave field, TORIC evaluates the generalized Z functions (33) at the

points of the poloidal mesh using the fitting functions (43)-(44). This last step replaces

the evaluation of the Plasma Dispersion Function in the Maxwellian case.

7. An example

As an example of application of the TORIC-SSFPQL package, we have analyzed

the same minority heating scenario as in [1] (6% H in a D plasma; central electron

density 6.53 1019 m−3, central temperatures Te = 4.35 keV, Ti = 4.33 keV) in ASDEX

Upgrade. Figure 2 shows Re(E+) and Re(E−) in the poloidal cross-section for the
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Figure 2. Re(E+) and Re(E−) in the poloidal cross-section, Maxwellian plasma

average toroidal mode nϕ = 12, and the position of the main singularities. With a

central magnetic field of 1.97 Tesla, the applied frequency of 30.5 MHz puts the cyclotron

resonances 7.3 cm to the high field side of the magnetic axis, while the ion-ion cutoff and

resonances are further inside, at -11.9 cm and -14.1 cm, respectively. From plots of these

fields along the equatorial plane, one can deduce a high single transit absorption, since

there is almost no standing wave between the antenna and the ion-ion cutoff; further,

as expected, |E+| <∼ |E−|/3, with a marked minimum near the IC resonance, except

to the high-field side of the ion-ion resonance, where the field pattern is dominated by

linearly polarized Ion Bernstein waves. Note that the IB waves transport very little

power, just about 1.1% of the total; the associate fields are nevertheless large because

of the very slow group velocity of these nearly electrostatic waves. Figure 3 reports the

power deposition profiles in the Maxwellian plasma, normalized to 1 MW total coupled

power. Integrated over the plasma, 65.54% of the power is absorbed by the minority

Hydrogen, 18.33% by the Deuterium by first harmonic heating, and 16.13% by the

electrons, including 1.1% from the IB wave.

In the first place, as a check of the accuracy of the entire procedure, we have run

SSFPQL assuming zero hf power. In this limit, SSFPQL evaluates the coefficients for

the interpolation of the distribution functions and of the Plasma Dispersion Function

in the Maxwellian limit. These data have then been used to run TORIC again. The

power deposition profiles and the pattern of the fields obtained were identical to those

of the previous run, the relative differences never exceeding 10−3 over the whole cross-
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Hydr

Deut

Electr

Figure 3. Power deposition profiles in the Maxwellian plasma.

Figure 4. Quasilinear distribution functions: semilog plots vs energy at 5 values of

the pitch angle, at the position of peak absorption: a) harmonic heated Deuterium; b)

Hydrogen heated at the fundamental.
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Deuterium Hydrogen

Figure 5. Parallel and perpendicular tail temperatures vs radius: a) harmonic heated

Deuterium; b) Hydrogen heated at the fundamental.

Maxwell

Quasilinear

Maxwellian

Quasilinear

Figure 6. Re(Z(x1)) and Im(Z(x1)) for the Hydrogen at the point of peak absorption.

Maxwellian

Quasilinear

Quasilinear

Maxwellian

Figure 7. Re(Z(x2)) and Im(Z(x2)) for the Deuterium at the point of peak

absorption.
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Figure 8. Power deposition profiles for Hydrogen and Deuterium (normalized per

MW coupled power) at different total power levels.

Figure 9. Same as fig. 4, but including finite orbits effects. Full lines v‖ > 0, dashed

lines v‖ < 0.

<v   >
_____//

vth
Hydrogen

<v   >
_____//

vth

Deuterium

Figure 10. Radial profile of 〈v‖〉/vth taking into account finite orbits corrections.
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Figure 11. Contour plot of the minority distribution function at the point of peak

absorption taking into account toroidal trapping (total hf power 2 MW).

section. The run of TORIC using the data from SSFPQL in the way described above

was actually 20% faster than the initial run assuming from the beginning Maxwellian

distribution functions, a good confirmation of the efficiency of our approach.

Before considering the iteration between TORIC and SSFPQL, it is appropriate to

present a few results from SSFPQL itself, which illustrate and complement the discussion

of sections 3 and 4. The total coupled power was assumed 3 MW, about the maximum

value reached in the experiments (the power deposition profiles, therefore, are 3 times

higher than those of Figure 3). Figure 4 shows semilogarithmic plots of the quasilinear

distribution functions versus energy for a few values of the velocity pitch-angle, at the

radial position corresponding to the maximum of power absorption. The tails are quite

energetic (in the region of strong absorption the partial pressure of the heated minority

becomes comparable to the pressure of the background plasma) and very anisotropic.

The effective perpendicular and parallel temperature (estimated from the logarithmic

energy derivatives) are shown versus radius in Figure 5.

It must be mentioned that the effective temperatures (Teff) predicted by SSFPQL

are considerably higher than those observed experimentally, which for the minority

species are in the range of 80 to 150 keV. Several causes might contribute to this

discrepancy. 1) The plasma of ASDEX Upgrade in not entirely transparent to charge-

exchange neutrals, so that the distributions measured might reflect the situation

somewhat to the outside of the peak of power absorption. 2) The power reaching the

plasma core in the experiments might be somewhat lower than the power radiated by the

antenna, due to parasitic effects in the plasma periphery. 3) The SSFPQL model of the

quasilinear diffusion coefficient, eqn (3), is likely to overestimates the role of E− (even if

the term proportional to E− is omitted, however, the discrepancy decreases somewhat,
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but does not disappear). 4) In our opinion, however, the most important cause of

discrepancy is the absence of a loss term in the SSFPQL model. In the energy range

considered here direct losses of ions to the wall are negligible, and losses by rf-induced

transport are very small. On the other hand, transport of fast ions due to interactions

with the low-frequency turbulence responsible of anomalous transport (which, in turn,

could be influenced by the presence of suprathermal populations) is likely to be an

important factor in determining the steady-state shape of the quasilinear distributions.

A realistic model of how such losses depend on energy and pitch angle is, unfortunately,

not available. A few simple heuristic loss models have been proposed, but since they

introduce a large degree of arbitrariness in the results, we have preferred not to include

them in the code for the moment. One has to be aware, therefore, that the results

presented are likely to correspond to rather higher values of the total hf power than

assumed here.

For the purpose of coupling SSFPQL with TORIC, of central importance are the

generalized Plasma Dispersion Functions (GPDF) Z defined in eqn (33). Those relevant

for the present scenario, namely Z(x1) for Hydrogen and Z(x2) for Deuterium, are shown

in Figures 6 and 7, again at the position of peak power absorption. The quasilinear

broadening of Z(x1) not only increases the Doppler width of the minority cyclotron

damping region, but also reduces the screening of E+ near resonance. It is important to

note, therefore, that this broadening corresponds to an effective temperature somewhat

larger than the effective parallel temperature of the Hydrogen tail, but much smaller

than its effective perpendicular temperature. Since the absorbed power per Deuterium

ion is quite modest in this scenario, the GPDF of Deuterium is much less affected by

the heating. There is, however, an important difference between fundamental and first

harmonic. While F (0)(u) (eqn (31)) is normalized to unity independently of the heating

rate, F (2)(u) is normalized to 〈v2〉, so that the area under Im(Z(x2)) and the absolute

values of Re(Z(x2)) increase when the heating rate increases. This is a consequence of

the fact that IC harmonic heating is a finite Larmor radius effect.

The consequences of this behaviour can be seen in Figure 8, which shows the

evolution of the power deposition profiles of majority and minority as the total coupled

power increases. Doppler broadening of the Hydrogen cyclotron resonance is manifest,

but competion from Deuterium increasingly indent the Hydrogen absorption profile.

The profiles at 1 and 2 MW reach convergence (roughly within one percent accuracy)

in two and three iterations, respectively. At 3 MW, on the other hand, full convergence

is not reached. The profiles plotted for this case are obtained after four iterations.

Although the global power balance does not significantly change between the third and

the fourth iteration (the fraction absorbed by D+ has increased to 35%, entirely at the

expense of H+), the great sensitivity of harmonic heating to the particle energies above

a certain level enhances the small unavoidable local irregularities in the damping rate,

producing the spikes visible in the upper curve of the Deuterium plots. We stress that

this ‘instability’ is not created by the numerics, which only provides the seeds for the

growth of the spikes, but is intrinsic to the physical model. Of course, we expect that
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the inclusion of a realistic loss term would largely suppress this behavior, and probably

reduce the competition of the majority in favour of fundamental heating of the minority.

Finally, we have investigate the importance of the corrections (25) for the finite

radial width of banana orbits. Figure 9 is the same as Figure 4, but taking these

corrections into account. The resulting asymmetry between co-moving and counter-

moving ions is clearly visible in the upper energy range. The imbalance in the average

parallel velocity, although small (well below 1% of the thermal speed), is measurable,

and has the typical bipolar radial profile shown in Figure 10. Since the asymmetry

affects only a fraction of ions of the order of one in 106, however, the effects on the

coefficients of the wave equations are too small to be visible on the scale of figures 6

and 7, and have no measurable influence on the results of the iterations between TORIC

and SSFPQL.

For completeness, in fig. 11 we show the contour plot of the minority distribution

function predicted by SSFPQL at the point of peak absorption when the effect of toroidal

trapping on the number of ions transiting through resonance is taken into account

according to eqn (20). We recall, however, that this model is only qualitative. As

mentioned in section 4, moreover, fig. 11 gives the distribution function at the outer

equatorial plane, and not at the position of the cyclotron resonance, where its shape

influences absorption.

8. Conclusions

We have implemented a package for the self-consistent evaluation of wave propagation

and absorption in the Ion Cyclotron range of frequency, taking into account the

quasilinear evolution of the ion distribution functions. To make this package fast

and nevertheless accurate we have taken advantage of the fact that the coefficients

of the wave equations are integral functionals of the distribution functions, and are

most sensitive to deviations from Maxwellians in the domain from just above to several

times the thermal energy. Accordingly, our effort has been devoted to ensure that our

kinetic solver SSFPQL gives a reliable solution in this range, while accepting that this

code is not designed to follow the exponentially few but extremely energetic ions also

produced by IC resonances. We have also shown that in the relevant range of energies the

radial excursions of trapped ions do not significantly influence the self-consistent power

deposition profiles, and that, within our simplified model (eqn (10)) of the QLDC,

no significant improvement would result by taking into account the trapping of ions

in the toroidal magnetic field. On the other hand, we have identified an important

missing element in the self-consistent Maxwell-quasilinear simulations of IC heating

experiments, namely the unavailability of an adequate model of the anomalous losses of

suprathermal ions. To build such a model would require a much broader experimental

data basis (including space resolved absolute flux values) than presently available. On

the other hand, trying to obtain these data could shed interesting light also on the

loss mechanisms of fast ions and alpha particles in the reactor. The TORIC-SSFPQL
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package could be a useful tool for this task. For this purpose, however, the Monte

Carlo approach might again be of advantage, since most easily allows to incorporate

additional effects, such as neoclassical and magnetic ripple diffusion, or diffusion due to

low frequency fluctuations.

It is worth mentioning again that the Legendre polynomials expansion of the

distribution functions used by SSFPQL cannot be expected to converge in the whole

velocity space. We have made an effort, therefore, to ensure that convergence is

reached in a domain sufficiently large, so that ignoring what happens outside it will

not appreciably influence the coefficients of the wave equations. This is not always

trivial. Although several criteria have been developed, and warnings are issued when

failings are detected, the variety of IC heating scenarios is so large that it is difficult

to predict what could go wrong in all situations. To avoid erroneous conclusions, it

is always recommended to check by visual inspection the results of SSFPQL before

accepting them for iteration with TORIC. We hope that this situation will improve,

as experience with the use of the code will suggest more refined and generally reliable

convergence criteria.

In spite of this limitation, we hope to have made it plausible that SSFPQL is

adequate for the purpose of determining the main part of the quasilinear ion distribution

functions, and thus for coupling with a wave solver for self-consistent simulations of wave

propagation and absorption in the IC range of frequencies.
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9. Appendix

The integrals over Legendre polynomials required by SSFPQL are listed in eqns (17).

Only the integrals in which n and m are either both even or both odd are different from

zero. The following integrals, moreover, vanish for all values of p and k:

Qp
01(n, 0, k) = Qp

10(0, m, k) = 0

Qp
11(0, 0, k) = Qp

11(n, 0, k) = Qp
11(0, m, k) = 0

(A1)

We note the symmetries

Qp
00(n,m, k) = Qp

00(m,n, k) Qp
11(n,m, k) = Qp

11(m,n, k)

Qp
10(n,m, k) = Qp

01(m,n, k)
(A2)

and, again for all values of p and k,

Qp
01(n, 1, k) = Qp

0,0(n, 1, k) Qp
10(1, m, k) = Qp

0,0(1, m, k)

Qp
11(1, 1, k) = Qp

0,0(1, 1, k)
(A3)

(the first two are equivalent because of the symmetries).
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For our purpose, it is convenient to introduce the auxiliary integrals, which we will

call of the first, second, and third kind, respectively ‖:

Xp(n,m, k) =
∫ +1

−1
Pn(µ) (1 − µ2)1+p µk Pm(µ) dµ

Y p(n,m, k) =
∫ +1

−1
Pn(µ) (1 − µ2)1+p µk

(

µ
dPm

dµ

)

dµ

Zp(n,m, k) =
∫ +1

−1

(

µ
dPn

dµ

)

(1 − µ2)1+p µk

(

µ
dPm

dµ

)

dµ

(A4)

so that

Qp
00(n,m, k) = Xp(n,m, 2k)

Qp
01(n,m, k) = Y p(n,m, 2k)

Qp
11(n,m, k) = Zp(n,m, 2k)

(A5)

Recalling

P0(µ) = 1 P1(µ) = µ
dP1

dµ
= µ (A6)

one can express the non-vanishing integrals with n = m = 0 and m = n = 1 in terms of

the integral

I(p, k) =
∫ +1

−1
(1 − µ2)p µ2k dµ =

Γ(1 + p)Γ(1/2 + k)

Γ(3/2 + k + p)
=

p!
∏k+p

i=k (i+ 1/2)
(A7)

All non-zero integrals with higher indexes can be evaluated from these using the

recursion relations

Pn(µ) = 2µPn−1 − Pn−2 −
1

n
[µPn−1 − Pn−2] (A8)

and
dPn

dµ
=
dPn−2

dµ
+ (2n− 1)Pn−1 (A9)

a) The integrals of the first kind satisfy the recursion relations

Xp(n,m, k) = 2Xp(n− 1, m, k + 1) −Xp(n− 2, m, k)

− 1

n

[

Xp(n− 1, m, k + 1) −Xp(n− 2, m, k)
]

= 2Xp(n,m− 1, k + 1) −Xp(n,m− 2, k)

− 1

m

[

Xp(n,m− 1, k + 1) −Xp(n,m− 2, k)
]

(A10)

‖ All integrals (A4) have to be used, rather than only those listed in eqn (17) if the distribution

functions are not assumed to be simmetric in v‖
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initialized for all k by

Xp(0, 0, 2k) = I(p + 1, k)

Xp(1, 1, 2k) = I(p + 1, k + 1)

Xp(0, 1, 2k + 1) = I(p+ 1, k + 1)

(A11)

b) The integrals of the second kind satisfy the recursion relations

Y p(n,m, k) = 2Y p(n− 1, m, k + 1) − Y p(n− 2, m, k)

− 1

n

[

Y p(n− 1, m, k + 1) − Y p(n− 2, m, k)
]

= Y p(n,m− 2, k) + (2m− 1)Xp(n,m− 1, k + 1)

(A12)

initialized for all k by

Y p(0, 1, 2k + 1) = I(p+ 1, k + 1)

Y p(1, 1, 2k) = I(p+ 1, k + 1)
(A13)

c) The integrals of the third kind satisfy the recursion relations

Zp(n,m, k) = Zp(n− 2, m, k) + (2n− 1)Y p(n− 1, m, k + 1)

= Zp(n,m− 2, k) + (2m− 1)Y p(m− 1, n, k + 1)
(A14)

(note the inverted indexes in the second identity), initialized for all k by

Zp(1, 1, k) = I(p + 1, k + 1) (A15)

If toroidal trapping is taken into account as suggested in section 4, the recurrence

relations (A10)-(A15) are still valid, but the integrals needed for the initialization have

to be redefined by adding the factor W(µ − µcr) (eqn (20)) in the integrand. The

integrals thus modified are not known in closed form, and must, therefore, be evaluated

numerically on each magnetic surface, since µres is a function of ψ. The oscillating

nature of the integrands, moreover, makes it difficult to reach an accuracy comparable

to that guaranteed when using the analytic expressions (A7). Since small errors in

the initializations tend to be somewhat amplified by the recursion relations (10)-(15),

convergence of the solution is often less satisfactory than when trapping effects are

neglected.
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