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Abstract. The evolution of pellet clouds in magnetically confined thermonuclear

plasmas is studied by means of a time-dependent two-dimensional resistive MHD model

applicable to the poloidal plane of a plasma torus. A massive neutral particle source

representing a pellet traverses the plasma and continuously releases cold and unionized

particles. Its motion is confined to a poloidal plane, which is thus considered to be a

symmetry plane of the model.

The conservation equations supplemented by Maxwell’s equations, Ohm’s generalized

law, and a number of rate equations are solved for the symmetry plane. To each

mesh point of the Eulerian grid in the poloidal plane, a toroidal ’flux tube’ is

attached. The field-aligned expansion of the ablated substance in these flux tubes

and the corresponding change of the state parameters are computed in a Lagrangian

approximation. Hence the two-dimensional Eulerian resistive MHD code is operated

alternating with the one-dimensional Lagrangian routine.

In the first series of computations, the neutral particle source strength is a prescribed

input parameter, the applied magnetic field as well as the initial state parameters of

the background plasma are uniform. Results of these calculations are presented and

the solutions obtained are discussed.

1. Introduction

A pellet injected into a magnetic confinement machine usually traverses a sequence of

nested magnetic flux surfaces. The cold particles released by the pellet form a high-

density neutral cloud around it, which rapidly expands. The ablated particles may

move both in the poloidal plane and in the toroidal direction. The overall process is

thus basically three-dimensional. Typical initial neutral particle velocities are an order

of magnitude higher than the pellet injection velocity. The expanding cloud is heated

by the incident plasma particles and becomes ionized within some µs.

The ionized particles interact with the magnetic field, their motion across the

magnetic field becomes decelerated and, in the absence of drifts, they become confined to
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magnetic flux tubes whose initial radii are approximately equal to the local ionization

radii. For pellets used in up-to-date machines, the ionization radius is an order of

magnitude larger than the pellet radius.

The pellet thus moves in its own ablated substance in the direction of the ionized

and confined frontal peripheral layer. However, ablation is a self-regulating process:

upon approaching the high-temperature peripheral layer the pellet releases an increased

number of neutral particles thus reducing the local temperature. If this cooling is

sufficiently intense, the pellet moves in a medium of quasi-constant temperature, and

the ablation process may be considered to be quasi-steady. In the opposite case, when

the cooling effect is insufficient, the pellet traverses layers of alternating higher and lower

temperatures and the ablation rate too may become modulated. The characteristic

length of this modulation is thus given by the size of the confining flux tube (e.g.

ionization radius). The confined ablatant, which shields the pellet from the incident

plasma particles, expands freely in the flux tubes along the magnetic field lines. The

density line integral
∫

ndz, taken along the field lines piercing the pellet and the shielding

cloud surrounding it, is a measure of the effectiveness of collisional shielding against

incident plasma particles confined to the same field lines.

In earlier studies, the effect of magnetic fields on the evolution of the pellet cloud

and the ablation process had been ignored (neutral gas shielding ablation models, see,

for example, [1, 2] or the review [ 3]). In the next generation of the ablation models, the

confinement of the energy carriers and the ablated substance to magnetic flux tubes was

taken into account [3 to 9]. The correct definition of the confinement radius required the

application of properly posed resistive MHD models [7,8,9]. A comprehensive analysis of

pellet injection phenomena, including the existing pellet ablation models, can be found

in a recent PPCF topical (pellet) review paper [10].

If E×B - or ∇B-induced drift is present in the plasma (see [11] to [16]), the ablated

substance drifts across the magnetic field and the relative position of the pellet to its

shielding cloud is independent of the ionization radius. In this case, the local ablation

rate may become decoupled from the flux tube parameters of the background plasma.

However, drift is a transient phenomenon [17], its duration depends on the evolution of

the equilibrating currents in the system considered.

In the absence of drift, the local confinement of the ablated substance to discrete

B-aligned flux tubes suggests pellet path discretization in terms of the local confinement

radii and the associated flux tube sizes. Such an approach yields, in combination with

the self-consistent calculation of the cloud expansion characteristics along the magnetic

field lines, pellet penetration depths and/or radiation characteristics [8,9] that are in

agreement with experimental observations.

Nevertheless, using the flux tube size for discretization imposes a periodicity on the

system that may not always reflect physical reality. This is the case, for example,

for large pellets producing an abundance of cold particles over the whole pellet path,

or in the presence of non-ignorable drift of the ablated substance. In such cases,

persuasive information on the evolution of the pellet cloud and the associated ablation
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rate history can only be expected from computational models in which no conditions

resembling periodicity or any other prescribed structure are imposed. For this reason,

it was decided to apply a two-dimensional numerical model without taking refuge

to the ionization radius as characteristic length of the problem. The model was

developed originally for computing two-dimensional current- and field distributions in

MHD flows with nonequilibrium ionization [18]. Here the model is applied for calculating

analogous distributions in the poloidal plane. The effect of the third dimension (e.g.

plasma dynamic processes along the field lines) is also taken into account. The basic

characteristics of this ’2+1’-dimensional model were presented in [19] in which the drift

of a carbon plasma cloud over a vaporizing divertor plate following a disruption event

was computed. Further results of preliminary nature are given in [20].

Although the assumption of constant particle source strength and uniform initial

background plasma/magnetic field distributions used in this part of the analysis is

far from realistic, it allows for a reliability check of the complex 2-dimensional code

involved. Furthermore, even in this approximation some relevant information is obtained

on a number of pellet-plasma interaction phenomena: the form and size of the partially

ionized and radiating region in the wake of the pellet, the characteristic transient times

associated with wake formation, the resulting temperature and density patterns around

the pellet, and the conditions for the existence of shocks and the magnitude of the the

eventual shock heating of the background plasma.

Some of the data obtained, e.g. the radiation patterns, can be compared with

experimental observations.

In the second part of the analysis (yet to be done), the 2-dimensional code will

be supplemented by a self-consistent ablation model. A prerequisite for applying the

ablation model selected is the correct determination of the plasma expansion dynamics

and the resulting particle and energy fluxes along the magnetic field lines. For this

purpose, a multi-cell Lagrangian routine shall be attached to each mesh point of the

poloidal plane. Variable cell number (with cell splitting or new cell generation [7, 9])

shall be applied.

Thus the analysis of arbitrary experimental pellet scenarios shall become possible by

prescribing the corresponding boundary conditions and initial plasma parameter distri-

butions. Valuable information can then be obtained on various relevant pellet-plasma

interaction phenomena such as the cause of the B-parallel striations occasionally seen in

pellet-fuelled discharges and the characteristics of the ∇B-induced drift motion of the

ablated pellet substance in particular.

2. Physical Model

The set of equations consisting of the magnetohydrodynamic conservation equations,

Maxwell’s equations, Ohm’s generalized law, and supplemented by rate equations for

particle collisions and equations for transport processes (thermal conduction, etc., see
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[9] and [19]) is as follows:

∂ρ

∂t
+ ∇ · (ρv) = Ṡabl

∂(ρv)

∂t
+ ∇ · (ρvv + Ip) = j× B

∂ǫ

∂t
+ ∇ · ((ǫ+ p)v) = j · E − ǫiṅe +

Ṡabl

mh

kTpel

γ − 1
+ ∇ · (χ∇T )

∇ · B = 0

∇× B = µ0j

j = σ(E + v ×B)

∂ne

∂t
+ ∇ · (nev) = ṅe

where v is the macroscopic velocity of the ablated substance and background plasma

particles, Ip represents the pressure tensor, σ the electrical conductivity (modified

Spitzer conductivity, taking also the electron-neutral collisions into account), Ṡabl is

the particle source strength (ablation rate), and

ǫ =
p

(γ − 1)
+

1

2
ρv · v, ∇ ≡ (

∂

∂x
,
∂

∂y
).

The thermal diffusivity is an ionization-degree-weighted sum of the neutral gas and

electron thermal diffusivities: χ = (α− 1)χa + αχe (χi << χe). Subscripts a, e, i, and

h denote atoms, electrons, ions, and heavy particles (nh = na + ni), respectively. For

the cross-field conduction, anomalous electron conductivity values are used.

The equations are supplemented by the ideal gas state equation:

p = nkT .

The applied vacuum field is purely toroidal with Rtor ≈ ∞, i.e. helicity effects are,

for the time being, neglected.

If a self-consistent description of the scenarios is attempted, the physical processes

associated with the toroidal direction such as energy transfer to the pellet and to the

ablated pellet substance by energetic plasma particles confined to magnetic field lines,

electrostatic shielding, expansion of the ablatant, thermal conduction, etc., must also

be taken into account. (The ablation rate is defined by the balance of the energy fluxes

at the pellet surface.) Fortunately, these processes are symmetric with respect to the

poloidal plane in which the pellet is moving. The poloidal plane can thus be considered

as a symmetry plane.

Poloidal currents are induced in the system by the v × B electromotive force (e.g.

by its vrBz component) and the associated time variation of the magnetic field. These

currents are responsible for the B-perp deceleration and confinement of the ionized

substance and can be expressed as

jx =
∂ψ

∂y
, and jy = −

∂ψ

∂x
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where ψ represents the ’current stream function’ [18] and is proportional to the

induced magnetic field:

Bz = Bz0 + µ0ψ .

Taking the curl of Ohm’s generalized law and assuming that ∂/∂z ≡ 0, where z

denotes the toroidal direction, the z-component of the the curl equation yields a second

order partial differential equation for the two-dimensional stream function ψ [18], [19]:

∂ψ

∂t
+

∂(vxψ)

∂x
+

∂(vyψ)

∂y
=

∂

∂x
(

1

σµ0

∂ψ

∂x
) +

∂

∂y
(

1

σµ0

∂ψ

∂y
) −

1

µ0

∂(vxBz0)

∂x
−

1

µ0

∂(vyBz0)

∂y

Although in the majority of realistic pellet ablation scenarios the inductive part

of the current associated with the time variation of the magnetic field is substantially

smaller than the σ(v ×B) contribution [21], the equation for ψ is solved here without

any further simplifications.

The mathematical treatment of the processes associated with the third dimension

requires the solution of the complete set conservation equations for each ’flux tube’

attached to the mesh points of the poloidal plane [ 9]. The analysis of the various

processes inherent in these flux tubes requires the application of an adequately large

number of Lagrangian fluid cells for each flux tube.

To reduce the associated computational volume and computational time, only a single

Lagrangian cell per flux tube is used in the preliminary scenario computations reported

here. The energy flux entering into this cell in the B-parallel direction is taken to be

equal to the thermal energy flux carried by the background plasma electrons (’free flux

limit’). The computed expansion velocities of the Lagrangian cells are, for the time

being, sonic-limited.

The Lagrangian description requires the specification of a certain initial physical

thickness for the poloidal layer analyzed. The half thickness of this layer h0 defines the

initial length of the Lagrangian cells in the toroidal (z) direction.

In agreement with experimental data concerning the thickness of the radiating layer

in the poloidal plane (see, for example, Fig. 2 of [7]), the initial thickness of the first

Lagrangian cell attached to the poloidal layer is chosen to be approximately equal to the

diameter of the neutral or partially ionized gas sphere surrounding the pellet. This selec-

tion corresponds to spherically symmetric expansion of the ablated substance within the

ionization time, prior to fully developed MHD interaction. Computational tests showed

that deviations of the initial Lagrangian cell lengths from this dimension, within the or-

der of magnitude of the neutral gas cloud diameter, does not notably affect the results.

For the ease of the present preliminary analysis, the applied magnetic field B0 = Bz0,

the ablation rate Ṡabl, the pellet velocity vp, and the initial temperature and density of

the recipient plasma Te0 = Ti0 = T0 and ne0 are kept spatially constant in all scenarios

described.
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3. Numerical Scheme

The mathematical model consists of a system of two-dimensional equations written for

the poloidal plane, supplemented by a set of one-dimensional equations which account

for the processes associated with the toroidal direction.

Eulerian coordinates with rectangular numerical mesh, uniform or nonuniform, are

used for the poloidal plane and a Lagrangian cell system, attached to each element of

the Eulerian mesh, for the toroidal direction.

For integrating the equations in time, the system is subdivided in two parts and the

equations are solved separately for every time step ∆t (in a way similar to the method

of fractional steps): (a) solution of the 2-D system of equations for the poloidal plane

(’Eulerian step’), followed by (b) the computation of the processes associated with the

toroidal direction (’Lagrangian step’). Variable time increment is used for integrating

the coupled systems. The constraint on the time step size is determined by the govern-

ing system of the 2-D resistive MHD equations.

3.1. Eulerian step

The 2-D system of equations includes time dependent first and second order partial

differential equations. The equations are split in two parts: a hyperbolic system and

a parabolic one, the last incorporating the temperature- and magnetic field diffusion

equations. In the first and second fractional steps, the hyperbolic and parabolic systems

are solved separately by applying appropriate solution methods.

In matrix notation, the hyperbolic system is of the structure

∂U

∂t
+
∂F(U)

∂x
+
∂G(U)

∂y
= 0

where the vector U denotes U = [ρ, ρvx, ρvy, ǫ, Bz, ne] .

A finite volume discretization scheme is applied:

Um+1
i,j = Um

i,j + ∆t

[

1

∆x
(fi+ 1

2
,j − fi− 1

2
,j) +

1

∆y
(gi,j+ 1

2

− gi,j− 1

2

)

]

,

where Um+1 is the time-advanced value of the function U, fi+ 1

2
,j and gi,j+ 1

2

are

numerical fluxes at the xi+ 1

2

and yj+ 1

2

interfaces of a numerical cell, respectively. The

conservative variables are defined at the cell centers, the fluxes are computed at their

lateral surfaces.

For computing the numerical fluxes, the Total Variation Diminishing(TVD) Lax-

Friedrichs method is applied [22]:

fi+ 1

2

=
1

2

[

F (UL
i+ 1

2

) + F (UR
i+ 1

2

) −max(
λL + λR

2
)(UR

i+ 1

2

− UL
i+ 1

2

)

]

,
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where λ = vx + cs + va , cs and va are the sonic and Alfven velocities respectively;

UL
i+ 1

2

= Um
i +

∆Um
i

2
, UR

i+ 1

2

= Um
i+1 −

∆Um
i+1

2
.

The superscripts L and R denote the left and right sides of an interface x separating

two adjacent numerical cells, the overline terms are computed using the slope limiter

minmod method [22]. The numerical fluxes in the y-direction are treated similarly.

Since the TVD method is an explicit numerical method, the restriction on the time step

is based on the largest characteristic speed, and is

∆t ≤ min(
∆x

2(vx + cs + va)
,

∆y

2(vy + cs + va)
).

The TVD method is 2nd order accurate in space. No artificial viscosity is used in these

computations.

The source terms present in the equations are treated explicitly or by means of a

predictor-corrector-type iterative procedure. Having integrated the hyperbolic system

over a time increment ∆t, central finite differences are used to discretize and implicitly

solve the parabolic equations. The corresponding matrix equations are solved iteratively

by using the generalized minimal residual method [23].

3.2. Lagrangian step

The 1-D conservation equations, mass, momentum, and pressure are solved for the

toroidal direction by applying a standard Lagrangian procedure (see, for example, [9]) to

the cells attached to the 2-D poloidal numerical grid. Prior to performing the Lagrangian

step, the plasma state parameters are adjusted by accounting for the the effects of

volumetric expansion in the z-direction:

u∗ =
[

V0u
E + (V m

− V0)u
m

]

/V m ,

where u denotes nh, ne, or p, respectively. Here V m = area × z(t), is a Lagrangian

volume element, z(t) is the length of a cell in the toroidal direction at time = t,

and area = ∆x × ∆y is an area element in the poloidal plane. V0 = area × h0 is

the Lagrangian volume element at time=0, h0 is the initial cell length in the toroidal

direction.

The superscript m denotes values at the old time step (time=t), whereas the superscript

E implies values at the end of an Eulerian step (t+ ∆t).

The x and y components of the momentum and the value of the total energy (ki-

netic+internal) are adjusted accordingly.
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4. Computational Scenarios

Prior to performing calculations with particle sources traversing the plasma in the

poloidal plane, a number of test calculations were performed. The purpose of these

calculations was, besides testing the reliability of the numerical scheme and the accuracy

of the results obtained, to assist the interpretation of the results obtained in more

complex situations.

All test calculations reported in this section were performed by operating the code

in two-dimensional (’plus one’) mode.

4.1. Plane Shock Wave Test

In the course of scenario calculations, it was noticed that for certain particle source

strength - plasma temperature combinations, both being sufficiently high, the resulting

’explosive’ expansion of the high-density ablatant cloud may produce weak shock waves

penetrating the background plasma. Due to shock heating, a moderate local elevation of

the background plasma temperature was recorded.

To make certain that the observed effect is physical, shock tests were performed: one

half of the domain was filled with an initially high-pressure deuterium plasma (shock

tube scenario). The high- and low-pressure domains were separated by a fictitious

’diaphragm’ which was ruptured at time = 0. The time evolution of the plasma dynamic

parameters both on the high- and low-pressure sides were subsequently computed.

Various input parameter combinations were tested by having either high-temperature

or low-temperature ’driver gas’ on the high-pressure side. (The dissipative processes

were not turned off during the numerical computations.)

Shock wave relations applicable to discontinuity surfaces at an ablating pellet

surface with phase change and/or local heat sources/sinks present were derived in [24].

As usual, steady state was assumed and the conditions of mass-, momentum-, and

energy conservation were applied to the two sides of the discontinuity surface. It was

assumed that the degree of ionization at the ablation front is negligibly small and thus

the magnetic field strength remains unaffected.

Relatively little is known about the evolution of magnetohydrodynamic shocks in

partially ionized gases. The presence of the neutral particle component and the

associated ionization- and recombination processes provide an additional degree of

freedom for the establishment of the equilibrium plasma state parameters behind the

shock wave.

Here we extend the expression obtained in [24] and include possible changes of the

ionization state and of the strength of the normal magnetic field component, the only

field component we consider in this work, across the discontinuity surface. In the

analytical relations derived, dissipative processes are not taken into account.
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4.1.1. Generalized shock relations Assuming that mass, momentum and energy

are conserved across a shock wave, the expression relating the undisturbed plasma

parameters (subscript ’0’) with those on the downstream side of the discontinuity surface

(subscript ’1’) can be written as follows:

(1+α1)
(1+α0)

p1

p0

α1−α0

1+α1

ρ1

ρ0

+ β0

(

B1

B0

− 1
)3

− 1
γ+1
γ−1

−
ρ1

ρ0

where α = ne/nh, nh = na + ni, note that ptotal = (1 + α)nhkT.

As before, the subscripts a, i, e, and h denote neutral atoms, ions, electrons, and

heavy particles, respectively. The quantity ǫi is ionization energy per particle. For a

deuterium plasma 2ǫi/k = 3.67 × 105K.

The change of the plasma temperature across the shock wave follows from the ideal

gas state equation:

T1/T0 = (1 + α0)/(1 + α1) ∗ (p1/p0)/(ρ1/ρ0).

In the absence of magnetic fields, (β0 ≡ 0), or at negligible magnetic field changes

(B1/B0 ≈ 1), the expression relating ρ1

ρ0

to p1

p0

can be approximated by

ρ1

ρ0

=

γ+1
γ−1

1+α1

1+α0

p1

p0

+ 1
γ+1
γ−1

+ 1+α1

1+α0

p1

p0

− 2ǫi

kT0

α1−α0

1+α0

If, in addition, there is no change in the ionization degree (for example shock waves

in cold or in fully ionized gases) the above equation reduces to the known Rankine-

Hugoniot expression representing an explicit relation between the pressure and density

jumps across gasdynamic shock waves (see, for example, [25]).

The change of the magnetic field strength across a shock wave follows from

Maxwell’s equations:

∂B

∂t
= ∇× (v ×B) − ∇× (χm∇× B)

For the vector fields considered and with v = x̂v, B = ẑB

∂/∂t ≡ 0 , ∂/∂z ≡ 0, we have

Bz∇ · v + (v · ∇)Bz = ∇ · (vBz) = ∇ · (χm∇Bz).

Assuming negligible dissipation, i.e. χm = 0, we have B1v1 = B0v0, i.e.

B1/B0 = v0/v1 = ρ1/ρ0

The reliability of the numerical procedure can thus be checked by comparing the

results to these analytic relations.
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4.1.2. Change of the ionization state across a shock wave Figs. 1a to 1d show the

evolution of the density, temperature, pressure, and ionization degree distributions for a

shock produced in a partially ionized low-temperature plasma in the absence magnetic

fields. The initial plasma parameters specified for this case are as follows:

nhL = 5 × 1023 m−3, T0L = 1.5 eV, nhR/nhL = 0.1, T0R/T0L = 1, B0 = 0,

where subscripts L and R denote initial quantities on the left- and right-hand sides

of the virtual diaphragm, respectively. The initial values of the ionization degree on the

left- and right-sides of the virtual diaphragm are 0.42 and 0.78 .

The three curves shown in a frame correspond to 10, 15, and 25 µs following the

moment of diaphragm rupture. The shock wave propagates from the left to the right.

x(m)

p

0 0.5 1

0.5

1

1.5

(c)

x(m)
0 0.5 1

0.4

0.6

0.8

1
(d)

n e
/n

h

x(m)

T

0 0.5 1

1.4

1.6

1.8

(b)

x(m)
0 0.5 1

1

2

3

4

5
(a)

m
n h

Figure 1. Change of the plasma parameters across a plane ionizing shock wave: (a)

heavy particle density (1023m−3), (b) temperature (eV ), (c) pressure (105N/m2), (d)

ionization degree (ne/nh).

The curves display the well known characteristics of shock tube regions (see, for

example, [25]): the temperature abruptly rises across the moving shock and drops below

its initial value at the contact surface (the boundary of the high- and low-pressure

substances initially separated by the diaphragm). The velocity and the pressure remain

constant across the contact surface and an expansion fan (a train of rarefaction waves)

propagates backward into the originally high-pressure region.

The temperature peaks seen at the shock front are of particular interest. They are

associated with the finite ionization and recombination rates specified. The temperature
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rises practically instantaneously at constant electron density. It decreases subsequently

and the electron density rises in accordance with the finite ionization and recombination

rates specified. The peak temperature value corresponds to frozen-in ionization state and

satisfies the generalized shock relation with the ionization term set equal to zero. The

quasi-steady temperature value following the peak is in agreement with the analytic

value corresponding to the presence of the ionization term in the shock relation. In

scenarios without ionization/recombination processes (fully ionized substance, cold gas,

etc.,) these peaks are absent.

Plasma velocities of the order of 104 m/s are generated, the shock wave velocity

estimated from the positions of the curves is ≈ 1.8 × 104 m/s (Mach No ≈ 1.23) at the

end of the time interval considered. Comparing the plotted values with the analytical

results for the given p1/p0 ratio, the deviation is of the order of 1 %.

4.1.3. Change of the magnetic field strength across a shock

Results of another shock scenario calculation, i.e. the evolutions of the heavy

particle density, temperature, pressure, and magnetic field distributions, are summarized

in Figs. 2a to 2d. The three curves seen correspond to time instants of 0.1, 0.3, and 0.4

µs, respectively. The input data used for this scenario are as follows:

nhL = 1022 m−3, T0L = 1 keV ngR/nhL = 0.1, T0R/T0L = 1, B0 = 2 Tesla.

X(m)
0 0.5 1

1.6

2

2.4
(d)

B z

X(m)

T

0 0.5 10.75

1

1.25
(b)

X(m)
0 0.5 1

0.5

1
(a)

n h

X(m)

p

0 0.5 1

1

2

3

(c)

Figure 2. Change of the plasma parameters and the magnetic field strength across a

plane MHD shock wave: (a) heavy particle density (1022m−3), (b) temperature (keV ),

(c) pressure (106N/m2), (d) magnetic field strength Bz (Tesla). The three curves

correspond to three positions of the shock wave propagating from the left to the right.
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In this case, the plasma is fully ionized on both sides of the shock wave. Since

the plasma temperature is high, quasi-frozen-in field conditions exist. Comparing Figs.

2b and 2d, the correspondence of the the density- and magnetic field strength jumps

across the shock wave becomes apparent. In all regions with quasi-frozen-in conditions,

the magnetic field changes correspond to the local density changes. The short phys-

ical times displayed are associated with the initial conditions (high T0) chosen. As a

result of (total) energy conservation, the local plasma pressure increases on the l.h.s.

of the contact surface in the diamagnetic domain where the magnetic field strength de-

creases and an intermediate pressure plateau appears, which is absent if no magnetic field

strength change takes place (see Figure 1). The deviation between the analytical and

numerical values of the shock wave characteristics is less than 1% for all quantities cited.

4.1.4. Axially symmetric (cylindrical) shock waves

In these scenarios, a high-pressure cylindrical blob of 10 cm diameter was placed

in the center of the computational domain. The blob may have been hot or cold. At

time = 0 the blob was released and its expansion was computed in the rectangular (x,y)

coordinate system (two-dim. computational mode). Figures 3a to 3d correspond to the

set of initial blob and background plasma parameters

nbl = 1023 m−3, Tbl = 5 eV, rbl = 5 cm, ne0 = 1020 m−3, Te0 = 500 eV, B =

1.5 Tesla.

The four curves shown in Figs. 3a and 3b correspond to the time levels of 0.4, 0.8,

1.4, and 1.8 µs, respectively. In the scenario considered, the mass removal, e.g. the

velocity in the toroidal direction vz, was set equal to zero.

The low-temperature partially ionized blob expands until its periphery becomes fully

ionized, decelerated, and confined. A part of the kinetic energy is converted into

magnetic energy: the field lines become stretched. At the center of the blob, a

diamagnetic cavity forms. The confined peripheral layer stops and repels the radially

outward moving mass, velocity reversal takes place. The motion becomes a slowly

decaying periodic splashing motion with a frequency given by the corresponding Alfven

frequency. The case is analogous to some barium clouds release experiments in the

magnetosphere.

The confinement radii (some tens of km) and the oscillation frequencies observed in

those experiments were successfully reproduced with an early version of the pellet code

discussed here (see [26] and the source works cited there).

Figures 3a and 3b show the radial velocity and magnetic field distributions in

the expanding blob for four different time instants. As can be seen, the velocity

direction reverses approximately every 2nd µs. The magnetic field becomes periodically

compressed by the splashing plasma (quasi-frozen-in state), and follows the same

oscillation pattern.

If toroidal expansion is admitted (i.e. the Lagrangian routine is turned on), the
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oscillation amplitudes become strongly damped. Figures 3c and 3d display the time

histories of the pressure maximum monitored in the whole computational domain

without (Fig. 3c) and with (Fig. 3d) toroidal expansion admitted. Sonic limit was

applied to the outflow velocity. The notable difference between the two cases warrants

accurate computation of the toroidal expansion dynamics, which is yet to be done. Also

the intensity of the shock waves that may develop in the system strongly depends on

the characteristics of the toroidal outflow.
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Figure 3. Expansion of a high-pressure cylindrical plasma blob placed at the centre of

the poloidal computational domain: (a) plasma velocity (103m/s), (b) magnetic field

strength Bz (Tesla); (c) the pressure maximum (105N/m2) monitored in the poloidal

plane as a function of time with toroidal outflow velocity set equal to zero, (d) pressure

maximum (105N/m2) with toroidal outflow velocity limited to sonic velocity. The four

curves correspond to time instants of 0.4, 0.8 1.4, and 1.8 µs, respectively.

Note that in these shock wave tests the initial plasma parameters on both sides

of the shock waves (temperature, density) were chosen and combined in an arbitrary

manner. In realistic pellet situations, these quantities are not independent of each other.

Obviously, the relevance of shock effects can only be assessed by means of models in

which the ablation rate is computed as a function of the plasma state parameters in a

self-consistent manner. For the ablation rate - plasma temperature combinations pre-

vailing in up-to-date confinement machines, pellet-caused shock heating seems to be

ignorable. Computations under reactor conditions are still to be done.
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4.2. Stationary Particle Source

As next step, a stationary particle source of given strength (Ṡabl = 4 × 1023s−1) and

size (diam.= 4 mm) was placed in the center of the mesh system (x=y=0.20 m). The

neutral particles fed to the plasma were assumed to be of room temperature. At time =

0 the source was turned on and its strength was kept constant thereafter. In this run,

the toroidal outflow velocity was set equal to zero.

The plasma and pellet input parameters used in this scenario are as follows:

ne0 = 1020m−3, T0 = 500 eV, B = 1.5 Tesla, Tpel = 270 K.
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Figure 4. Plasma parameter variations in the poloidal plane when a stationary

particle source of rpel = 2 mm size and Ṡabl = 4 × 1023 s−1 strength is placed at

the centre of the computational domain (x=y=0.20m). (a) temperature (102eV ), (b)

pressure (105N/m2), (c) velocity (103m/s), (d) magnetic field strength Bz (Tesla).

The four curves correspond to time instants of 5, 10, 15 and 20 µs, respectively.

Figures 4a to 4d show the evolutions of the (a) temperature, (b) pressure, (c) ve-

locity, and (d) magnetic field distributions along the pellet path in the central plane (y

= 0.20 m).

The four curves appearing in each figure correspond to time levels of 5, 10, 15, and 20

µs, respectively.

Similarly to the cases already discussed, the neutral cloud first expands in a cylindrically

symmetric manner, becomes heated and ionized. Once ionization sets in, the ablatant

interacts with the magnetic field and, similarly to the previous case, a diamagnetic cavity
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forms around the particle source. The confinement radius is in this case approximately

4 cm.

This value is consistent with confinement radii (computed and/or measured) reported in

previous publication (see, for example, [7] or [9]). The actual confinement radius value

depends, of course, upon the prevailing or specified physical conditions.

The central density increases over three orders of magnitude within the first 20 µs. Ac-

cordingly, a ’deep hole’ develops in the temperature profile: the local temperature drops

from 500 eV to about 5 eV (Fig. 4a). At the same time, a temperature wave with an

amplitude of about 15% of Te0 is propagating into the background plasma. The wave

amplitude is a function of the χe⊥ value specified: 1 m2/s was used in these calculations.

Due to intense cooling at the pellet location, a local dip appears at the center of the

pressure distribution curve (Fig. 4b). As a result of this locally reversed pressure pro-

file, velocity reversal takes place in the neighbourhood of the particle source (Fig. 4c),

mass being transported towards the center. Owing to the attachment of the magnetic

field to the plasma mass (quasi-frozen-in conditions), a hump appears at the center of

the magnetic field distribution (Fig. 4d). This hump may become amplified or it may

disappear with time, depending upon the initial conditions and transport coefficients

specified. The magnitude of this pressure reversal depends upon the combination of the

input parameters specified (Ṡabl, T0, and χe⊥ in particular). At low outflow velocities,

pressure reversal at the pellet location is usually the case. Note also the developing

local maxima/minima in the velocity distribution curve at the edge (periphery) of the

temperature valley. These disturbances are caused by the maxima of the magnetic field

gradient and the associated j ×B force values acting at this radius.

As has been shown in the previous section (4.2), if toroidal expansion is present and

the ablated substance may escape along the field lines, the probability of transverse

oscillations is drastically reduced, though not completely eliminated (see the magneto-

spheric barium cloud experiments cited above). The presence or absence of transverse

oscillations is likely a function of the relaxation times associated with pressure increase

at and mass removal from the locus of particle source.

Hence the flow reversal seen in Fig. 4, the dip in the pressure curve, and the hump at

the center of the magnetic field curve may become weakened or completely disappear,

depending upon the magnitude of the outflow velocity. Once more, an accurate deter-

mination of the toroidal expansion characteristics is warranted.

5. Particle Sources Traversing the x,y Plane

In these scenarios, particle sources of given strengths were injected in the poloidal plane

parallel to the x-axis. The translational velocity of the source was chosen between 750

and 1500 m/s and was kept constant during each scenario.
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5.1. Single Particle Source

Figure 5a to 5d correspond to a case with the following recipient plasma and particle

source parameters (see also section 4.2):

ne0 = 1020m−3, T0 = 500eV, B = 1.5Tesla, Tpel = 270 K,

Ṡabl = 4×1023s−1, vpel = 1500m/s. The anomalous electron thermal conductivity value

assumed here is, as before, χe⊥ = 1 m2/s.
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Figure 5. Spatial and temporal variations of the plasma parameters in the poloidal

plane when a single particle source of Ṡabl = 4 × 1023 s−1 strength traverses the

poloidal plane parallel to the x-axis (y=const=0.20 m). (a) heavy particle density

(1022m−3), (b) temperature (102eV ), (c) pressure (104N/m2), (d) magnetic field

strength Bz (Tesla). The four curves correspond to time instants of 20, 40, 80, and

120 µs, respectively.

The pellet traverses the poloidal plane parallel to the x-axis (y = 0.20 m). The

computed toroidal velocities are sonic-limited. Displayed are the (a) density-, (b)

temperature-, (c) pressure-, and (d) the magnetic field strength distributions along the

pellet path. The gas is practically fully ionized. The four curves shown in each figure

correspond to the time levels 20, 40, 80, and 120 µs, respectively. The momentary

pellet positions are marked by thin (vertical) lines. Note the dip in the pressure- and

the hump in the magnetic field distributions at the momentary pellet locations. The

cause of these local disturbances was discussed in the previous section. Local velocity

reversal may take place also in this case.

For the same scenario, the two-dimensional distributions of the temperature,
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density, pressure, and magnetic field at t = 120 µs are given in the colour contour plots

Figures 6a to 6d, respectively. In these plots, the initial and the momentary positions

of the particle source are marked by circles. The shape of the partially ionized fraction

of the the plasma in the core of the wake closely resembles experimentally observed

radiation patterns (see, for example, Fig. 2 of [9]). The width of the wake at any

position is approximately twice of the local ionization radius.
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Figure 6. Two-dimensional contour plots of the plasma parameter distributions

displayed in Figure 5 for t = 120 µs. The initial and momentary positions of the

particle source are marked by black circles. (a) temperature (colour scale 10 to 500

eV ), (b) heavy particle density (colour scale 2 to 100 times 1020m−3), (c) pressure

(colour scale 2 to 8 times 104N/m2), (d) magnetic field strength Bz (colour scale 1.44

to 1.50 Tesla). An anomalous thermal conductivity value of χe⊥ = 1 m2/s was used

in the computations.

Notable is the qualitative difference between the density plot and the plots

representing the pressure and magnetic field distributions. While the location of the

density maximum practically always coincides with the momentary particle source

location, the pressure maximum and the magnetic field minimum lag in this case behind

the pellet position.

These distributions are strongly affected by the thermal transport processes taking
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place in the plasma. If the effective value of the anomalous thermal conductivity acting

in the B-perp direction is increased by two orders of magnitude, different patterns

result: the minima/maxima of all plasma parameters move closer to or coincide with

the respective pellet locations.

Figures 7a and 7b are pressure- and magnetic field contour plots that correspond to Figs.

6b and 6c, respectively, but computed with an assumed anomalous thermal conductivity

of 400 m2/s. The locations of the computed minima/maxima practically coincide with

the pellet location.
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Figure 7. Two-dimensional contour plots of the pressure and magnetic field

distributions shown in Figure 6 computed with an anomalous thermal conductivity

value of χe⊥ = 400 m2/s. (a) pressure (colour scale 0.2 to 1.3 105N/m2), (b) magnetic

field strength Bz (colour scale 1.40 to 1.50 Tesla).

Some previous calculations [27] had shown that, in order to reproduce experimen-

tally observed radiation patterns in deuterium pellet plasmas, e.g. the lengths of the

radiating filaments along the magnetic field lines, the heat transport in the B-perp di-

rection must be increased by a factor of about 400 compared to the case of classical

conduction with a ’standard’ anomalous diffusivity of 1 m2/s. Apparently, the same

can be concluded on the basis of the present results. Only the magnitude of the neces-

sary heat input is estimated here, without information on the true nature of the transfer

processes involved [27]. Since the plasma-cloud interface is subject to Rayleigh-Taylor

instability, turbulent mass mixing may also play a role here.

The shift of the pressure maximum with respect to the pellet location computed

as a function of the thermal fluxes acting in the B-perp direction may have practical

applications. Comparing the magnitude of this computational shift (of about 3 cm in the

given case) with results of experimental temperature and density profile measurements

in the pellet wake may yield information on the magnitude of the effective heat fluxes,

or the value of the anomalous thermal conductivity, acting in the B-perp direction in

pellet-fuelled plasmas.
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5.2. Two Pellets Injected Simultaneously

In this scenario, two particle sources were launched in the poloidal plane parallel to the

x-axis in anti-parallel directions.

The field and source parameters used in this ’gazing meteorite’ scenario are

as follows: Te0 = 0.5 keV, ne0 = 1020 m−3, B = 1.5 Tesla, rpel = 2 mm,

vpel = 1500 m/s (launching coordinates 0.26,0.19) and vpel = −1500 m/s (launching

coordinates 0.34,0.21), Ṡabl = 4 × 1023s−1 for both pellets.

Of interest are in these almost-colliding-pellet scenarios the maxima of temperature

and density values that can be obtained in the disturbed region.

Figure 8a and 8b show the structure of the cloud temperature distributions for two

time instants: first, during the approach phase (t = 21.6 µs), and second, after the

two sources have passed each other (t = 36.1µs). The interference of the two clouds is

apparent.

->

<-

x(m)

y(
m

)

0.3 0.350.15

0.2

0.25
(a)

->

<-

x(m)

y(
m

)

0.3 0.350.15

0.2

0.25
(b)

Figure 8. Two-dimensional contour plots of the temperature distribution for the case

of two mass sources traversing simultaneously the poloidal computational domain in

anti-parallel directions. Colour scale: 30 to 500 eV ; (a) time = 21.6 µs, (b) time =

36.1 µs.

Since the possibility of solid-solid interaction is not included into the present phys-

ical model, the case of colliding pellets was not considered, and no attempt was made

to optimize the relative position of the pellet trajectories nor the angle between the

injection directions.

The eventual gain in the temperature- and density maxima can be correctly estimated

only if the source-source interaction, the ablation, and the anomalous thermal transport

processes are calculated in a self-consistent way. Once these sources of uncertainty are

overcome, some interesting pellet scenarios may become subject to consideration.

For example, the possibility of pellet-injection-triggered density ramp-up and ignition
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of a low-density over-heated plasma was considered some time ago (see, for example,

[28]). The applicability of this method, if workable at all, cannot be checked without

self-consistent pellet codes attached to reliable transport calculations. The values of the

transport coefficients assumed play a crucial role also in this case.

6. Summary and Conclusions

— The quasi-three-dimensional code consisting of a two-dimensional resistive MHD

model for the poloidal plane and a simplified one-dimensional Lagrangian routine for

the toroidal direction is found to work reliably. In particular, the code reproduces, with

sufficient accuracy, the generalized analytical MHD shock wave relations presented in

this work.

— The axially symmetric distributions obtained for cylindrical shocks and

stationary particle source scenarios strongly depend upon the set of initial values

prescribed, on the particle source strength - background plasma parameter combinations

in particular.

— The two-dimensional distributions obtained for a single particle source traversing

the plasma produce optical radiation patterns closely resembling those seen in deuterium

plasmas with D2 pellets injected (see, for example, [3]).

The comparison of the computed plasma parameter profiles with measured distributions

offers a convenient way for obtaining information on the magnitude of the effective value

of the thermal diffusivity (χe⊥)eff acting in the poloidal plane.

— The two-dimensional computations applied to two particle sources injected

simultaneously in the poloidal plane along anti-parallel rays show the versatility of the

possible code applications (density ramp-up, shock-heating, etc.).

— The preliminary results reported were obtained with prescribed particle source

strengths and a simplified model describing the expansion dynamics in the third

(toroidal) dimension. The results show that both of these assumptions have a crucial

effect on the results obtained. Hence a reliable analysis of the pellet - plasma interac-

tion process makes the self-consistent determination of the source strength representing

the local ablation rate, the accurate computation of the plasma processes taking place

in the toroidal direction, and the proper selection of the effective transport coefficients

mandatory.
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