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Abstract

Ball-like plasmoids were generated from discharging a capacitor bank via a water surface. In
the autonomous stage after current zero they have diameters up to 0.2 m and lifetimes of some
hundreds milliseconds, thus resembling ball lightning in some way. They were studied by means
of spectroscopy, high speed cameras, probes and calorimetric measurements. The plasmoids are
found to consist of a true plasma confined by a cold envelope. Decreasing electron densities in the
order of 1020 m−3 to 1022 m−3 were measured from Stark broadening in the initial (formation)
phase. The central electron temperature is found to be 2000–5000 K during most of the plasmoids
lifetime. This is determined from intensity ratios of copper lines, assuming local thermodynamic
equilibrium and considering optical thickness, as well as from a collisional radiative model for
atomic calcium. Gas temperatures above 1300 K have been measured using thermocouples and
it is expected to reach values in the range of 2000 K to 4000 K during formation. The plasmoids
store chemical energy by dissociating water at their formation, as is supported by spectroscopic
investigations of OH-radical emission and by the outcomes of a thermodynamical model assuming
chemical equilibrium. Calcium hydroxide (CaOH) molecular band emission is the major source
of visible radiation in the autonomous phase. Chemiluminescence reactions between dissociation
products of water and dissolved calcium are proposed as a source for this emission. The plasmoids
colder boundary layer consists of electric double layers. Vortices have been observed that likely
attribute to the characteristic shape of the balls.
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Figure 1: Examples
of atmospheric plas-
moids. The top image
was recorded using high
exposure at 30 ms after
quenching the discharge
current. It clearly shows
the distinct boundary
layer surrounding the
ball-shaped plasmoid,
which is approximately
20 cm in diameter. The
central image shows an
experiment in which a
sheet of paper placed in
the path of the discharge.
The paper is not burnt
and the plasmoid deforms.
The figure on the bottom
shows a rare case of a
double plasmoid, with
remarkable turbulent
structures in the boundary
layer .



Chapter 1

Introduction

Over the last few years, luminous plasmoids generated from an electric discharge in a water vessel
at atmospheric pressure were described in a number of papers (see [1, 2, 3] and the references
therein). These experiments are all based on those first described by Shabanov [4] in St. Petersburg
in 2001. The experiments, including our own, received remarkable attention in and outside the
physics community because they were associated with natural ball lightning.

The mysterious phenomenon of ball lightning has puzzled scientist for centuries. No satisfying
explanation for its occurrence has been found to the present day. No model exists that can account
for all the reported observations and the ones that do exist, lack experimental evidence. Inevitably,
some rather wild speculations surround the subject. A review of some of the ball lightning models
developed over the years, as well as a statistical analysis of a large collection of observational data,
is written by Smirnov [5].

An recent interesting collection of ball lightning sightings, collected by correspondence with
eye-witnesses was published by Abrahamson et al. [6]. A ball-lightning theory that received much
attention was developed by Abrahamson and Dinnis [7]. It is based on the idea that a lightning
strike on soil forms nanoparticles of Si, SiO or SiC, which are ejected into the air as filamentary
networks. As these networks oxidize in the atmosphere, the stored energy is released as light and
heat.

Very recent experiments by the Brazilian group of Paiva et al. also generated some attention [8].
These authors managed to produced bright glowing objects the size of ping-pong balls from a
DC arc discharge (∼ 20 V, 140 A) on a silicon wafer. They roll and bounce on the floor and some
glow as long as 8 seconds. The authors claim that their experiments forms experimental support
for the Abrahamson-Dinnis theory. However, the appearance of the ‘sparks’ does not resemble
reported ball lightning observations very accurately.

The analogy of the present experiments with natural ball lightning will not be elaborated
on in this report. However tables 1.1 and 1.2 are presented to sketch a picture of the natural
phenomenon, so a quick comparison can be made. Based on these tables and other properties
determined from observations, the ‘average’ ball lightning can be described as a sphere with a
diameter of 20 cm, a lifetime of about 10 s, and a luminosity similar to a 100 W light bulb. It
floats freely in the air, and ends either in an explosion, or by fading away. It mostly occurs during
stormy weather.

Parameter Value No. cases
Diameter 23± 5 cm 3763
Lifetime 9 · 10±0.3 s 2111
Brightness 1500± 200 lm 1918

Table 1.1: Parameters of the mean ball lightning,
determined from collections of observations [5]. The
number of sightings from which a value for each pa-
rameter could be obtained is also listed.

The present work repeats the experiment of Shabanov and co-workers [1, 2], adding a variety of
diagnostics to get better insight into the phenomenon illustrated in figure 1. Some simple models
will also be presented. Perhaps already from the appearance of the plasmoids, it becomes clear
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CHAPTER 1 Introduction

Table 1.2: Probabilities asso-
ciated with various properties of
ball lightning, determined from
collections of observations [5].

Parameter Characteristic Probability [%] No. cases
Form spherical 91± 1 2891
Color orange 25± 10 3497

yellow 20± 3
white 19± 5
red, pink 17± 1
blue, violet 12± 1
green 1.4± 0.3
mixture 6± 3

Decay explosion 52± 9 2291
slow decay 39± 7
fragments 9± 3

Place of indoors 50± 5 1984
observation outdoors 50± 5

that a vast amount of physics would be needed to completely understand their nature. So, the
models focus on some very particular aspects of it – and can in no way replace the experiments.
Specifically, the investigations are aimed at understanding the energy storage mechanism that
enables the autonomously radiating behavior of the plasmoids. Also of interest are e.g. the
characteristic colors, spherical shape and apparently confining boundary layer or ‘skin’ surrounding
them. Of course, to achieve an understanding in qualitative as well as quantitative terms, it is a
first and important goal to determine (plasma) parameters such as densities and temperatures, as
well as chemical composition.

Most experimental effort was put into emission spectroscopy. As one of the best established
diagnostic tools in plasma physics, it provides a wealth of information on the processes and pa-
rameters governing the plasma [9, 10, 11]. Moreover it is a non-invasive technique and insensitive
to the presence of large electric or magnetic fields, RF-signals, or a high plasma potential, that
can sometimes severely complicate the use of other diagnostics. Nevertheless, other measurement
techniques (e.g. cameras, electric probes, thermocouples) were also used – simultaneously when
possible – and provide useful and important additional information.

Finally a few words are said about the institute and the background of the project. The ex-
perimental setup was built in the summer of 2006 as a demonstration experiment of the Institute
for Plasma Physics at Humboldt University. It was presented at the visitor’s day ‘Lange Nacht
der Wissenschaften’ of the scientific institutes in Berlin and Potsdam and received much attention
as such. The experiment was considered worthwhile and interesting and the decision was made at
the institute to further investigate the subject. I was the first graduation student to join the then
three person project team, which was completed by another student about a month later. The ex-
periments were planned to last one year. Some preliminary results were already presented on other
occasions: at the spring meeting of the German Physical Society (DPG Tagung) in Düsseldorf in
April 2007 (presentation) and at the International Conference on Ionized Gases (ICPIG) in Prague
in July (poster and talk). Most recently, an article was submitted for publication in the Plasma
Sources Science and Technology journal [12]. An interesting side-effect of unconventional nature
of the experiments is that they received some media attention in Germany and the Netherlands,
featuring in television programs and articles in popular magazines.

The structure of the rest of this report is as follows: chapter 2 discusses some the most
important plasma physics concepts and serves as theoretical background, to which will be referred
in the following chapters. Next, conducted experiments are described, directly followed by their
results and discussions. The following two chapters are devoted to a collisional radiative model
for calcium, and molecular processes and molecular emission. Experimental results specifically
related to these topics are also discussed in these chapters. General points of discussion as well as
conclusions follow towards the end. Most figures (graphs) are included at the appropriate place in
the report. An exception form very large figures or extensive series of similar results. These are
presented in appendices, to which reference is made.
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Chapter 2

Plasma physics concepts

2.1 Definitions, classifications

A plasma is a partly of fully ionized gas. More precisely a plasma is a gas in which so many of
the atoms or molecules have lost (gained) one or more electrons that the electrical interaction
between the charged particles starts to dominate their behavior over the normal “hard sphere”
collisions and Van der Waals attractions involving neutral particles. A plasma contains positive
and negative charge carriers moving freely and independently of each other, resulting in a high
electric conductivity.

Many of the parameters used to describe a plasma, such as density, pressure and temperature,
are the same as in basic kinetic theory of gases. An important difference is that one must distin-
guish between particles of different charge states (e.g. neutrals, ions, and electrons). For instance,
when the plasma is not in (complete or local) thermodynamic equilibrium, as is often the case in
laboratory plasmas, the temperature of the ions Ti and neutrals Tg can be significantly different
from that of the electrons Te. The electron (or ion) temperature is often expressed in energy units
(electron volt, eV: 1 eV ∼ 11604 K).

An important property of a plasma is the ionization degree α, defined by:

α =
ni

n0 + ni
. (2.1)

Here ni is the ion- and n0 is the neutral density. If there are molecules present in a plasma, these
can dissociate and the dissociation degree β is defined in a similar way, e.g. for H2O→ OH + H:

β =
nOH

nH2O + nOH
, (2.2)

so that a dissociation degree of 1 means complete dissociation.
The ion density is related to the electron density through the important concept of quasi

neutrality which says that in a plasma there can be no significant deviation from charge neutrality
over a distance larger than the Debye length λD:

ne − Zni

ni
= ε� 1. (2.3)

Here Z is the average ion charge in the plasma and ε is a small number, depending on the size
of the measurement volume V : ε ≈ 0 for V � λ3

D. In other words, on a macroscopic scale the
plasma is neutral:

ne − Zni = 0. (2.4)

Since electrons and ions can move freely, a change in the electric potential e.g. through the
introduction of a test particle with charge q into the plasma, will alter the movement of the
surrounding electrons and ions. The net effect is a “shielding” or “screening” of the normal

6



CHAPTER 2 Plasma physics concepts 2.2. Collisions and cross sections

Coulomb potential Φ(r) = q
4πε0r

at distance r of the test particle, which is replaced with the
Debye potential [13]:

Φ(r) =
q

4πε0r
exp

(
− r

λD

)
, (2.5)

with ε0 the vacuum permittivity. The Debye length for a plasma with singly charged ions is given
by:

λD =

√
ε0kBTeTi

e2(neTi + niTe)
≈
√
ε0kBTe

nee2
, (2.6)

with e the elementary charge and kB the Boltzmann constant. At a distance r � λD of the test
particle, its disturbing effect on the plasma potential is completely suppressed; hence this is called
Debye shielding.

Plasmas can be classified into ideal and non-ideal plasmas. The definition of an ideal plasma
can be derived analogous to the definition of an ideal gas. A gas is called ideal when the average
interaction energy (through Van der Waals interactions) between the molecules is small compared
to their average kinetic energy Ekin = 3

2kBT , which is the case for sufficiently high temperature
and distance between the molecules. In the case of a plasma, the Coulomb interaction energy:

Φ12 =
1

4πε0
q1q2

r12
(2.7)

takes the place of the Van der Waals interaction energy. Assuming a plasma with singly charged
ions q1 = q2 = e and density ni = ne = n, the average distance between the particles r12 is given
by n−1/3. So, a plasma is called ideal when:

e2n1/3

4πε0
� 3

2
kBT or T � 1.11 · 10−5n1/3, (2.8)

with T in K and n in m−3.
Another way to arrive at the same criterion for an ideal plasma involves the concept of Debye

screening. The electrons or ions surrounding the test particle discussed above can only effectively
screen the potential of this test-particle when macroscopically large number of plasma particles is
present in the shielding cloud. In other words the number of particles ND in a sphere with radius
λD, the Debye sphere, should be large:

ND = ne
4
3
πλ3

D = ne
4
3
π

(
ε0kBTe

nee2

)3/2

� 1, (2.9)

which is the same as equation (2.8) apart from a constant factor. For example, a plasma with a
density of 1022 m−3 is ideal for T � 240 K according to 2.8.

Finally, the word plasmoid deserves some explanation. The term is used to refer to a localized
(compact) plasma formation (plasma entity) that possesses a coherent structure. In literature
the term plasmoid is sometimes used to refer specifically to a magnetically confined plasma or
a plasma of which the structure is determined by magnetic fields. It is emphasized that this is
not the definition used here; the use of the term plasmoid does not imply any form of magnetic
confinement.

2.2 Collisions and cross sections

The frequency with which a particle moving at speed v in a plasma of density n collides can be
written as:

fc = vσcn, (2.10)

7



2.2. Collisions and cross sections CHAPTER 2 Plasma physics concepts

which defines the collision cross section σc. The related (average) collision time τc and collision
mean free path λmfp are defined by:

τc =
1
fc

and λmfp = v/fc. (2.11)

The total number of collisions between particles of type 1 and 2 per unit time and volume is given
by n1n2〈σcv〉. The angular brackets indicate the values are averaged over all particles, the energies
of which are distributed according to a distribution function f(ε):

〈σv〉 =
∫
σc(ε)v(ε)f(ε)dε. (2.12)

This averaged product of cross section and velocity is called the rate coefficient Kc ≡ 〈σcv〉.
Cross sections and rate coefficients are easily calculated for hard sphere collisions between

uncharged particles, e.g. σc ≈ πa2
0, where a0 is the Bohr radius. For other processes, obtaining

accurate energy dependent cross sections or, in the case of a Maxwellian velocity distribution,
temperature dependent rate coefficients can be much more difficult. When no experimental data
is available and accurate quantum mechanical calculations are to complex, one often has to rely
on rough theoretical approximation. Three examples that are relevant to the model in chapter 4
will be given:

(a) the excitation of bound electrons into higher electronic states by collision with an electron:
electron impact excitation,

(b) the removal of a bound electron from an atom or ion by collision with an electron: electron
impact ionization and

(c) The recombination of a free electron with an ion while emitting a photon: radiative recom-
bination.

2.2.1 Electron impact excitation

In electron impact excitation the free electron transfers a discrete amount of energy Epq that
‘fits’ to a particular electronic transition (from state p to q), to the bound electron. Of course
the incident electron must have an initial energy greater than this value, so there is a threshold
behavior of the cross section.

There is a large collection of formulae for cross sections and rate coefficients available in lit-
erature, based on several collision theories. Most of these have a limited range of validity, e.g.
based on the ratio of the transition energy and the electron temperature εpq = Epq/kTe. Vriens
and Smeets [14] connect several of these approximations into semi-empirical formulae with a large
range of validity for the incident electron energy or electron temperature. Their result for the
electron-impact excitation rate coefficient (assuming Maxwellian EEDF) is:

Kpq =
1.6 · 10−13

√
kBTe

kBTe + Γpq
eεpq

[
Apq ln

(
0.3kBTe

Ry
+ ∆pq

)
+ Bpq

]
[m3s−1], (2.13)

with kBTe and Ry, the Rydberg energy, both in eV and

∆pq = exp
(
−Bpq
Apq

)
+

0.06s2

qp2
, (2.14)

with s = q − p and

Γpq =
Ry · ln

(
1 + p3kBTe

Ry

) [
3 + 11 s

2

p2

]
6 + 1.6qs+ 0.3

s2 + 0.8 q
1.5
√
s
|s− 0.6|

. (2.15)
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The variables p and q (as opposed to the indices that are used to label the states) are the effective
quantum numbers of the initial and final energy levels, given by:

p = Z
√
Ry/χp = Z

√
Ry/(E+ − Ep). (2.16)

The variables Apq and Bpq are given by:

Apq = 2(Ry/Epq)fpq, (2.17)

with fpq the absorption oscillator strength and

Bpq =
4R2

y

q3

(
1
E2
pq

+
4Epi
3E3

pq

+ bp
E2
pi

E4
pq

)
, (2.18)

where bp can be approximated by:

bp =
1.4 ln(p)

p
− 0.7

p
− 0.51

p2
+

1.16
p3
− 0.55

p4
. (2.19)

For many (optically allowed) transitions of many elements the absorption oscillator strength fpq
can be found in the NIST [15] database. For optically forbidden transitions the situation is more
complicated and accurate rate coefficients are often more difficult to obtain. When no other data
is available the following approximation can be used [16]:

fpq = 1.52p−5q−3(p−2 − q−2)−3 for s/p� 1, (2.20)

and
fpq = 1.95p−5q−3(p−2 − q−2)−3 for s/p & 1. (2.21)

These formulae all assume a hydrogenic structure of the atom and become more accurate for
transitions between higher excited states. The rate coefficients calculated using 2.13 or similar
methods can have significant errors – of more than an order of magnitude – for transitions between
low-lying states in non-hydrogenic elements, where the influence of the atomic electron cloud is
large.

Experimentally derived electron impact excitation cross section are often only available for a
small number of transitions (when at all). The best theoretical results are obtained from quantum
mechanical R-matrix calculations. The results of such calculations (for a Maxwellian electron
energy distribution) are usually given in terms of an effective collision strength Υpq (‘Upsilon’). It
is defined by

Υpq =
∫ ∞

0

σpq(ε) exp
(
− ε

kBTe

)
d

(
ε

kBTe

)
. (2.22)

Υpq is related to the excitation rate coefficient by

Kexc
pq = 2

√
παca2

0

1
gp

√
Ry/kBTe exp(−Epq/kBTe)Υpq. (2.23)

Here, 2
√
παca2

0 = 2.1716 · 10−14 m3s−1, gp is the degeneracy of the lower state involved in the
transition (usually 2J + 1, with J the total spin+orbital angular momentum quantum number).

2.2.2 Electron impact ionization

The bound electron is trapped in the atom’s or ion’s potential, which lies an amount of χp, the
ionization energy for the initial state p, below the continuum potential. For ionization to take place
the incident electron must have an energy greater than this value. So there is an energy threshold

9



2.2. Collisions and cross sections CHAPTER 2 Plasma physics concepts

in the ionization cross section and the process becomes important at higher temperatures. A
semi-empirical formula for the rate coefficient is [14]:

K ion
p+ =

9.56 · 10−12(kBTe)−1.5e−εp+

ε2.33
p+ + 4.38ε1.72

p+ + 1.32εp+
[m3s−1], (2.24)

where εp+ = χp/(kBTe). K ion
p+ is the rate per atomic electron and needs to be summed over all

significant electrons in the atom if the total ionization cross section for the atom is required.
Usually only those in the uppermost level need to be considered. Occasionally, lower levels should
also be included, with the εp+ appropriate for each level. Other semi-empirical expressions can
be found elsewhere [17, 10, 18]. Note that though this section refers to ionization of an atom, we
can apply the same formula to ionization from stage, say, r to stage r+ 1. Since higher ionization
stages are not relevant for the experiments conducted, this generalization will not be made explicit
in the following sections.

2.2.3 Radiative recombination

A free electron can be captured by an ion and end up in a bound state (principal quantum number
n) with energy −χn while emitting a photon with a wavelength λfb = hc/(χn + ε) with h Planck’s
constant with c the speed of light and ε the incident electron energy. Since the final electron energy
is negative (bound) there is no energy threshold in the cross section for radiative recombination.
The rate coefficient decreases with temperature. An approximation for the rate coefficient for
hydrogenic ions with charge Z is [10]:

Krr
+n = 5.2 · 10−20Z

(
Z2Ry

n2Te

)1/2
χn
Te

[
exp

(
χn
Te

)
Ei
(
χn
Te

)]
ḡn [m3s−1], (2.25)

where

Ei(x) = −
∫ ∞
−x

exp(−s)
s

ds (2.26)

is the exponential integral. Values ḡn are in the order of 1 and can be found in literature [19].
For a level that is partially filled the rate should be corrected by a factor ξ/(2n2), where ξ is the
number of available ‘holes’ in that level. For the lower levels (high χn) the ionization energy is
usually much higher than the electron temperature in equilibrium and the asymptotic behavior
for the term in brackets is useful:

exp
(
χn
Te

)
Ei
(
χn
Te

)
→ Te

χn
for

χn
Te
→∞. (2.27)

For a singly charged ion, taking ḡ = 1, and Te � χn equation (2.25) simply becomes:

Krr
+n = 5.2 · 10−20 1

n

√
Ry/Te. (2.28)

The total recombination rate can be obtained by summing equation (2.27) over all n. A reasonable
approximation is [10]:

Krr
+,tot = 5.2 · 10−20Z

2

(
Z2Ry

Te

)1/2(
1− exp

[
−χ
Te

(
1 +

1
n0

[
ξ

n2
0

− 1
])])([

ln
χ

Te

]2

+ 2

)1/2

,

(2.29)
where n0 is the principal quantum number of the lowest incompletely filled shell of the ion and χ
is the ionization potential of the recombined atom.

For the recombination to individual states, a more advanced treatment that uses cross sections
depending on the angular momentum l can be found in [20]. The resulting rate coefficients
Krr

+,nl = Krr
+,nl(Θ) are tabulated as a function a scaled electron temperature Θ = Te/Z

2
eff. Here,

10
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Zeff is an effective ion charge. For this, approximate formulae depending on the core charge and
the number of bound electrons as well as the incident electron energy (weakly) are also given. The
rate coefficients peaks at a temperature around Θ = 10−4 and decrease with increasing principle
quantum number, so that radiative recombination is most important for the low lying states.

2.3 Equilibrium plasmas

In a plasma, many atomic and molecular processes occur simultaneously. Only a few of these
have been described in the previous section. In general, in order to determine the distribution
of particles over all their different states, including ionization stages, excitation states, velocities,
etc. one would have to know all these processes in detail. The situation becomes extremely much
simpler when the plasma is in thermal equilibrium (TE). The system will then be in the most
probable state, which is found by quantum statistical mechanics.

2.3.1 Boltzmann and Saha balances

In equilibrium for every process the number of reactions going forward is equal to the number of
reactions going backward. This is called the principle of detailed balancing. This principle can be
applied to the process of excitation of an atom X from state p to state q by electron impact and
the reverse deexcitation:

Xp + e−(ε+ Epq) � Xq + e−(ε), (2.30)

with Epq = Eq − Ep. In equilibrium, the occupation of the excitation states follows from well
known Boltzmann statistics. If the states are non-degenerate, the ratio of the occupation of states
p and q is given by a simple Boltzmann factor:

nq
np

= exp(−Epq/kBTe). (2.31)

If the states are gi-fold degenerate, the ratio becomes:

nq
np

=
gq
gp

exp(−Epq/kBTe), (2.32)

what is called the Boltzmann balance.
In the case of ionization (here from the ground state neutral X0

0 to the ground state first ionized
stage X+

0 ) and radiative recombination the number of free particles involved in the forward and
backward reaction is no longer equal:

X0
0 + e−(ε+ χ0,0) � X+

0 + e−(ε) + e−. (2.33)

The balance must be altered to include the number of possible states (statistical weight) per unit
of volume of the extra free electron in the ionized stage. This is given by the electrons’ internal
degeneracy (2, for the spin states), times the number of possible states for the free electron in
phase space given by ue=(2πmekBTe)3/2/h3. When the degeneracy of the ion ground state is g+,0,
the total statistical weight for the ion and the free electron equals g = 2ueg+,0. So the balance
becomes:

nen+,0

n0,0
= 2

(2πmekBTe)3/2

h3

g+,0

g0,0
exp(−χ0,0/kBTe). (2.34)

This is called the Saha balance. By summing the occupations of all possible electronic stages in
the neutral and ionized stage, one can arrive at a similar formula for the total neutral density
n0 =

∑pmax
0 n0,p and ion density n+ =

∑qmax
0 n+,q:

nen+

n0
= 2

(2πmekBTe)3/2

h3

Q+

Q0
exp(−χ/kBTe). (2.35)

11
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where
Qr =

∑
p

gr,p exp(−Er,p − Er,0
kBTe

) (2.36)

is the total number of particles in each ionization stage, called the partition function. For a plasma
with only singly charged ions and atoms, where ne = n+ this ratio can be used to calculate the
ionization degree α = ne/(ne + n0) when the electron density and temperature are known.

For hydrogen like atoms or ions the ratio of the ground state densities given by equation (2.34)
can be used as a good approximation to calculate the ionization degree without the need to
calculate the partition functions, since the occupation of the excited states is only a small fraction
of that of the ground state. For other atoms, such as alkali or alkaline earth metals, which
have lower lying excited states that can reach populations of more than 10% of the ground state
occupation, this is only a rough approximation.

As a numerical example, the ionization degree of a plasma containing calcium atoms and ions is
plotted in figure 2.1, using both equation (2.34) and equation (2.35). The (temperature dependent)
partition functions have been approximated by a polynomial expansion from literature [21]. De
decrease in ionization degree with increasing density is due to the fact that the backward process
(3 particle recombination) is proportional to n2

e and thus becomes more important for higher ne.
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Ca: χ=6.1132 eV    

Irwin (1981)
Q0 and Q+ from
 
g0,0=1, g+,0=2
Ca: χ=6.1132 eV    

Figure 2.1: Equilibrium
ionization degree of a calcium
plasma at different electron
densities, calculated using
equation (2.34) for the ratio
of the ground state occupa-
tions (dotted lines) and using
equation (2.35) for the total
ionization stage balance (solid
lines). For the latter case
the partition functions were
approximated by a polynomial
expansion from [21]. The
occupation of higher ionization
stages is negligible so ne = n+

is assumed. Also included is
the ionization degree in coronal
equilibrium, calculated using
equation (2.48) (dashed line).

Instead of assuming values for electron density and temperature to calculate the Saha-balance,
one can also assume a closed system, where the total number of calcium atoms and (singly charged)
ions is fixed: n+ + n0 = ntot. Writing the fraction of the ions belonging to the considered species
as x, quasineutrality can be use to write this as xne + n0 = ntot. At given (constant) x, ntot and
Te this equation together with the saha-balance (2.34) gives a system of two equations for the two
unknown concentrations n+ = xne and n0. This system can by solved analytically (Mathematica
is used here), giving:

n+ =
1

2g0h3
exp(− Eion

kBTe
)[−4
√

2g+kBmeπ
3/2Te

√
kBmeTex

+ 4{
√

2 exp(
Eion

kBTe
)g0g+h

3kBmentotπ
3/2Te

√
kBmeTex+ 2g2

+k
3
Bm

3
eπ

3T 3
e x

2}1/2] (2.37)

and
n0 = ntot − n+. (2.38)
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This solution is plotted for the case of calcium with a total density of ntot = 4 · 1020 m−3 and
x = 1 in figure 2.2.

Figure 2.2: Calcium ground
state and ion densities for a
closed system with total density
ntot = 4 · 10 20 m−3 at temperature
Te, calculated using equations (2.37)
and (2.38). A single ion species
(calcium) is assumed, i.e. x = 1
(see text).
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2.3.2 Rate coefficients for reverse processes

The rate coefficients for electron impact excitation and ionization were discussed in section 2.2.
By applying the Boltzmann and Saha balances the rate coefficients for the reverse processes can
be calculated from them.

Electron impact deexcitation

In equilibrium the number of forward and backward reactions in equation (2.30) is equal, so it
holds:

npneKpq = nqneKqp or
nq
np

=
Kpq

Kqp
(2.39)

Comparing this with the Boltzmann balance, the rate coefficient Kdeexc
qp for electron impact deex-

citation follows from the coefficient for excitation by:

Kdeexc
qp (Te) =

gp
gq

exp(∆Epq/kBTe)Kexc
pq (Te). (2.40)

This relation, and the following derived analogously, also hold when there is no equilibrium, as
long as the electron velocity distribution is Maxwellian.

Three-particle recombination

The rate coefficient for three particle recombination Ktpr
+p (from the ion ground state) follows from

the coefficient for ionization if we apply the Saha balance to reaction (2.33):

n0,pneKp+ = n+,0n
2
eK+p (2.41)

and

Ktpr
+p (Te) =

gp
2g+,0

h3

(2πmekBTe)3/2
exp(χp/Te)K ion

p+ (Te). (2.42)

The total three body recombination rate is obtained by summing the above rates for the individual
p, which results in approximately [22, 23]:

Ktpr
+,tot = ḡ(1.1 · 10−49)Z3

(
Ry

kBTe

)9/2

[m6s−1], (2.43)

where ḡ ≈ 2 and Z is the charge (in elementary units) of the ion.

13



2.3. Equilibrium plasmas CHAPTER 2 Plasma physics concepts
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Figure 2.3: Total radiative
recombination rate coefficient
Krr

+,tot (solid line) and to-
tal three-particle recombina-
tion coefficient Ktpr

+,tot times
ne for three different elec-
tron densities (dashed lines)
for atomic calcium, calculated
using equation equations (2.29)
and (2.43) respectively.

An example is given in figure 2.3 for atomic calcium. The total recombination rate per unit of
electron density and ion density is calculated using equations (2.29) and (2.43) for radiative and
three-particle recombination respectively. The following values were used: Z = 1, χ = 6.1132 eV,
n0 = 3, ξ = 10. One can see, e.g. that for electron temperatures of more than 2000 K, radiative
recombination starts to dominate over three-particle recombination rapidly for ne < 1022 m−3.

2.3.3 (Local) Thermal Equilibrium

In complete Thermal Equilibrium (TE) the occupation of all species is according to Saha- and
Boltzmann distributions. Furthermore, the particle velocity distributions are Maxwellian:

fv(~v) =

√(
m

2πkBT

)3

exp
(
−m|~v|

2

2kBT

)
, (2.44)

and the radiation intensity1 is at the black body level, given by Planck’s law:

Bν(ν) =
2hν3

c2
1

exp(hν/kBT )− 1
or Bλ(λ) =

2hc2

λ5

1
exp(hc/λkBT )− 1

. (2.45)

All these distribution functions are completely determined by a single temperature. Complete
thermal equilibrium requires high collision rates and complete radiation trapping, which is ap-
proached only in stellar interiors and never achieved in laboratory plasmas. Less restrictive is
Local Thermodynamic Equilibrium (LTE) in which the radiation intensity distribution is not nec-
essarily thermal but the Boltzmann, Saha, and Maxwell distributions still hold. In LTE the
temperature is allowed to vary over a spatial scale that is large with respect to the mean free path
of the particles: |∇T/T | � λmfp and radiation can escape.

With decreasing collision rate it often occurs that the electron-, ion- and/or neutral tem-
peratures in a plasma become different. The reason for this is that energy gain (e.g. through
Ohmic heating) and loss (e.g. through radiation) rates for the different particles are usually dif-
ferent [13]. The energy transfer rate for collisions between like particles is much higher than
that between particles of different mass. For example, the rate for ion-ion collisions is a factor
>
√
mp/me ≈ 43 higher than that for ion-electron collisions; for electron-electron collisions, this

1In this report both Iλ [Wm−2nm−1Sr−1] and Iν [Wm−2Hz−1Sr−1] are referred to as intensity. Moreover the
term intensity and symbol Iλ [ph s−1m−2nm−1] is also used in some of the experimental results in this report to
describe the number of photons per unit of surface and interval of wavelength. In the latter definition the values
are integrated over the whole (4π) solid angle.
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factor is > mp/me ≈ 1836. This causes the velocity distributions within a class of particles to
thermalize relatively fast, so that one can speak of Te, Ti, Tg, etc., whereas the kinetic energy
distribution of the system as a whole is no longer according to Maxwell-Boltzmann.

Although this situation strictly contradicts the conditions for LTE, one often ignores this and
still speaks of LTE, since the Saha and Boltzmann distributions are determined by the electron
temperature Te only.

2.4 Non-thermal populations

Sustaining LTE requires an (electron) density that is high enough for collisional processes to
dominate the transitions between all energy levels in an atomic system. The state occupation
distributions will then not be affected by the escaping radiation. A rule-of-thumb condition for
collisional transitions to dominate over radiative (McWhirter 1965) may be written [10]:

ne � 1019
√
Te(∆E)3 [m−3], (2.46)

where Te and ∆E are the electron temperature and energy level difference (both in eV). In an
atomic system, this condition is satisfied first in the higher levels, where the energy differences
∆E are small. An example: for the lower lying electronic states of Ca I with typical ∆E ranging
from 0.3 eV to a few eV (not including transitions between substates of the same multiplet) in a
plasma with Te < 1 eV, the critical electron densities are in the order of 1017–1021m−3.

2.4.1 pLSE and coronal equilibrium

The energy differences between electronic states and the energy differences between the electronic
states and the ion ground state both converges to 0 near the series limit (with increasing principal
quantum number). Thus, there is always a level, the collision limit, above which the states are in
Boltzmann equilibrium with each other and Saha equilibrium with the ion ground state. If this
energy level is significantly below the ionization energy, this situation is called partial Local Saha
Equilibrium (pLSE).

In the limit of very low electron densities, another equilibrium situation can occur, which is
called coronal equilibrium, since it is applicable in the solar corona. A requirement for coronal
equilibrium is that the plasma is optically thin (see section 2.5.1), so that nearly all photons escape
the plasma. In this case all upward processes are collisional, since absorption is negligible and all
downward transitions are radiative, since the electron density is low. The excitation/deexcitation
and ionization/recombination balances now take a new form.

Coronal balances

Depopulation of excited states is dominated by spontaneous emission with coefficient Aqp. Since
at low electron densities the excitation rates will be low compared to Aqp, most particles will be
in their ground state (metastable states may form an exception). Electron impact will thus be
dominated by transitions from the ground state, with rate coefficient Kexc

1q ≡ 〈σexc
1q v〉. The coronal

balance for the excited states then becomes:

nq =
n1neK

exc
1q∑

pAqp
. (2.47)

Collisional ionization will be balanced by radiative recombination, which will be the dominant
recombination process at low electron densities. Again only the ground state is determining the
ionization rate because of its dominant population. The ionization stage balance thus becomes:

n+,0 =
n0,0neK

ion
0+

ne

∑
pK

rr
+p

=
n0,0K

ion
0+

Krr
+,tot

, (2.48)
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where n0,0 ≈ n0 and n+,0 ≈ n+ are the neutral and ion ground state density respectively; K ion
0+

is the ionization rate coefficient for the ground state, e.g. given by equation (2.24) and Krr
+p

is the radiative recombination rate coefficient to level p and Krr is the rate coefficient for the
total radiative recombination to all levels, which can be approximated using equation (2.29). An
example is shown in figure 2.1, where equation (2.48) has been used to calculate the ionization
degree in calcium in coronal equilibrium (dashed black line).

In practice, the coronal balance will never be applicable to all energy levels. There will always
be energy levels high in the system (above the collision limit) that are in pLTE with the ion ground
state.

2.4.2 Collisional radiative models

In situations where neither corona nor LTE are valid (usually at an intermediate electron density),
the atomic state distribution function (i.e. the population of all energy levels in an atom) can be
calculated by equating the rates of all processes leading increase or decrease of the population of
every state in the system. This is done in a collisional radiative model. An example of a collisional
radiative model for atomic calcium will be presented in chapter 4.

2.5 Radiation

Several processes can lead to the production of radiation in a plasma. In this work, only radiation
originating from transitions between bound atomic or molecular states, i.e. atomic line and
molecular band emission, is considered. The production of radiation in the plasma is described
by the emission coefficient ελ [Wm−3nm−1Sr−1]. Radiation losses, on the other hand, can be
described by the absorption coefficient κλ [m−1]. The absorption coefficient is defined by the
relation dIλ = −κλIλdl, where Iλ is the intensity Iλ [Wm−2nm−1Sr−1] of a beam traveling through
the plasma over distance dl and dIλ is the change in intensity due to absorption only. In general
the absorption coefficient includes both true absorption processes (such as photo ionization) as
well as scattering processes. In this report however, only true absorption for atomic line transitions
(photo excitation, between bound states) is considered.

2.5.1 Radiation transport

When a beam of light with intensity Iλ passes through a slab of plasma of thickness dl, the
intensity changes by an amount:

dIλ = ελdl − Iλκλdl. (2.49)

Using κλdl ≡ dτλ the optical thickness is defined as:

τλ = τλ(l) =
∫ l

0

κλdl′. (2.50)

By dividing equation (2.49) through dτλ, the one-dimensional radiation transport equation is
obtained:

dIλ
dτλ

+ Iλ =
ελ
κλ
≡ Sλ, (2.51)

where Sλ is called the source function. In case of thermodynamic equilibrium, it is equal to the
black body intensity, given by Planck’s law: Sλ = Bλ, equation (2.45). For atomic transitions
Sλ = Bλ is valid as long as the states are occupied according to Boltzmann (thus in LTE) [13].
Solving equation (2.51) using constant Bλ (i.e. at constant temperature) using the boundary
condition Iλ(l = 0) = 0 then simply gives:

Iλ(l) = Bλ(1− e−τλ). (2.52)
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Two extreme cases are:

Iλ(l) = Bλ for τλ � 1 (optically thick) (2.53)
Iλ(l) = τλBλ = ελl for τλ � 1 (optically thin). (2.54)

Another special case that is interesting for practical purposes is that of two adjacent layers of
plasma with different temperatures T1 and T2. When LTE occupation is assumed again and layer
1 is behind layer 2 with T1 > T2 the solution to the radiation transport equation becomes:

Iλ(l) = Bλ(T2)(1− e−τλ,2) +Bλ(T1)(1− e−τλ,1)e−τλ,2 . (2.55)

For an atomic transition with lower level p, upper level q, transition wavelength λ0 and Einstein
coefficient for spontaneous emission Aqp the emission coefficients is given by [13]:

ελ = nqAqp
hc

4πλ0
P (λ) ≡ εqpP (λ), (2.56)

where εqp is the wavelength integrated emission coefficient and P (λ) is the normalized lineshape
function:

∫
P (λ)dλ = 1. The lineshape function may be approximated by a Gaussian or another

distribution, determined by the dominant line broadening mechanism. These mechanisms will be
discussed in the following section 2.5.2. The absorption coefficient (only true absorption) is given
by the Ladenburg relation [13]:

κλ = np
gq
gp

λ4
0

8πc
AqpP (λ) ≡ κpqP (λ), (2.57)

where κpq is the line integrated absorption coefficient.

Escape factors

The last concept that will be introduced in this section is that of the escape factor. The discussion
here is based on that in [24]. A general introduction to the subject is written by Irons [25]. The
radiation transport equation (2.51) is considered again, but now for a more general case where
the emissivity ελ = ελ(~r, λ) is no longer uniform (e.g. due to zones with different temperatures).
For simplicity the absorption constant is still assumed to be (almost) uniform, i.e. replaced by
its average value κλ(λ). In praxis the latter means that a constant absorber density is assumed,
which is often justified for ground state (neutral) absorbers. Also the emission and absorption line
shape functions P (λ) are assumed to be the same and spatially constant. The solution of (2.51),
again with Iλ(l = 0) = 0, is:

Iλ(l, λ) =
∫ l

0

ελ(l′, λ) exp[(l′ − l)κλ(λ)]dl′. (2.58)

The line-of-sight integrated escape factor is now defined as the ratio of this intensity and that in
the optically thin case, both integrated over the line profile:

ΘL(l) =

∫
line

Iλ(l, λ)dλ∫
line

Ithin
λ (l, λ)dλ

=

∫ l
0

∫
line

ελ(l′, λ) exp[(l′ − l)κλ(λ)]dλdl′∫ l
0

∫
line

ελ(l′, λ)dλdl′

=

∫ l
0
εpq(l′)

∫
line

P (λ) exp[(l′ − l)κpqP (λ)]dλdl′∫ l
0
εpq(l′)dl′

. (2.59)

The line escape factor ΘL(l) describes the escaping radiance along a given line-of-sight and can be
used for spectroscopic measurements. For a spatially constant emission coefficient, it reduces to:

ΘL(l) =
1
κpql

∫
line

(1− exp[−lκpqP (λ)])dλ, (2.60)
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which is nothing but the wavelength integral of equation (2.52), divided by κpql.
In order to calculate the change in (excited) state population due to absorption, as is done

in a collisional radiative model, another type of escape factor is required. This escape factor ΘP

describes the total fraction of escaping radiation from one point in the plasma. For a transition with
lower level p and upper level q, the effect of absorption on the population of state q can be treated
as negative spontaneous emission. This gives an effective Einstein coefficient for spontaneous
emission Aeff

pq = ΘPApq. The population escape factor ΘP is defined as the relative difference
between the emitted and absorbed line radiation power (per unit volume):

ΘP =
P em
pq − P abs

pq

P em
pq

= 1−
P abs
pq

P em
pq

. (2.61)

The emitted radiation power is simply the emission coefficient integrated over all (4π) solid angles:

P em
pq =

∫
Ω

εpqdΩ = 4πεpq, (2.62)

where isotropic emission is assumed. The absorbed power, however, depends on the (local) inten-
sity Iλ(l, λ) at position l given by equation (2.58). For simplicity the middle point l = b of a point
symmetric plasma sphere, extending from l = 0 to l = 2b, where ελ(0) = ελ(2b) = 0, is considered.
The absorbed radiation power in this case can be written:

P abs
pq =

∫
Ω

∫
line

κλ(λ)Iλ(l, λ)dλdΩ =
∫

Ω

∫
line

κλ(λ)
∫ b

0

ελ(l, λ) exp[(l − b)κλ(λ)]dl(Ω)dλdΩ =

4π
∫

line

κλ(λ)
∫ b

0

ελ(l, λ) exp[(l − b)κλ(λ)]dldλ (2.63)

Finally, the escape factor is evaluated for the special case of a uniform emission coefficient ελ. The
central intensity is found (by evaluating the integral in equation (2.58)) to be:

Iλ(b) =
ελ
κλ

(1− exp[−τλ]) (2.64)

where τλ = τλ(b) = κλb is the optical thickness seen from the center. The absorbed power is found
by substituting Iλ(b) into equation (2.63):

P abs
pq (b) = 4π

∫
line

ελ (1− exp[−τλ]) dλ (2.65)

The population escape factor thus becomes:

ΘP(b) = 1−
∫

line
ελ (1− exp[−τλ]) dλ

εpq
=
∫

line

P (λ) exp[−τλ]dλ, (2.66)

where the last identity, which follows directly from substituting the definition of εpq, shows that
this population escape factor in this example only depends on the optical thickness τλ = κλb =
κpqP (λ)b and the normalized line function P (λ).

2.5.2 Spectral line broadening by plasmas

Photons emitted during a transition between bound states do not have a perfectly defined fixed
energy. Instead, their energies vary and the lines in the spectrum thus have a finite width. This
spectral line broadening is due to several mechanism; some of which are very useful for plasma
diagnostics. Mechanisms that are considered relevant for the experiments presented here are
discussed below. Stark broadening is discussed more elaborately than other mechanisms because
of its complexity and relevance for plasma density measurements.
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Natural line broadening

The lifetime τ of an isolated atom in an excited quantum state is finite due to the occurrence of
spontaneous transitions to a lower state. For a transition from level k to i this leads to a Lorentz
shaped line profile with a full width at half maximum (FWHM) [13]:

wnatural =
λ2

2πc
(
∑
j<k

Akj +
∑
j<i

Aij), (2.67)

with Aαβ the Einstein coefficient for spontaneous emission from level α to level β. The natural
line width is usually in the order of 0.1 pm or less and negligible compared to other broadening
mechanisms for most plasmas.

Doppler broadening

The thermal motion of the emitting particles results in Doppler broadening. This gives a Gaussian
line shape with a FWHM [13]:

wD = 2λ

√
kT

mc2
= 7.16 · 10−7λ

√
T [K]/M [amu], (2.68)

where T is the temperature and m the mass of the radiating atom. In the latter part of the
equation T is in K and M the mass in atomic mass units.

Pressure broadening

Pressure broadening is a general term used to refer to a collection of processes in which the presence
of nearby particles affects the radiation emitted by an individual particle2. It can be classified
into two limiting cases by which this occurs [26, 9]:

• Impact broadening: In this extreme the emitting particle is emitting undisturbed most of
the time, but occasionally a collision with another particle interrupts the emission process.
The duration of the collision (interaction) is much shorter than the time between collisions.
This can be considered to result in a reduced effective lifetime for the states involved in the
transition. The resulting line profile is Lorentzian, like in natural broadening. The amount
of broadening depends on both density and temperature perturbing species.

• Quasistatic broadening: The presence of other particles that are interacting with the emitting
particle shifts the energy levels in the emitting particle, thereby altering the wavelength of
the emitted radiation. For this approximation to hold, the interaction time should be much
longer than the effective lifetime of the excited states involved in the transition. The form of
the line profile is determined by the functional form of the perturbing interaction potential
with respect to the distance between the interacting particles. There may also be a shift of
the line center (e.g. Stark shift), due to a different sensitivity of the upper and lower state
to the interaction potential. This effect also depends on density of the perturbing species,
but is less sensitive to temperature.

Due to the difference in velocities of the ions/neutrals and electrons, electron broadening is usually
best described in the impact approximation, whereas the quasistatic broadening is more applicable
to ions. Pressure broadening may also be classified by the nature of the perturbing force (particle).
This approach will be followed below.

2Note that some authors exclude Stark broadening from pressure broadening. Here, the term is used to refer to
the whole collection of broadening mechanisms, due to perturbing interactions, including Stark broadening.
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Van der Waals broadening

Van der Waals broadening occurs when the emitting particle is being perturbed by Van der Waals
forces, i.e. from the interaction between the dipole of the emitting atom and the induced dipole of
a nearby neutral. Because of the weaker interaction potential (∼ r−6), as compared to Coulomb
forces, this effect is usually only relevant for plasmas with a low ionization degree. Van der Waals
broadening theories lead to complex line profiles, that will not be discussed here (see e.g. [26]).
However these can usually be approximated well with a Lorentz profile. The width increases
linearly with the neutral density. An estimate of the proportionality constant follows.

The width wvdw (FWHM) due to Van der Waals broadening by neutrals with density nn and
temperature Tg can be estimated using a formulae given by Griem [27] or Konjevic [28]:

wvdw [nm] = 8.18 · 10−25λ2(ᾱR2)2/5(Tg/µ)3/10nn, (2.69)

with nn in m−3 and λ in nm. In this expression R2 = R2
u − R2

l is the difference of the squares of
the coordinate vectors of the upper and lower level in a0 units, µ is the reduced mass of the atom
and perturber in a.m.u. and ᾱ is the mean polarizability of the neutral perturber in cm3 (mind
units), as tabulated e.g. in ref. [29]. R2

u and R2
l are calculated from:

R2
j = n∗2j (5n∗2j + 1− 3lj(lj + 1))/2, (2.70)

where n∗j is the effective quantum number of level j defined by:

n∗2j = EH/(Eion − Ej), (2.71)

with Eion the ionization energy of the perturbed element, EH13.5984 eV that of hydrogen and Ej
the energy of the upper or lower level. Van der Waals broadening results in a red shift that is
about two third of the width: dvdw = 2

3wvdw [28].

Stark broadening

Stark broadening is the form of pressure broadening arising from perturbations by charged parti-
cles, i.e. ions and electrons, in the vicinity of a radiating atom or ion. The most complete treatment
of Stark broadening is given by Griem [30, 27, 31]. Detailed calculations of Stark broadening are
very complicated and generally result in complex formulae for line profiles. A distinction must be
made between lines of hydrogen (and hydrogen like states in some other elements) and those of
other elements, which show different behavior in the presence of an electric field E. In hydrogen
the Stark effect is linear: ∆ν ∝ E, whereas for non-hydrogenic atoms and ions there is a quadratic
and much smaller stark effect: ∆ν ∝ E2.

Hydrogen Stark broadening Via simple arguments (nearest neighbor approximation, see e.g.
[10]) one can show that for the intensity in the wings of the lines, determined by quasistatic ion
broadening, is Iλ ∝ (∆λ)−5/2, as opposed to Iλ ∝ (∆λ)−2 for a Lorentz profile. The FWHM of
hydrogen lines can approximated by[10]:

wS = 2.50 · 10−9α1/2n
2/3
e , (2.72)

where ne is the electron density. The half-width parameter α1/2 for the Hβ line at 486.1 nm,
widely used for plasma diagnostics is approximately 0.08; it depends only weakly on temperature.
However, more convenient and accurate are tabulations of wS (for a wide range of electron tem-
peratures and densities) based on more advanced theories, e.g. in [32]. When more accuracy is
required, tabulated line profiles [33, 34] can be used for fitting the whole spectral line.
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Non-hydrogen atomic Stark broadening Like in the case of hydrogen, precise calculations
of the line profile are very complex (if not impossible). Quasistatic ion broadening due to the
quadratic Stark effect results in a wing intensity decreasing as Iλ ∝ (∆λ)−7/4. In general, the line
profile is affected by a combination of electron impact broadening and a smaller contribution due
to quasistatic ion broadening effects. The latter usually also introduces a shift that is smeared
out by the distribution of microfields in the plasma, resulting in asymmetry. The fraction of
broadening due to ions can be described by the ion broadening parameter A(Te), tabulated by
Griem [31] for many atomic species. For ionic lines the quasistatic ion contribution is smaller than
for atoms so that it is often neglected. For Stark broadening of ionic lines the reader is referred
to literature [31, 28].

Assuming only singly charged ions in a plasma, thus ne = ni, the total broadening wS (FWHM)
and shift dS for atomic lines according to Griem [31] may can be written as:

wS = 2we(Te)[1 + 1.75 · 10−4n1/4
e A(Te)(1− 0.068n1/6

e T−1/2
e )]10−16ne (2.73)

dS = [de(Te)± 2.0 · 10−4n1/4
e A(Te)we(Te)(1− 0.068n1/6

e T−1/2
e )]10−16ne. (2.74)

In this expression ne is the electron density in cm−3, Te is in K and we and de are reference half-
width at half maximum (HWHM, the notation and units used by the reference sources is followed
here and in the following paragraphs) and shift respectively, due to collisions with electrons.
These parameters are tabulated for a standard density of ne = 1016 cm−3 [31]. The sign of the
ion quadratic contribution to the shift in equation (2.74) is equal to that of the low-temperature
limit of de.

There are some criteria for the applicability of equations (2.73) and (2.74), namely:

R = 8.99 · 10−2n
1/6
i Te ≤ 0.8 and (2.75)

0.05 ≤ A(Te)n1/4
e 10−4 ≤ 0.5 (2.76)

with R the Debye shielding parameter, equal to the ratio of the mean inter-ion distance (ne4π/3)1/3

and the Debye radius λD/
√

4π [30]. Table 2.1 contains examples of Stark broadening parameters
we, de, and A calculated using Griem’s approach for a number of spectral lines and various electron
temperatures.

Other authors (e.g. Dimitrijević and Sahal-Bréchot, see [35] and the references therein) use
the impact approximation for broadening due to both electrons and ions. The width and shift can
then be written as:

wS = [2we(Te)ne + 2wi(Ti)ni]10−16 (2.77)
dS = [de(Te)ne ± di(Ti)ni]10−16 (2.78)

where 2we, 2wi and de and di are electron and ion impact FWHM and shifts respectively at
ne,i = 1016 cm−3 [35]; ni and Ti are the ion density and temperature respectively. The sign of
the ion contribution to the shift in equation (2.78) depends on the ion species and is given in the
same tables. Restrictions to the applicability of equations (2.77) and (2.78) can also be found
in [35] and the references therein. Examples of Stark broadening parameters determined using
this method can be found in table 2.2.

In general, an accuracy of 20% at best can be expected from theoretically determined Stark
widths, of non-hydrogenic lines. The expected accuracy in the shifts is worse [36].

Finally, there are collections of experimental data on Stark broadening of many spectral lines.
The most complete and well reviewed are those by Konjević and co-workers [36, 37, 38]. Listed
are measured widths wm (FWHM) and shifts dm at a reference density nRef . These authors also
make comparisons with theoretical values and introduce accuracy codes. The actual Stark width
and Shift then follow from:

wS = wm(Te)ne/nRef (2.79)
dS = dm(Te)ne/nRef . (2.80)
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Some examples of experimentally determined Stark broadening parameters are listed in table 2.3.
In general the accuracy of experimentally determined widths is much better than that of the shifts.
In cases where both are determined accurately, the compliance with theory is generally better for
the widths [36]. Also shifts are more temperature dependent, making them less suitable for density
measurements.

Table 2.1: Stark parameters derived theoretically by Griem [31] using impact approximation for
broadening by electrons and quasistatic approximation for the ion contribution. Listed are widths
we (HWHM), shifts de due to electron perturbers at a density of 10 22 m−3 and electron temper-
ature Te, and parameter A for the quasistatic ion contribution to the width, see equations (2.73)
and (2.74).

Element States Terms λ0 [nm] Te [K] we [pm] de [pm] A
Ca I 4s–4p 1S–1P 422.673 5000 0.484 0.386 0.016

10000 0.630 0.380 0.013
4p–5d 1P–1D 518.885 5000 31.7 -22.5 0.078

10000 39.7 -18.8 0.066

Table 2.2: Stark parameters derived theoretically using impact approximation for both elec-
tron and ion contributions by Dimitrijević and Sahal-Bréchot [35]. Listed are widths we, wp
(FWHM) and shifts de dp due to electron and proton perturbers respectively at a perturber density
of 10 22 m−3 and perturber temperature T .

Element States Terms λ0 [nm] T [K] we [pm] de [pm] wp [pm] dp [pm] Ref.
Ca II 4s–4p 2S–2P 393.367 5000 2.96 -0.526 0.108 -0.0372 [39]

10000 2.28 -0.425 0.174 -0.0663 [39]
Li I 2p–3d 2P–2D 610.354 2500 33.9 -14.9 7.41 -6.45 [40]

5000 36.8 -9.89 8.19 7.25 [40]
10000 37.5 -5.52 9.09 8.15 [40]

2p–4d 2P–2D 460.283 2500 304 9.41 138 123 [40]
5000 276 2.64 159 141 [40]
10000 245 -3.60 182 164 [40]

Other broadening mechanisms

Resonance broadening Resonance broadening is another type of pressure broadening that
occurs when the perturbing particle is of the same type as the emitting particle. This introduces
the possibility of an energy exchange process. This broadening effect is described by a Lorentzian
profile in both the impact and the quasistatic case and only relevant resonance lines when the
(absolute and relative) concentration of the emitting element is high.

Opacity broadening This is a non-local effect, that is a consequence of the absorption of
radiation, as discussed in section 2.5.1. Lines are broadened because photons at the line wings
have a smaller reabsorption probability than photons at the line center. The broadening effect
is most important for transitions to the ground state (resonance lines), which have the highest
absorber concentrations. When temperature differences (or density) gradients exist along the line
of sight (e.g. when a hot layer of plasma is behind a cooler one) the absorption near line center
may be so strong that it causes self-reversal, in which the intensity at the center of the line is less
than in the wings.
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Table 2.3: Some experimentally determined Stark widths wm (FWHM) and shifts dm at a nomi-
nal electron density of 10 22 m−3. A positive (resp. negative) shift is towards the red (resp. blue).
References to the original literature and criteria used for the accuracy estimate can be found in
the collections of Konjević et al, as indicated in the last column.

Element States Terms λ0 [nm] Te [K] wm [pm] dm [pm] Error Ref.
Ca II 4s–4p 2S–2P 393.367 12240 1.14 - < 23% [37]

13350 1.36 - < 23% [37]
43000 1.63 -0.80 < 30% [38]

Cu I 3d94s2–3d104p 2D–2P 510.324 10000 4.3 0.67 < 50% [37]
Cu I 3d104p2–3d104d 2P–2D 515.324 10000 19.0 -2.7 < 50% [37]

521.820 10000 22.0 -3.0 < 50% [37]
522.007 10000 22.0 -3.0 < 50% [37]

Cu I 3d104p2–3d105d 2P–2D 402.263 10000 43.1 19.5 < 50% [37]
406.264 10000 41.9 17.4 < 50% [37]

Apparatus broadening This (pseudo) broadening effect is caused by the finite resolving power
R ≡ λ/(∆λ) of the measurement device (e.g. spectrometer) used to record the line. The apparatus
profile can usually be approximated using a Gaussian. Expressions for the resolving power are
given in section 2.5.3.

Combination of broadening mechanisms

Any of the aforementioned broadening mechanisms can act by itself as well as in combination. As-
suming each effect is independent of other effects, the combined line profile will be the convolution
of the line profiles of each mechanism. For example, a combination of a Gaussian apparatus profile
and Lorentzian impact pressure broadening will yield a so called Voigt profile. As a function of
their FWHM and the distance from the line center ∆λ = λ−λ0 these normalized line profiles are:

PLorentz(∆λ,wL) =
1

2π
wL

∆λ2 + w2
L/4

(2.81)

PGauss(∆λ,wG) =
1

(wG/2.355)
√

2π
exp

(
−∆λ2

2(wG/2.355)2

)
(2.82)

PVoigt(∆λ) = PGauss(∆λ) ∗ PLorentz(∆λ) =
∫ ∞
−∞

PGauss(∆λ)PLorentz(∆λ− λ′)dλ′, (2.83)

where 2.335 ≈ 2
√

2 ln 2 = wG/σG arises from the use of the FWHM instead of the standard
deviation σG for the Gauss profile. For numerical applications, the Voigt profile above can be
approximated by a so-called pseudo-Voigt profile, to avoid calculation of the convolution [41]:

PPsdVoigt(∆λ) = (1− η)PGauss(∆λ,wV) + ηPLorentz(∆λ,wV), (2.84)

with:

wV =
(
w5

G + 2.69269w4
GwL + 2.42843w3

Gw
2
L + 4.47163w2

Gw
3
L + 0.07842wGw

4
L + w5

L

)1/5
(2.85)

η = 1.36603(wL/wV)− 0.47719(wL/wV)2 + 0.11116(wL/wV)3, (2.86)

the Voigt FWHM and mixing parameter respectively. Evaluated examples of these line profiles
are given in figure 2.4.

Regarding the combination of broadening mechanisms it is noted that the convolution of two
Gaussian with widths wG1 and wG2 results in another Gaussian with resulting width wGR =√
w2

G1 + w2
G2. The widths of two Lorentz-broadening mechanisms acting simultaneously can sim-

ply be added to obtain that of the resulting Lorentz curve: wLR = wL1 + wL2.
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Figure 2.4: Normalized Lorentz, Gauss,
Voigt and pseudo-Voigt profiles, all with a
FWHM of 1. Both Voigt profiles have
wL ≈ 0 .422 and wG ≈ 0 .753 , giving a mixing
parameter η = 0 .5 for the Pseudo Voigt case.
For the convoluted Voigt profile, numeric in-
tegration from −150wL to 150wL was used.

2.5.3 Spectroscopy basics

Several spectrometers of different type were used in experiments, to analyze the emission from the
plasmoid. This section does not discuss them in full detail. Instead, a short introduction to the
basic equations describing a reflection gratin spectrometer and expressions for the resolving power
are given. The concept of an échelle spectrometer is introduced at the end.

q

+ –

a

a

b0

b1

b-1

Figure 2.5: Blazed reflection grating. α is
the incident beam angle, βm is the angle of
the diffracted beam of order m. θ is the blaze
angle and a is the grating constant or groove
separation. Angles are measured with respect
to the grating normal, where counter clockwise
is positive.

A reflection grating can be used as the dispersive element in a spectrometer, as shown schemat-
ically in figure 2.5. The grating equation, describing the condition for constructive interference, is
[42]:

sinα+ sinβ =
mλ

a
(2.87)

with α and β the angles of the incident and diffracted beam respectively, m the order of diffraction,
a the grating constant and λ the wavelength. Usually the grating is mounted on a rotation stage
and the collimator-camera or spectrograph angle φ = α − β is fixed by the design. Using this
definition the grating equation can be rewritten as:

sin(φ+ β) + sinβ =
mλ

a
(2.88)

The angular dispersion is found by differentiating with respect to λ:

dβ

dλ
=

m

a cosβ
. (2.89)

When a photographic plate (or CCD) is used in the focal plane of a lens of focal length f2 to
record the spectrum, the spread of wavelength on the plate can be described in terms of a linear
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dispersion dx
dλ , where x is measured along the plate:

dx

dλ
= f2

dβ

dλ
=

f2m

a cosβ
. (2.90)

Assuming the light covers the entire width W of the grating the theoretical (spectral) resolving
power R∗ is determined by the Rayleigh criterion and is given by:

R∗ ≡ λ/(∆λ)min = mN, (2.91)

where N = W/a is the number of rulings in the grating.
However, in practice the resolving power is limited more by the finite width of the image of the

slit, s, projected on the detector, s′ [43]. When a collimator lens of focal length f1 and diameter
D1 is used with the previously mentioned camera lens with f2 and D2, the invariance of étendu
between spectrograph slit and camera can be used to express s′ in terms of s as:

s′ = s
F2

F1
. (2.92)

Here, Fi = fi/Di are the collimator and camera focal ratios for i = 1, 2 respectively. The wave-
length spread over the width of the image of the slit is thus (equation (2.90)):

∆λs = s′
dλ

dx
= s

F2

F1

a cosβ
f2m

=
sa cosβ
F1mD2

. (2.93)

Assuming the grating is large enough, the width of the intersection of the plane of the grating and
the collimated beam is given by W = D2/ cosβ and thus ∆λs can also be expressed as:

∆λs =
sa

mWF1
. (2.94)

This is the spectral resolution determined by the width of the slit. The resolving power R of the
spectrograph is thus

R ≡ λ/∆λs =
λmWF1

sa
. (2.95)

For a normal grating the zeroth order or specular reflection has the highest intensity. To shift
the peak of the intensity envelope or blaze function to a higher order, the facets of the grating can
be tilted at an angle θ, the blaze angle, to the plane of the grating, as is the situation in figure 2.5.
The maximum occurs for simple reflection from the facets at

α− β = 2θ, (2.96)

the blaze condition. Using the identity sinx + sin y = 2 sin(x+y
2 ) cos(x−y2 ) and (2.96) the grating

equation at the blaze condition can be rewritten as:

2 sin θ cos(
φ

2
) =

mλB
a

, (2.97)

with φ again the spectrograph angle. Finally, two limitations to the useful wavelength range of
the spectrograph are mentioned. The free spectral range, or the range of wavelengths that may be
measured without overlap of different orders is given by [42]:

∆λFSR =
λm
m
. (2.98)

Also, for a blazed grating the efficiency decreases according to the blaze function when moving
away from the blaze wavelength λB . An equivalent wavelength range is found for large m when
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Figure 2.6: Optical design of an échelle spectrometer.

considering the wavelengths at which the grating efficiency drops to 40.5% of the peak inten-
sity [43], the blaze efficiency range:

∆λeff =
2mλB
2m− 1

− 2mλB
2m+ 1

≈ λB
m
. (2.99)

A special type of reflection grating spectrometer is the échelle spectrometer. It uses a (blazed)
échelle grating, which is optimized for high order diffractions, under a flat angle of incidence
resulting in a high spectral resolution at a relatively low number of grooves per mm. Échelle
gratings are also used in ‘normal’ spectrometers (in combination with a narrow band filter) when
a smaller spectral range is sufficient. In an échelle spectrometer however, this grating is used in
combination with a second dispersing element, e.g. a quartz prism, placed in front of the grating.
A typical optical design of this kind is sketched in figure 2.6. The échelle grating produces up
to 100 overlapping diffraction orders. The quartz prism then separates these by splitting them
perpendicular to the direction of the spectrum. A CCD camera records the many diffraction orders
simultaneously as closely packed but separated parallel rows, of usually only a few pixels height.
A big advantage of an échelle spectrometer is that it combines a high resolving power with a large
spectral range. Also, it can be built compact and with no moving parts.

2.6 Molecules in plasmas

Besides atoms and ions, molecules are also present in many plasmas and contribute to the emission
by means of molecular bands, on which the atomic lines are often superimposed. In the following
section the processes leading to the production and destruction of molecules will be discussed
shortly, from a thermodynamical viewpoint. The energy level structure and emission of diatomic
molecules will be discussed afterwards. This particular class of molecules produces (in many cases
well known) emission bands that can be used for plasma diagnostics purposes. The OH molecule
is taken as an example, as it was present in the plasmoid spectra. Analyzing the emission from
diatomic molecules can give information not only on the molecules themselves, but also on general
plasma parameters such as the gas temperature.

2.6.1 Chemical equilibrium

The production and loss of molecules in a plasma is governed by chemical reactions. Exothermal
reactions supply heat to the plasma, whereas endothermal reactions can be induced thermally or
under the influence of (usually more energetic) charge carriers in the plasma. Examples of the
processes in the latter category are electron impact dissociation, or dissociative recombination.
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These chemical processes will not be discussed in detail. However, in analogy to the Saha equation
for (atomic) ionization and recombination, an equation can be derived for the concentrations in
chemical equilibrium. The equilibrium concentrations determine to which extent a reaction will
take place. It is important to note however that these thermodynamical equilibrium equations do
not give any information on the rate at which reactions take place. Though gas phase reactions
are typically fast, equilibration times may be much longer than for ionization/recombination. For
many reactions, temperature dependent rate coefficients, which can give an estimate of the time
needed to reach equilibrium, can be found in literature [44].

A reaction of the following type is considered:

αA+ βB � γC + δD, (2.100)

where A, B, C, D are different molecules and α, β, etc., the stoichiometric coefficients, are integer
numbers ≥ 0.

Assuming the reaction is carried out under constant pressure and temperature conditions,
equilibrium is attained when the Gibbs energy of the system is at its minimum value. The change
in the Gibbs energy then is equal to the difference between the chemical potentials of the products
and those of the reactants [45, 46]. Therefore, the sum of chemical potentials of the reactants
must be equal to that of the products:

αµA + βµB = γµC + δµD. (2.101)

At standard temperature T0 (298.15 K=25 ◦C) and pressure p0 (105 Pa) the chemical potentials
are equal to the standard molar Gibbs free energy of formation G	f (T0):

µ	(T0) = G	f (T0) = H	f (T0)− T0S
	
m(T0), (2.102)

where the last equation introduces the standard molar formation enthalpy H	f (T0) and standard
molar entropy S	m(T0). Values of G	f (T0), H	f (T0) and/or S	m(T0) for common chemical substances
can be found in literature reference tables, such as e.g. in [44, 45]. The superscript 	 indicates
standard pressure. At different temperature and pressure the chemical potential is given by [45]:

µ(p, T ) = G	f (T0) + (T − T0)
[
Cp − S	m(T0)

]
− CpT ln(

T

T0
) +RT ln(

p

p	
), (2.103)

where V = RT/p was used to eliminate the volume. Strictly, the latter equation is only valid for
(ideal) gas phase substances. For a mixture of perfect gases with densities Nj , p is replaced by the
partial pressure of each component pj or in terms of mole fractions: xjp, where xj = Nj/

∑
iNi:

µ	j (T ) = G	f (T0) + (T − T0)
[
Cp,j − S	m,j(T0)

]
− Cp,jT ln(

T

T0
) +RT ln(

xjp

p	
). (2.104)

At atmospheric (standard) pressure the last term in this equation simply equals RT lnxj . For
liquids and solids, the same equation can be be applied if the last term is replaced by ln aj = ln γjxj ,
where aj is called the activity and γj the activity coefficient. This will not be further discussed
here. For molecules in the gas phase the molar heat capacity at constant pressure Cp depends on
the number of degrees of freedom. In general,

Cp = Cv +R =
f

2
R+R =

f + 2
2

R, (2.105)

where Cv is the heat capacity at constant volume, and f is the number of degrees of freedom.
So for atoms, with three translational degrees of freedom, f = 3 and Cp = 5

2R, whereas for
diatomic molecules two additional rotational degrees of freedom exist and f = 5, Cp = 7

2R and for
polyatomic molecules f = 6, Cp = 4R. Here it is assumed that vibrational states are not occupied,
which is only a good approximation if the temperature is not too high (. 103 K).
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Equation (2.104) can be applied to find the equilibrium mole fractions of reaction (2.100) by
substitution into the chemical potential balance (2.101). For compactness of notation four more
quantities are defined first.

First the reaction standard Gibbs free energy for this reaction is defined as the difference in
the standard molar Gibbs free energies of formation of the products and the reactants:

G	r (T0) = γG	f,C(T0) + δG	f,D(T0)− αG	f,A(T0)− βG	f,B(T0). (2.106)

Analogously, the reaction standard molar entropy is:

S	m,r(T0) = γS	m,C(T0) + δS	m,D(T0)− αS	m,A(T0)− βS	m,B(T0), (2.107)

and the difference in the heat capacities is written:

Cp,r = γCp,C + δCp,D − αCp,A − βCp,D. (2.108)

Fourthly, assuming standard pressure, the reaction constant is defined as:

K =
xγCx

δ
D

xαAx
β
B

. (2.109)

Substituting equation (2.104) for the chemical potentials into equation (2.101) and applying the
four definitions just given, one obtains:

G	r (T0) + (T − T0)[Cp,r − S	m,r(T0)]− Cp,rT ln(
T

T0
) +RT lnK = 0, (2.110)

The last two terms on the left hand side can be combined as follows:

− Cp,rT ln(
T

T0
) +RT lnK = RT ln

[(
T

T0

)−Cp,r/R
K

]
= RT ln

[(
T

T0

)−fr
K

]
, (2.111)

where in the last equation fr is defined as:

fr =
Cr,r
R

=
1
2

[γ(fC + 2) + δ(fD + 2)− α(fA + 2)− β(fB + 2)] . (2.112)

Finally, after rearranging:

K =
(
T

T0

)fr
exp

(
−
G	r (T0) + (T − T0)[Cp,r − S	m,r(T0)]

RT

)
. (2.113)

To solve this equation and obtain the mole fractions at a particular temperature, it is useful to
express the particle numbers in terms of the initial particle numbers NA,0, etc. and the reaction
coordinate or extent ξ of the reaction:

NA = NA,0 − αξ (2.114)
NB = NB,0 − βξ (2.115)
NC = NC,0 + γξ (2.116)
ND = ND,0 + δξ. (2.117)

Using Ntot = NA +NB +NC +ND, one can also write the following set of equations for the mole
fractions:

xA = (NA,0 − αξ)/Ntot (2.118)
xB = (NB,0 − βξ)/Ntot (2.119)
xC = (NC,0 + γξ)/Ntot (2.120)
xD = (ND,0 + δξ)/Ntot. (2.121)

These equations can then be substituted into the expression for K, equation (2.109) and what
remains is a single equation that relates the temperature T to the extent ξ of the reaction and
thus to the equilibrium concentrations.
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Multiple reactions

This method to determine the equilibrium concentrations can be extended to a mixture of gases,
in which multiple reactions can take place. The approach followed will be sketched shortly here
and will be applied to the thermal decomposition of water in chapter 5.

A mixture of n different gases is considered (at total pressure p	) in which a total of m reactions
can take place. A reaction coordinate ξj (j = 1 . . .m) is assigned to each of the reactions. In
contrast to the example above, the equilibrium mole fractions xi (i = 1 . . . n) are now a function
of not one, but m reaction coordinates:

xi = xi,0 + f(ξ1, . . . , ξm) (1 ≤ i ≤ n), (2.122)

so that for each j the reaction constants can also be written as a function of the ξj :

Kj = Kj(ξ1, . . . , ξm) (1 ≤ j ≤ m). (2.123)

The reactions are thus described by a system of m equilibrium equations of the type of (2.113):

Kj(ξ1, . . . , ξm) =
(
T

T0

)fr,j
exp

(
−
G	r,j(T0) + (T − T0)[Cp,r,j − S	m,r,j(T0)]

RT

)
(1 ≤ j ≤ m),

(2.124)
Given T and the initial mole fractions xi,0, this system can then be solved to give the equilibrium
ξj and thus the equilibrium mole fractions xi.

2.6.2 Molecular spectra

An introduction to the subject of molecular spectroscopy can be found e.g. in [46]. A complete
treatment of the spectra of diatomic molecules is written by Herzberg [47]. Here, some of the
basics concepts will be shortly discussed, as background information for the molecular emission
measurements and simulations presented in chapter 5.

States and energy levels

Unlike atoms, molecules have an internal structure that allows them to store energy in the form
of vibrational movement of the constituting atoms, relative to another, or by rotation of the
molecule as a whole around one of its axes. Apart from the translational kinetic energy (which
gives a Doppler broadening/shift) the energy of the molecule is thus written as the sum of three
energies:

E = Eel + Evib + Erot, (2.125)

the electronic, vibrational and rotational terms respectively. Rotational and vibrational energy
levels can be expressed in terms of a number of molecular constants [47, 17]. Here, they are
assumed to be known and this topic will not be discussed further.

The electronic term, like in atoms, is determined by the state of the bound electrons, which is
described by a set of quantum numbers. In molecular spectroscopy, the following notation is often
used for diatomic molecules [48]:

n`w 2S+1Λ+,−
Λ+Σ g,u. (2.126)

In the first term, that describes the electrons in the outer shell, n is the principal quantum number,
` = s, p, d, f, . . . the angular momentum, w the number of electrons in the shell. Sometimes a
preceding Greek letter λ = σ, π, δ, φ, . . . is used to denote the component of angular momentum
in the direction of the molecular axis, which is called the z-direction. In the second term, that
describes the resulting term, 2S+1 is the multiplicity with S the total spin quantum number, like
in atoms. The total orbital angular momentum in the z-direction Λ is denoted by Greek letters
Σ,Π,∆, . . . where Σ (Λ = 0) denotes the ground state (analogous to S, P,D, . . . for atoms). The
leading term is usually replaced by a Latin letter X,A,B,C, . . . or X, a, b, c, . . . representing the
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electronic states in order of increasing energy, so X is the ground state. For the excited states,
capital letters are used when Λ and Σ are the same as in the ground state X. +,− (for Σ-states) and
g,u denote the symmetry properties of the electronic wave function. Like in atoms (spontaneous)
electronic transitions are possible as long as they satisfy a set of selection rules (see e.g. [47]).

Now, for each electronic state the rotational and vibrational energies, Erot and Evib can take
on different (discrete) values, characterized by the vibrational quantum number v and rotational
quantum number J . The vibrational energy increases with vibrational quantum number; the states
are at a decreasing distance of typically less than 0.3 eV apart. In electronic transitions all changes
of v are allowed, leading to a number of vibrational bands. The intensity of the vibrational bands
however, is not the same, as they have different vibrational transition probabilities. These are
depending on the internuclear distances in both states involved in the transition, via the so-called
Franck-Condon factors. This will not be discussed here. A special class of vibrational states are
formed by the repulsive states, that do not lead to a stable bond between the atoms. Molecules
in a repulsive state eventually dissociate [11].

Unlike its vibrational counterpart, the rotational quantum number can not change arbitrarily
in an electronic transition. It is bound to the selection rules: ∆J = 0,±1 and J ′ = 0 = J ′′ = 0,
forming the so-called P -, Q- and R-branches (the notation J ′ and J ′′ for the upper and lower
state is commonly used) [48]. The rotational states are at much smaller energy distances of
typically < 0.01 eV, which are generally not the same in the upper and lower electronic state.
This eventuates in the different rotational transitions occurring in closely packed series of lines,
that make up the vibrational bands. The P -, Q- and R-branches can be further subdivided,
depending on the coupling of the electronic spin with the molecular rotation. When the total
angular momentum apart from spin is called N , J can be either N+1/2 or N−1/2. To distinguish
between these cases, the corresponding branches are given a subscript 1 or 2 respectively, for both
upper and lower state (in that order). So R12 is used for a transitions where J = N + 1/2 in the
upper and J = N − 1/2 in the lower state. By convention duplicate subscripts are replaced with
single ones: R22 = R2.

With regard to the structure of the vibrational bands, the term band head is mentioned. When
the moments of inertia of the upper and lower state differ, so does the increase in rotational energy
with J . However, even in this case, at some particular pairs of values for J ′ and J ′′ this increase
is approximately equal. This gives a point in the emission spectrum where the lines of this band
are extremely close together (and the measured intensity is usually high), which is called the band
head. Depending on whether the upper or lower state has the larger moment of inertia, the band
head occurs in either the R- or the P -branch (see e.g. [46, 48]). An example is given in figure 2.7
for the R2-branch of the A2Σ, v′ = 0→ X2Π, v′′ = 0 electronic transition of the OH molecule.
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Figure 2.7: Rotational energy
term vs. transition energy for the
first 20 transitions in the R2 branch
of the A2 Σ , v ′ = 0 → X2 Π , v ′′ = 0
electronic transition of the OH
molecule. The transition energy
range on the lower axis corresponds
to a wavelength range of 309.2 nm–
306.5 nm. The band head is at
306.8 nm.
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Vibrational population, chemiluminescence reactions

Vibrationally excited states are often produced from chemical reactions (including dissociative
ionization/recombination reactions), in which the excess reaction energy partly ends up in the
vibrationally (and electronically) excited product states. The term chemiluminescence reactions
is used to refer to reactions that produce electronically excited species, which cause visible lumi-
nescence on decay.

Besides chemical reactions, all kinds of other processes can affect the vibrational popula-
tion: electron collisions (e-V energy transfer), vibrational-translational (V-T) transfer, vibrational-
vibrational (V-V) transfer, as well as transitions between electronically and/or vibrationally ex-
cited states within the same molecule, just to name a few. For the case of N2, these processes are
discussed in detail e.g. in [49].

In cases where chemical processes play a dominant role, such as in chemiluminescence reactions,
the vibrational population distribution of the excited state can be characteristic for a particular
reaction [50]. The next section introduces two more quantities that are needed in order to deter-
mine this population distribution from the emission spectrum: the predissociation and quenching
rates.

Predissociation, Quenching and Quantum yield

If there exists a finite transition probability between a (meta)stable state and a repulsive (unstable)
state the molecule can perform a transition to the latter and subsequently dissociate. This process
is called predissociation. The probability of this event is expressed in terms of a predissociation
lifetime or the inverse predissociation rate Kpred.

The term (collisional) quenching refers to a variety of processes that can result in non-radiative
deexcitation. In case of an excited molecule, this can be various types of energy transfer processes
or e.g. excited state chemical reactions. As a consequence, quenching rates Kquench depend
strongly on pressure and temperature, as well as on the type of quencher.

Quenching and predissociation both reduce the lifetime of the excited state. The term quantum
yield Yqp is often used in this context. It expresses the fraction of the molecules in a particular
excited state q that decays through the observed radiative channel q → p:

Yq =
Aqp∑

p′ Aqp′ +Kquench
q +Kpred

q

, (2.127)

with nq the population of q, Apq the Einstein emission coefficient and νpq the frequency of the
transition. The emission coefficient is then given by:

εqp = YqAqphν
qpnq. (2.128)

Rotational population

Because of the small energy difference between the rotational states, their population often quickly
thermalizes. In such cases it is described by a Boltzmann population and characterized by a single
rotational temperature Trot. It can usually be assumed that the occupation is conserved in the
excitation process (e.g. electron impact excitation) so that the rotational occupation of an excited
state is the same as that of the ground state [11]. If in addition rotational levels of the ground
state are occupied by heavy particle collisions, the rotational temperature in the excited state
will be close to the gas temperature Trot ≈ Tg. The rotational temperature of the excited state
can be determined from line ratios in the emission spectrum (e.g. with a Boltzmann plot). For
this purpose, diatomic molecules are often used for gas temperature measurements in plasmas or
flames (sometimes called a molecular pyrometer).

Sometimes, excited electronic states are predominantly occupied by other processes than elec-
tron impact excitation, e.g. by chemical (chemiluminescence) reactions involving the molecule. In
these cases the excited state rotational population does not need to reflect the gas temperature
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and is in many cases is non-thermal. As the chemical processes usually do not populate all vibra-
tional (and electronic) states to the same extent and in the same way, each vibrational band can
have a different rotational population distribution. These non-thermal rotational distributions can
sometimes be described by multiple (two or three) rotational temperatures, for different ranges of
rotational quantum numbers.

Modeling rotational spectra

Rotational spectra of diatomic molecules can be modeled accurately and many examples of this
can be found in literature (see e.g. the simulation program LIFbase [51]). The most general
approach is to calculate all relevant energy levels using the molecular constants, a model potential
for the binding energy as well as calculated emission coefficients (from the Franck-Condon factors
and the dipole transition moment).

Another, more pragmatic approach, that can only be used when sufficient measurement data
is available, is described e.g. in [52]. This is followed here. The intensity of a spectral line
corresponding to a transition from level q with density nq to level p is given by:

Iqp = nqAqphνqpl, (2.129)

with l the length of the (optically thin) plasma and all the usual symbols. Now when the rotational
states are in thermal equilibrium at temperature Trot, the population is Boltzmann distributed:

nq =
n0gq
Q(Trot)

exp
(
−Eq
kBTrot

)
, (2.130)

where n0 is the total molecule density, gq and Eq the excited state energy and statistical weight
respectively and Q(Trot) the partition function, analogously to equation (2.36).

Using the definition Cqp = n0Apqhνpql (not a function of T ) the intensity can also be expressed
as:

Iqp =
Cqp

Q(Trot)
exp

(
−Eq
kBTrot

)
. (2.131)

Now when the intensity Iref
qp of a particular transition is known at a certain reference (rotational)

temperature Tref the intensity at another temperature Trot can be expressed as:

Iqp(Trot) = Iref
qp

Q(Tref)
Q(Trot)

exp
(
Eq(Trot − Tref)
kBTrotTref

)
. (2.132)

Finally, it is assumed that the partition functions depend only weakly on temperature, as will be
the case for not too high temperatures, so Q(Tref)/Q(Trot) ≈ 1. Thus the intensity of each line
can be calculated based on the reference intensity and the energy of the state only. To complete
the spectral simulation, the total intensity of all lines (delta peaks) is calculated as follows:

Iδ(Trot, λ) =
∑
q,p

Iqp(Trot)δλλqp with δλλqp =
{

1 if λ = λqp
0 if λ 6= λqp

(2.133)

with λqp is the transition wavelength. This should be convoluted with the appropriate line profile
P (λ), e.g. apparatus response, to obtain the intensity:

Iλ(Trot, λ) = Iδ(Trot, λ) ∗ P (λ). (2.134)

A simulation program using this approach was written for a part of the OH molecular spectrum
and examples of simulated OH spectra will be presented in chapter 5.
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2.7 Transport and probes

Perhaps the most obvious way to study density and temperature of charged particles in a plasma is
to use some kind of solid probe that can measure them directly inside the plasma. The experimental
effort needed for such measurements is usually relatively small. Often in sharp contrast to the
simplicity of the experimental procedure is the complexity of the theories needed to understand
how the probe interacts with the plasma and disturbs the plasma locally. The plasma-probe
interaction has been the subject of ongoing research since the first experiments carried out by
Langmuir and forms an important subfield of plasma physics. Considering the complexity of
the subject and the fact that Langmuir probe measurements form only a small part of the work
presented here, no attempt is made to thoroughly introduce the subject. Instead, some basic
concepts are introduced and equations that were used to arrive at the results in section 3.5 are
given. Introductions to the subject can be found in most plasma physics books, e.g. [10, 45]. A
recent review from a practical point of view is given in [53].

2.7.1 Plasma potential, floating potential and sheath

The plasma potential or space potential Vp, is the electric potential in the undisturbed plasma (in
the absence of any probe). When the (position dependent) charge density is denoted by ρ and the
electric field by ~E, the plasma potential is described by the Poisson equation:

∇2Vp = ∇ · ~E = −ρ
ε
, (2.135)

where ε is the permittivity of the medium, given by ε = ε0εr, where ε0 is the vacuum permittivity
and εr is the relative permittivity of the medium.

From gas-kinetic theory it follows that the number of particles of a particular species j crossing
through a unit area per unit time (from one side only) is given by:

Γ =
1
4
njvj , (2.136)

where nj is the density and vj the mean velocity of the particles. When a plasma containing
only singly charged ions (i) and electrons (e) is considered, the current from a perfectly absorbing
probe of area A is given by:

I = −eA(
1
4
nivi −

1
4
neve). (2.137)

Due their much smaller mass, the mean velocity of electrons in a plasma is usually much larger
than that of the ions (at least a factor

√
mp/me ≈ 40, at comparable temperatures). Therefore,

in an undisturbed plasma, the current flows are dominated by the electrons:

I ≈ 1
4
eAneve ≡ AJe, (2.138)

where the electron current density Je is defined. The probe thus emits a net positive current. Now
if the probe is electrically isolated from the surroundings, i.e. in a floating state, the current will
quickly build up a negative charge, that starts repelling more electrons coming from the plasma.
The equilibrium potential, at which the ion and electron flows to the probe surface are equal,
lies at a few times the electron temperature below the plasma potential and is called the floating
potential Vf .

In practice, the floating potential is measured by using a probe connected to ground through
a very high resistance, so that the probe currents are negligible. By using two such probes at a
small separation ∆z, and assuming the electron temperature does not vary over this distance, the
potential difference is proportional to the electric field E = ∆V/∆z.

In a plasma, the disturbing of the potential caused by the probe is compensated by the sur-
rounding charge carriers (mainly electrons), as was the case for the test-particle in section 2.1.
This Debye shielding of the probe potential occurs at a scale of a few times the Debye-length,
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equation (2.6). This transition region from solid surface to plasma is therefore called the Debye
sheath or simply sheath. In practice the distance over which the probe disturbs the plasma can
be quite a bit larger than the Debye length and depends on both the plasma parameters and the
probe geometry.

2.7.2 Saturation currents

When a probe is kept at the plasma potential, one can assume that the plasma is not disturbed,
so that the current flowing from the probe is approximated by equation (2.138). Increasing the
probe potential above the plasma potential does not change the electron current, as all electrons
arriving at the probe are already absorbed. The ion current decreases as ions are repelled, but it
was already small compared to the electron current. The corresponding value of Ie is called the
electron saturation current and denoted as Isat

e .
Oppositely, decreasing the potential to below Vp decreases the electron current. When the

probe potential is equal to the floating potential, the electron and ion current densities will be
equal. When it is decreased further, the electron current will become negligible at some point,
at which the current flowing from the probe equals the ion saturation current Isat

i . The current-
voltage characteristic in the transition part between electron- and ion-saturation is determined by
the electron energy (and sometimes ion-) energy distributions or temperatures.

In practice, the above discussion is only an approximation and the currents do not completely
saturate. A clear bend in the IV -characteristic is often visible, however. An important effect that
will allow for a continuing increase of the ion ‘saturation’ current is the increase of the sheath
thickness with decreasing (negative) probe potential. As the probe collects ions from the sheath
edge, this leads to an effective increase of the probe area. The effect is most relevant when the
probe dimensions are comparable or smaller than the Debye length. Looking for example at a
plasma with an electron temperature of 3000 K, the Debye length, given by equation (2.6), ranges
from 0.4 µm at ne = 1022 m−3 to 40 µm at ne = 1016 m−3, so that for most probes this effect
should not play a major role.

2.7.3 Probes in collisional regime

The probe behavior described in the previous sections relies on a number of assumptions, which are
certainly not always fulfilled. In general the probe IV -characteristic can provide information on
(depends on) the electron and ion energy distributions and/or temperatures, densities of electrons
and ions and even collision frequencies [53]. The densities are calculated from the saturation
currents, whereas most other parameters follow from the transition region. However, not every
quantity is always measurable and the way the probe characteristic should be interpreted depends
on the plasma and probe parameters. In general, operating regimes (e.g. collisionless, non-local
and hydrodynamic and various subregimes) can be introduced, based on characteristic length scales
in the plasma. The probe behavior in each of these regimes can be very different. This is beyond
the scope of this discussion; a review can be found in [53]. Here only a short argument will be
made, why the standard collisionless probe theory sketched above, does not apply at atmospheric
pressure and the estimated plasma parameters of the plasmoid. The argument is based on a
more complete discussion in [10]. Using this, some basic probe measurements conducted, can be
understood at least qualitatively.

As mentioned, the probe behavior sketched in the previous sections is only a good approxima-
tion in cases where collisions can be ignored and particles travel through the sheath in free flight.
In situations where collisions can not be ignored, e.g. at high (atmospheric) pressure or at low
ionization degree, the behavior can be quite different. In general, the effect of collisions is to reduce
the currents to the probe as the particles have to diffuse to the probe, rather than arrive in free
flight. An estimate can be made by treating the plasma around the probe as continuum, having
a constant diffusion coefficient D. Assuming a spherical probe of radius R the flux of particles to
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the probe is then given by [10]:

Γj =
1
4
n∞j vj

1
1 + vjR/(4Dj)

, (2.139)

where n∞j is the density far from the probe. By comparing with equation (2.136) one sees that the
currents are reduced by a factor [1 + vjR/(4Dj)]−1. For a ‘random walk’ the diffusion coefficient
can be related by the mean free path λmfp by: D = λmfpv̄/3, so that this factor can also be
written: [1 + 3R/(4λmfp,j)]−1. This shows that collisions can be ignored if λmfp � R, whereas
for λmfp � R the currents are reduced approximately by a factor 4λmfp,j/(3R). Of course,
the perfectly spherical probe, assumed in equation (2.139) is not used in practice. Solving the
diffusion equation with boundary conditions for other geometries is possible, but leads to much
more complicated solutions. This will not be discussed here.

Taking as an example an atmospheric plasma with an ideal background gas at 1000 K (n ≈
7 · 1024 m−3) and estimated ‘hard sphere’ collision cross section given by σ = πa2

0 ≈ 9 · 10−21 m2,
the collision mean free path is given by equation (2.11): λmfp = 1/(nσ) ≈ 1.6 ·10−5 m. So, when a
probe with a characteristic dimension of 1 mm is used, the currents will be smaller by a factor 60
due to collisional effects, with respect to the collision-free case. Of course this is only a rough
estimate that can not be used for precision measurements.

2.7.4 Ambipolar diffusion

As a final topic in this chapter, the concept of ambipolar diffusion is mentioned, as it might give
some insight in the charge distribution in the boundary layer of the plasmoids. Starting with
the general momentum conservation equation, assuming isotropic pressure p = nkBT (and thus
∇p = kBT∇n), ignoring magnetic forces and assuming a uniform (neutral) background gas at rest
with no sources or sinks, the following diffusion equation for a single (free) species with density n
in a plasma can be derived [45]:

∂n

∂t
−D∇2n = 0. (2.140)

Here D is again the diffusion coefficient. Now as the diffusion coefficient is proportional to the
mean velocity v̄ of the particle, this would suggest that the electrons diffuse much faster from the
plasma than the ions. However, the resulting charge separation quickly builds up an electric field
E that pulls back the electrons. The diffusion of the charged particles in a plasma is thus tied to
the slower species, i.e. the ions. A more precise analysis leads to a so called ambipolar diffusion
coefficient Da that takes the place of D in equation (2.140). When it is assumed that the electrons
are much more mobile than the ions, it can be approximated by:

Da ≈ Di(1 + Te/Ti), (2.141)

where Di is the ion diffusion coefficient. So, considering the example at the end of the previous
section again, the ambipolar diffusion coefficient should have been used. When Ti is still 1000 K
but Te = 3000, and the ion diffusion is still determined by the hard sphere collisions with the
background gas, one finds: Da ≈ 4Di and the currents will thus be smaller by a of factor 15, due
to collisions.
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Chapter 3

Experiments

This chapter is devoted to the results of several experiments, conducted to obtain more insight
into the atmospheric plasmoids. First a brief description of the discharge system and the different
diagnostic tools is given. Following, the outcomes of the different experiments are discussed.
The diagnostic tools and conducted experiments range from very simple to relatively complex.
The structure of the sections concerned with each class of experiments is adapted, based on the
complexity of the subject. Where the results speak for themselves, e.g. for the simple camera
recordings, they are summarized in a single paragraph, whereas the sections describing the more
complex spectroscopic measurements are divided into different sections for experimental procedure,
results and conclusions.

3.1 Experimental setup, diagnostics overview

Figure 3.1 shows a schematic of the experimental setup. It is similar to that in refs. [1, 2, 3] as
far as the discharge system is concerned. The cylindrical discharge vessel made of glass or plastics
is filled with tap water or water with salt additives. A copper ring at the bottom of the vessel
serves as an anode, while the cathode is the central electrode protruding some millimeters above
the water surface. A capacitor bank of 1 mF charged to 4.8 kV is switched to the anode causing
a discharge with currents between 10 and 100 A. After 100–150 ms the current is shut down by
use of a mechanical switch to obtain an autonomous object without external energy supply. The
following diagnostic equipment has been used:

• a high speed video camera (500 frames per second) with 1024x1024 pixel CMOS image sensor
and 10 bit dynamic range,

• a triggered video camera with 12 bit dynamic range capable of recording a single frame per
shot,

• various electric (Langmuir) probes, current and voltage meters and an oscilloscope for signal
recording,

• thermocouples (Ni-Cr, up to 1200 K, response time 20 ms),

• pyroelectric sensors with high sensitivity (> 97%) in the spectral range 0.2–20 µm,

• medium resolution (λ/∆λ ≈ 20, 000) absolutely calibrated échelle spectrometer with large
spectral range (300–800 nm),

• high resolution (λ/∆λ ≈ 100, 000) spectrometer with a variable 0.1 nm–1 nm wide spectral
range in the visible,

• thermometers and precision scales for calorimetric measurements.
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Figure 3.1: Schematic of the experiment and overview of diagnostics. A magnification of the
central electrode is pictured in the dashed box on the left.

A trigger system consisting of (delayed) pulse generators was built to enable synchronized simul-
taneous measurements using the various diagnostics. As a convention throughout this report, the
rising flank of the discharge current is defined as t = 0. The discharge switch is typically an oil
filled high voltage electronic relay switch, controlled by a pulse generator via a secondary relay
switch. For safety reasons, the discharge current was kept under about 100 A by limiting the
amount of salt additives in the water. Typically, due to the switch design, the current could not
be quenched earlier than t ≈ 130 ms. In this report the ‘lifetime’ of the plasmoids is divided into
an initial phase and an autonomous phase, corresponding to the period before and after quenching
the current, respectively.

In appendix B, a few words are said about the way data from the different diagnostic tools
was collected and organized.
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3.2 Observations and camera recordings

Shape and dynamics

Figure 3.2 shows the plasmoid’s appearance at various times after triggering the capacitor dis-
charge. Initially, the ‘streamers’ form a spider-like pattern closely above the water-air interface.
Above the central electrode the slowly expanding plasma ball emerges. Figure 3.3 (a) shows

Figure 3.2: Series of frames recorded using the high speed camera at different times t after
triggering the discharge.

the plasmoid 30 ms after current zero (t ≈ 160 ms). The bright jet above the ball is due to a
camera effect. At this high camera exposure one sees a distinct boundary of the ball. At lower
exposure one can sometimes see inner structures which are brighter than the surrounding plasma
and change their position rapidly inside the boundary (figure 3.3 (b)). It is clear that the plasma
is highly non-homogeneous in this case.

Velocity and size of the plasmoids are determined as a function of time from the high speed
camera recordings. This is shown in figure 3.7 (a), in the next section. The velocity (of the upper
boundaray) reaches a constant value of 0.8 ± 0.1 m/s after about 50 ms and does not change
at current zero. Knowing the velocity of the plasmoid, height over the central electrode can be
converted into time of arrival of the ball at a certain position and vice versa. This was used for all
diagnostic tools. The ball radius increases from about 4 cm at 30 ms up to 8 cm at 250 ms. Inner
structures as shown in figure 3.3 (b) have a higher upward velocity up to 3 m/s until they reach
the upper periphery where they are slowed down and bent to the sides to form a toroidal structure
towards the end of the lifetime. Typically, the plasmoids have disappeared from the high-speed
camera recordings at about 500 ms, though sometimes (non-radiating) toroidal clouds of aerosols
or dust particles (“smoke rings”) were observed rising up to 4 m or higher over 2–3 seconds.

Salt additives

Discharges were conducted using both ordinary tap water and water with salt additives. The type
and amount of salts added to the water has a strong effect on the appearance of the plasmoids. This
is illustrated for three different salts in figure 3.4, which shows a comparison of discharges using
de-ionized water with various salt additives. Although the de-ionizing was incomplete, there are
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(a) High exposure video capture showing the distinct
boundary layer.

(b) Low exposure video capture showing inner structure
of the plasma ball. In this example the effect is stronger
than usual.

Figure 3.3: Video captures taken at approximately 30 ms after current zero (t ≈160 ms). The
diameter of the ball is ∼12 cm; the magnification in both images is approximately equal.

distinct differences. Several salts were used, including NaCl, CuSO4, CaCl2 and LiI and it appeared
that discharges with salts containing calcium were particularly bright. The characteristic colors
of the plasmoids using tap-water are yellow-white in the center and red-green in the boundary
layer. When using de-ionized water and pure salt additives, the color changed (at least partly) to
that of the characteristic strong (resonance) lines of the anion, e.g. orange in the case of sodium
(589 nm) or red for lithium (610 nm). When using salts added to normal tap-water yellow-white
with red-green boundary mostly remain the dominant colors.

Boundary layer

The boundary layer clearly distinguishes itself from the bulk plasma by its color and its lower
intensity. Two other observations seem to suggest that the temperature in the boundary layer
may be much lower than in the central plasma:

• A piece of paper placed in the path of the discharge is not burned. The plasmoid deforms
and expands to the sided and the boundary layer seems to shield the paper from the plasma.

• Sometimes small ‘droplets’ (or minor secondary discharges) shoot up from the electrode after
plasmoid’s formation. When one of these passes through the boundary layer, its intensity
first decreases and then increases again when it enters the bulk plasma.

The existence of the cooler boundary layer is confirmed by spectroscopic measurements, as will be
shown later.

Vortices

The formation of these torus shaped vortices starts during the discharge and appears to be analo-
gous to other gas phase vortices such as mushroom clouds or smoke-rings. The flows in a mushroom
cloud are illustrated in figure 3.5. Very similar vortices can also be found in liquids, e.g. in ex-
periments using colored liquid ejected into water from a cylindrical tube (see e.g. [54], page
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Figure 3.4: Images recorded using the high speed camera at t=120 ms, using de-ionized tap water
with different salt additives. In each case, approximately 4 g of salt was added. It must be noted
that the de-ionizing was incomplete, as spectral lines of salts from the tap water remained even
after de-ionizing.

364–365). All of these vortices start with the expansion of material, of say medium B, into an-
other medium, say A. Initially the expanding medium has the shape of (part of) a sphere. The
friction of medium A on the outside of the sphere drives the rotational flow. The moving blob of
B leaves a low-pressure void behind it. The resulting inward flow of A causes the characteristic
mushroom shape. When the inward flowing material is bent upwards and accelerated, e.g. by
convection it can penetrate the body of B and form a torus. Once a torus is formed, the larger
surface area on the outside with respect to the inside of the torus, ensures that the friction of A
continues to drive the rotation.

Figure 3.5: Illustration of the flows in a so-called
‘mushroom cloud’. The dark red arrows are hot gas, the
blue arrows are cold air flowing into the low-pressure
void, formed behind the rising cloud. Figure adapted
from [55]. Similarly looking vortices in liquids are de-
scribed in [54] (see text).

Filtered camera recordings

Figure 3.6 shows a frames recorded using the high speed camera at different times t after triggering
the discharge, using a band filter with maximum transmissivity (0.30) at 656±8 nm. The indicated
margin of 8 nm is the Full Width at Half Maximum (FWHM) of the peak in the transmissivity.
The hydrogen Balmer-α (Hα) line at 656.3 nm falls in this wavelength interval (there may be other
lines and molecular band emission as well). The size of the plasmoid is approximately the same
as before. However, the pictures recorded with the filter show a more distinct inner structure
than without. It can e.g. be seen how a small ‘secondary plasmoid’ is formed, after the main one
seems to have already detached from the electrode. Driven by convection this secondary blob of
hot material rises faster than the main plasmoid, passing through it at about t = 130 ms.
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Figure 3.6: Series of frames recorded using the high speed camera at different times t after
triggering the discharge, using a band filter with maximum transmissivity (0.30) at 656 ± 8 nm
(FWHM).
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3.3 Discharge, calorimetry and temperature

3.3.1 Experiments

Calorimetric measurements have been conducted, involving the following:

• Discharge current and voltage measurements: the ring electrode voltage Vring and discharge
current Idis are measured using a simple high-voltage probe and a contactless current sensor
(Rokowski coil) respectively.

• Scales with a precision of 0.1 mg and maximum load of 1 kg were used to measure the
mass decrease (evaporation) of the water in the vessel. Limited by the maximum load of
the precision scales, this measurement was done using a small version of the vessel with a
volume of 1 l.

• To estimate the energy loss due to Ohmic heating, the water temperature was measured using
a digital thermometer with a precision of 0.1 K, simultaneous with the weight measurements.
Since temperature gradients were observed, the temperature was measured both near the
water surface and near the bottom. These temperatures were averaged using of 1/3 and 2/3
respectively; an estimate based on temperature measurements at various heights.

• A pyroelectric sensor was used to measure the time-dependent radiation power emitted by
the plasmoid over a large spectral range. The sensitivity of the sensor is above 97 % in
the wavelength range of 0.2–20 µm. A short description of this sensor and the conducted
calibration can be found in appendix A.

• Extremely thin thermocouples (0.25 mm diameter, Ni-Cr, estimated response time 20 ms)
were placed at several heights above the vessel to measure the gas temperature in the plas-
moid, in its autonomous phase. The thermocouples use an isolated hot-junction, i.e. not in
electrical contact with the surrounding steel, connected to a scope. The outer steel shielding
is in an electrically floating state to prevent heating due to current flows.

The goal of these measurements is to gain insight in the main energy conversions, involved in the
formation of the atmospheric plasmoids. As most measurements showed considerable statistical
fluctuations and no attempt was made to optimize the precision of the calorimetric measurements,
the results should be seen as estimates.

3.3.2 Results

Discharge

Discharge current and voltage measurements are shown for a discharge with tap water in fig-
ure 3.7 (b). As mentioned, the maximum discharge current (as well as the brightness of the
plasma balls) can be increased by adding salts to the water, increasing the conductivity. The
standard voltage and capacity used for all other experiments are 4.8 kV and 1 mF, unless explic-
itly stated differently. For such a typical shot the energy delivered from the capacitor bank to the
discharge is about 8 kJ, determined from the difference between the initial and remaining voltage
over the capacitor.

Water heating and evaporation

The amount of water evaporated per shot and the increase in temperature of the water in the
vessel with a volume of 1 l are shown in figure 3.8 (a) and (b). These measurements yield that
using a 4.8 kV, 1 mF discharge, on average about 0.1 g water is evaporated per shot. Using
the standard molar enthalpy of vaporization of water (40.7 kJ/mol), one finds that this requires
an energy of about 0.2 kJ. The water temperature increase is around 1.2 degree, with large
uncertainty due to temperature gradients in the water. From the specific heat capacity of water
(Cp = 75.3 Jmol−1K−1) this corresponds to an energy of approximately 5 kJ.
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Figure 3.7: Time-dependent pa-
rameters of the plasmoid: (a) height
and diameter measured using the
high-speed camera; (b) discharge
current and voltage; (c) radiation
power measured using a pyroelec-
tric sensor with high sensitivity in
the range of 0.2–20 µm. The life-
time is divided in an initial (for-
mation) phase and an autonomous
phase based on the discharge current
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The (wavelength integrated) radiation intensity (in Wm−2) measured using the pyroelectric sensor
was converted to radiated power, shown in figure 3.7 (c). For this, the distance d(t) from the
sensor to the center of the plasma ball was used, as indicated in the drawing inside figure 3.7 (c).
The plasmoid is thus considered a point source for the radiation power calculation. This is a
good approximation at the relatively large distances used; confirmed by the fact that the curves
measured at different distances deviate only slightly. At times & 250 ms, the position of the
plasmoid was extrapolated linearly, as it could no longer be determined accurately from the video
recordings. The total emitted radiation energy Erad, determined by integrating the power, is found
to be about 0.7 kJ for a standard discharge with tap water.

Gas temperature

The results of the thermocouple measurements are shown in figure 3.9. Temperatures of about
900 K at t ≈ 235 ms and 600 K at t ≈ 260 ms were measured. For t ≈ 200 ms thermocouples
indicated 1300 K and more, but were damaged during the measurements, so that the results are
no longer reliable. The gas temperature for t < 200 ms may thus be considerably higher.
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Figure 3.8: Results of calorimetric measurements, using precision scales and thermometer, on
the water in the 1 l vessel.
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3.3.3 Discussion and conclusions

Calorimetric measurements yield that of the 8 kJ released in the discharge, on average about 5 kJ
is spent on ohmic heating of water and only a small fraction of this is used of evaporation. Thus
about 3 kJ is available for the formation of the plasma ball.

It is noted that these values may depend on the salt concentration, i.e. on the conductivity of
the water. It was observed that the discharges in the small vessel with a volume of 1 liter were
somewhat smaller and appeared less intense than in the regular vessel. Therefore, these results
can only be considered rough estimates. Nevertheless the results are thought to give a reasonable
insight into the main energy conversions in the discharges, as intended.

The maximum radiation power measured using the pyroelectric sensor is approximately 3.2 kW,
at t ≈ 120 ms. Using the Stefan-Boltzmann law 4πr2

ballσT
4 with rball ≈ 5 cm, this corresponds to

the radiation power of a black body at a temperature of about 1200 K. At this temperature the
bulk of the black-body radiation is in the infrared (maximum at 2.4 µm according to Wien’s law)
and well in the range of high-sensor sensitivity.
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The black-body temperature of 1200 K is consistent with the gas temperature, measured at
t ≈ 200 ms. As mentioned in the previous section, the existence of gradients, i.e. a hot core
surrounded by cooler plasma, is likely and can explain the destructed thermocouples at earlier
times.
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3.4 Emission spectroscopy

Emission spectroscopy in the visible wavelength range is the main plasma diagnostic technique used
in this research. As the applications of spectroscopy are so diverse, so is the level of complexity
of the data interpretation. In this chapter, measurements are presented from an experimental
point of view. The specifications and applications of the various spectrometers are discussed
and examples of measurements, providing new information about the plasmoids, are given. This
includes measurements of overview spectra and their time-development, broadening of single lines
as well as the measurement of atomic line intensity ratios. Two topics that are based on results
of emission spectroscopy, but require more complex models to interpret the data, are the study of
the line spectrum of atomic calcium and OH emission bands. Results specifically related to those
topics are not presented here, but in chapters 4 and 5, from a conceptual point of view.

3.4.1 Spectrometers and experimental procedures

Two different spectrometers were used, each with their own merits and applications. In the
following they are briefly described.

• Échelle spectrometer The concept of the échelle spectrometer was introduced in section 2.5.3.
The spectrometer used is a commercial built LLA Instruments ESA 3000, with a spectral
range of 200 to 800 nm using diffraction orders between 30 and 120. Due to the design,
some blind spots in the spectral range are present at the red end of the spectrum (above
550 nm), where the image falls outside of the camera chip. The resolving power is λ/∆λ ≈
20, 000, based on FWHM, corresponding to a spectral resolution ranging from 10 pm to
39 pm. The spectrometer uses a water cooled 1024x1024 pixel Kodak KAF 1001 CCD
camera and a Proxitronic image intensifier with microchannel plate (MCP). The CCD camera
readout time is approximately 3 s, limiting the measurements to a single frame per shot.
The spectrometer was absolutely calibrated over almost the complete spectral range, as is
described in appendix C. The sensitivity of the intensified CCD camera is controlled by
adjusting the voltage over the MCP, enabling measurements over a wide range of intensities
with short exposure time. This high, flexible sensitivity in combination with the large
spectral range and good resolving power made the échelle the most versatile and powerful
diagnostic tool that was used. It should be noted that the échelle was only available for
limited time, much of which was consumed by technical issues, so that for some measurements
only limited data is available.

• High resolution spectrometer This is a 3 m focal length double-pass spectrometer, using
a small spectrograph as input monochromator. The resolving power achieved was in the
order of 100,000, clearly lower than the estimated theoretical maximum resolving power
of about 106, for various technical reasons. The spectral range varied between 0.1 nm
and 1 nm, depending on the wavelength (i.e. diffraction order) and the magnification of
the camera objective. The 1024x512 pixel water cooled intensified CCD camera generated
considerable background noise (also due to a broken pixel), depending on the exposure time
and multichannel plate voltage. The measurements can be characterized as photon-starved,
especially at longer wavelengths, making it a challenge to obtain good signal-to-noise ratios
for all but the strongest lines. As no (white) reference light source with sufficiently high
and known intensity was available, no absolute calibration was conducted. Resolving power
and linear dispersion are determined from known lines measured from various types of low
pressure hollow-cathode lamps.

As pictured in figure 3.1 two measurement positions, a top- and a side-view, were used. As it
turned out, though the top-view made timing easier, it had the disadvantage that the electrode
is in the field of view (at least for a central radial position, r = o). Especially towards the end
of the lifetime the frequent ’after burning’ (e.g. due to incomplete opening of the switch) could
easily be confused with emission from the plasmoid. Furthermore, larger gradients in the plasma
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parameters can be expected to exist vertically than horizontally. Therefore, and as as triggering
(assisted by the high speed camera) worked reliably, only the side view was used with the high-
resolution spectrometer. The spectra recorded with the échelle all use the top-view. In both cases,
the spectrometer’s line-of-sight is a tightly collimated beam of 1 cm to 2 cm in diameter. Dark
correction is applied to all data and and flat-fielding (correction for the apparatus response) is only
applied to the échelle data. For the high resolution spectrometer, no flat-fielding was applied, as
stated before. Further details concerning the various spectroscopic experiments will be mentioned
with their results in the following section.

3.4.2 Spectroscopy results

This section discusses the results of the various spectroscopic measurements: overview spectra
and line intensity ratios recorded with the échelle spectrometer and line-broadening measurements
using both the échelle and the high-resolution spectrometer.

Overview spectra

Emission spectra recorded using the échelle spectrometer at different times after the start of the
discharge can be seen in figure 3.10, for a series of shots with approximately 0.3 g/l calcium chloride
added to the water in the vessel. It should be noted that the spectral resolution in this figure is
reduced for clarity. Most of the atomic lines and molecular bands could be identified; only some
of them are indicated in this figure.
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Figure 3.10: Overview spectra recorded with échelle spectrometer (top view) at different times,
with approximately 0.3 g/l CaCl2 added to the water. The resolution has been decreased artificially
by convolution with a 40 pixel FWHM Gaussian, to increase the visibility. The resulting resolving
power is roughly 1000. The calibration is absolute and the measurement at t=135 ms has been
scaled by a factor 100. Peaks corresponding with those in the measured spectrum are indicated by
the capital letters.

In these and other spectra recorded from discharges with tap water alone, lines of the following
atomic species were observed: Ca, Cu, Na, Al, K, Sr, Mg, Fe, Mn and H. Lines of Ca II, Cu II, Fe II,
Sr II and Mg II ions were also seen, as well as weak lines of the twofold ionized Sr III. Besides

47



3.4. Emission spectroscopy CHAPTER 3 Experiments

atomic and ionic lines, molecular bands of OH (A-X) and CaOH (A-X) and (B-X) electronic
transitions have been identified.

The strongest lines in all of the spectra are the resonance lines of Ca, Ca II, Na and Cu.
Looking in more detail, it can be seen that these resonance lines are mostly optically thick,
whereas radiative transitions from higher excited states seem mostly optically thin (from the line
shape and intensity ratios of lines from the same multiplet). Also the transitions between higher
excited states decrease in intensity much more rapidly than the resonance lines.
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The total radiation power in the range between 300 nm and λmax, shown in figure 3.11, is
calculated using:

Prad(300 nm . . . λmax) =
1

2rball

4
3
πr3

ball

∫ λmax

300 nm

Iλdλ, (3.1)

with rball the plasma ball radius, determined from figure 3.7, Iλ in Wm−2nm−1 and dλ in nm.
The integral was calculated numerically using a trapezoidal rule so that the spectrometers ‘blind
spots’ were automatically interpolated. From this figure it is clear that, during most of the
plasmoid’s lifetime, the bulk of the visible radiation belongs to the green and orange/red CaOH
molecular bands, determining its characteristic color. UV emission of the OH molecular band is
also relatively strong. The total radiation power in the range between 300 nm and 670 nm emitted
by the plasmoid increases up to about 75 W (an amount of light about 15 times that 100 W light
bulb) at t = 75 ms and then decays again. The radiation power of the atomic lines on the
other hand, reaches its maximum earlier, between 15 ms and 45 ms, and has already significantly
decreased at t = 75 ms.

From these simple observations, some preliminary conclusions can already be drawn. The
atomic lines in the spectrum all belong to species with relatively low lying excited states < 5 eV
(except for H; its lines rapidly disappear). Lines of other elements with higher excited states which
are likely to be present in the plasmoids, such as Cl or O, do not occur. Therefore the electron
temperature is expected to be less than 1 eV. From the more rapidly the decreasing intensity
of the lines between higher excited states it is clear that the electron temperature decreases.
The presence of CaOH and OH molecular bands suggests that water is dissociated. Both bands
are known to occur in flames where they are produced from chemiluminescence reactions. The
molecular processes and emission will be elaborated on in chapter 5.

Resonance lines

Figure 3.13 shows the strongest atomic resonance lines (transitions to the ground state) present
in the spectra, at t = 55 ms and t = 145 ms. The vessel is filled with tap water, in which 0.2 g/l
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HCl is solved.
The appearance and size of the plasmoids is illustrated in figure 3.12. The approximate width

of the apparatus profile can be seen e.g. from the iron line at 323.4 nm. The Cu I resonance
lines (324.8 nm, 327.4 nm) are extremely optically thick throughout most of the lifetime, whereas
the initially comparably thick Ca I resonance line (422.7 nm) decreases more rapidly in optical
thickness. For both species clear self-reversal is visible, due to absorption in the cooler boundary
layer. Ca II resonance lines (393.4 nm and 396.9 nm) are optically thick initially but seem close
to optically thin at t ' 150 ms, having a ratio of nearly 2 to 1, determined by their statistical
weights. The situation for sodium and strontium lines is similar though their optical thickness is
lower overall, due to a lower concentration of these elements. The calcium ion lines show clear
opacity broadening (i.e. high optical thickness) but no self-reversal, suggesting a lower ion density
in the outer region.

Figure 3.12: High speed camera frames at t=55 ms (left) and 145 ms of discharge using tap
water with 0.2 g/l HCl.

Also in figure 3.13 are three curves indicating the black body intensity calculated using Planck’s
law, equation (2.45), at temperatures of 3000, 3100 and 3200 K. At t = 55 ms (black lines) the
resonance lines of Cu, Ca I and Ca II all fall in the range of the black body intensity between 3000 K
and 3200 K. The sodium and strontium lines with lower optical thickness have an intensity that is
a factor 5 to 10 lower. As some of the lines are partially self-reversed, the electron temperature in
the center of the plasmoid is expected to be higher than these values, whereas Te in the boundary
layer may be lower.

This argument can be quantified using the solution of the radiation transport equation. This
can also be used to obtain estimates for the (ground state) densities, as will be shown using a
simple model in the following paragraph.

The light is assumed to originate from two layers of plasma: a center and a boundary, with
thicknesses dc and db, ground state densities nc and nb and electron temperatures Te,c and Te,b

respectively. The center is shielded by the boundary (as introduced in 2.5.1). The states involved
in the transition are assumed to be in LTE, so that the intensity is given by equation (2.55). It
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Figure 3.13: Resonance lines of Cu I, Ca I, Ca II, Sr I, Sr II and Na I, recorded with échelle
spectrometer from above, at x=1 cm, t=55 ms and t=145 ms for shots with tap water with 0.2 g/l
HCl. The spectrum at t=145 ms is scaled to match the height of the Cu resonance lines (same
factor in all graphs). Also shown in the graph is the black-body intensity at temperatures of 3000,
3100 and 3200 K (dotted lines), calculated using equation (2.45), showing that at t=55 ms the
Cu I, Ca II and Ca I resonance line intensities lie close to the Planck curve at these temperatures.
Some identified neighboring lines are indicated in blue. In the case of Ca II these lines affect the
line profile of the resonance lines.

will be shown later that this will not necessarily be correct at later times (t & 75 ms), but this is
ignored for now. The two layers are assumed to be uniform, so that the optical thicknesses are
given by τλ,i = κλ,idi. The absorption coefficients κλ,i are given by the Ladenburg relation (2.57).
To evaluate this relation, next to atomic parameters an expression for the line profiles Pi(λ) is
needed. The line profile is determined by a combination of broadening mechanisms, as discussed
in section 2.5.2. Some estimates for the Ca I line at 422.7 nm are made:

• The natural line width is about 0.02 pm (all widths in this section are FWHM) and can be
neglected.

• Doppler broadening is determined by the gas temperature. Using the atomic mass of calcium
M = 40 and an estimated Tg = 2000 K in equation (2.68) one finds wD ≈ 2.1 pm.

• Van der Waals broadening depends on the perturber type (polarizability) and density. As-
suming H2O perturbers (ᾱ = 1.45 · 10−24 cm−3) and the density of an ideal gas at 2000 K,
using equations (2.69)–(2.71) a Lorentz width wvdw ≈ 2.4 pm is found.

• The resonance lines are relatively Stark-insensitive, as can be seen for the Ca I line at
422.7 nm in table 2.1. Stark broadening can be neglected with respect to Van der Waals
broadening for ne � 1022 m−3, as will turn out to be mostly the case.
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The line profile can thus be approximated by the pseudo-Voigt profile, with Gauss width wD and
Lorentz width wvdw. As the observed opacity broadening is much larger than all of these widths,
the far-wing behavior of the lines is most important, i.e. the Lorentz part. Estimates for wvdw

and wD for other resonance lines, obtained in the same way, are shown in table 3.1.

Table 3.1: Parameters of resonance transitions, shown in figure 3.13. The atomic data is taken
from [15]. The Van der Waals width wvdw [pm] is calculated using equations (2.69)–(2.71), as-
suming H2O perturbers (ᾱ = 1 .45 · 10−24 cm−3 ) and the density of an ideal gas at 2000 K. The
last column is the Doppler width at Tg = 2000 K.

Species λ0 [nm] gp gq Aqp [s−1] wvdw [pm] wD [pm]
Cu I 324.4 2 4 1.39 · 108 1.1 1.3
Cu I 327.4 2 2 1.37 · 108 1.1 1.3
Ca II 393.4 2 4 1.47 · 108 0.76 2.0
Ca II 396.9 2 2 1.4 · 108 0.77 2.0
Sr II 407.8 2 4 1.42 · 108 2.7 1.4
Sr II 421.6 2 2 1.27 · 108 2.7 1.4
Ca I 422.7 1 3 2.18 · 108 2.4 2.1
Sr I 460.7 1 3 2.01 · 108 2.9 1.6
Na I 589.0 2 4 6.16 · 107 4.9 3.9
Na I 589.6 2 2 6.14 · 107 4.9 3.9

The line profile resulting from this model for the Ca I resonance line is shown together with
measured data at t = 55 ms and t = 145 ms in figure 3.14 (a). The model parameters are shown
in the middle row of table 3.2. The measured line profile can be reproduced reasonably well using
this simple model, though the broadening near the top of the line profile is overestimated in the
calculations at t = 55 ms.
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Figure 3.14: Optically thick calcium atom and ion resonance lines: measurement and calculation
at t=55 ms and t=145 ms. The data at t=145 ms has been multiplied by 4 and 8 in (a) and (b)
respectively. The model parameters are the same for both resonance lines and given in table 3.2.

Simulated and measured line profiles for the Ca II and Cu I resonance lines are shown in
figures 3.14 (b) and 3.15 respectively. The simulation parameters can be found in table 3.2 again.
For the copper lines the same model parameters were used for both lines; the profile was fitted
for the line at 324.8 nm. The copper line profiles seem to agree better with measurements than
those for Ca I and Ca II. The latter shows similar deviations deviations as for Ca I near the
top of the profile. These can partly be attributed to the contributions of neighboring lines (see
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Table 3.2: Parameters used for resonance line simulations fitted to measurements recorded at
1 cm from the ball center using tap water with 0.2 g/l HCl. Listed are: central plasma length and
density dc and nc, boundary density nb, center and boundary electron temperature Te,c and Te,b.
The length (thickness) of the boundary layer was kept fixed at db=2 mm.

t = 55 ms t = 145 ms
dc nc nb Te,c Te,b dc nc nb Te,c Te,b

[cm] [m−3] [m−3] [K] [K] [cm] [m−3] [m−3] [K] [K]

Cu I 8 1 · 1021 1 · 1021 3230 2800 12 1.5 · 1020 1.5 · 1020 2770 2550
Ca I 8 7 · 1019 3 · 1017 3020 2630 12 8 · 1017 3.5 · 1015 2800 2400
Ca II 8 1.8 · 1020 0 3070 – 12 8 · 1017 0 2670 –

figure 3.13) for which no correction was applied. This means the simulation results likely somewhat
overestimate the Ca II density at t =55 ms. Note that all experimental data is from the same pair
of measurements, so that the densities and temperatures can be compared.

The electron temperatures determined from the resonance line simulations (table 3.2) agree
within 200 K, and show a decrease from about 3100 K at t = 55 ms to around 2750 K at t = 145 ms
in the center. The temperatures obtained for the boundary layer for Cu I and Ca I lie 200–
400 K below this. Copper has the highest ground state densities; decreasing from approximately
1·1021 m−3 at t = 55 ms to 1.5·1020 m−3 at t = 145 ms. The concentration in the center and in the
boundary are the same (as the boundary thickness of 2 mm is chosen this way). This decrease in
concentration (factor 6.7) is about twice the factor by which the volume of the plasmoid increases
(factor 3.4). For both Ca I and Ca II the decrease in concentration is much larger: approximately
a factor 100. This may be an indication that atomic calcium is lost via chemical reactions.

Furthermore, there is no self-reversal visible for Ca II, so that the concentration in the boundary
seems to be much lower than in the center: nb � 1 ·1017 m−3 for t = 55 ms and nb � 1 ·1015 m−3

at t = 55 ms, suggesting a lower ionization degree in the cooler boundary. The ionization degree
of calcium, determined from the values for nc decreases from 0.7 at t = 55 ms to 0.5 at t = 145 ms.
It is stressed once more that these results depend on the assumption of LTE occupation of the
excited states with respect to the ground state, which may not be fulfilled for t > 145 ms.
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Figure 3.15: Measurement and simulation of the optically thick copper resonance lines at t=55 ms
and t=145 ms. The model parameters are the same for both resonance lines and given in table 3.2.
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Emission line ratios

Intensity ratios of different spectral lines are commonly used for plasma diagnostics purposes [9, 10].
They are often employed for determining the electron temperature in LTE, which is straightforward
for an optically thin plasma. Here this technique is applied to a set of copper lines at 510.6 nm
515.3 nm and 578.2 nm, which can be found in the Grotrian diagram given in figure 3.16. As
radiation trapping will turn out to play an important role, their optical thickness is investigated.
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Figure 3.16: Simplified Grotrian
diagram for Cu I. Note that not all
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included. Some lines that were used
for LTE line-ratio (or Stark broad-
ening) measurements are using blue
wavelength values (in nm). Many
other lines could not be used because
insufficient atomic data is avail-
able [15].

Two transitions q1 → p1 and q2 → p2 are considered. The wavelength-integrated intensity
ratio in the optically thin case is obtained simply by substituting the ratio of the Boltzmann
populations nq1 and nq2, equation (2.32), into the ratio of the line-emission coefficients εqp1 and
εqp2, equation (2.56):

Iqp1
Iqp2

=
εqp1
εqp2

=
gq1
gq2

exp
(
Eq2 − Eq1
kBTe

)
Aqp1
Aqp2

(3.2)

This can be solved for Te and, if the atomic data is available, it can be obtained directly from the
line-ratio. In order for this approach to be applicable the excited state densities nq1 and nq2 must
be low enough for absorption to be negligible. In other words, the line-integrated escape factors
should be close to one. When a spatially constant emission coefficient is assumed, the latter is
given by equation (2.60).

To calculate the line escape factors ΘL for the copper lines at 510.6 nm, 515.3 nm, and 578.2 nm,
the following set of assumptions is used:

• Line broadening is the result of Van der Waals and Doppler broadening. The widths have
been estimated using equations (2.68) and (2.69)–(2.71) respectively, again assuming H2O
perturbers and the density of an ideal gas at 2000 K. The Lorentz and Gaussian components
obtained are given in the appropriate figure captions. Stark broadening may play a role for
the line at 515.3 initially, as will become clear from density measurements later, but this is
ignored.

• The emission coefficients are uniform and the effects of a boundary layer are ignored.

• The plasma ball diameter is constant and equal to 8 cm.

• States are populated as in LTE. Excited state densities are obtained from the ground state
density n1 and Te using the Boltzmann equation (2.32). The consequences of this assumption
are discussed in some more detail in section3.4.2
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The resulting ΘL for Cu I 510.6 nm and 515.3 nm are plotted as a function of Te in figure 3.17,
and different values of the ground state density n1. The expected copper ground state density
equals n1 = 1021 m−3, as obtained in the previous section. It is clear that the line at 510.6 nm
can suffer from considerable absorption, with an escape factor below 0.5 for Te & 3200 K.

From the definition of the escape factor, the integrated line intensity ratio can be written
analogue to equation (3.2):

Iqp1
Iqp2

=
gq1
gq2

exp
(
Eq2 − Eq1
kBTe

)
Aqp1
Aqp2

Θqp1
L

Θqp2
L

(3.3)

Values for this ratio obtained for the line pair 515.3 nm / 510.6 nm are shown in figure 3.18. The
ratio for the lines at 515.3 nm / 578.2 nm are shown in figure 3.19. For comparison, the ratio
in the optically thin case, as in equation (3.2), is also shown in these figures (dashed lines). The
effect of the escape factor is largest for the first line pair, as the line at 510.6 nm has the highest
absorption coefficient.

Now that the effect of radiation trapping has been estimated, the calculated line ratios are
compared to measurements. A series of measurements recorded with the échelle spectrometer (top
view) at different times is considered. The water mixture in the vessel consists of tap water with
0.4 g/l additional CaCl2. This was used as it resulted in strong, bright discharges and enhanced
the signal-to-noise ratios. The copper ground state density is assumed to be n1 = 1021 m−3, as
obtained in the previous section. All other assumptions are the same as listed above. Although
the constant ball diameter is not very realistic, the errors due to this assumption are partly
compensated by the decrease of the ground state density. The electron temperatures are then
obtained by comparing the measured line ratios with those in figures 3.18 and 3.19 and shown in
figure 3.20 for both line pairs (red and blue symbols).

In the same figure, the temperatures obtained when assuming an optically thin plasma are
shown (grey symbols). These are not equal for the two line pairs and too high. The use of
escape factors makes the result of both line ratios consistent within about 50 K and lowers the
temperatures obtained by 500–2000 K. Of course, these results rely on the LTE assumption,
which will only be valid above a certain electron density. This lower limit for ne is estimated using
equation (2.46) to be of the order of 1020 m−3 for the observed transitions. The density may drop
below this value for t > 75 ms, as will be shown in the next section. Temperatures obtained here
for later times need no longer be correct and the increase in temperature seen for t > 100 ms may
indeed be the consequence of a non-LTE occupation.

Another series of measurements is recorded at the same time t = 55 ms but at different radial
distances from the central electrode (top view). It should be noted that this measurement uses
a different water composition: tap water with 0.2 g/l HCl, like in section 3.4.2. The resulting
temperatures (obtained using the same set of assumptions as before) are shown in figure 3.21.
The values at r = 0 agree with those in figure 3.21. The ball radius is about 6 cm, as visible in
figure 3.12. However, the electron temperature drops about 1000 K over a distance of 2 cm. This
confirms the existence of a hot core of about half the diameter of the plasmoid, comparable to
the structure in figure 3.3. The difference in the order of 200 K between the two line pairs may
be due to the wrong assumption of a constant absorption coefficient (i.e. ground state density
n1 = 1021 m−3 and constant line widths). A higher value for n1 in the center could bring both
lines in agreement, at a slightly lower temperature. This was not further investigated.
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at d=8 cm and a uniform emission coefficient is assumed. The escape factors have been eval-
uated using a pseudo-Voigt profile with widths wL=2.4 pm and wG=2.0 pm for Cu I 510.6 nm
and wL=6.1 pm and wG=2.1 pm for Cu I 515.3 nm, estimates of Van der Waals and Doppler
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Figure 3.19: Integrated line inten-
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Figure 3.20: Electron tempera-
ture determined from measured (in-
tegrated) line-ratios of the 510.6 nm
/ 578.2 nm (red) and 515.3 nm /
578.2 nm (blue) line pairs at differ-
ent times. The light grey open sym-
bols represent the temperatures ob-
tained when assuming an optically
thin plasma. The use of escape fac-
tors lowers the measured temper-
atures and the results of different
line-pairs converge.
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Initial Phase - Atomic Line Broadening

For t . 75 ms the high charge carrier density causes a measurable broadening in some Stark
sensitive lines. Measurements of Stark broadening were conducted using both the échelle spectro-
meter, for the weak but broad hydrogen Hβ (481.1 nm) line as well as using the high-resolution
spectrometer for stronger but narrower copper and lithium lines as well as for Hα (656.3 nm).
Note that Hα could not be measured using the échelle because its falls in one of the ‘blind spots’,
determined by the optical design of the spectrometer1 (see figure 3.10). Spectra recorded using the
échelle use the top-view again, whereas for the high resolution spectrometer, they were recorded
from the side.

An example of Stark broadening is shown in figure 3.22, for Hβ . The lower part of this figure
clearly shows how the line width rapidly decreases. By fitting the measurement data with a
Lorentz profile it is determined that the line width decreases from about 2.3 nm at t = 5 ms to
less than 0.5 nm at t = 55 ms; this is shown in appendix D.
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Figure 3.22: Hβ line recorded us-
ing the échelle (top view) at vari-
ous times. In the lower portion of
the graph the data has been scaled to
the same peak-height and convoluted
with a 10 pixel FWHM Gaussian, to
visualize the rapid decrease in line
width. The original data was fitted
to determine the line width (see ap-
pendix D).

Before proceeding to calculate the electron density, the influence of other broadening mecha-
nisms is estimated.

• The apparatus profile has a width of about 25 pm and is neglected.

• Doppler widths for Hβ range from 11 pm to 25 pm for gas temperatures between 1000 K
and 5000 K. The reference widths used include Doppler broadening at 5000 K [32].

• Van der Waals broadening is calculated again from equations (2.69)–(2.71). For H2O per-
turbers between 1000 K and 5000 K and standard pressure this ranges from 41 pm to 13 pm.
An average value of 25 pm is subtracted from the measured Lorentz widths.

• Opacity broadening (self absorption) is assessed by calculating the optical thickness τλ at
LTE occupation, using the same assumptions as for the calculation of ΘL in section 3.4.2.
Even at a hydrogen density of 4 · 1024 m−3 (ideal gas at T = 2000 K) and wL = 0.5 nm, τλ
remains below 0.01 for Te < 7500 K (and lower for larger wL). Thus absorption is neglected.

The reference source [32] for Hβ lists line widths (FWHM) at a broad range of electron densities
and temperatures between 5000 K and 40,000 K. The table for 5000 K is interpolated and the
fitted Lorentz width wL minus 25 pm was used to directly look up ne. The resulting densities are
plotted in figure 3.23 (green filled circles). The same figure shows the results of another series of

1In fact, this is not the case in the standard version of this spectrometer. It was customized in this way for
application at the Asdex upgrade experiment at IPP Garching, to prevent overexposure due to the strong Hα

emission in the tokamak plasma.
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measurements using 0.3 g/l CaCl2 in stead of 0.4 g/l (brown filled diamonds). These results were
obtained completely analogously; the fits are also shown in appendix D.

Figure 3.23: Electron density de-
rived from Stark widths wS of sev-
eral spectral lines, using various salt
additives. The Hβ measurements
(filled symbols) are recorded from
above, using the échelle. All other
measurements (open symbols) are
recorded from the side, using the
high resolution spectrometer. 0 10 20 30 40 50 60 70 80 90 100
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Both measurements follow the same trend: an approximately exponential decrease of ne in
time, up to the detection limit. With the higher calcium concentration, the initial densities are
higher and it also appears as if the density drops faster in this case. It is likely that this is related
to the discharge current development. With more salt, the water conductivity is higher and so is
the initial current. As the capacitor discharges faster, the current decrease is faster as well.

Note that the fits in appendix D also indicate a decreasing red shift of the line center λ0.
This shift can also be used to estimate the electron density. A reference shift dref = 92.4 pm at
ne = 1023 m−3 and Te = 7900 K is given by Griem [56]. Using equation (2.80) for the shift of
8 pm at t = 15 ms (0.4 g/l CaCl2), this gives a density of 0.9 · 1023 m−3, a factor 3 higher than
determined from the width. It is likely that this difference is caused by the influence of Van der
Waals broadening, with dvdw = 2

3wvdw [28]. As shifts are generally harder to measure and less
reference data exists, they are not used for any density measurements here.

As the signal-to-noise ratios are low, the fits are not always good and there is a rather large
uncertainty in ne in these results. Also, no information for Te > 75 ms was obtained. Therefore
an attempt was made to measure Stark broadening from different spectral lines using the high-
resolution spectrometer.

Based on available reference data and observed spectral lines, a number of lines were considered
and measured, see tables 2.3, 2.1 and 2.2. Unfortunately the lines with the largest Stark widths
were also the weakest, and the sensitivity of the high-resolution spectrometer is much lower than
that of the échelle. Measurement results for a Cu I line at 406.3 nm (also see the Grotrian
diagram 3.16), with relatively strong Stark broadening, is shown in figure 3.24. Also in this figure
is the same line recorded from a CuNe hollow cathode lamp, which is narrower than all measured
lines. The measured peaks are fitted with a pseudo-Voigt profile, with a fixed Gaussian width wG

(estimated apparatus width, from the reference lamp) and variable Lorentz width wL, as indicated
in the legend.

To assess the effects of other broadening mechanisms, the Cu I line at 515.3 nm was also
measured, as shown in figure 3.25. The Van der Waals and Doppler widths were calculated as a
function of gas temperature, assuming constant pressure; see figure 3.26. wvdw was calculated for
H2O as well as N2 perturbers, the latter giving slightly lower values.

From figures 3.25 and 3.26 it is estimated that Tg & 3000 K, for the times considered (20 ms <
t < 50 ms) or the measured Lorentz widths of the Cu I line at 515.3 nm should have been larger,
due to Van der Waals broadening. It can also be estimated that the effect of Van der Waals
broadening is small from the fact that the measured Lorentz widths of 406.3 nm are roughly twice
as big as those of Cu I 515.3 nm, like the Stark reference widths in table 2.3. An estimated value
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Figure 3.24: Copper line at
406.3 nm at various heights h above
the electrode. The symbols are mea-
sured data; the solid lines are fits
of a Voigt profile with a Gaussian
width wG = 3 .6 pm, Lorentz widths
wL and shift d0 (see legend). The
exposure time for all shots is 20 ms,
the measurement starting time t is
indicated in the legend.

Figure 3.25: Same as figure 3.24,
but now for copper line at 515.3 nm.
The exposure time for all shots is
20 ms. The peak of the line at
t=20 ms deviates from a Voigt pro-
file, which is a possible sign for
self-absorption. Therefore, only the
wings of the lines are fitted.

of (3± 2) pm for wvdw is subtracted from the measured wL, to calculate ne using equation (2.79).
The electron densities resulting from the width of Cu I 406.3 nm are shown in figure 3.23, where

the height has been converted to time of arrival. Also in this figure are results of measurements of
an atomic lithium line at 460.3 (after adding LiI-salt) and Hα. For these lines, reference data from
table 2.2 and [32] was used. The results are consistent with the results of Cu I 406.3 nm within
the error margins, however the intensities decreased even faster than that of the copper lines so
that the measurement range could not be extended. The densities obtained from all these lines
lie a factor 2 to 10 below those from Hβ , recorded using the échelle from above. An exception is
the density determined from of Hα at h = 0, t = 0. In this measurement, the electrode was in the
field of view of the spectrometer, like for the échelle measurements. Thus it is conjectured that
during the discharge, there is a large vertical density gradient very close to the electrode.

Spectroscopy - discussion and conclusions

Finally, the most important conclusions that can be drawn from the spectroscopic measurements so
far are given. Some remaining points of discussion related to each of them will also be mentioned.

Spectra of the atmospheric plasmoids contain many atomic and ionic lines. All of them can be
attributed to species that are present in the water or the electrode material (copper). The atomic
lines all belong to species with relatively low lying excited states (< 5 eV).

The presence of CaOH and OH molecular bands indicates that water is dissociated and chem-
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Figure 3.26: Calculated Van der
Waals wvdw and Doppler wD (dot-
ted lines) widths of Cu I lines at
515.3 nm and 406.3 nm at atmo-
spheric pressure, depending on gas
temperature Tg. The perturber den-
sity for Van der Waals broadening
is calculated from Tg using the ideal
gas law. wvdw is plotted for both
H2O (solid lines) and N2 (dashed
lines) perturbers; the latter have a
larger mass and thus lower wvdw,
see equation (2.69).
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ical reactions take place. The overview spectra also show that this molecular radiation is the
dominant radiation source in the visible wavelength range during most of the initial phase and in
the autonomous phase t & 130 ms. This topic is further investigated in chapter 5

Estimates of the ground state densities of Cu I, Ca I, and Ca II were obtained from their
resonance lines using the solution of the radiation transport equation for a simple two-layer model
at t = 55 ms and t = 145 ms, under the assumption of LTE. A much faster decrease in calcium
concentration than that of copper may suggest that calcium is lost via chemical reactions2. It
follows from quasineutrality that the Ca II ground state concentration can be seen as a lower
bound for the electron density. The value for the ground state density n1 ≈ nCaII = 1.8 ·1020 m−3

at t = 55 ms is indeed in the range of electron densities determined from Stark broadening at this
time.

The obtained atomic calcium density can be compared with that in 0.1 g of water from the
vessel (see section 3.3.2) dispersed over the volume of the plasmoid. It is assumed that tap water
with an average calcium concentration3 of 2.75 mmol/l is used and that the mole fraction in the
vapor is the same as in the liquid. At t=55 ms we have a ball radius of approximately 4.8 cm,
resulting in a calcium density:

nCa =
2.75 · 10−3 ·NA · 0.1 · 10−3

4/3π(4.8 · 10−2)3
≈ 3.6 · 1020 m−3, (3.4)

where NA ≈ 6.02 · 1023 is Avogadro’s number. This agrees well with the total concentration of
Ca I and Ca II of 2.5 · 1020 m−3 at t = 55 in table 3.1.

The Stark broadening measurements yield an approximately exponential decrease of electron
density 1 · 1020 m−3 . ne . 5 · 1022 m−3 in the first 75 ms of the discharge. A remarkable feature
of figure 3.24, the Stark broadening of Cu I 406.3 nm, is the asymmetry in the line profile at
t = 5 ms. This may be caused by a narrow and unshifted contribution from the plasma edge, with
lower ne. Another possibility is an ion-broadening effect, that also leads to a higher wing in the
direction of the shift [9] (also see paragraph 2.5.2). It is also possible that this is a consequence
of a variation of the spectrometer sensitivity over the spectral range, as no correction for this was
applied.

Again under LTE assumption, electron temperatures were determined from intensity ratios for
two different line pairs of Cu I, giving consistent results when corrected for optical thickness. As

2It will be shown in chapter 4 that the calcium ground state density at t=145, is most likely higher than the
value obtained here.

3Value obtained from the web site of ‘Berliner Wasserbetriebe’ http://www.bwb.de/content/language1/html/
3255.php, for the postal code of the HU Berlin Institut für Physik, Arbeitsgruppe Plasmaphysik (PLZ 12487, on
November 8th, 2007).
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mentioned before, the minimum electron density for the LTE assumption to be justified is in the
order of 1020 m−3, following from equation (2.46). The results in figure 3.20 can thus be expected
to be accurate up to about 75 ms. Note that the effect of Stark broadening on the Cu I line at
515.3 nm was neglected for the escape factor calculation, which used wL=6.1 pm and wG=2.1 pm.
Figure 3.25 shows that this in fact overestimates the initial wL by 1–2 pm, presumably due to
higher gas temperatures than 2000 K. wvdw is expected to increase at later time though, so that
the estimate of 6.1 pm should become better at those times.

The electron temperatures determined from the resonance lines are about 1000 K lower than
those determined from the Cu I line ratios. This can be explained by the existence of a radial
temperature gradient, like it is shown in figure 3.21. The optical thickness of the resonance lines
is so large that the hot core is completely shielded by the surrounding plasma. The temperature
determined from absolute resonance line intensities can therefore not give information on the
electron temperature in the center of the plasmoids. Of course, this difference in Te shows that
the simple two-layer model used for the resonance lines is not realistic. Its results should therefore
be used with caution.

Finally a remark is made regarding the ionization balance. It was estimated from table 3.1
that the ionization degree of calcium is 0.7 at t = 55 ms. Taking the electron temperature at this
time from figure 3.20, Te ≈ 4400 K, this agrees perfectly with the calculated ionization fraction
in figure 2.2. This suggests that the closed-system approach to calculating the ionization degree
is realistic and that calcium may indeed provide a large portion of the ions and thus that the
assumption x = 1 in section 2.3.1 is justified, at least at t = 55 ms.

The equilibrium ionization for a mixture of atoms, positive and possibly negative ions (e.g. O−,
Cl−) was studied in more detail by Fussmann [private communication]. It was found by Fussmann
that, for estimated initial concentrations as in tap water, calcium may indeed provide the bulk of
the electrons (due to its low ionization energy), for electron temperatures in the range of roughly
2000 K to 5000 K. At higher temperatures, hydrogen is expected to be more important, due to its
much higher concentration (in dissociated water, see chapter 5). Negative ions are not expected
to play a large role, except maybe at very low temperatures Te < 2000 K, as their binding energies
are relatively small.
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3.5 Probe measurements

3.5.1 Floating potential and space charge

Single (and double) Langmuir probes used to measure the floating potential (difference) consisted
of wires with 0.1 mm diameter and a length of about 2 mm. They were connected to a scope via
resistors of 50 MΩ, thus in a nearly floating state. In the initial phase (Idis > 0) single probes
show signals reaching up to 200 V. The polarity is positive when applying positive high voltage
to the ring electrode and negative for negative high voltage.

As the discharge current reaches zero, the voltage drops sharply to values < 1 V. An example
of a floating potential measurement in the autonomous phase is shown in figure 3.27 (a). The
polarity is then positive, irrespectively of the polarity of the high voltage. By measuring at several
heights the maximum (central) floating potential as a function of time can be deduced. This shows
a roughly linear decrease from values around 0.5 V at 250 ms to 0.05 V at 600 ms, as shown in
figure 3.27 (b).
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(a) Floating potential in the autonomous phase, as the
ball passes through the probe at a height of 28 cm above
the electrode.
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(b) Maximum floating potential at various times in the
autonomous phase, measured at different heights above
the electrode.

Figure 3.27: Floating potential measurement results, measured using a single probe connected to
a scope via 50 MΩ.

Small double probes at a separation ∆z = 0.2 mm (aligned vertically) were used to measure the
floating potential difference ∆V , as pictured schematically in figure 3.28 (a). This showed in some
cases sharp peaks with duration < 1 ms, as the rising ball passed through the probes. These peaks
can be attributed to electric double layers within the ball or at its boundary. Ignoring gradients
in Te on this small scale, the electric field can be obtained from this difference as E = ∆V/∆x.
This function can be differentiated and converted to dE/dx using the known velocity vball of the
ball:

dE/dx = v−1
balldE/dt. (3.5)

The Poisson-equation (2.135) then yields the space charge density ρ = εdE/dx. Figure 3.28 (b)
shows the vertical space charge distribution deduced in this way at three different measurement
heights, assuming ε = ε0.

3.5.2 Other probe measurements

Biased flat approximately square probes with an area of 2.6 cm2 were used to measure saturation
currents in the autonomous phase. At voltages of ± 12 V, current densities in the order of 0.01 to
0.1 Am−2 were measured at a height of 18 cm (t ≈ 180 ms). The currents were found to be lower
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(a) Schematic of the floating potential difference mea-
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(b) Space charge density as a function of the height z
above the electrode at three different times, assuming
ε = ε0.

Figure 3.28: The change in the floating potential difference measured by probes at small separa-
tion (left), is used to find the variation of the space charge density (right).

at smaller bias voltages (roughly proportional) with the magnitude of the current depending only
weakly on the polarity.

Also in the autonomous phase, sweeping double probes at various distances (in the range of
4–20 mm) show incomplete saturation at voltages in the range of -10 V to 10 V.

Probe measurements - discussion and conclusions

When the collisionless probe theory, e.g. equation (2.136) would be applied to the ion saturation
current densities mentioned in 3.5.2, densities in the order of 1014 m−3 to 1015 m−3 are found
(with an estimated mean ion velocity of 1000 ms−1). However, with an estimated neutral density
of 7 ·1024 m−3 (ideal gas density at 1000 K) and collision mean free path of 10−5 m, much smaller
than the probe dimensions, the transport is determined by collisions with neutrals. This leads to
much lower currents than in the collisionless case, as was pointed out in section 2.7.3. Therefore,
the currents dot not provide information on the plasma densities directly. The saturation currents
were not investigated further.

Because for floating voltage measurements in section 3.5.1 the currents are small neutral col-
lisions (the resistance of the sheath) will have less influence.
Positive floating potentials were measured up to about 650 ms after the discharge current; see
figure 3.27 (b). From this figure an estimated lower bound for the electron temperature can be
deduced as follows: going back from 600 ms to 300 ms, the voltage increases by about a factor 10.
Assuming an approximate proportionality between floating voltage and electron temperature as
in the case of non-collisional sheaths, in the beginning the temperature will be at least ten times
higher than room temperature, i.e. 0.3 eV.
A final remark is made concerning the finite measurement resistance in the floating potential mea-
surements. Though the measuring resistance is high, the probes are not perfectly floating. This
results in a deviation of the measured potentials of the true floating potential. The size of this
deviation is dependent on the plasma resistance, i.e. on the current Ip flowing through the probe,
and will be estimated here. The measuring resistance Rm is parallel to the plasma resistance Rp.
Thus, the measured voltage difference ∆Vm is:

∆Vm = IpRp
Rm

Rm +Rp
= ∆Vf

Rm

Rm +Rp
. (3.6)

64



CHAPTER 3 Experiments 3.5. Probe measurements

With double probes the resistance Rm in the probe circuit amounts to 100 MΩ. When adding a
shunt of 10 MΩ, i.e. Rm = 9.1 MΩ, the measured voltage reduces by about a factor 3, yielding
Rp ≈ 25 MΩ. The floating potential difference is thus given by ∆Vf ≈ 1.25∆Vf . This correction
was applied to all results above.
Concluding, the conducted probe measurements yield data on the plasma potential and the fluc-
tuations therein. In the boundary layer the charge distribution can be characterized as a double
layer, with negative charge on the outside; see figure 3.28 (b). At t = 180 ms the charge fluctu-
ations occur over a distance of about 1 cm. As the charge distribution is smeared out at later
times, the boundary layer is expected to be thinner than 1 cm at earlier times.
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Chapter 4

A Collisional Radiative Model for
calcium

4.1 Introduction

Many lines of neutral calcium are present in almost all of the recorded spectra, making the element
a logical candidate for an attempt to determine plasma parameters from (absolute and relative)
line intensities. Spectra recorded with the échelle spectrometer are particularly suitable for this
purpose: the spectrometer’s resolving power of approximately 20,000 is sufficient to resolve almost
all lines, it has a large usable spectral range (300–700 nm) and relatively high sensitivity due to
the intensified CCD camera. Since the sensitivity is adjustable by changing the multichannel plate
voltage, measurements could be made with good signal to noise ratio throughout a large part of
the plasmoid’s lifetime.

Without prior knowledge of the electron density from Stark broadening measurements, a first
attempt was made to determine the electron temperature Te by comparison with LTE simulations
from NIST [15]. This showed significant deviations in relative intensities of several lines. The
assumption was made that the electron density ne is too low to sustain thermal equilibrium, in
particular for the lower energy levels.

Using equation (2.46) one can estimate the minimal electron density for collisional transitions
to dominate over radiative. For the lower lying electronic states of Ca I with typical ∆E ranging
from 0.3 eV to a few eV (not including transitions between multiplet substates) and the expected
electron temperature less than 1 eV, the critical electron densities are in the order of 1017–1021m−3.

Stark broadening measurements have shown that the electron density may drop below 1020 for
t > 75 ms which explains why the LTE simulation fails at this point. A coronal equilibrium may
be reached for a large part of the system towards the end of the lifetime. However, it is desired to
obtain information on the plasma parameters throughout the lifetime. Moreover, for spectroscopic
measurements at t > 150 ms it proved difficult to obtain good signal-to-noise ratios, especially for
transitions between states higher in the system that do not suffer too much from absorption.

Therefore, an attempt is made to model the radiation production of the bound electrons
away from LTE or coronal equilibrium using a collisional radiative model (CRM). This means
that all collisional and radiative processes that are considered relevant for the expected plasma
parameter ranges need to be taken into account. Using the rate coefficients for these processes
the occupation of the excited states (atomic state distribution function, ASDF) is calculated after
which the Einstein coefficients for spontaneous emission A are used to calculate the line intensities.
Line broadening (due to apparatus profile) is included in the output of the model so results can
be directly compared to measured spectra, making data processing relatively easy.

A simplified energy level (Grotrian) diagram for Ca I is shown in figure 4.1. To limit the
number of states and transitions in the diagram, states from the same multiplet (i.e. states with
the same total spin angular momentum quantum number S and total orbital angular momentum
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quantum number L, which differ in energy only on account of spin-orbit coupling) are grouped
together. As can be seen, the Ca system is relatively complex. The atom has two partially filled
shells (with principal quantum numbers 3 and 4) and e.g. all triplets with L > 0 appear twice,
once with the 4s and once with the 3d state occupied. The complexity of the Ca I system, and
the resulting difficulty to obtain enough accurate rate coefficients, is one likely reason why no
collisional radiative model has been found in literature.
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Figure 4.1: Simplified Grotrian diagram for Calcium I. The horizontal ordering is according
to the total orbital angular momentum (indicated by S,P,D,F,. . . ) and the total spin (singlet
1X for S =0 or triplet 3X for S =1) of the two valence electrons in Russel-Saunders coupling.
Also, states with even and odd parity are separated (indicated by o for “odd”, the e for “even” is
omitted.). The fine structure is not included in the diagram, e.g. multiplet substates with different
J values are grouped together (although they have slightly different energies) as is the case in the
implementation of the collisional radiative model. The red labels are the state index numbers used
in the CRM. Wavelengths in nm for transitions between the first 11 multiplets are indicated, the
others are omitted for clarity.
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4.2 Model description

In the collisional radiative model (CRM), the atomic state distribution function is calculated by
equating the rates of all processes leading to increase or decrease of the population, of every state
in the system. This leads to a system of first order linear ordinary differential equations. In general
this reads [10, 16]:

dnp
dt

+∇ · np ~w = Sp, (4.1)

where np is the density of level p, ~w is the drift velocity and the source term Sp is the net of all
production and destruction processes for level p. It can be written as:

Sp = Pp − npDp, (4.2)

where Pp is the production term and Dp the so-called destruction factor for level p. The pro-
cesses that make up these terms will be discussed in the following sections. First, a number of
simplifications is made:

• It is assumed that the processes that (de)populate the levels are fast with respect to the
characteristic transport time. Thus, ∇ · np ~w = 0 for all levels.

• Similarly, it is assumed the time scale for relaxation to equilibrium between the excited states
and the ground stage is very much shorter than the time scale for equilibration of the neutral
and ionized stage(s). The validity of this approximation can be verified by comparing the
order of magnitude of the rates of ionization/recombination and those of (de)excitation and
spontaneous emission. In the solution method, the (calcium) ion density n+ and the ground
state density n1 are taken as an independent (constant) input parameter. In other words,
the ground states of the atom and ion act as large particle reservoirs, that populate the
excited states ‘instantaneously’. This is called the quasi steady state solution (QSSS) [16].

• Production and destruction due to heavy particle interactions or molecular processes are not
considered in detail. Instead, a single collisional quenching rate KQ

p,1 [s−1] (scaled with the
statistical weight) for all levels will be introduced. Collisional quenching is assumed to cause
non-radiative transitions to the ground state only. All other production and destruction
processes are due to electron collisions and radiative decay only.

• For population calculations, absorption is only considered for dipole allowed transitions with
the ground state as the lower state. In other words, the plasma is assumed to be optically thin
for all transitions, except for the resonance line at 422.7 nm, which is known to be optically
thick. For the latter, the effect of absorption on the occupations is approximated by means
of a population escape factor ΘP < 1, that effectively decreases the decay probability from
Aq1 to Θq1

P Aq1. For all other transitions, Θqp
P = 1 is used.

• Stimulated emission and photo-ionization are ignored.

• The number of states in the model is limited to the first 18 multiplets. Transitions to and
from all higher lying states are ignored. This approach is only justified if the production
from (and destruction to) states above the highest, so-called cut-off level, is small. This need
not always be the case as three-particle recombination rates are highest for the states closest
to the continuum, which may cause a significant population flow from the highest excited
states. This effect of levels above the cut-off level on the populations can be included by
means of a cut-off procedure, as discussed in e.g. in [16]. Here, no such procedure is used,
under the assumption that the contribution from the atomic ground state (direct or indirect,
via other excited states) or the direct contribution from the ion stage, to the population of
excited states are dominant, for the states that are used for line intensity measurements
(i.e. the lower states). The collisional quenching by neutrals at atmospheric pressure may
be favorable for this assumption. As the atomic radius is roughly inversely proportional to
the ionization energy (equation (2.70)) it is expected that the quenching rate increases with
state energy and effectively depopulates the highest states.
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The following processes are taken into account:

(a) Spontaneous emission between all levels for transitions with known A values

(b) Absorption, for optically allowed transitions from the ground state

(c) Electron impact (de)excitation (to) from the ground state

(d) Collisional (de)excitation from excited states to other excited states

(e) Electron-impact ionization

(f) Three-particle recombination

(g) Radiative recombination.

Processes (c) and (d) are mentioned separately because a different set of rate coefficients is used.
As stated before, ionization and recombination are taken into account for the calculation of the
excited state populations but not for determining the ionization balance.

Including the processes mentioned above, the production term is given by:

Pp = ne
∑
q 6=p

nqKqp︸ ︷︷ ︸
(de)exc to

+
∑
q>p

nqΘ
qp
P Aqp︸ ︷︷ ︸

cascade

+ n2
en+K

tpr
+p︸ ︷︷ ︸

three part. rec.

+nen+K
rr
+p︸ ︷︷ ︸

rad. rec.

(4.3)

and the destruction factor is:

Dp = ne

∑
q 6=p

Kpq︸ ︷︷ ︸
(de)exc. from

+
∑
q<p

Θpq
P Apq︸ ︷︷ ︸

sp. emission

+ neK
ion
p+︸ ︷︷ ︸

coll. ion.

+ KQ
p,1︸︷︷︸

quenching

. (4.4)

The term “cascade” is used to indicate production due to radiative decay from higher states [16].
The sources of the various rate coefficients will be discussed in the next section, but first the
solution method will be explained.

As mentioned, the model is limited to the first 18 multiplets. This includes 36 substates and
48 radiative transitions. The multiplet substates are grouped together and treated as a single level
with a (weighed) average energy Eavg

p =
∑
J(gp,J/gp,tot)Ep,J in the calculation of the population

densities. Since the substate energies are close together, the occupation of the individual substates
is taken to be proportional to their statistical weight:

np,J =
gJ
gp,tot

np. (4.5)

Since the emission coefficients Aqp,J are also given for the individual substates, averaged values
must be calculated here, too:

Aqp =
∑
J

gq,J
gq,tot

Aqp,J . (4.6)

In general, the population escape factor should be replaced by a weighed average value as well.
But as Θpq

P Apq = 1 for all but the (singlet) resonance line, this is not important. A list of of the
first 11 states included in the model, and all radiative transitions between them, can be found in
table 4.1.
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4.2.1 Solution method

With all the assumptions applied, equation (4.1) can be simply written as:

Pp − npDp = 0 (for all p), (4.7)

The production and destruction term contain linear terms in all nq, as well as in the ground and
ion stage density n1 and n+. The latter two will serve as input parameters to the model, so they
are taken out of the system of equations. For this, the vector notation ~nexc = (n2, n3, . . . n18)T is
introduced to write the system as (also see [16] and the references therein):

M~nexc + ~Π1 + ~Π+ = 0 (4.8)

where the matrix M includes coefficients for all transitions to and from other excited states:

Mpq =


neKqp + ΘpqA

qp
P (p < q)

−Dp = −ne

∑
q 6=pKpq −

∑
q<p Θpq

P Apq − neK
ion
p+ −K

Q
p,1 (p = q)

neKqp (p > q)
. (4.9)

and the vectors ~Π1 and ~Π+ represent the production from the ground- and ion stage respectively:

~Π1 = n1ne
∑
16=p

K1p (4.10)

~Π+ = n+(n2
eK

tpr
+p + neK

rr
+p) (4.11)

The solution is then simply given by:

~nexc = M−1(−~Π1 − ~Π+). (4.12)

Recalling the substates are grouped together in the population calculation, it holds: nq =∑
J gq,Jnq,J . Thus, the number of photons emitted per unit of time and volume for a transition

at wavelength λqp,JJ ′ = hc/(Eq,J − Ep,J′) is finally given by:

Iqp,JJ ′ =
gq,J
gq,tot

Θqp,JJ ′

L Aqp,JJ ′nq, (4.13)

where Θqp,JJ ′

L is an optional line-escape factor, defined by equation (2.59), that can be used to
include the effect of optical thickness on the measured intensity.

Analogue to equation (2.133), the total intensity is given by

Iδ(λ) =
∑

q,p,J,J ′

Iqp,JJ ′δλλqp,JJ′ with δλλqp,JJ′ =
{

1 if λ = λqp,JJ ′

0 if λ 6= λqp,JJ ′
(4.14)

where λqp,JJ ′ represent the transition wavelengths. Including pseudo-Voigt the line profile PApp(λ)
due to the apparatus response, the intensity is finally given by:

Iλ(λ) = Iδ(λ) ∗ PApp(λ), (4.15)

with ∗ the convolution operator. The complete solution method, including the calculation of the
rate coefficients, was implemented in IDL.
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Table 4.1: List of the first 11 multiplets included in the model and radiative transitions (from
q, J to p, J ′) between them. The top line for each index contains the properties of this multiplet.
The following lines (if any) contain the parameters of the radiative transitions having one of the
substates of this multiplet as its upper level.

index state term Eavg
q λqp,JJ ′ Jq J ′p gq,J gp,J′ gq,tot Aqp,JJ ′ to

[eV] [nm] [s−1] index
1 4s2 1Se 0 - 0 - 1 - 1 - -
2 4s4p 3Po 1.892 - 0,1,2 - 1,3,5 - 9 - 1

657.278 1 0 3 1 - 2.60E+03 1
3 4s3d 3De 2.524 - 1,2,3 - 3,5,7 - 15 - -
4 4s3d 1De 2.709 - 2 - 5 - 5 - -
5 4s4p 1Po 2.932 - 1 - 3 - 3 - 1

422.673 1 0 3 1 - 2.18E+08 1
6 4s5s 3Se 3.91 - 1 - 3 - 3 - 2

610.272 1 0 3 1 - 9.60E+06 2
612.222 1 1 3 3 - 2.87E+07 2
616.217 1 2 3 5 - 4.77E+07 2

7 4s5s 1Se 4.131 - 0 - 1 - 1 - -
8 3d4p 3Fo 4.442 - 2,3,4 - 5,7,9 - 21 - 3

649.378 2 1 5 3 - 4.40E+07 3
649.965 2 2 5 5 - 8.10E+06 3
650.885 2 3 5 7 - 2.40E+05 3
646.257 3 2 7 5 - 4.70E+07 3
647.166 3 3 7 7 - 5.90E+06 3
643.907 4 3 9 7 - 5.30E+07 3

9 3d4p 1Do 4.443 - 2 - 5 - 5 - 3
644.981 2 1 5 3 - 9.00E+06 3
645.56 2 2 5 5 - 1.40E+06 3

10 4s5p 3Po 4.533 - 0,1,2 - 1,2,5 - 9 - 3
616.644 0 1 1 3 - 2.20E+07 3
616.376 1 1 3 3 - 5.60E+06 3
616.906 1 2 3 5 - 1.70E+07 3
615.602 2 1 5 3 - 2.30E+05 3
616.129 2 2 5 5 - 3.30E+06 3
616.956 2 3 5 7 - 1.90E+07 3

11 4s5p 1Po 4.554 - 1 - 3 - 3 - 1,4
272.165 1 0 3 1 - 2.70E+05 1
671.769 1 2 3 5 - 1.20E+07 4
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4.3 CR processes and rate coefficients

4.3.1 Spontaneous emission and absorption

Experimentally determined spontaneous emission coefficients required for process (a) can easily
be obtained from NIST [15], be it with sometimes considerable error margin (e.g. 60%) especially
for the weaker transitions.

Escape factors

The effect of absorption on population is included by means of a population escape factor for the
resonance line. The population escape factor for this line depends only on the ground state density
n1 and the line width. Estimates for different n1 are shown in figure 4.2 (a). The ground state
density is estimated to be in the order of 4 · 1020 m−3, from section 3.4.2. Using the assumptions
given in figure 4.2, this results in a population escape factor ΘP ≈ 0.001 for the resonance line at
422.7 nm. This value was used for all presented results. Also shown in this figure is the population
escape factor for a line at 612.3 nm, one of the stronger transitions towards the first excited state.
At n1 = 1020 m−3 or higher, and Te & 3000 K, this escape factor is also considerably below 1 (for
LTE population). Nevertheless, population escape factors for transitions between excited states
are not included in the model. This may be partly justified by the fact that when Te is high (in
the initial phase), so is ne. This reduces ΘP, due to Stark broadening, which is not considered in
the calculation of figure 4.2 (a).

As mentioned, optional line-escape factors, defined by equation (2.59), were added to the model
to include the effect of optical thickness on the measured intensity. For the evaluation of the line
escape factors in the model, the line width of every spectral line is required. For this, a Lorentz
width determined by Van der Waals broadening was assumed initially. The widths wL = wvdw are
calculated as before, using equations (2.69)–(2.71) and assuming H2O perturbers at a temperature
of 2000 K and atmospheric pressure. The obtained values of wvdw (FWHM) are all in the range of
2 to 15 pm. For the resonance line and the line at 612.3 nm resulting ΘL are shown in figure 4.2 (b).
It appeared that for early times (high ne), these assumptions results in a severe overestimating of
the optical thickness, as Stark broadening is important. Therefore a simple correction factor was
applied to the line widths as follows:

wL = wvdw(1 + 1
ne

1021 m−3
). (4.16)

This estimate is based on the experience that lines with the largest Van der Waals width, are
usually also the ones that are most sensitive to Stark broadening. In a more complete model, a
better estimate should be used.

4.3.2 Electron impact (de)excitation from the ground state

For process (b), accurate rate coefficients Kexc
pq to the first 10 excited states (multiplets p = 2 . . . 11

in figure 4.1) are available in literature. These are the results of quantum mechanical R-matrix
calculations, conducted for applications in astronomy. In [57] electron impact excitation cross
sections are listed for transitions from ground to the first 10 excited states for incident electron
energies < 3 eV. Thermally averaged values are calculated by integrating over a Maxwellian
velocity distribution and tabulated in terms of an effective collision strength Υij for temperatures
in the range of 1000 to 10,000 K (in steps of 1000 K). The excitation rate coefficient is calculated
from Υpq using equation (2.23), with evaluated constants:

Kpq = Kexc
pq = 8.6291 · 10−12 Υpq

gq
√
Te

exp(−Epq/kBTe) [m3s−1]. (4.17)

For the resonance transition 4s2–4s4p 1P (one of the rare cases where good experimental data exist)
these values are in good agreement with experimentally derived rates [58, 59] and an estimated
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(a) Population escape factors ΘP(r). Parameter used: r=5 cm, wL = wvdw = 2.4 pm and wG = wD = 2.1 pm for
Ca I 422.7 nm and wL = wvdw = 8.7 pm and wG = wD = 3.1 pm for Ca I 616.2 nm.

2000 3000 4000 5000 6000 7000 8000

1.00

0.50

0.20

0.10

0.05

0.02

Te @KD

Q
L

616.2 nm, n1=1020m-3

616.2 nm, n1=1019m-3

616.2 nm, n1=1018m-3

422.7 nm, n1=1020m-3

422.7 nm, n1=1019m-3

422.7 nm, n1=1018m-3

(b) Line escape factors ΘL(d). Parameters used: d = 10 cm and the line widths as above.

Figure 4.2: Population escape factor and wavelength integrated line-escape factor and at LTE
population for calcium lines at 422.7 nm and 616.2 nm, at various (uniform) ground state densities
n1. The escape factors have bee calculated using equations 2.66 and 2.60 respectively. A uniform
emission coefficient is assumed. The escape factors have been evaluated using numeric integration
of a pseudo-Voigt profile with widths wL and wG as indicated near each figure (estimates of Van
der Waals and Doppler broadening respectively at a gas temperature of 2000 K). Note the different
ranges on the vertical axes.
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accuracy of 5% for the transitions used in this model is reported [57]. For temperatures not listed
in the table, linear interpolation of the effective collision strengths is used.

Electron impact deexcitation is the reverse process of excitation and the rate coefficients Kdeexc
qp

can be easily calculated using detailed balancing, equation (2.40).

4.3.3 Electron impact (de)excitation between excited states

The three lowest excited states in the calcium system are metastables, that can reach considerable
occupations even at relatively low electron temperature and density. The cross section for ‘through-
excitation’ from the metastables is larger than that for excitation from ground, because of the
smaller energy difference. Though not directly measurable, their occupation thus influences that
of the higher lying states with radiative transitions of interest.

So, the (de)excitation rate coefficients between excited states are an essential ingredient of the
model. Application of (2.13) to transitions from these and other low-lying states in the calcium
system is not expected to deliver accurate results, especially for the optically forbidden transitions
where no oscillator strength data is available.

Another source of effective collision strengths was found with the help of K. Behringer [private
communication] in the ADAS (Atomic Data and Analysis System) Superstructure Code [60]. The
accuracy in the rate coefficients can not be expected to be better than a factor two for optically
allowed or an order of magnitude for the optically forbidden transitions, but values are obtained
for transitions between nearly all levels, in a large part of the atomic system. Again, the data is
available in tables of effective collision strengths. The same source of collision strengths is also
used for transitions from the ground state to the states p = 12 . . . 18, where R-matrix values are
also not available.

4.3.4 Electron impact ionization

Ionization rate coefficients K ion
p,+ are calculated using equation (2.24). Ionization is most important

for the highest states, due to the decrease in χp. The accuracy of (2.24) is best for these higher
levels where the system is most hydrogen-like.

However, even for the highest state considered in the model (p = 18) the ionization rate
coefficient is approximately two orders of magnitude smaller than the sum of the rate coefficients
for deexcitation to lower states Kdeexc

p,tot in the temperature range considered. This is shown in
figure 4.3, which also includes the spontaneous emission rate for level 18. The conclusion is that,
although it is included for completeness, the effect of ionization on the occupation distribution is
small in the expected temperature range.
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Figure 4.3: Comparison of ionization,
deexcitation and spontaneous emission
rates (per excited atom) from the high-
est level considered in the model (p=18)
at different electron densities. For
ne � 10 20 m−3 spontaneous emission is
the dominant depopulating process for
this level, for ne � 10 20 m−3 this is
electron impact deexcitation.
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4.3.5 Three-particle recombination

Three-particle recombination rate coefficients are calculated from the ionization rate coefficients
using equation (2.42). The total rate (per atom) at which recombination occurs is n+n

2
eK+p,

where n+ ≈ n+,0 is the ion ground state density. The quadratic dependence on ne ensures that in
the limit of high ne this process will be the dominant recombination process (for atomic ions). The
rate rapidly decreases with increasing χp so the effect will be noticeable first (and only) for the
highest states. Due to the fact that the deexcitation rate is higher than the ionization rate, even
for the highest level considered here, Saha-equilibrium (or pLSE) is never reached in the model.

4.3.6 Radiative recombination

Figure 2.3 suggests that radiative recombination (or ‘capture’) may be more important than three-
particle recombination for ne < 1022 and Te > 2000 K. Therefore, accurate rate coefficients Krr

+p

for this process were sought. The values used are those tabulated in literature [20], using the
appropriate values np and lp for each state. The tabulation uses a scaled temperature Θ = Te/Z

2
eff

and listed are values of Krr
+,nl/Zeff. Here, Zeff is the effective ion charge which is approximated by:

Zeff =
(
Z ′ −

[
ZC − ZI

2

] [
η′ − 1

η′ + 1 + 3l

])
exp(−0.05[l − 1]2), (4.18)

where

Z ′ =
ZC + ZI

2
and η′ =

Z ′

k̃e

. (4.19)

ZC = 20 is the core charge, ZI = 1 is the ion charge and k̃e is the electron momentum in Rydberg
units: k̃e =

√
Ekin

e /Ry, with Ekin
e /Ry the electron kinetic energy, also in Rydberg, which is

approximated by Ekin
e /Ry ≈ 1.5kBTe/Ry (the expression for Zeff is only mildly dependent on

k̃e [20]). Values of Zeff vary between 1.5 and 2.5 and are highest for the lowest states and at
high temperature (in which cases the shielding of the core is least effective). To obtain values at
temperatures not listed in the table, linear interpolation is used.

The obtained rate coefficients Krr
+,nl are distributed over the individual states (singlet and

triplet) according to their statistical weight. This gives: Krr
+p = 3

4K
rr
+,nl for triplet and Krr

+p =
1
4K

rr
+,nl for singlet states, except for S-terms in which case Krr

+p = 1
2K

rr
+,nl for both singlet and

triplet. For states with more than one electron outside the 4s state (indices p = 8, 9, 12, 15, 15, 16, 17
and 18 in figure 4.1) the radiative recombination coefficient was set to zero since it is assumed that
these can not be accessed by capture of an electron by a ground state ion (with a single electron
in the 4s state).

Figure 4.4: Comparison of the rates
(per free electron) for three-particle re-
combination and for radiative recombina-
tion at various electron densities (ni =
ne is assumed) to level p = 4 . Three-
particle recombination becomes the domi-
nant recombination process with increas-
ing ne first at the highest levels. Also in-
dicated is the rate of excitation from the
ground state at a ground state density of
10 22 m−3 (dotted lines). For the lower
levels, this is usually the most important
populating process. 2000 4000 6000 8000
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Figure 4.5: Same as figure 4.4, but now
for the higher level p = 14 . The radiative
recombination rates are about the same,
but the three-particle recombination has
increased.

Figures 4.4 and 4.5 show a comparison of the radiative recombination and three-particle recom-
bination rates for both a state that is low in the system (p = 4) and one that is higher (p = 14),
in the expected temperature range at different electron densities (ne = n+ is assumed here). Also
included are the rates for excitation from the ground state to these levels. It is clear that for the
lower level, population from the ground state dominates both recombination processes, except for
very high electron densities and low temperatures. The rate for three-particle recombination is
small since it decreases rapidly with the ionization potential χp.

For the higher level, figure 4.5, radiative recombination may become an important populating
process in case ne < 1021 m−3. For higher electron densities, three-particle recombination is
dominant, because of its n2

e dependence. It is important to notice that (de)excitation from other
excited states, which is not included in this figure (because it depends on the populations) is often
more important than direct excitation from the ground state. Therefore, and because at lower ne

the ion density is usually lower as well, it is estimated that the effect of radiative recombination
is small in most cases.

4.4 Input parameters

As discussed in the previous section, the model relies on a set of atomic data such as energy levels,
rate coefficients, etc. Apart from these ‘fixed’ quantities or functions, the basic input parameters,
that depend on the plasma conditions, are the atomic and ion ground state densities n1 and n+

as well as the electron density ne and temperature Te. For n1, values between 1020 m−3 and
1021 m−3 are used, depending on the experimental conditions.

A calculation of the ionization balance, i.e. a relation between n1, n+, ne and Te is not part
of the model. However, a proportionality between the electron and ion densities is assumed:
n+ = xCa+ne. In most cases xCa+ = 1 is assumed.

Additionally, a collisional quenching rate is introduced, as mentioned. The number of non-
radiative transitions to the ground state due to quenching is calculated as:

KQ
q,1 [s−1] = gq,totkQ (4.20)

with kQ = 3.3·105 s−1 for all multiplets, which will be called the quenching rate from now on. This
value is based on a rate KQ

2,1 = 3 · 106 s−1 (g2,tot = 9) for quenching of the 4s4p 3Po metastable
state by N2, as reported in [61], assuming atmospheric pressure and Tg ≈ 2000 K. The quenching
rate it is most relevant for the metastable states, of which the spontaneous decay rate is smaller
than kQ.

Depending on whether optical thickness is considered, the plasma length along the line of sight
lp enter ins the expression for the line escape factors ΘL (see section 2.5.1).
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4.5 Results

The model has developed from simple to relatively complex and to present every aspect of the
final product here is impossible. The number of parameter in the model allows for an endless
amount of variations. At the same time, there are probably not enough parameters to accurately
model the plasmoids emission during every stage of its lifetime, so no perfect agreement between
measurement and simulation should be expected.

The first results presented show the working of the model and demonstrate the influence of the
various parameters on the atomic state distribution function (ASDF). After this, a comparison
between measured and simulated line intensity ratios is made. At the end of this section, measured
and simulated spectra are compared.

4.5.1 Population

Figure 4.6: Ca I excited state
density divided by statistical weight
as a function of the state energy
(‘Boltzmann plot’) at various elec-
tron densities. Te = 4000 K and
the quenching rate is kept constant
at kQ = 3 .3 · 10 5 s−1 for all levels.
The red solid line is the distribution
calculated from a simple Boltzmann
equilibrium with the ground state:
np/n1 = gp/g1 exp(Ep/kBTe). The
dashed lines indicate the population
in Saha equilibrium with the ion
stage, according to equation (2.34).
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Figure 4.7: Like figure 4.6, but for
various electron temperatures. The
fixed parameters are shown in the
lower left corner.
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The effect of ne, Te and kQ on the calculated ASDF is shown by means of a set of Boltzmann
plots, in which the excited state density (relative to the ground state density), divided by the total
statistical weight gq,tot (see table 4.1), is plotted as a function of the state energy.
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Figure 4.8: Like figure 4.6, but for
various values of the (collisional)
quenching rate kQ. The effect of
quenching becomes noticeable in the
occupation distribution only above
a certain rate, at which quench-
ing starts to dominate over electron
impact deexcitation and/or sponta-
neous emission.

In figure 4.6 this is shown for various values of the electron density, at a fixed electron tem-
peratures Te = 4000 K, quenching rate kQ = 3.3 · 105 s−1 and ground state density 1 · 1021 m−3.
These fixed parameters are also shown in the box in the left hand corner of the figure and will
not be mentioned for following results. The data points connected by the dotted lines are the
output of the CRM, including all processes described in section 4.3. The ion ground state density
is depending on ne by n+ = xCa+ne, where xCa+ = 1 is used, as indicated in the figure.

The solid red line is the so-called ‘Boltzmann line’ which indicates the population in Boltzmann
equilibrium with the ground state, calculated using equation (2.32). The dashed lines are the
‘Saha lines’ for ne = 1021 m−3 (green) and ne = 1021 m−3 (yellow), giving the population for
Saha-equilibrium with the ion ground state, equation (2.34).

Starting at a low value, an increasing ne first leads to the ASDF approaching the Boltzmann
line. Significant deviations from LTE can be seen below ne = 1020 m−3, mainly due to the different
(de)excitation cross sections and radiative lifetimes.

When ne (and thus n+) is comparable to the ground state density, the contribution of the ion
stage becomes important for the higher levels, and their population can exceed the Boltzmann
population. Ultimately the ASDF will approach the Saha line, but this is not reached for the
parameters used here.

Figures 4.7 and 4.8 show Boltzmann plots using various values of Te and kQ respectively. As
expected, a higher Te leads to a higher population of excited sates in general. In this figure,
ne = 1021 m−3 is used and the ion stage contribution is relatively unimportant, except for very
low temperatures. The temperature changes the slope of the Boltzmann and Saha lines (not shown
here) and lowers the Saha line (at constant ion density, due to the T−3/2

e dependence in the Saha
equation). The effect of quenching (figure 4.8) becomes noticeable in the distribution only above
a certain rate, at which quenching starts to dominate over electron impact deexcitation and/or
spontaneous emission.

4.5.2 Line intensity ratios

For comparing with experiments (as well as for testing the model), integrated line intensity ratios
are a convenient tool. In general, the ratios depend not only on ne and Te, but also on the
quenching rate kQ. This is demonstrated in figure 4.9, for at pair of lines at 616.2 nm and at
643.9 nm, which are lines that are relatively sensitive to changes in the electron temperature
and density, and have sufficient intensity for measurements. This figure shows the ratio of the
wavelength integrated intensity as a function of ne and Te, without quenching (left) and with a
quenching rate kQ = 3.3 · 105 s−1. It is clear that quenching has an important effect on the line
ratio in the displayed parameter ranges. Only at high electron densities ne > 1022 m−3 the ratio

78



CHAPTER 4 A CRM for calcium 4.5. Results

is unaffected by the collisional quenching. It should be noted that line escape factors were not
used, i.e. the transitions are assumed to be optically thin.

Figure 4.9: Temperature and density sensitive line ratio I(λ=616.2 nm)/I(λ=643.9 nm) ∝ n6/n8

with (right) and without quenching (n1 = 1 .0 · 10 21 s−1 , xCa+ = 1 .0 ). Only at high electron
densities ne > 10 22 m−3 the ratio is unaffected by the quenching at a rate of 3 .3 · 10 5 s−1 . An
optically thin plasma is assumed (ΘL = 1 ).

A comparison with measurements is made in figure 4.10, where again ΘL = 1 is used, as well
as a quenching rate of kQ = 8 · 105 s−1. The figure contains the calculated line intensity ratio
for the previous line pair (a), as well as for 616.2 nm and 527.0 nm (b). The measured data is
determined from spectra recorded using the échelle (top view, r = 0, at various times) for a series
of shots with 0.4 g/l CaCl2 in tap water. For the first four data points, the intensity was measured
from the broadening of Hβ in the same spectra (see figure 3.23, so the electron temperature can
be directly read from the graph. It decreases from just over Te = 5500 K (not shown) at t = 5 ms
to 4500 K at t = 45 ms, determined from the 616.2 nm / 643.9 nm line pair (a) and about 500 K
higher from line pair (b). At later times, the measured line ratios are consistent with an electron
electron density decreasing at a rate of roughly one decade per 60 ms. The electron temperature
is also found to decrease. At t = 155 ms, Te is estimated to be close to 3000 K, at later times the
ratios are relatively insensitive to the temperature. It should be noted that the consistency of the
line ratios depends on the value assumed for the quenching rate. To get the best agreement, the
value of kQ was adjusted to 8 ·105 s−1, as compared to 3.3 ·105 s−1 used for other results presented
here. For completeness, the same comparison is shown using kQ = 3.3 · 105 s−1 in appendix E.

It should be mentioned that the assumption xCa+ = 1 is likely not realistic initially. At temper-
atures above 5000 K, other species (such as atomic hydrogen) will reach a considerable ionization
degree and are expected to provide the bulk of the electrons [Fussmann, private communication].

Nevertheless, the same agreement between measurement and simulation is not obtained when
the ion-stage contribution (i.e. three-particle- and radiative recombination) to the ASDF is ne-
glected. Line ratios obtained in the latter case are shown in figure 4.11, using the same set of
parameters as in figure 4.10.

As stated before, line escape factors were were not used for the calculation of the line ratios
so far. When values of ΘL, calculated using lp = 8 cm and the estimated line widths according
to equation (4.16) are included, the ratios become somewhat different, as is visible in figure 4.12.
The line ratios are higher at intermediate ne and high Te, due to stronger absorption of the line
at 616.2 nm (also see figure caption). In the limit of high ne an increase of the line-ratio occurs
that is a consequence of the assumption xCa+ = 1. The lower state of the lines at 527.0 nm and
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Figure 4.10: This graph shows the calculated line ratios of two line pairs, with a relatively
large difference in upper level energy (see the top-left legend and the Grotrian diagram in figure
4.1). As a consequence, the line ratios are relatively temperature sensitive. Also included in the
graphs are measured line ratios, determined from spectra recorded using the échelle spectrometer
(top view) at different times t after triggering the discharge (indicated by the text labels near
the data points, the exposure time is between 1 and 6 ms.). For the first four points (squares)
the density has been measured, using Stark broadening of the Hβ line in the same spectra. The
horizontal error bars indicate the measurement error in the Stark broadening measurements. For
the other shots (triangles) the density could not be measured and the horizontal placement is
estimated from the calculated and measured line ratios. The measured points clearly indicate that
quenching is important (compare with figure 4.9). Although overall agreement is good, some small
inconsistencies can be seen between the temperatures determined using ratios labeled (a) and (b).
Line escape factors were not used and the other simulation parameter are shown in the top-left
corner.
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Figure 4.11: Same line ratio as in
figure 4.10, but with no contribution
from the ion stage to the ASDF. Ra-
tio (b) is higher by a factor 1 to 3,
with respect to figure 4.10. This can
be understood by the fact that the
upper level of the line at 527.0 nm
(q = 16 ) has a higher energy than
that of the line at 643.9 nm (q = 8 ).
The ion stage gives the highest con-
tribution to the population of the
states that are closest to the contin-
uum (also see the Boltzmann plots).
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643.9 nm (p = 3) shows an increase of its population relative to p = 2 (the lower state of the line
at 616.2 nm) due to recombination. That such an increase is not shown in the measurements is
likely explained by xCa+ � 1 initially, as was discussed before. Also, the line widths due to Stark
broadening, estimated using equation (4.16) may be too low, resulting in overestimating of the
optical thickness at high ne.

Figure 4.12: Same line ratio as
in figure 4.10, but with line es-
cape factors included. The lines at
527.0 nm and 643.9 nm share the
same lower state (p = 3 ) whereas
616.2 is a transition to the lower
state p = 2 . At most (intermediate)
values of ne and Te, the line ratios
decrease, due to the larger popula-
tion of the lower state p = 2 . In
the limit of low density and tem-
perature, the effect of absorption be-
comes negligible, whereas for low Te

and high density (ne & 10 21 m−3 ),
the line ratios increase as the state
with p = 3 is more strongly popu-
lated due to recombination. The lat-
ter is a consequence of the assump-
tion ne = nCa+ and most likely not
realistic for the plasmoid in it’s ini-
tial phase.
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4.5.3 Measured and simulated spectra

Graphs containing (parts of) simulated and measured spectra are shown in figures 4.13, 4.14, as
well as in appendix E, in figures E.2 to E.5. The spectral lines included in the model are indicated
by their wavelengths above the spectra. Simulation parameters are shown in the box at the top-left
corner of the page and measurement parameters in the legends. The initially estimated value for
the quenching rate kQ = 3.3 ·105 s−1 is used. It is important to note that the measured intensities
(using the échelle spectrometer) are absolute; giving additional information, as compared to the
line ratios.

Line broadening in the simulated spectra is due to the apparatus profile of the échelle spec-
trometer, which is approximated by a pseudo-Voigt profile with wV = λ0/18, 000 and wG = 4wL,
where λ0 is the transition wavelength.

Line escape factors ΘL are used, calculated using optical path length lp as indicated in each
legend and (Lorentz) line widths according to equation (4.16). Figures 4.13, 4.14 also include the
simulation results obtained when ΘL = 1 is used for all transitions. Optical thickness is important
for most transitions for t . 100 ms.

In the initial phase, e.g. at t = 75 ms, r = 0 in figure 4.13 or at t = 55 ms, r = 0 (figure E.2)
or r = 3 (figure E.3), the signal-to-noise ratios are high and the agreement of measurement and
simulation is generally very good, i.e. within 50 % for nearly all lines. In some cases (e.g. for
the line at 430.3 nm at t = 55 ms), a deviation of line width due to optical thickness (only line-
integrated escape factors are included) or Stark broadening can be seen, and as a consequence the
simulated line is too high.

At later times, measurement and simulation are less consistent and only the stronger lines can
be matched unambiguously to those in the measured spectra. Finally, the electron densities, tem-
peratures and ground state densities obtained from compared spectra are summarized in table 4.2.
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measurement simulation

t r [cm] n1 [m−3] ne [m−3] Te [K] lp [cm]
55 0 1.5 · 1021 5.0 · 1021 4500 5
55 3 1.5 · 1021 4.0 · 1021 3600 5
75 0 1.1 · 1021 2.0 · 1021 3900 8
95 0 5 · 1020 2.5 · 1020 3100 10
155 0 5 · 1020 1.6 · 1020 2500 12
145 3 5 · 1020 1.0 · 1020 2400 11

Table 4.2: Simulation parame-
ters used for the simulated spec-
tra, shown in figures 4.13, 4.14,
and E.2–E.5.

4.6 Discussion and conclusions

The results obtained for ne and Te agree well with those previously obtained in section 3.4.2.
Particularly the electron temperatures at r = 0 for t . 75 ms are consistent with those determined
from the Cu I lines and LTE assumption in figure 3.20. Also the electron temperature of 3600 K
at r = 3 cm and t = 55 ms is the same as in figure 3.21.

As opposed to the Cu I LTE line-ratios in figure 3.21, the simulated Ca I spectra indicate a
further decrease of Te for t > 75 ms, down to about 2500 K at t = 155 ms, in the autonomous
phase. This confirms that the values obtained from the Cu I lines are indeed incorrect at later
times. Is must be noted however, that the values in table 4.2 for t = 95 ms, 145 ms and 155 ms
have a considerable error margins, i.e. about 50 % for the densities and 500 K for the temperatures
is estimated.

The estimated electron densities obtained from the line ratios in figure 4.10 are higher initially
and decrease faster than those in table 4.2. It is important to note however, that different sets of
measurement data are used: as mentioned, the data in figure 4.10 uses 0.4 g/l CaCl2, whereas the
comparison of measured and simulated spectra is done using 0.2 g/l HCl in tap water. The reason
that a different data set is used for comparing the spectra, is that a lower light amplification (MCP
voltage) was used for the experiments with added CaCl2, to prevent overexposure of the strong
calcium resonance lines. As a consequence, many of the weaker lines can not be resolved well.

Overall, the values of ne obtained from the simulated spectra in the initial phase are consistent
within an order of magnitude with those measured from Stark broadening, in figure 3.23. A note-
worthy result of both the line-ratios in figure 4.10 and of the spectrum simulations in figures 4.14
and E.5, is that ne & 1020 at t ≈ 150 ms, so in the autonomous phase.

In contrast to the Ca I resonance line measurements of section 3.4.2, the results of the collisional
radiative model do not indicate that the ground state density decreases faster than expected from
the plasmoids expansion. Rather, the densities in the order of 1020 m−3 are needed to achieve
the measured intensities at reasonable values for ne and reproduce the measured relative line
intensities (insofar these could be measured). It is likely that the calcium density at t = 145 ms
in table 3.2 is incorrect, due to wrongfully assuming an LTE population of the resonance state in
that section.
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Figure 4.13: Measured and simulated calcium emission spectrum. The measured spectrum was
recorded at r = 0 and t=75 ms (top view). The simulation parameters are shown in the top left
corner. The measured and simulated spectrum fit very well (also for transitions not shown here).
Also shown is the simulation results when an optically thin plasma is assumed (blue dots).
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Figure 4.14: Measured and simulated calcium emission spectrum. The measured spectrum was
recorded away from the electrode at r = 3 and t=145 ms (top view). Also shown is the simulation
result when an optically thin plasma is assumed (blue dots). Optical thickness does not play a role
here.
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Chapter 5

Molecules

This chapter consists of three smaller parts, each dealing with molecular processes in a different
way. The first part studies the dissociation of water, using the theory of chemical equilibrium
and relates this to thermodynamic properties of the plasmoid via a simple model. The second
section describes spectroscopic measurements on molecular bands and makes comparison with
other experiments in literature. Also the vibrational distribution of OH is estimated from simula-
tions. The part section deals with the measurements of the rotational temperature (and rotational
distribution) of the OH band with its head at 306.4 nm.

5.1 Chemical composition and thermodynamics

The model presented here consists of two parts. The first part calculates the chemical composition
of (partly dissociated) water as a function of temperature. The second part uses the outcomes
of the first part, as well as some of the calorimetry results, in a simple model that calculates the
enthalpy and some other thermodynamic properties of the plasmoid.

5.1.1 Chemical equilibrium model

When gaseous water is heated to a temperature T > 1000 K it will eventually (partly) dissociate.
The degree of dissociation depends on T and can be calculated using the theory of chemical
equilibrium introduced in section 2.6.1.

The number of possible reactions involving H2O and its dissociation products is very large. An
extensive list, including temperature dependent rate coefficients for many of these, can be found
in [44]. Here the situation is greatly simplified and only the following reactions are considered:

H2O 
 OH + H (5.1)
OH 
 O + H (5.2)
2H 
 H2 (5.3)
2O 
 O2. (5.4)

The equilibrium equations are defined as in equation (2.124):

Kr,i =
(
T

T0

)fri
exp

[
−Gri + (T − T0) (friR− Sri)

RT

]
=(

T

T0

)fri
exp

[
−Gri + (T − T0) (friR− (Hri −Gr1)/T0)

RT

]
for (1 ≤ i ≤ 4) (5.5)
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with the reaction constants and the “reaction degrees of freedom” according to equations (2.109)
and (2.112) respectively:

Kr1 =
xOHxH

xH2O
, fr1 = 2 (5.6)

Kr2 =
xOxH

xOH
, fr2 = 3/2 (5.7)

Kr3 =
xO2

(xO) 2
, fr3 = −3/2 (5.8)

Kr4 =
xH2

(xH) 2
, fr4 = −3/2. (5.9)

The concentrations and the mole fractions are:

nH2O = 1− ξr1 , xH2O = nH2O/ntot

nOH = ξr1 − ξr2 , xOH = nOH/ntot

nH = ξr1 + ξr2 − 2ξr3 , xH = nH/ntot

nO = ξr2 − 2ξr4 , xO = nO/ntot

nH2 = ξr3 , xH2 = nH2/ntot

nO2 = ξr4 , xO2 = nO2/ntot,

(5.10)

with ξr1 the extent of reaction (5.1), etc. and with:

ntot = nH2O + nOH + nH + nO + nH2 + nO2. (5.11)

The reaction enthalpies and Gibbs energies are given by:

Gr1 = GOH +GH −GH2O (5.12)
Hr1 = HOH +HH −HH2O, (5.13)

etc. The standard formation enthalpies and Gibbs energies for the molecules are given in [45].
The following values are used:

GH2O = −228.6 · 103 J/mol , HH2O = −241.8 · 103 J/mol
GO = 231.7 · 103 J/mol , HO = 249.2 · 103 J/mol
GH = 203.2 · 103 J/mol , HH = 218.0 · 103 J/mol
GOH = 34.2 · 103 J/mol , HOH = 39.0 · 103 J/mol
GH2 = 0 , HH2 = 0
GO2 = 0 , HO2 = 0.

(5.14)

At given T , equations (5.6)–(5.9), with equations (5.10) and (5.11) substituted, form a system of
four polynomial equations in four variables (ξr1 . . . ξr4). This system can be solved numerically,
giving four complex solutions, one of which is real.

5.1.2 Results of the chemical equilibrium model

The solution procedure was implemented using Mathematica software. The resulting mole frac-
tions in thermal equilibrium at temperature T and standard pressure are shown in figure 5.1. The
model shows that a transition from almost no dissociation to almost complete dissociation takes
place between about 2000 K and 4000 K. Molecular OH, H2 and O2 reach their maximum mole
fraction at about 3200 K. At T > 4000 K only atomic O and H remain.

5.1.3 Thermodynamical model

In the following, the thermodynamic properties of the plasmoid are considered and related to the
chemical composition, as well as the work delivered to the plasmoid by the discharge. This part
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Figure 5.1: Mole frac-
tions in thermal equilib-
rium, when pure water is
heated to a temperature T
at constant pressure (see
text).
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is based on work by Fussmann [private communication], extended with the set of four reactions
(5.6)–(5.9) instead of one.

The enthalpy of a small mass of water m is calculated as a function of temperature, based on
the dissociation model above. Again, a closed system at constant pressure is assumed. Defining the
initial enthalpy (at room temperature) as zero and including heating-, vaporization- and reaction
enthalpies, the total enthalpy can be written as:

H(T ) =



m
MCp,water(T − 273 [K]) for T ≤ 373 [K]
m
M [Cp,water100 [K] +Hvap +

∑4
i=1 ξriHri

+ ( fH2O+2
2 nH2O + fOH+2

2 nOH + fH+2
2 nH

+ fO+2
2 nO + fH2+2

2 nH2 + fO2+2
2 nO2)R(T − 373 [K])] for T > 373 [K]

. (5.15)

Here, Cp,water = 75.2 Jmol−1K−1 is the heat capacity of liquid water, Hvap = 40.66 · 103 Jmol−1

is the enthalpy of vaporization of water, and M = 18 gmol−1 its molar mass. The results of the
previous section enter through the reaction enthalpy term:

∑4
i=1 ξriHri. The heat capacity of the

gas phase molecules depends on the number of degrees of freedom for each of them. The following
values are used:

fH2O = 6
fOH = fO2 = fH2 = 5
fH = fO = 3

. (5.16)

It is assumed that the enthalpy H(T ) equals an amount of work W (t) delivered to the plasmoid by
the discharge. The derivative of the work function (input power) is assumed to be approximately
proportional to the product of discharge current and voltage (see figure 3.7). This leads to the
following approximation for W (t):

W (t) =

 W0

(
1− e− 2t

τ

)
for t < t1

W0

(
1− e−

2t1
τ

)
for t ≥ t1

, (5.17)

where W0 is the work that would be delivered by an uninterrupted discharge, τ the characteristic
time of the current and voltage decay, and t1 the time at which the discharge is stopped.

From the ideal gas law and the molar volume of 24.7 l at 298 K, the plasma ball radius rball

can be written as:

rball =
(

3
4π

T

298.15
24.7 · 10−3 [m3]

m

M

)1/3

for T > 373 K. (5.18)

87



5.1. Chemical composition and thermodynamics CHAPTER 5 Molecules

5.1.4 Results of the thermodynamical model

It is assumed that the initial water mass m = 0.1 g, as obtained from the precision scales measure-
ments in section 3.3.2. Figure 5.2 (a) shows the enthalpy of this amount of partly dissociated water
as a function of temperature, calculated using equation (5.15). Also in this figure is the value of
the chemical energy term m

M

∑4
i=1 ξriHri (dashed curve), which attributes more than 50 % to the

total enthalpy for T & 3000 K. Part (b) of this same figure shows the discharge work function
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(a) Enthalpy H of 0.1 g of (partly dissociated) water
as a function of temperature (solid curve) and chemical
energy term (dashed curve, see text).
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(b) Input power P and work W delivered to the plas-
moid. Note that the power has been divided by 10 for
clarity.

Figure 5.2: Temperature dependent enthalpy of the dissociation-reaction mixture (a) and model
input power and work.

W (t) evaluated using equation (5.17). Its derivative, the power P (t), is also shown. The following
parameters of the work function are used: τ=200 ms, t1=120 ms and W0 = 2 kJ. The latter
value is estimated from the conclusion in section 3.3.3, that 3 kJ is available for the formation
of the plasmoid. With the assumptions made here, just under half of that amount (1.4 kJ, see
figure 5.2 (b)) is used to raise the enthalpy of the equilibrium mixture to its final value H(Tmax)
at t = t1. The difference may be explained by losses, e.g. by radiation.

By solving H(T ) = W (t) numerically, the temperature as a function of time is obtained, as
shown in figure 5.3 (a). This solution for T (t) is used to calculated the plasmoid radius rball(t),
as shown in part (b) of this figure. The mass density ρ follows from rball(t) and m and is shown
in figure 5.4 (a). For other parameter choices, different results may be obtained. An example is
shown in figure 5.4 (b), where the maximum temperature Tmax = T (t1) is plotted as a function of
the mass m of the system. The work function is still the same as in figure 5.2 (b).
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(a) Calculated temperature as a function of time. Note
that in the equilibrium mixture, the temperature does
not increase above the boiling point until the complete
mass of water m is evaporated.
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(b) Calculated plasma ball radius as a function of
time. The initial part is left out as the model does
not calculate the volume of the liquid water.

Figure 5.3: Calculated gas temperature (a) and plasma ball radius (b) for mwater = 0 .1 g and
the work-function in figure 5.2 (b).
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(a) Calculated mass density as a function of time.
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(b) Calculated maximum gas temperature as a function
of the initial water mass.

Figure 5.4: Calculated plasma ball mass density for mwater = 0 .1 g (a) and the maximum gas
temperature (for t ≥ 120 ms) depending on the mass (b).
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5.1.5 Discussion and conclusions

Chemical equilibrium model

The thermocouple measurements had shown Tg > 1300 K for t . 210 ms and lower at later times
(section 3.3.2). Van der Waals broadening of Cu I lines suggests that the gas temperature is
at least Tg & 3000 K, for 20 ms < t < 50 ms (section 3.4.2). Under the assumption that the
plasmoid is formed from water vapor, the chemical equilibrium model predicts that this is initially
dissociated to a degree & 50% and subsequently recombines again to nearly pure water vapor for
t & 210 ms. Of course, this simple model relies on a number of assumptions (e.g. closed, uniform
system in equilibrium). Important deviations can occur due to temperature gradients, diffusion,
reactions with atmospheric gasses, etc.

Nevertheless, the model can explain that OH radicals are formed. The emission of OH increases
in intensity up to about t = 100 ms and then gradually decreases again, as will be shown in the
following section 5.2. With the échelle spectrometer, OH emission was measured up to about
t ≈ 250 ms. These observations fit well with the results in figure 5.1 and the mentioned gas
temperatures.

As mentioned in section 2.6.1 the equilibrium equations do not give any information on the
rate at which reactions take place. Assuming reaction (5.1) is induced by collision with other
water molecules it can be written as:

H2O(+H2O)→ OH + H(+H2O). (5.19)

In [44] (page 918) the following expression is given for the rate coefficient of this reaction:

k [m3molecule−1s−1] = 3 · 10−14 exp(−52920/T ) for (2000 K < T < 4000 K), (5.20)

with [H2O] the concentration of water in m−3. The characteristic time for the reaction is given
by:

τ = [H2O]
(

d[H2O]
dt

)−1

= k[H2O]. (5.21)

When assuming [H2O] equals the ideal gas density, τ equals 3 s, 60 ms and 10 µs at T = 2000 K,
3000 K and 4000 K respectively. Thus, gas temperatures roughly above 3000 K are required for
this reaction to reach near-equilibrium concentrations during the lifetime of the plasmoid. The
rate coefficients for the decomposition of H2, the reverse reaction of (5.3) can also be found in [44]
and is comparable or higher than that of reaction (5.1) for 2000 K < T < 4000 K.

Thermodynamics

The thermodynamical calculations demonstrate that the chemical equilibrium model can be inte-
grated with calorimetry results in a way that is consistent with observations and measurements.
Most importantly, it is shown that gas temperatures in the range of 2000 K to 4000 K can indeed
be expected from the known amount of evaporated water and the available energy. Also, the
calculated plasmoid radii agree well with measurement results in figure 3.7. It should be noted
that the temperature and radius in the initial phase of the discharge are expected to deviate from
the model, as the evaporation is not an equilibrium process (i.e. the temperature in the vapor
phase is expected to rise above 373 K, also before the complete mass m is evaporated).

It is shown in figure 5.2 (a) that for gas temperatures above 3000 K the chemical energy term
m
M

∑4
i=1 ξriHri is the largest contribution to the plasmoids enthalpy. One could call this a form of

chemical “energy storage”. The buildup of chemical energy reduces further temperature increase
and thus heat losses, e.g. due to radiation.

An apparent inconsistency is provided by the mass density in figure 5.4. The final value
ρ = 0.1 g/l can be used in combination with the density of air at room temperature ρair ≈ 1.2 g/l
to estimate the (constant) velocity of the rising plasma ball. Assuming the friction force is given
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by the drag equation Ff = − 1
2cwπr

2
ballρairv

2, this leads to:

v =
[

8rballg

3cw

(
1− ρ

ρair

)]1/2

, (5.22)

with g the gravitational acceleration and cw the drag coefficient. Using cw = 0.45 (typical value
for a closed sphere moving in air) this evaluates to v ≈ 2 ms−1 at ρ = 0.1 g/l. The observed
velocity of the ball’s upper boundary is only 0.8 ms−1 (figure 3.7). Mixing with cooler air on the
outside of the plasmoid may explain the observed boundary velocity being lower than that of the
(invisible) inner material.
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5.2 Molecular emission and chemical reactions

Besides atomic lines, molecular bands of OH and CaOH have been identified in the spectra of
the plasmoids (see figure 3.10). This section describes this molecular emission in more detail.
By comparing with literature spectra and simulation of the OH vibrational bands, the emission
is connected to chemiluminescence reactions. The well known emission band of the OH radical
at 306 nm is studied in more detail in the next section 5.3. As this section is more descriptive
than most of this report, the structure is chosen somewhat differently. First the most important
observations are given, accompanied by comparisons with spectra from literature and simulation.
The conclusions and remaining topics of discussion follow after this.

5.2.1 Observations and comparisons

The UV bands between about 300 nm and 330 nm are long known to belong to the (A2Σ+ → X2Π)
transition of the OH radical (see [62]). The green and orange/red molecular bands at 544–567 nm
and 586–651 nm have been assigned by several authors to CaOH (calcium hydroxide) emission
from the B2Σ+ and AΠ+ states respectively (see [63, 64, 65] and the references therein). The left
part of figure 5.5 shows the OH band recorded at several times, using the échelle spectrometer.
The intensity of the OH band shows a different evolution than that of most spectral lines. During
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Figure 5.5: Left: OH emission spectrum measured at different times. Maximum intensity is
reached approximately at current zero. Right: comparison of measured and simulated spectrum.
The contribution of the individual bands with vibrational quantum numbers v = 0, 1 and 2 are
indicated by the solid (colored) lines. The inset shows the occupation of the vibrational levels
relative to v = 0 in the simulation.

the first 50 ms the intensity rises. Then, between 50 ms and 120 ms the intensity of the band
remains at approximately the same level. After that (and after the discharge current reaches zero),
the intensity decreases again, but it decays slower than that of the atomic lines. The evolution of
the CaOH bands is very similar to this behavior.

OH vibrational populations

OH radicals may be formed from the (endothermal) decomposition reaction of water during the
discharge, induced electrically (electrolysis) and/or by thermal dissociation, as shown in the pre-
vious section 5.1. The right part of figure 5.5 shows a comparison with a simulated OH emission
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spectrum, produced using the LIFbase simulation program [51]. The program contains a database
of energy levels and vibrationally and rotationally resolved Einstein coefficients for spontaneous
emission, obtained as described in [66]. The state populations (thermal or non-thermal) form
the input of the program. The intensity of a particular transition is then calculated according to
equation (2.128). Predissociation and quenching are included in the model by means of a quan-
tum yield like in equation (2.127). The (state dependent) predissociation rates are included in
the program. The quenching rate was estimated assuming H2O perturbers at 2000 K and at-
mospheric pressure and a rate coefficient of 5 · 10−16 m3s−1 from [67] for all levels. This gives
Kquench = 5 · 10−16 m3s−1 · 3.6 · 1024 m3 = 1.8 · 109 s−1.

The intensity of the vibrational band heads was matched with that of a measurement at
t = 115 ms. A rotational temperature of 15,000 K was assumed for all vibrational bands (see
next section). The simulation indicates a non-thermal vibrational population distribution. The
higher vibrational levels are overpopulated, likely because they are fed by chemical reactions. It
is noted that it is important to include the quenching rate in the simulation. When neglecting
collisional quenching, the measured vibrational bands can not be reproduced at realistic population
distributions.

CaOH emission

The evolution of intensity of the CaOH molecular bands at 544–567 nm and 586–651 nm is similar
to that of the OH bands: an initial increase throughout the period of the current flow, followed by
a relatively slow decay. Therefore it is likely that CaOH is formed in the vapor phase following the
discharge triggering. Calcium is available in tap water in considerable quantities (in the order of
20 mg/l). The CaOH emission persisted using various salt additives and also at a reduced calcium
concentration achieved by de-ionizing. This suggests that the species reacting with Ca (or Ca+)
to form CaOH is available in relatively large amounts, independent of the precise composition of
the solution.
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Figure 5.6: Molecular band spectra recorded with the échelle spectrometer from above at
t =145 ms and r =2 cm (left) (convoluted with 10 pixel wide Gaussian to reduce noise) and
figure showing chemiluminescence spectra of various reactions involving calcium, copied from lit-
erature [64]. The measured spectrum shows CaOH peaks at the same position (but different relative
intensity) as those of the reaction: Ca + H2O → CaOH + H. The literature spectrum was not
corrected for the apparatus profile. Corresponding peaks are indicated with red capital letters.

CaOH emission occurs in chemiluminescence reactions, for instance in flames [63]. A reaction
of calcium and water forming excited calcium hydroxide is possible, but the reaction cross section
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is relatively small. The right part of figure 5.6 shows spectra from literature [64] recorded in a
low pressure (1-3 Torr) calcium–water vapor mixture at a gas temperature of 500–700 K. The
chemiluminescence was described as weak by the authors. For comparison, a spectrum recorded
from the atmospheric plasmoid in the same wavelength range is shown on the left. The peak
locations are the same, confirming the CaOH assignment, but the relative intensities are quite
different. It should be noted though that no correction for the apparatus response was applied to
the literature spectrum.

Figure 5.7: Same plasmoid spectrum as in figure 5.6, now compared with another set of chemilu-
minescence spectra copied from literature [65]. The measured spectra is practically identical to that
of the of CaOH produced in the reaction of 3Po Ca with H2O2 (top right). The bottom right spec-
trum is that of CaO produced in the reaction of 1S Ca with H2O2. These spectra are all corrected
for apparatus response.

Another possible source of electronically excited CaOH is a chemiluminescence reaction with
H2O2. This reaction was studied by Oberlander et al. [65] in a calcium-vapor mixture at temper-
ature of 800–900 K and pressure of 0.4 ± 0.05 Torr. It is reported that the chemiluminescence
reaction of calcium with H2O2 is much more efficient than that with water [65]: the signal in a
vapor consisting of a mixture of 70% by weight H2O2 and 30% H2O is more than two orders of
magnitude stronger than that using pure water vapor. Also, these authors were able to distinguish
between reactions with ground state (1S) calcium atoms and those in the excited metastable (3Po)
state, leading to different reaction products: 1S produces mainly CaO (not detected here) whereas
3Po results only in CaOH chemiluminescence. An overview of these reactions with experimentally
derived cross section is given in table 5.1.

Table 5.1: Chemiluminescence reactions of calcium and hydrogen peroxide with experimentally
derived cross section. The estimated uncertainties in the cross sections are ±20%. Source: [65]

Index Reaction σreaction [Å2] λ range [nm]
(a) Ca(3Po)+H2O2 → CaOH(A2Π)+OH 6.5 586–651
(b) Ca(3Po)+H2O2 → CaOH(B2Σ)+OH 1.3 544–567
(c) Ca(1S)+H2O2 → CaO(A1Σ, A’1Π)+H2O 1.6 551–883
(d) Ca(1S)+H2O2 → CaOH(A2Π)+OH 0.03 616–633

A comparison of the literature spectra for the reactions in this table with those of the plasmoid
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is shown in figure 5.7. There is a nearly perfect match in both peak positions and relative intensities
with the Ca (3Po) + H2O2 chemiluminescence spectrum, whereas CaO appears to be absent.

Based on this agreement of the emission spectra, the experimental reaction cross sections
in table 5.1 and the abundance of OH radicals and excited (metastable) calcium atoms in the
plasmoid (see chapter 4 for the latter), reactions (a) and (b) in this table are proposed as a source
of CaOH emission. A possible source of H2O2 is the combination reaction of two OH radicals:

OH+OH(+M) → H2O2(+M). (5.23)

An alternative scenario is the direct combination reaction of OH and Ca:

Ca+OH(+M) → CaOH(A2Π or B2Σ+)(+M), (5.24)

for which no reference data was found. For this reaction, the chemical potential of the reactants
in their ground state exceeds that of the products by an amount slightly greater than that for for
reactions (a) and (b) in table 5.1 [65], so that ground state calcium atoms will probably react as
well.

The combination reactions (5.24) and (5.23) are most effective at low temperatures (. 103 K),
e.g. on the outside of the plasma ball and may cause the yellowish-green boundary layer (see e.g.
figure 3.3; the orange/red band is suppressed by the response of the human-eye).

5.2.2 Discussion and conclusions

Both the vibrational population of OH and the observed CaOH spectra indicate that chemical
processes are the likely cause of the molecular band emission – and thus of the bright appearance
and observed long lifetime of the plasmoids (see figures 3.10 and 3.11). As the mole fractions of
calcium or other elements dissolved in the water are small (e.g. of the order of 10−4 or less), it is
unlikely that these elements play a role in transferring energy to the autonomous phase. Rather,
the chemical energy of the plasmoid is stored in the dissociation products of water. However, as
the OH emission is mostly in the UV, the chemiluminescence reactions involving calcium may be
crucial to transfer part of this chemical energy to the visible wavelength range.

Chemiluminescence reactions analogue to those in table 5.1 can also occur between other group
2 metals, such as Sr and Ba, and H2O2, as well as with other oxygen containing molecules such
as t-BuOOH (=(CH3)3COOH), HNO3 and NO2 [50].
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5.3 OH rotational temperature

5.3.1 Introduction

The UV bands of OH have been studied quite extensively in the past [52, 68, 69, 70, 71, 72]. The
bands in the 280–355 nm range belong to the same electronic transition: A2Σ→ X2Π. The band
with its head at 306.4 nm (v′ = 0→ v′′ = 0) is frequently used for temperature measurements in
hot gases or plasmas containing oxygen and hydrogen, under the assumption that the rotational
temperature is equal to the gas temperature (see section 2.6.2).

Therefore, an attempt is made to measure the rotational temperature of the atmospheric
plasmoids from the OH emission spectrum. For this, the approach sketched in section 2.6.2 is used
to simulate the emission spectrum. The wavelengths λqp, upper level energies Eq and reference
intensities Iref

qp at Tref = 3000 K, for 113 lines between 306.2 nm and 310 nm, are obtained from
Dieke and Crosswhite [70]. The intensity Iλ(Trot) is then calculated using equations (2.132)–
(2.134), assuming Q(Tref)/Q(Trot) ≈ 1. Line broadening (P (λ)) is assumed to be due to the
apparatus profile of the échelle spectrometer, which is approximated by a pseudo-Voigt profile
with wV=16 pm and wG = 4wL.

5.3.2 Results

Figure 5.8 shows the calculated emission spectra at rotational temperatures of 2000 K, 4000 K,
6000 K and 8000 K. The intensities of the highest peak (at 308.9 nm) was kept fixed, so that the
relative differences are clear. These spectra agree well with simulated and measured spectra found
in literature [51, 52, 72].
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Figure 5.8: Simulated OH spectrum in the range of 306 nm to 310 nm for various rotational
temperatures. The spectra are scaled to match the intensity of the highest peak at 308.9 nm. The
simulated apparatus profile is a Voigt distribution with wV=16 pm and wG = 4wL, an approxima-
tion of the échelle spectrometer apparatus profile.

The simulated spectra were compared to measured spectra of the atmospheric plasmoid, for
shots using tap water with 0.2 g/l HCl. The measured data is recorded using the échelle spec-
trometer (top view), at a radial position r = 2 cm, to avoid light from the electrode region and

96



CHAPTER 5 Molecules 5.3. OH rotational temperature

reduce the effect of possible vertical temperature gradients (which are expected to be greater at
the center). These comparisons are shown for t = 55 ms and t = 145 ms in figure 5.9. The upper
part of this figure (a) shows the measurement at t = 55 ms and simulated spectra at two temper-
atures: Trot = 2000 K, the estimated gas temperature (from thermocouples) and Trot = 9000 K,
which shows the best overall agreement between measurement and simulation. At t = 145 ms the
situation is similar, as shown in part (b).

It is clear that for none of the temperatures, the simulated spectra agree completely with the
measured ones. To find the reason for this, the emission from the R2-branch was investigated in
more detail. The indicator near the upper axis in figure 5.9 (a) and (b) assigns the upper level
rotational quantum numbers N ′ of the peaks belonging to this band (peak locations from [70]).
The simulation at Trot = 2000 K was scaled to match the peak height for the peak with N ′ = 4,
as indicated by the arrow. This gives reasonable agreement in relative intensity for the peaks at
N ′ = 3 and N ′ = 7, that can also be resolved. On the other hand, the simulations at higher
Trot give the correct relative intensities at N ′ = 13 and higher. To confirm this, a Boltzmann
plot was made. (For information about the Boltzmann plot-method to determine the rotational
temperature, see e.g. [70, 71]). This Boltzmann plot is shown in figure 5.10 for t = 55 ms.
Measurements at different radial positions were used to determine if temperature gradients could
explain the deviations from the simulations.

It follows from equations (2.131) and (2.129) that for thermal rotational population distribu-
tion, the plotted points in figure 5.10 should all lie on a single line, the slope of which equals
-1/(Trot [eV]). However, it is clear from this figure that this is not the case. As is shown in this
figure the higher rotational quantum numbers N ′ ≥ 8 can be fitted well with a line corresponding
to a rotational temperature Trot,1 in the order of 104 K. For 3 ≤ N ′ ≤ 7 on the other hand,
Trot,2 = O(103 K) is obtained. The results of the fits at various radial positions are shown in 5.10.

5.3.3 Discussion and conclusions

An investigation of the rotational population distribution of the R2-branch of the (v′, v) = (0, 0)
band between 306 and 310 nm shows that the excited state rotational distribution is non-thermal,
like the vibrational distribution. A high rotational temperature T 0,0

rot = O(104 K) describes the
higher rotational levels (N ′ > 7) best, whereas T 0,0

rot = O(103 K) is more appropriate for 3 ≤ N ′ ≤
7.

The Boltzmann plots obtained agree well with those of OH(A2Σ+, v′ = 0) produced by disso-
ciative excitation of water vapor in literature. In [69] a rotational temperature of about 800 K is
reported for the low rotational quantum numbers and 15,000 K for the higher ones. An electrode-
less high-frequency discharge in water vapor is used in the experiments described in this article.
The authors report that the lower temperature is in the order of the gas temperature in their
experiment.

Similar results, but at higher rotational temperatures of about 3400 K and 30,000 K, can be
found in [71] for water vapor exposed to an electron beam (1–1000 eV). In [71] strong bending
vibrations in excited state H2O molecules are mentioned as a possible cause of this ‘abnormal’
rotational energy in OH(A2Σ+). The reader is referred to this text and the references therein for
a further discussion of this topic.

The effect of absorption, i.e. optical thickness, has been neglected in the above results. In [70]
it is reported that for the case of an oxy-acetylene flame, self absorption plays a role for the
strongest lines. Indications that this is the also case for the spectra recorded here may indeed be
seen in figure 5.9, where the simulated intensity of the strongest lines (e.g. at 308.9 nm) lies above
that in the measurements. This is not further investigated.

It is concluded that the higher rotational temperatures are a consequence of the dissociation
process of water and that the lower temperature in the order of 1000 K is expected to be closest
to the gas temperature.
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Figure 5.9: Comparison between measured OH spectra between 306.2 nm and 310.0 nm at
t=55 ms (a) and t=145 ms (b) and simulations. Measurements were done using the échelle spec-
trometer at a radial position r = 2 cm (top-view). The simulations use rotational temperatures of
Trot = 2000 K (upper parts) and Trot = 11500 K. The simulated spectra were scaled to match the
peaks at 307.437 nm and 307.303 nm respectively. These peaks correspond to transitions in the
R2 -branch of the A2 Σ+, v ′ = 0 → X 2 Π , v ′′ = 0 electronic transition, with upper-level rotational
quantum numbers N ′ = 4 and N ′ = 15 respectively. The upper-level rotational quantum numbers
of the first 20 peaks in the R2 -branch are shown by the indicators in the upper part of each graph.
Note that there are many peaks belonging to other branches in the spectra as well.
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Figure 5.10: Boltzmann plot of the R2-branch of the A2 Σ+, v ′ = 0 → X 2 Π , v ′′ = 0 vibra-
tional band in the spectrum of OH. The degeneracy of the upper level equals gq = 2J ′ + 1 , with
J ′ = N ′ − 1/2 , where N ′ is the upper level rotational quantum number (without spin) as indicated
along the upper axis. Emission coefficients Aqp are taken from [66]. Shown are three measure-
ments at t=55 ms, at different radial positions. The data has been fitted with two linear functions,
giving two rotational temperatures: Trot,1 for the rotational quantum numbers N ′ ≥ 8 , and Trot,2

for 3 ≤ N ′ ≤ 7 .
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Chapter 6

Conclusions

In this report, ball-like plasmoids generated from a capacitor discharge in a water vessel were
studied using a variety of diagnostic techniques. Various models were presented that provide
insight in different aspects of the complex phenomenon. Below, the main conclusions concerning
the plasma parameters, energy storage, and appearance and other properties are summarized and
the methods used to arrive at these conclusions are mentioned.

Plasma parameters

Most investigations have focussed on finding the time-dependent plasma parameters of the plas-
moids, mainly via spectroscopic methods.

Two spectroscopic techniques have been applied to measure the electron density. Stark broad-
enings measurements on spectral lines of different elements were conducted, providing information
on ne in the first 75 ms of the plasmoid’s lifetime. Spectroscopic electron density measurements
at later times provided the biggest challenge, and were obtained from the relative and absolute
intensities in the spectrum of atomic calcium, by comparing with simulations using a collisional ra-
diative model (CRM). The results of both methods are consistent with an exponentially decreasing
electron density from 1022 m−3 and higher in the first 10 ms to about 1020 m−3 at t = 150 ms.

Also decreasing electron temperatures were measured spectroscopically from intensity ratios
of atomic copper lines, under assumption of local thermodynamic equilibrium, and from calcium
lines using the CRM. In both cases, the effect of optical thickness was considered and proved
to play an important role, also for transitions between excited states. The electron temperature
development is summarized as follows: in the center of the plasmoids Te decreases from about
5500 K initially to 2900 K at, t = 120 ms, when the current is quenched. Comparison of measured
spectra with simulations using the CRM indicate that in the autonomous phase, the temperature
decreases further, as expected, to about 2500 K at t = 150 ms. Away from the center, the
electron temperature is lower: measurements indicate that a hot core about half the diameter of
the plasmoid is surrounded by cooler plasma.

It is shown that calcium, present in tap water or in the form of salt, reaches considerable
ionization degrees: nCaII/(nCaI + nCaI) ≈ 0.7 at t = 55 ms is obtained from comparing opacity
broadening in the atomic and ionic resonance lines. This is consistent with a Saha-ionization
equilibrium at the measured electron temperatures and estimated (total) calcium density. For
other elements with low ionization energies, such as K, Na, Sr and Al, comparable ionization
degrees are expected. These elements are expected to provide the bulk of the free electrons
causing atomic line radiation in the autonomous phase.

Energy storage and chemical processes

From calorimetric measurements, an estimate of the energy available for the plasmoid formation
(about 3 kJ) was obtained. A total emitted radiation energy of 700 J was measured using a
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pyroelectric sensor. These and other measurements, e.g. of water evaporation, using precision
scales, were combined in a simple model, that calculates the enthalpy, temperature and other
thermodynamic properties of the plasmoid under the assumption of chemical equilibrium in a
closed system. The model shows that gas temperatures in the range of 2000 K to 4000 K can be
expected, consistent with thermocouples that indicate Tg > 1200 K at later times. The calculated
plasma ball radii are in agreement with observations. The same model predicts the chemical
composition of the plasmoid, which is assumed to arise from the dissociation of water, driven by
the capacitor discharge.

The theoretical prediction that water is dissociated during formation of the plasmoid, is sup-
ported by measurements of the vibrational and rotational distributions in the molecular spectrum
of the OH radical. Both are shown to be non-thermal and the rotational distribution of the OH
band with its head at 306.4 nm fits well to that found in various literature sources, in which it is
attributed to the dissociation of water.

The thermodynamic calculations also show that at the expected (central) gas temperature
of 3000 K or more, after the capacitor discharge, at least half of the plasmoids total enthalpy
consists of chemical energy of the various dissociation products of water. This can be called a
form of chemical energy storage.

Appearance and other properties

The largest part of the visible radiation power was found to be emitted by molecular bands of
CaOH and OH, causing the bright appearance of the plasmoids. The characteristic colors of the
boundary layer can be explained by chemiluminescence reactions that are most effective at the
lower gas temperature on the outside of the plasmoid and produce electronically excited CaOH
that emits in the green and orange/red wavelength range. Vortices were observed that likely
attribute to the characteristic stable spherical shape of the plasmoids. Using small double probes
it was measured that the plasmoids boundary layer consists of an electric double layer, with nett
negative charge on the outside.
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[39] M. S. Dimitrijević and S. Sahal-Bréchot. Stark broadening of Ca II spectral lines. J. Quant.
Spectrosc. Radiat. Transfer, 49(2):157–164, 1993.
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Appendix A

Pyroelectric sensor calibration

The pyroelectric sensor consists of a circular thin sheet of black pyroelectric material, with a high
absorption coefficient (higher than 97 % in the wavelength range of 0.2–20 µm). The pyroelectric
material generates an electrical potential when its temperature changes, i.e. when it is heated or
cooled. This potential difference is the output signal of the pyrosensor. At short timescales (< 1 s)
the output is proportional to the radiation power. The constant of proportionality was determined
by calibration using a light bulb and a calibrated radiation power meter. The light from the light
bulb was collimated to uniformly fill the sensor surface and power of the same collimated light
beam was measured using the radiation power meter, at various intensities. The result of this
calibration procedure is shown in figure A.1 below. The constant of proportionality determined
from the fit is used for all measurements. The response time of the pyrosensor was determined by
using a chopped light beam, as shown in the inset. The response time depends only weakly on
the radiation power in the measured range and is characterized by a rise time (from 10 to 90 %
of the maximum) of just below 20 ms. It should be noted that the measured intensities were in
some cases above the range used for calibration, e.g. up to Irad ≈ 850 Wm−2 at 66 cm from the
electrode (figure 3.7 (c)).
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Figure A.1: Results of the pyroelectric sensor calibration. The lower horizontal axis shows the
radiation power incident on the pyroelectric sensor. The upper horizontal axis is the correspond-
ing average intensity on the sensor surface. Vmax is the maximum value of pyrosensor’s output
voltage, using a pulsed light source. The inset shows a typical time-dependent output signal of the
pyrosensor, when illuminated with the pulsed light source.
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Data collection

A systematic storage of experimental data was desirable to make sure the collected data is available
and easily accessible, also to other persons involved in the project and after experiments have been
stopped. A database system was developed, using a simple web-interface (PHP+MySQL) so the
data could be accessed from anywhere in the network. A shot-number was introduced to link
all data (e.g. results of several diagnostics, discharge parameters and remarks) belonging to a
particular experiment. Images of the web-interface is shown figure B.2 and B.1. In all data of
more than 1,000 shots has been collected and stored in the database.

Figure B.1: User interface for adding new records to the database.
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Figure B.2: Overview of all data.
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Appendix C

Échelle spectrometer calibration

For the calibration of the échelle spectrometer two sets of data were used. Both were obtained
from U. Fantz. The first is the spectrum of a deuterium lamp with known intensity in the range
of 200 nm to 800 nm (approximately). The corresponding calibration curve (spectral intensity per
count) is shown as the blue line in figure C.1 (a). This calibration was conducted in September
2003, using slightly different optics than used in the experiments here. Therefore a second cal-
ibration was done in November 2006, shortly before starting the measurements, using the same
optics as in measurements. This second calibration uses an Ulbricht sphere with known intensity
between 380 nm to 800 nm (at shorter wavelengths the intensity drops steeply). This is the green
curve in figure C.1 (a). The final calibration curve is obtained by scaling the deuterium lamp
calibration curve, up to the level of the more recent Ulbricht sphere calibration. Since quartz
optics (fiber+lense) were used, an absolute calibration up to the near UV (approximately 280 nm
is obtained.

The ‘exposure time’ of the intensified CCD is controlled by two parameters. The first is the
length tmcp of the pulse used to drive the multichannel plate. The maximum width is 12 ms
according to manufacturer specifications. When a tmcp < 12 ms (e.g. tmcp = 6 ms was often used)
the calibration curve was scaled accordingly (by a factor (12 ms)/tmcp). In fact, the effect of the
MCP pulse length on the sensitivity may not be exactly linear. This was not investigated further.

The second possibility to influence the ‘exposure’ is by adjusting the voltage Vmcp of the
multichannel plate. All calibration curves were taken at Vmcp = 2900 V. Higher (lower) values
of this voltage resulted in higher (lower) sensitivity. The effect is approximately equal over the
spectral range and results in an additional calibration factor, shown in figure C.1 (b). The ability
to control the MCP voltage serves as an independent ‘amplifier’ and proved very convenient for
measuring the wide range of intensities throughout the plasmoids lifetime. Values of Vmcp greater
than 3000 V result in a noticeable increase of the amount of noise in the recorded spectra.

The major sources of error in the absolute calibration are expected to be:

• the possible non-linear response of the sensitivity to tmcp,

• absorption of air at wavelengths < 300 nm (no correction for this is made, as results at these
wavelengths were rarely used),

• inaccuracy of the Ulbricht spheres specifications.

In all, the accuracy of absolute intensities is estimated at 50%. The accuracy of relative
intensities is much better (< 10%), depending on the difference in wavelength.
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CHAPTER C Échelle spectrometer calibration

200 300 400 500 600 700 800
1014

1015

1016

Final (scaled) calibration

calibration using deuterium
lamp and Ulbricht sphere by U. Fantz
on 01-09-2003 (same components)

 

 
C

al
ib

ra
tio

n 
fa

ct
or

 [p
h/

m
2 /s

/n
m

/(c
ou

nt
s/

V
)]

 [nm]

MCP voltage = 2900 V
t
mcp

  12 ms (maximum)

calibration using Ulbricht
sphere on 22-11-2006

(a) absolute spectral calibration factors

0 500 1000 1500 2000 2500 3000 3500 4000
0.01

0.1

1

10

100

1000

 

 

A
m

pl
ifi

ca
tio

n 
fa

ct
or

MCP voltage [V]

(b) multichannel plate (MCP) amplification factor
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Appendix D

H-beta Stark broadening

The next two pages show measurement of the Stark-broadened Hβ line recorded using the échelle
spectrometer (top view, at r = 0) at various times in the initial phase of the discharge. The data
has been fitted using Lorentz profile. The fit parameters are used for determining the electron
density in section 3.4.2.
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Figure D.1: Fitted Hβ line at various times, recorded with the échelle spectrometer using tap
water with 0.4 g/l CaCl2. The lines were fitted with a Lorentz profile of width wL (FWHM) and
line center λ0 as indicated in each legend.
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Figure D.2: Fitted Hβ line at various times, recorded with the échelle spectrometer using tap
water with 0.3 g/l CaCl2. The lines were fitted with a Lorentz profile of width wL (FWHM) and
line center λ0 as indicated in each legend.
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Figure E.1: Same line ratio as in figure 4.10, but with a quenching rate kQ = 3 .3 · 10 5 s−1, as
is used in all other results of the collisional radiative model. Now, the line ratio (a) is lower by
approximately a factor 1.5, as compared to 4.10, and consistency of ne and Te values obtained
from both line pairs is not as good.
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Figure E.2: Measured and simulated calcium emission spectrum. The measured spectrum was
recorded at r = 0 and t=55 ms (top view). The simulation parameters are shown in the top left
corner.
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Figure E.3: Measured and simulated calcium emission spectrum. The measured spectrum was
recorded at r = 3 and t=55 ms (top view). Note that in the central figure the optical thickness is
somewhat overestimated (from the relative intensities of the lines from the same multiplet).
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Figure E.4: Measured and simulated calcium emission spectrum. The measured spectrum was
recorded at r = 0 and t=95 ms (top view).
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Figure E.5: Measured and simulated calcium emission spectrum. The measured spectrum was
recorded at r = 0 and t=155 ms (top view).
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