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Abstract

The collisionless time evolution of zonal flows in stellarator systems is investigated. An analytical

solution of the kinetic and quasineutrality equations describing the residual zonal flow is derived

for arbitrary three-dimensional systems without approximations in the magnetic geometry. The

theory allows for an arbitrary number of particle species. It has been found that in stellarators

the residual zonal flows are not in general steady but oscillate with a certain frequency. This

frequency is determined by the speed of the bounce-averaged radial drifts of the particles trapped

in the magnetic field and vanishes in tokamaks, where such net drifts are absent. A reduction of

the bounce-averaged radial drifts in configurations optimized with respect to neoclassical transport

results in a smaller zonal-flow frequency.
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I. INTRODUCTION

Stellarator systems are known to have larger particle losses than tokamaks, because of

the lack of symmetry resulting in bounce-averaged radial drifts of helically-trapped parti-

cles. The reduction of these particle losses is a necessary condition for the realization of

fusion in non-axisymmetric devices. Since the early 1980s, a range of approaches to the

optimization of the stellarator geometry has been developed [1, 2]. One of the goals of this

optimization has been a reduction of the neoclassical transport. As a result, interest has

also arisen to reduce the turbulent transport. As for tokamaks, it is believed that an impor-

tant mechanism regulating the transport caused by the microinstabilities are the so-called

zonal flows [3], which involve E × B flows due to a radially varying electrostatic potential

φ(r, t) driven by the nonlinearities in the kinetic equation. It is known that zonal flows are

partially shielded due to the finite banana-orbit width of the particles (resulting in so-called

neoclassical polarization [4]). In this respect, it is important to know how large the residual

flow is because, to some extent, this flow indicates how effectively the turbulence can be

suppressed. It is also of interest to study how the magnetic geometry affects the level of

the residual zonal flow. Being well developed in tokamaks [4–7], the theory of zonal flow

shielding due to neoclassical plasma polarization is under development in stellarators [8–12].

A strong interest in the dependence of the zonal flow shielding on the magnetic geom-

etry has been triggered by recent experimental results from the Large Helical Device [13]

(LHD) where it has been observed that not only neoclassical but also anomalous trans-

port is reduced by an inward shift of the magnetic axis. This decreases the radial drift of

helically-trapped particles but also increases the unfavorable magnetic curvature to destabi-

lize pressure-gradient-driven instabilities such as the ITG mode (see Ref. [8] and the papers

referenced therein). It has been argued that the drift optimization is closely correlated

with the optimization of the residual zonal flow level. Thus, the larger linear growth rates

of the ITG modes in the LHD configuration with the inward shift of the magnetic axis

can be compensated by more effective turbulence suppression through a larger zonal flow.

To support this argumentation, the kinetic theory of the linear evolution of zonal flows in

multiple-helicity systems has been developed in Refs. [8, 9] (employing some approxima-

tions with respect to the magnetic geometry). This theory has shown that bounce-averaged

radial drifts play an important role in the collisionless long-time evolution of zonal flows.
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Also Ref. [12], where the action-angle formalism is used to solve the kinetic equation, has

demonstrated a close link between the particle radial drifts and the value of the residual

zonal flow.

In this paper, we develop a kinetic theory of the linear evolution of zonal flows in arbitrary

three-dimensional geometry (assuming that flux surfaces exist). We consider the long-time

evolution of the zonal flow (i.e. we assume the bounce time to be much smaller than the

characteristic time of the zonal flow). We solve the kinetic equation in guiding-center coor-

dinates similar to Refs. [8, 9], however, we do not rely on approximations in the magnetic

field geometry. As we shall see, the residual zonal flow resulting from the analytical solution

of the kinetic equation can be expressed in terms of some flux-surface and orbit averages.

We compute these geometry-related quantities numerically.

The structure of the paper is as follows. In Sec. II, basic equations for describing zonal

flows in stellarator geometry are given. In Secs. III and IV, we solve these equations ana-

lytically. In Sec. V, the numerical approach to the geometry-related quantities is presented.

In Sec. VI, we apply our theory and numerical algorithm to the Large Helical Device [13]

and the Wendelstein 7-X stellarator [14]. Finally, we discuss the results of our calculations

and draw conclusions.

II. BASIC EQUATIONS

The basic equations for the Rosenbluth-Hinton theory [4, 5] is the coupled system of the

linear gyro-kinetic equation and the quasineutrality equation for the self-consistent electro-

static field potential:

∂fa1

∂t
+ v‖∇‖fa1 + vd · ∇fa1 = − ε̇

∂fa0

∂ε
, −

∑

a

∇ ·
(
e2an0a

Ta

ρ2
a∇⊥φ

)
=
∑

a

eana , (1)

where ε = mv2/2 is the kinetic energy, ρa =
√
maTa/(eaB) is the thermal gyroradius and

n0a is the equilibrium density of the species a. The kinetic energy changes due to the

electrostatic field perturbation ε̇ = − evd · ∇φ with vd = ρ‖∇× v‖ being the particle drift

velocity and ρ‖ = v‖/ωc being the parallel gyroradius. It is assumed that the characteristic

scale of the zonal flow is larger than the ion gyroradius. The sums in the quasineutrality

equation are taken over the particle species (an arbitrary number of species is allowed).

As we are to consider the long-time evolution of the residual flow (on a time scale much
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slower than the bounce time), the evolution of the electrostatic potential inside a flux surface

can be neglected because it occurs on the bounce time scale. Consequently, the perturbed

electrostatic potential depends on the flux-surface label s and time t only, φ = φ(s, t).

Applying this assumption to the kinetic equation (1) gives:

∂fa1

∂t
+ v‖∇‖fa1 + vd · ∇fa1 = − eaφ

′

Ta
fa0 (vd · ∇s) . (2)

The quasineutrality equation can be rewritten using the relation:

〈
∇ ·

(
e2an0a

Ta

ρ2
a∇⊥φ

)〉
=

1

V ′

d

ds

[
V ′
〈
ρ2

a|∇s|2
〉
n0a

e2aφ
′

Ta

]
. (3)

Here, φ′ = ∂φ/∂s, V ′ = dV/ds, V is the magnetic volume inside the flux surface s and
〈
. . .
〉

is the flux-surface average. Substituting Eq. (3) in Eq. (1), results in a quasineutrality

equation in the following form:

− 1

V ′

d

ds

[
V ′
∑

a

〈
ρ2

a|∇s|2
〉 n0ae

2
a

Ta
φ′

]
=
∑

a

ea〈na〉 . (4)

In Boozer coordinates [2, 15], the magnetic field can be written as

B = F ′
T∇s×∇θ + F ′

P∇ϕ×∇s = J∇θ + I∇ϕ+ β̃∇s (5)

with the toroidal flux F ′
T , poloidal flux F ′

P , toroidal current J , poloidal current I and Boozer

angles θ and ϕ. The derivative along the magnetic field line and the radial projection of the

drift velocity take the form:

v‖∇‖ =
v‖
B
√
g
(F ′

P∂θ + F ′
T∂ϕ) , vd · ∇s =

v‖
B
√
g
(I∂θ − J∂ϕ)ρ‖ , (6)

where
√
g = [(∇s×∇θ) · ∇ϕ]−1 is the Jacobian.

We define an orbit-average operation A that annihilates the differential operator v‖∇‖,

so that v‖∇‖f = 0 for any function f . Note that for the trapped particles this operation

coincides with the bounce average and is given in Boozer coordinates by the expression:

A|trapped =

(∮
A
B
√
g

v‖F
′
P

dθ

) / (∮ B
√
g

v‖F
′
P

dθ

)
, (7)

where the integrals are computed back and forth between the reflecting points. For passing

particles, the orbit-average operation can be defined through the flux-surface average:

A|passing =

〈
AB/|v‖|

〉

〈
B/|v‖|

〉 . (8)
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Extracting an orbit-averaged part out of the radial drift velocity, one can write it as a sum

of “averaged” (slow) and “oscillating” (fast) parts:

vd · ∇s = vd · ∇s+ v‖∇‖G . (9)

Here, the quantity G can be found from the following “magnetic differential equation”:

v‖∇‖G = ω̃r , ω̃r = ωr − ωr . (10)

The notation ωr = vd · ∇s has been employed. One can show that in the case of trapped

particles ωr ∼ ∂J‖/∂α where J‖ is the second adiabatic invariant and α = ϕ − qθ is the

field-line label. Recall that the derivative ∂J‖/∂α is related to the radial precession of

locally-trapped particles in non-axisymmetric geometries. For passing particles, one finds:

ωr ∝
〈B vd

v‖
· ∇s

〉
= 0 . (11)

III. COLLISIONLESS THEORY OF RESIDUAL ZONAL FLOW

Integrating the gyrokinetic equation Eq. (2) over velocity space and averaging the result

over the flux surface, one obtains the continuity equation:

∂〈na〉
∂t

+
〈 ∫

d3v vda · ∇fa1

〉
= 0 . (12)

Taking into account that ∇· (Bvd/v‖) = 0 (which follows from the relation vd = ρ‖∇×v‖),

one can rewrite the second term in Eq. (12) in the following form:

〈 ∫
d3v vd · ∇fa1

〉
=

1

V ′

d

ds
V ′π

∑

σ

∫ 〈
Θ(ξ2)

B

v‖
fa1(vd · ∇s)

〉
σv3dvdλ . (13)

Here, ξ2 = 1 − λB, Θ(ξ2) is the Heaviside function [recall that Θ(ξ2) = 1 for ξ2 > 0 and

Θ(ξ2) = 0 otherwise], λ = µ/ε is the pitch angle, µ is the magnetic moment, σ = v‖/|v‖|.
Note the relation:

〈
∇ · A

〉
=

1

V ′

d

ds

[
V ′
〈
A · ∇s

〉]
, (14)

which has been employed in the derivation of Eq. (13). Finally, substituting the represen-

tation of the drift velocity as a sum of oscillating and averaged parts from Eq. (9) and

integrating the v‖∇‖-term in Eq. (13) by parts (this term results from the oscillating com-

ponent v‖∇‖G of the radial drift velocity vd · ∇s), one can obtain:

〈 ∫
d3v vd · ∇fa1

〉
=

1

V ′

d

ds
V ′π

∑

σ

∫ 〈
Θ(ξ2)

[
− BG

v‖
v‖∇‖fa1 +

Bfa1

v‖
ωr

] 〉
σv3dvdλ . (15)
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The perturbed distribution function appearing in Eq. (15) can be found from the kinetic

equation. To the lowest order in the drift velocity (neglecting finite-orbit-width effects), the

kinetic equation can be written in the form:

∂fa1

∂t
+ v‖∇‖fa1 = − eaφ

′

Ta

fa0 (vda · ∇s) . (16)

The equations (12) and (16) coupled to the quasineutrality equation (4) can be considered

as an initial value problem. Before solving it, note (following Xiao and Catto [6]) that

in the original Rosenbluth-Hinton zonal flow problem [4], turbulent fluctuations build a

charge source within a time much smaller than the bounce time but much larger than the

gyroperiod. Thus, the initial zonal flow potential is produced by this turbulent charge source

through classical polarization (i.e. particle departure from the guiding center). This process

happens on a time scale of several ion gyration periods. After several bounce times, the

initial potential is modified by the total polarization, which includes not only classical, but

also the neoclassical polarization due to the guiding center departure from the flux surface.

This argumentation can be translated into the initial conditions for Eqs. (12) and (16):

− 1

V ′

d

ds

[
V ′
∑

a

〈
ρ2

a|∇s|2
〉 n0ae

2
a

Ta
φ′(t = 0)

]
=
∑

a

ea

〈
na(t = 0)

〉
, fa1(t = 0) = 0 . (17)

We start solving the kinetic equation from the observation that it is suitable to split the

distribution function as follows:

fa1 = h− fa0φ̂
′G, φ̂′ =

eaφ
′

Ta
. (18)

Applying the Laplace transform to the kinetic equation (16), one can write:

pH + v‖∇‖H = fa0Φ̂
′ψ , ψ = pG− ωr . (19)

Here, H(p) is the Laplace transform of the function h(t), Φ̂′(p) is the Laplace transform

of the potential φ̂′(t) and the initial condition for the distribution function fa1(t = 0) = 0

has been written as h(t = 0) = fa0G φ̂
′(t = 0). One can solve the kinetic equation by

successive approximations assuming ω ≪ ωb where ω is the characteristic frequency of the

field perturbations and ωb is the bounce frequency. In zeroth and first orders, one obtains:

v‖∇‖H(0) = 0 , pH(0) = fa0Φ̂
′ψ , v‖∇‖H(1) = fa0Φ̂

′ψ̃ . (20)

Using this ordering, one can rewrite Eq. (15) in the form:

〈 ∫
d3v vd·∇fa1

〉
=

1

V ′

d

ds
V ′π

∑

σ

∫ 〈
Θ(ξ2)

[
− BG

v‖
v‖∇‖f

(1)
a1 +

B ωr

v‖
f

(0)
a1

] 〉
σv3dvdλ . (21)
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Finally, substituting the solution of the kinetic equation into the Laplace transform of

Eq. (21), one can obtain:

〈 ∫
d3v vd · ∇Fa1(p)

〉
=

1

V ′

d

ds

[
V ′Γa(p)

]
. (22)

with Fa1(p) being the Laplace transform of the distribution function fa1 and

Γa(p) = − 2π
∫
v3dvdλfa0Φ̂

′p

[〈
Θ(ξ2)

B

|v‖|
GG̃

〉
+
〈
Θ(ξ2)

B

|v‖|
ω2

r

p2

〉]
. (23)

Here, G̃ = G−G. Note that in order to derive Eq. (23), the symmetry properties in σ of the

expression under the integral have been used (only the even part survives the integration

over v‖ from −∞ to +∞). For trapped particles, Eq. (23) can be rewritten in terms of the

bounce averages:

Γa,trap(p)| = − 2πF ′
P

V ′

eaΦ
′

Ta

∫
dvdλfa0v

3
∮

dα
∑

n

(
pτ̂b
2

[
G2 +

ω2
r

p2

])

n

. (24)

Here, the sum is taken over all possible sorts of trapped particles (toroidally-trapped par-

ticles, helically-trapped particles, etc) for a given field line labeled by α = ϕ− q(s)θ. Note

that along each such field line, there are a number of magnetic wells where particles with

large enough pitch angles are trapped. The orbit averages correspond to each such well,

labeled by the number n (see Figs. 1 and 2). In Eq. (24), we have introduced a new quantity

(the bounce time) τ̂b =
∮
(B

√
g)/(F ′

Pv‖) dθ with the integral taken along the field line (back

and forth) between the reflecting points. Note that the property G = 0 for trapped particles

has been used in Eq. (24).

For passing particles, Eq. (23) can be written as follows:

Γa,pass(p) = − 2π
∫
v3dvdλfa0

eaΦ
′

Ta
p
∫

dλ

[〈 B
|v‖|

G2
〉
−
〈 B
|v‖|

〉−1 〈 B
|v‖|

G
〉2
]
. (25)

This expression can be rewritten in the same form as Eq. (24) for Γa,trap taking into account

that for the passing particles the orbit average is defined according to Eq. (8) and ωr = 0.

Applying the Laplace transform to the continuity equation (12), one finds:

pNa(p) −
〈
na(t = 0)

〉
+

1

V ′

d

ds
[V ′ Γa(p)] = 0 , (26)

where Na(p) is the Laplace transform of 〈na(t)〉 and
〈
na(t = 0)

〉
is related to the electrostatic

potential through Eq. (17). Substituting the densities Na into the the Laplace-transform of
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the quasineutrality equation (4) and integrating over s, one can obtain the relation between

the residual potential and the initial one as follows:

Φ′(p) =
[
1 + Λ(p)/Λ0

]−1 φ′(t = 0)

p
, (27)

where the classical polarization is given by the quantity Λ0:

Λ0 =
∑

a

n0ae
2
a

Ta

〈
ρ2

a|∇s|2
〉
. (28)

The neoclassical polarization and the effect of the radial bounce-averaged drift motion are

contained in the quantity:

Λ(p) = 2π
∑

a

∫
dvdλ

e2afa0

Ta
v3

[〈 B
|v‖|

G2
〉
−
〈 B
|v‖|

〉−1 〈 B
|v‖|

G
〉2
]

︸ ︷︷ ︸
passing particles

+ (29)

+
2πF ′

P

V ′

∑

a

∫
dvdλ

e2afa0

Ta
v3
∮

dα
∑

n

(
τ̂b
2

[
G2 +

ω2
r

p2

])

n,a︸ ︷︷ ︸
trapped particles

.

Taking the integral over the velocity in Eq. (29) and transforming Eq. (27) back into the

time domain (recall that the inverse Laplace transform is L−1 [p/(p2 + a2), t] = cos(at), see

Ref. [16]), one can write the residual zonal flow in the form:

φ′(t)

φ′(t = 0)
=
(
1 + Λ1/Λ0

)−1
cos(Ωt) , Ω =

√
Λ2

Λ0 + Λ1
. (30)

Here, the neoclassical polarization enters through the quantity Λ1:

Λ1 =
3

2

∑

a

n0ae
2
a

Ta

∫
dλ




(〈B
ξ
G2

th

〉
−
〈B
ξ

〉−1 〈B
ξ
Gth

〉2
)

︸ ︷︷ ︸
passing particles

+ (31)

+
F ′

P vtha

V ′

∮
dα

∑

n

(
τ̂bth
2
G2

th

)

n,a︸ ︷︷ ︸
trapped particles




and the frequency of the zonal-flow mode is given by the quantity Λ2:

Λ2 =
15

2

∑

a

n0ae
2
a

Ta

F ′
P vtha

V ′

∫
dλ
∮

dα
∑

n

(
τ̂bth
2
ω2

rth

)

n,a︸ ︷︷ ︸
trapped particles

(32)
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with the first sum taken over particle species (ions, impurities and electrons) and the second

sum (in the trapped-particle term) taken over the groups of particles (banana-trapped,

locally-trapped etc). Note that only trapped particles contribute to the quantity Λ2. The

index th in Eqs. (31) and (32) means that all energy-dependent quantities are computed

according to their definitions but using the thermal velocity vtha =
√
Ta/ma instead of v.

Note that vtha is used solely as a normalization constant to keep proper dimensions of various

quantities and that the integrals over the velocity in Eq. (29) have been computed exactly

[the coefficients 3/2 and 15/2 in Eqs. (31) and (32) result from this computation].

IV. SOLUTION OF THE MAGNETIC DIFFERENTIAL EQUATION

In this paragraph we solve the magnetic differential equation (10) for the function G. For

passing particles the equation is solved by Fourier transform with respect to the toroidal

and poloidal angles. For trapped particles, the periodic character of the particle motion is

employed to solve Eq. (10) using a bounce-harmonic expansion.

A. Passing particles

For passing particles ωr = 0 so that the magnetic differential equation (10) for the

quantity G takes the form:

v‖∇‖G = ωr . (33)

In Boozer coordinates, this equation can be rewritten as follows:

(F ′
P∂θ + F ′

T∂ϕ)G = (I∂θ − J∂ϕ)ρ‖ . (34)

Assuming a non-resonant flux surface, one can solve this equation by applying a Fourier

transform with respect to the poloidal and toroidal angles:

G|passing = G00 +
∑

m,n 6=0

mI − nJ

mF ′
P + nF ′

T

ρ‖mn exp(imθ + inϕ) . (35)

Note that the final result Eq. (31) does not depend on the particular choice of G00 (the

corresponding contribution in Λ1 vanishes). Thus, choosing G00 = Iρ‖00/F
′
P , one can write

the solution in the form:

G|passing =
I

F ′
P

ρ‖ −
∑

m,n 6=0

qn

m+ qn

(
1 +

J

qI

)
I

F ′
P

ρ‖mn exp(imθ + inϕ) . (36)
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In the tokamak case, the second term in Eq. (36) vanishes because only components with

n = 0 contribute. Thus, G takes the form which coincides with the conventional tokamak

expression (see Ref. [6]). In our numerical calculations (see below), we neglect the second

term in Eq. (36) also in stellarator geometry. This approximation makes only a small

difference to our results.

B. Trapped particles

Before solving the magnetic differential equation for trapped particles, it is instructive to

rewrite the radial drift velocity as follows:

ωr = vd · ∇s = τ−1
b

[
I

F ′
P

(
∂ρ‖
∂θ

)

α

− B2√g
F ′2

P

(
∂ρ‖
∂α

)

θ

]
= ωrθ − ωrα . (37)

Here, τb = (B
√
g)/(F ′

P v‖) and α = ϕ − q(s)θ is the field line label [i.e. the derivative with

respect to θ is taken in Eq. (37) along a fixed field line]. Note that B2√g is a function of

s only (recall that we use Boozer coordinates). Using the notation introduced in Eq. (37),

one can write the magnetic differential equation (10) for trapped particles in the form:

τ−1
b

∂

∂θ

(
I

F ′
P

ρ‖ −G

)

α=const

= ω̃rα , ω̃rα = ωrα − ωrα , ωrα = ωr . (38)

Let us introduce the “effective time” variable according to the following relation:

τ =






σ(τ)
θ∫

θ1

τb dθ : 0 ≤ τ ≤ τ̂b/2

τ̂b/2 + σ(τ)
θ∫

θ2

τb dθ : τ̂b/2 ≤ τ ≤ τ̂b

(39)

Here, (θ1, θ2) are the reflecting points for a given class of trapped particles on a given field

line and τ̂b = | ∮ τb dθ| is the bounce time. In terms of τ , one can write Eq. (38) as follows:

∂

∂τ

(
I

F ′
P

ρ‖ −G

)
= σ(τ) ω̃rα(τ) . (40)

Introducing the notation Iρ‖/F
′
P = σρ̂, G = σĜ, the bounce frequency ω̂b = 2π/τ̂b and the

new dimensionless “time” ζ = ω̂bτ (0 ≤ ζ ≤ 2π), we can write Eq. (40) in the form:

(
ρ̂− Ĝ

) ∂σ
∂ζ

+ σ
∂

∂ζ

(
ρ̂− Ĝ

)
= σ ω̃rα/ω̂b . (41)

Note that the coefficient before ∂σ/∂ζ must vanish at ζ = πn (n = 0, 1, 2) where the function

σ(ζ) is not continuous. Hence, the following relation holds:

Ĝ(πn) = ρ̂(πn) , n = 0, 1, 2 . (42)
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Since the motion of trapped particles is periodic in ζ (with the period 2π), one can apply

the Fourier transform in ζ (the so-called bounce-harmonic expansion):

f(ζ) =
+∞∑

l=−∞

fl exp(−ilζ) , fl =
1

2π

2π∫

0

f(ζ) exp(ilζ) dζ . (43)

Note that the zero bounce harmonic coincides with the bounce average f = f0. Using this

relation, one can write the following expressions:

ω̃rα(ζ) =
∑

l 6=0

ωrl exp(−ilζ) , ωrl =
1

2π

2π∫

0

ωrα(ζ) exp(ilζ) dζ . (44)

Note that the sum over l in Eq. (44) does not include the zero bounce-harmonic coefficient

ωr0 because ω̃rα = ωrα − ωrα. One can express the “regularity condition” Eq. (42) in terms

of the bounce-harmonic coefficients as follows:

Ĝ0 = ρ̂0 and Ĝl + Ĝ−l = ρ̂l + ρ̂−l , l 6= 0 . (45)

The coefficients Gl for l 6= 0 can be found from the solution of the magnetic differential

equation which now takes the form:

∂

∂ζ

(
ρ̂− Ĝ

)
= ω̃rα/ω̂b ⇐⇒ − il

(
ρ̂l − Ĝl

)
= ωrl/ω̂b , l 6= 0 . (46)

Finally, one can write the coefficients Gl for l 6= 0 as follows:

Ĝl = ρ̂l − iâl , âl = ωrl/(lω̂b) . (47)

Now, one can use the Parseval’s Theorem to compute the quantity G2 needed in Eq. (31):

G2 =
1

2π

2π∫

0

|G(ζ)|2 dζ =
+∞∑

l=−∞

|Ĝl|2 = ρ̂2
0 +

∑

l 6=0

(ρ̂2
l + â2

l ) . (48)

Here, we have used the relation G2 = Ĝ2 and the “regularity condition” Ĝ0 = ρ̂0. Note

that in an axisymmetric geometry the coefficient âl = 0 so that the tokamak result can be

recovered.

One can show that ρ̂l = ρ̂−l and âl = − â−l so that the “regularity condition” Eq. (45)

holds for the coefficients with l 6= 0. One can prove these properties of the coefficients ρ̂l

and âl using the following symmetry relations:

ρ̂(ζ) = ρ̂(2π − ζ) , ωrα(ζ) = ωrα(2π − ζ) . (49)
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Note that the “times” ζ and 2π − ζ correspond to the same point in the space on the back

and forth motion of a trapped particle along the field line. Substituting Eq. (49) into the

definition of the bounce-harmonic coefficients Eq. (43), one can show that

ρ̂l =
1

π

π∫

0

ρ̂(ζ) cos(lζ)dζ , ωrl =
1

π

π∫

0

ωrα(ζ) cos(lζ)dζ , âl =
1

π

π∫

0

ωrα(ζ)

ω̂b

cos(lζ)

l
dζ . (50)

Thus, the “regularity condition” Eq. (45) for l 6= 0 is a direct consequence of the symmetry

relations Eq. (49). Using Eq. (50), one can write the expression for G2 as follows:

G2 = ρ̂2
0 + 2

∑

l>0

(ρ̂2
l + â2

l ) . (51)

V. NUMERICAL ALGORITHM

In Sec. III, we have expressed the Rosenbluth-Hinton residual flow amplitude and its

frequency in terms of some flux-surface averages (passing particles) and bounce averages

(trapped particles) [see Eqs. (30), (31) and (32)]. The quantity G (see Sec. IV) resulting from

the solution of a magnetic differential equation (10) is expressed for trapped particles in terms

of the bounce-harmonic coefficients Eq. (51). These flux-surface averages, bounce averages

and bounce-harmonic coefficients are computed numerically using equilibria obtained from

the VMEC code [17, 18] and transformed to Boozer coordinates [2, 15].

While the flux surface averages can be calculated easily, more effort is necessary for the

bounce averages and the bounce-harmonic coefficients of the trapped particles. For given

flux surface s, field line α and pitch angle λ, all possible classes of trapped particles can

be identified solving 1 − λB(s, θi, α) = 0. The roots of this equation θi, i = 1, 2, . . . define

all possible bounce points on the flux surface and, as a consequence, all possible sorts of

trapped particles. These bounce points define the limits of integration in the calculation of

the orbit averages and the bounce-harmonic coefficients.

The kinetic part of the CAS3D-K [19] code package has been used to cover the phase space

(s, α, θi, λ) with orbits and associated reflection points for the trapped particles (see Fig. 1).

This code solves the resulting tedious root finding problem described before and groups

similar orbits together thus allowing a precise sampling of the phase space with orbits (see

Fig. 2). The details of the code will be published elsewhere. We will give just the resolution

parameters which have been used: 3 × 4 Gaussian points (Gauss-Legendre quadrature) for

12



the trapping parameter λ, 32 Gaussian spaced field line labels (Gauss-Legendre quadrature)

per particle group and at least 70 Gaussian points (Gauss-Chebychev quadrature) per field

line. For the calculation of the bounce averages 30 Fourier components of |B(s, θ, α)| have

been maintained.

VI. DISCUSSION AND CONCLUSIONS

In the previous sections we have seen that the linear response of a non-axisymmetric

plasma to an applied radial electric field generally has an oscillatory character. Physically,

this may be understood as follows. Following Hinton and Rosenbluth [4, 5], we have been

considering how the potential evolves in response to a radial voltage perturbation at t = 0.

In tokamak geometry, after a few ion bounce times, the radial electric field in the plasma

is smaller than the initially applied field because the plasma is polarizable: the ion banana

orbits move radially in such a way that they shield much of the applied voltage. The plasma

thus acts as a capacitor, and the radial voltage is related to the current as

i(t) = C
du

dt
. (52)

In stellarators, there is also an additional effect due to the presence of locally trapped

particles with net radial drift. Some of these particles drift radially inward while others drift

outward, but there is no net current (on a flux-surface average) if the distribution function is

the equilibrium Maxwellian - the inward and outward currents then cancel. However, if the

radial electric field is applied for some finite time, then the distribution function starts to

depart from a Maxwellian. The outward drifting ions gain energy (if the radial electric field

points outward) and the inward drifting ones lose energy, and vice versa for the electrons.

Since the drift velocity is proportional to v2, the speed of the outward drifting ions increases

with time, the inward drifting ones get slower, and a net current arises that is proportional

to the time integral of the voltage. Thus

i(t) = L−1
∫ t

0
u(t′)dt′ + C

du

dt
, (53)

so the plasma behaves like an LC-circuit and oscillates at a frequency Ω = (LC)−1/2. It is

beyond the scope of the present paper to consider the effect of collisions in detail, but we

note that these also produce a radial current. A stellarator is in general not automatically
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ambipolar, and the equilibrium radial electric field is set by the requirement that the neoclas-

sical particle fluxes of ions and electrons should be equal. In the vicinity of this equilibrium,

a radial current arises that is proportional to the departure from the ambipolar electric field

[12]. On time scales longer than the (electron) collision time, neoclassical transport thus

provides a resistor in the LC-circuit, which leads to damping of the zonal flow oscillations.

The turbulence introduces a stochastic generator into our circuit.

An important question raised already in Refs. [9, 12] is the link between the neoclassical-

transport optimization and the reduction of the anomalous transport. The discussion in

this respect has been triggered by experimental results from the Large Helical Device [13]

(LHD). It has been observed that not only the neoclassical but also anomalous transport

is reduced by the inward shift of the magnetic axis in LHD. The inward shift decreases the

radial drift of helically-trapped particles but it increases the unfavorable magnetic curvature

destabilizing pressure-gradient-driven instabilities such as the ITG mode (see Ref. [8] and

the references therein), which should lead to a higher level of the anomalous transport. On

the other hand, in Refs. [9, 12], it is suggested that the properties of zonal flows are more

favorable in the drift-optimized configurations. The reason is that the residual Rosenbluth-

Hinton level is larger, which leads to a more effective suppression of the turbulence in the

inward-shifted configuration. The zonal flow oscillations found in this paper are however

not considered in Refs. [9, 12].

Using our numerical approach, we have studied the effect of drift optimization on zonal

flow parameters (its amplitude and eigenfrequency). In Figs. 3 and 4 we compare the so-

called standard LHD configuration with the inward-shifted LHD configuration and observe

a substantially smaller frequency in the inward-shifted configuration. At the same time,

the amplitude of the zonal flow is fairly similar over most of the plasma volume, suggesting

that the main effect of the drift optimization is the reduction of the frequency and not an

increase of the residual zonal-flow amplitude.

In Figs. 5 and 6 we compare the Wendelstein 7-X configuration (an optimized stellarator,

see Ref. [14]) with the “equivalent” l = 2 classical stellarator (i.e. the classical stellara-

tor having the same minor and major radii, rotation transform and the magnetic field on

axis). Again, the main effect of the optimization is a substantial reduction of the zonal-flow

eigenfrequency whereas the residual-flow amplitude is actually larger in the non-optimized

case. Of course, we should note that the W7-X and the “equivalent” l = 2 stellarator are
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much more different configurations than the standard and the inward-shifted ones in LHD.

Nevertheless, this example is a good illustration of the role of the drift optimization in the

zonal-flow dynamics in stellarators. This behavior can be deduced from the formal expres-

sions we have derived. Note that the zonal-flow eigenfrequency Ω ∼ √
Λ2 is a measure of the

bounce-averaged radial drifts of the particles [see Eq. (32)]. Clearly, reduction of the radial

drifts makes Ω smaller.

The role of electrons is different from that in tokamaks. Having the same bounce-averaged

radial-drift velocities, electrons make a contribution to the zonal-flow eigenfrequency compa-

rable to that of ions. At the same time, the contribution of the electrons to the neoclassical

polarization remains negligibly small (proportional to the mass ratio, as it is the case in

tokamaks).

Finally, we can speculate that the reduction of the anomalous transport in the drift-

optimized configuration occurs because the zonal-flow eigenfrequency is directly affected by

the drift reduction. Note that the zonal flow is constantly produced (in a non-coherent way)

by the turbulence (recall the “stochastic generator” in our LC-circuit). Thus, it is instructive

to estimate response of our system to a noise source. Following Ref. [5], the mean square

potential can be written as

〈|〈φk(t)|2〉〉 =

t∫

0

dt1

t1∫

0

dt2 〈〈Rk(t1)Rk(t2)〉〉Kk(t1)Kk(t2) , (54)

where the double brackets indicate a statistical average, the kernel Kk(t) = φk(t)/φk(t = 0)

results from the linear theory and the noise source correlation function is modelled according

to the equation:

〈〈Rk(t1)Rk(t2)〉〉 = 〈〈|Rk|2〉〉 exp
(
− τ 2/τ 2

c

)
(55)

with τ = t1 − t2 and τc being the correlation time. Substituting Kk(t) = AR cos Ωt in

Eq. (54), one finds that the mean square potential can be estimated for t≫ (1/Ω, τc) as

〈〈|φk(t)|2〉〉
〈〈|Rk|2〉〉τ 2

c

∼ A2
R exp

(
− Ω2τ 2

c

4

)
. (56)

In Eq. (56), we have neglected the term corresponding to the GAM oscillations because of

their large frequency ωfτc ≫ 1 leading to a near cancellation of this contribution into the

mean square potential [5]. One sees that the mean square potential can be substantially

reduced if the zonal-flow frequency is large enough so that Ω τc > 1 is satisfied. This can
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be referred to as a ”phase-mixing mechanism” of the collisionless zonal-flow damping. In

stellarators, this mechanism acts in addition to the usual Rosenbluth-Hinton shielding due

to neoclassical polarization of the plasma [represented in Eq. (56) through the quantity AR].

In Ref. [20], it has been suggested that the zonal flow damping can be further reduced

by the background (e.g. neoclassical) electric field E0 = − ∇Φ0. The reason for that is

the reduction of the average radial displacement of the helically-trapped particles by the

corresponding E0 × B drift which enters the kinetic equation (20) as follows (here α is the

field-line label):
(
p+ ΩE

∂

∂α

)
H(0) = fa0Φ̂

′ψ , ψ =

(
p+ ΩE

∂

∂α

)
G− ωr , ΩE =

1

F ′
P

dΦ0

ds
. (57)

Clearly, solution of this equation will lead to a different time dependence of the residual

potential φ than the solution of Eq. (20). As an example, we consider a poloidally symmetric,

large-aspect-ratio stellarator with circular cross section, where ωr = Ωr(ψ) sinα, ∂G/∂α = 0

and ∂τ̂b/∂α = 0. In this case, one finds the following expression for the residual flow:

φ′(t)

φ′(t = 0)
= AR

[
Ω2

E

Ω2
+

(
1 − Ω2

E

Ω2

)
cos Ωt

]
(58)

Ω =
√

Ω2
ZF + Ω2

E , ΩZF =

√
Λ2

Λ0 + Λ1
, AR =

1

1 + Λ1/Λ0
(59)

One sees that a zero-frequency component appears in the plasma response whereas the

amplitude of the oscillatory response is decreased by finite ΩE . At least in this simple

case, the phase-mixing mechanism of the zonal-flow collisionless damping is reduced by the

background electric field. This subject deserves a more detailed study in future.

Note that if the radial scale of the electrostatic field perturbation is short enough, the

finite-orbit-width term vda · ∇fa1 neglected in Eq. (16) may become important, too. For-

mally, this is a small term, since it is assumed that the radial wavelength of the zonal flow

exceeds the ion gyroradius. However, in Ref. [9], it was shown that this term can lead to a

damping of the zonal flow due to vanishing of the non-adiabatic response of the helically-

trapped particles at the times t ≥ τr ∼ Lr/Vdr where Lr is a characteristic radial length of

the electrostatic field perturbation and Vdr is the bounce-averaged drift velocity. Note, how-

ever, that for the long-wavelength part of the electrostatic field, the time τr is large whereas

for the short-wavelength part it can become comparable to the zonal flow frequency. Thus,

one can expect that the collisionless dynamics of the long-wavelength part of the electro-

static field is mainly controlled by the oscillations found in this work whilst the dynamics
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of the short-wavelength part is dominated by the finite-orbit-width mechanism described in

Ref. [9].

Another problem which has not been considered in this paper is the role of collisions. In

general, collisions introduce a damping mechanism for the zonal flow [5, 21]. For example,

in the limit νe ≫ Ω (here, νe the electron collision frequency and Ω the zonal flow frequency)

one can show that electron collisions produce exponential damping of the zonal flow:

φ(t)

φ(t = 0)
= AR exp(−γZF t) cos Ωt . (60)

Furthermore, in this case the electrons are omitted from the sum in Eq. (32) and do not

contribute to the frequency Ω. The damping rate γZF is defined by the collisional flux of

the trapped electrons. This flux can be shown to be inversely proportional to the collision

frequency. As a consequence, one can show that γZF/Ω ∼ Ω/νe ≪ 1. A detailed calculation

will be presented elsewhere.
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Figure captions

Fig. 1: modulus of B for the W7-X standard case in Boozer coordinates at s = 0.48. A

value of the trapping parameter λ defines the intersecting plane. The particles move (within

the approximation used) on field lines on this plane. Some of the field lines are sketched.

Fig. 2 (Color online): groups of particle orbits for λ = 2.4546 and s = 0.48 for the W7-X

standard case in Boozer coordinates. The numbers indicate the number of periods the

different particle groups cross until they reach the reflection point.

Fig. 3 (Color online): the residual zonal-flow frequency. The inward-shifted LHD equilib-

rium vs. the standard LHD equilibrium. The ion and electron temperatures Ti = Te = 5 keV

(flat profiles), Hydrogen ions.

Fig. 4 (Color online): the residual zonal-flow amplitude. The same equilibria and parame-

ters as in Fig. 3.

Fig. 5 (Color online): the residual zonal-flow frequency. A standard Wendelstein 7-X

equilibrium vs. the “equivalent” l = 2 classical stellarator equilibrium. The ion and electron

temperatures Ti = Te = 5 keV (flat profiles), Hydrogen ions.

Fig. 6 (Color online): the residual zonal-flow amplitude. The same equilibria and parame-

ters as in Fig. 5.
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