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on the Magnetic Field of Stellarators

E. Harmeyer, J. Kisslinger, H. Wobig

Abstract:

In a fusion reactor ferritic steel is strongly favoured as structural material, since the
low activation after neutron irradiation makes it a very attractive candidate to
mitigate the issue of radioactive waste disposal. On the other side ferromagnetic
material modifies the magnetic field of the current carrying coils and may have
negative effects on the plasma confinement. Especially in stellarators any deviation
from symmetry may lead to island formation and destruction of magnetic surfaces.
In the following paper the general equations governing the magnetic field in
stellarators with ferritic structural material are analysed and the basic effects are
investigated in simple straight geometry where analytic solutions are available. A
code has been established which allows one to compute the modified field in toroidal
geometry. Since the ferritic material is saturated under reactor conditions, the
effective permeability is in the range of 1.2 to 1.5. This leads to a small reduction of
the rotational transform under normal conditions in which the symmetry of the field
generated by the coils is not violated.

Symmetry breaking error fields arise if the properties of the ferritic matter differ from
period to period. This case has been simulated by the assumption of inhomogeneous
magnetization in the 5 blanket modules. In is found that the islands in the boun-
dary region, which in a Helias reactor are utilized for divertor actions can be strongly
modified by these error fields, thus care must be taken to avoid geometrical and
material asymmetries of a Helias reactor.




1. Introduction

Magnetic surfaces of stellarator configurations are sensitive to field perturbations which
may create islands on rational surfaces or destroy the last magnetic surface. In judging
the importance of error fields two cases have to be distinguished: symmetry-breaking
perturbations and perturbations which maintain the symmetry of the unperturbed
configuration. If the error field has another toroidal periodicity as the unperturbed field,
islands will arise on resonant magnetic surfaces. These perturbations are the result of
misalignment of the coils or manufacturing errors of the coils. In order to keep this
effect below a tolerable level the relative error field should be kept below 10+. If the
error field preserves the symmetry of the unperturbed case resonant effects do not
occur, however, the magnetic surfaces will be modified and the rotational transform will
be changed. This modification happens if the plasma pressure grows and the plasma
currents introduce a symmetry-preserving field B;, which, together with the magnetic

field B, of the coils, provides the self-consistant equilibrium field B. The difference
between the finite beta-field and the vacuum field is a function of beta and it may reach
5% or more. In a Helias configuration this effect causes the last magnetic surface to
shrink and it slightly modifies the rotational transform.

A further modification of the magnetic field in stellarators will be provided by ferritic
material in blanket and shield of a fusion reactor. These ferritic/martensitic steels are
favoured as structural material because of the low long-term activation!. The magnetic
field of the coils is modified by ferritic steel although the steel will be in saturation and
the effective permeability will be close to unity. Properties of ferritic steel have been
investigated in Karlsruhe (FZK)2

Blanket

Fig 1: Scheme of modular coils and blanket in a Helias fusion reactor. In the
following computations the blanket will be replaced by a homogeneous layer
with an effective constant permeability.
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In a strong magnetic field the ferritic steel is saturated leading to a fixed magnetization
along the direction of the magnetic field H. In case of Manet this magnetization is 1.6 T,
in another material F82H it is even higher3. Let be M the magnetization in saturation,

then we may write
M=
H

Thus, the susceptibility of the material is a function of H. The task remains to compute
the magnetic field self-consistantly taking into account the continuity conditions of B, at

the boundaries of the ferritic material.

2. Basic Equations

As indicated in the introduction the following ansatz can be made if the material is
saturated
M
=pl I +—|=uwH (1
i m{ H) u(H) )

M is the saturated magnetization. Inside the domain Q the equation of the magnetic
field is

VeuH =0 = pVeH + HeVu =0 (2)
The ansatz
H=H,+ Vd (3)
leads to
AD =—HeV [n (u) 4)

H, is the vacuum field of the coil system. The boundary conditions require that
W(H, + 70 Jon (5)

be continuous across the boundary of Q. The solution of eq. 4 is

@ =LJJJ Mfy +J J _ﬂﬁd"’y (6)
)]y |= slx=2|

The second term is needed to satisfy the boundary condition (5). The normal derivative

of
o,=1 wdé*y (7
], |a—s]
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is continuous across the boundary*.

|, "on |, ®)

The normal derivative of the second term is discontinuous and the relation holds

The plus sign holds for the limit from the inner side and the minus sign for the outer
limit. In eq. (9) x is a point on the boundary. Using the abbreviation

” G(y)%|x yl (10)

the boundary condition (5) yields the integral equation

oD oD
o il o =l ] 22
From eq. 6 and 3 we get
H:HMIJ J J Hovin( o o)
4n A |x—yl Ix y|
(12)

Since the domain of the blanket is multi-connected, the second surface integral has to
be taken over all surfaces of the blanket. The two integral equations (11) and (12) can
be solved iteratively. In lowest order the right side is computed inserting the vacuum
field Hy,. The numerator of the first integral is

My VH
H+M H

HeVin(p)=— (13)

The volume integral is written as

Vv -
HI: Vi wday = _i M He VH x y3d3y (14)
4n |x—2] ) |) H+M  H|yg_y|

a

and the field of the coils

4 Smirnov, Lehrbuch der Hoheren Mathematik, Bd. II
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Jj is the current density in the coils. A rough estimate of the field (14) can be made by

|H, gw __I__2d3 (16)
" NESF]
with
__ M |
| Vin u|mr = (Hm,n +M) H. amn

3. Homogeneous Blanket.

Because of the inhomogeneity of p the perturbation field consists of two terms given in
eq. 12. In the following we approximate the permeability u by its maximum value and
consider this as a constant throughout the blanket region. This approximation also
applies to an experimental device where structural material with a finite permeability is
used. Let us denote the inner and outer boundaries of the blanket with S, and S, .The

boundary condition yield on S,

/’ | Blanket%
no s,

Fig. 2: Scheme of blanket.

The boundary conditions on S; are

oD oD
P(Ho‘nz + @“ﬁg) _ - (Ht?‘nz + _a_n_z) (18)
and on the inner surfaces S;
oD oo,
(Ha'nj + “a—ng) . = P(Ha'nl 7 —6—15) (19)




Using the relation (9) we get two integral equations for the ,charge” ¢, and oa.
On 82

(p— 1)K202 - (,,1 + 1)21;02 +(1.Lu I]Kp, =—(p— I)H,,‘ng (20)
and

ot sl ol =

on S,
Here we have used the notation

B i
Ko,=|| oly)——dy (22)
o] bty

These are two coupled integral equations. In the limit p --> 1 the magnetic field of the
coils is unchanged. The function
1

x|
is the Green's function of the Laplace operator. The Green's function can be expanded
in terms of eigenfunction of the Laplace operator. Another expansion is provided by

Legendre functions.
1 1

|x—y| =\/R2—2chos(l|!) +r°

=3 P;(cos ] r
n=0 R

=% P,,(cosw 111 sir> R (23)
r

with

on S,. This expansion is widely used in computing the distortion of a magnetic field in

spherical geometry. The integral equations can be solved by an iterative procedure. For
this purpose we introduce the vectors

G = (GI) his HB‘H(SI)
02 . & *HO,H(SE)
(24)
and the integral operators
Ko = B ; Mo= o,
Ko, Ko, 25)




The system of equations can be written as

(n— 1)Ko +(n + 1)2n0 +(n— )Mo =—{u— 1), 26)

and the iterative procedure yields

(n— 1)Ko, _, +(p + 1)2n0, +(n—1)Mo,_, ={u— 1), | @7

The lowest order solution is

(v +1)2no, ={u—1)n, (28)
Definitions:
il () i
A= ; Ac =Ko + Mo (29)
(p + 1)21l:
The system is in short notation
AAc + o =-\h, (30)

and the solution in a Neumann series is

c :—}_(1 + M)_Ihn
.y 1~M+}L2A2—...)hn 31)

On lowest order the solution is given by eq. (39) which will be inserted into eq. 2

et 2

(32)
The magnetic field in the plasma region is
H=H,+ J J U’(y}(x——sy)dzy + J f o) _3y)d.2y
s1 Ixin s2 |x_y| (33)
which in lowest order is
(n—1) H,(y\x-v) ., H,(»)fx-v) ,
H=H, - d’y - ———d
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The electrostatic equivalent to this equation is the electric field of a surface charge




2n-1)
(m+1)

H, () (35)

This effective ,surface charge” changes sign on the surface and it produces a dipole field
in lowest order. The blanket in a Helias reactor has a helical shape, which is aligned to
the helical shape of the magnetic surfaces. For this reason the toroidal component of
the vacuum field has a normal component on the boundary of the blanket which will
lead to an [ = 1 type perturbation field in the plasma region. The elliptical shape of the
geometry introduces another [ = 2 type perturbation field.

3.1 Straight [ = 2 - Stellarator.

In a straight stellarator the helical windings are wound onto a vacuum tube which is
cylindrical and has a permeability p. The geometry is sketched in Fig. 3. We employ a
cylindrical coordinate system r,¢,z. Because of the helical invariance the magnetic field
is only a function of r and ¢ - kz.

Fig. 3: Scheme of a straight 1=2-stellarator.
The paramagnetic ring will reduce the poloidal field of the helical winding and hence

reduce the rotational transform in the inner region. The homogeneous z-field is not
changed by the ring since the boundary is parallel to the z-field.

The magnetic potential is

@a=Buz;%(afz(gkr)+sz(2kr)] sin{20) (36)

in the ring




®, = B,z +é(cfz(2kr) +dKz(2kr]) sin(20) (37)

and in the inner region
@, =Bz + i— el 2(2kr] sin(‘?(p) (38)

The phase ¢ is given by 8-kz. 6 is the poloidal angle. The boundary conditions yield
(with x = 2kr)

B,=B, ; uB,= B, (39)

el(x) = cI{x,) + dK]x) (40)

pel(x) = cIfx)) + dK/x,) (41)

al{x;) + bK{x;) = cIfx;) + dK fx) (42)

nalfx) + ubKfx) = cIfx) + dK {x) (43)
This yields the relations

D) = L{x)K {z) — 1{x)K {x) (44)

D)o =drfe)icfe) - uife)ils)) (45)

et =~ i) o
panfe) = dutfeicle) - He)le) + ol icfe)ife)
wafe) = dutfelile) - Uelile)) s - cfelicle)
Inserting (28) and (29) into (30) yields a relation between e and a. In case p --> 1 we find
a =e. In general the field is reduced by a factor (e = a factorl). factorl is the reduction
factor of the external helical field due to the paramagnetic ring.
Numerical example:

x1=2kr = 1.136, x;= 2kr = 1.59. In a Helias reactor (R = 22 m, 5 periods, k=5/R) this
yields r;1 = 2.5 m and r; = 3.43 m. The width of the paramagnetic shell is 0.93 m.




Table 2

u X1 X2 factorl factor2
1 1.136 1.59 1 1

1.03 1.136 1.59 1.0001 0.9998
1.06 1.136 1.59 0.9999 0.9993
1.09 1.136 1.59 0.9993 0.9986
1.12  1.136 1.59 0.9985 0.9976
1.15 1.136 1.59 0.9975 0.9963
1.18 1.136 1.59 0.9961 0.9949
1.21 1.136 1.59 0.9946 0.9933
1.24 1.136 1.59 0.9929 0.9914
1.27 1.136 1.59 0.9910 0.9895
1.3 1.136 1.59 0.9889 0.9873
1.33  1.136 1.59 0.9866 0.9850

The second factor2 has been computed in straight geometry neglecting the helicity of
the [ = 2-windings. The result shows that the reduction of the poloidal field is less than
1%, this implies that the reduction of the rotational transform is less than 2%.

3.2 Modular Ripple

A further case, which can be examined analytically, is the reduction of the modular
ripple by a ferritic shell. We consider a coil system of circular coils, which are aligned
along the z-axis and may be considered as an approximation to the modular coils of a
Helias reactor. Outside the ring the magnetic potential is

O, =Bz + %(G,L,(kr) + bKo(kr]) sin(kz)

inside the ring

O = Byz + 2L fhr) + dK fkr) sin(i2)

and in the inner region

@, =Bz + % eIo(kr) sin[kz)

The components of the magnetic field are

(48)

(49)

(50)

5= (cIi,(kr] + dK;,(kr)) sin(kz)

B; = (al{kr) + bE {r)) sinfz)

Bi=el ;,(kr) sin[kz)

(51)

The continuity of the radial components yields the boundary conditions
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el {x;) = clfx,) + dK {x,)

(562)
al {x;) + bK [x,) = cIfx,) + dK {x)
The z-components of the magnetic field are
B'=B,+ [alﬂ[kr] + bKo(kr)) cos(kz) B =B+ (cI,,(kr] + dKo(kr)) cos(kz)
B. = B, + el {kr) cos(kz) (53)
From which the boundary conditions are obtained
pelfx;) = el {x,) + dK|x,)
b (aLf) + bK fx)) = cLfx) + dK fx) b

The boundary conditions (35) and (37) determine the coefficients e,c and d as functions
of a. The structure of these boundary conditions is the same as in eqgs. (23) - (26). The
results

D) = L o)~ L) = &
D)o = L ) ulfe )
D) = efp— L)L)
wanf) = ur{e)ile) - Hxfo) + ol Do)l 65
Introducing some defiitions
a=utleple) - the)ile)] ©=(Elwpcle) -uie )
B =Tl )L ) ) -

allows one to write the reduction of the ripple in shorter form

. _uD(x)Dl)

AC+(p-1)'E 57

The result is the reduction factor e/a in terms of Bessel functions.
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4. Toroidal Geometry

In toroidal geometry analytic results are not available and numerical computations are
needed to find the modification of the magnetic field. For this reason a numerical pro-
gram has been developed with solves the integral equations described in chapter 2. To
compare the results with analytic estimates a toroidal [ = 2 stellarator has been com-
puted. The same geometry as described in Fig. 3 has been selected in toroidal geometry.
The data listed in table 2 have been extended to a u-value of 5 and have been compared
with numerical results. The permeability is constant in the blanket region. The
difference between the results of the straight stellarator and its toroidal equivalent are
expected to be in the order of the inverse aspect ratio.

The rotational transform of a straight helical [ = 2 - stellarator scales with the square of
the factor e in equation (38). Fig. 4 shows a good coincidence between the analytical
results of the straight helical stellarator and the numerical results of the toroidal case.
The increase of the permeability from p =1 to p = 2 leads to a decrease of the rotational
transform of about 20%.

Reduction of rotational transform

transform

Rotational

Permeability

Fig. 4: Comparison of the rotational transform in an [ = 2 stellarator between
straight and toroidal geometry. The transform is reduced due to the screening
effect of the paramagnetic shell. The dots are the results of numerical calcula-
tions in toroidal geometry, which show sufficient coincidence with the result of
analytic theory.
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5. Helias Reactor

The magnetic field of a Helias reactor is generated by a set of modular coils and the
magnetic surfaces are quite different from those of a classical [ = 2 stellarator. However,
as shown in the example above, it is expected that the rotational transform is reduced
by the presence of ferritic material in blanket and shield. Furthermore, any asymmetry
of the structural components, either caused by geometric misalignments or by inho-
mogeneities of the ferritic material, may lead to error fields which cause island
formation as it is well known from misalignment of the modular coils.

The following figure displays a section of blanket and shield of a Helias reactor. The
goemetry of the blanket modules and the shielding components is rather complex, for
this reason a simplified model is adopted where a homogeneous of constant width
surrounds the plasma. In the computation the difference between breeding blanket and
shield is not existent.

Fig. 5: Part of blanket and shield in a Helias reactor

The first case, which will be investigated in the following, is a homogeneous blanket,
which does not destroy the 5-fold symmetry of the magnetic field. The width of the
region filled with material is 0.4 m and its geometry is determined by the geometry of
the first wall. As in the case of a straight stellarator it is expected that the ferritic shell
lowers the rotational transform of the vacuum field. The permeability is assumed to be
homogeneous across the blanket region (u = 1.3). The decrease of the rotational
transform is displayed in the following figure.
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Fig. 6: Rotational transform in a vacuum field without ferritic blanket (u. =
1.0) and with ferritic blanket (u. = 1.3, lower curve)

Magnetic surface

" .
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Ferritic material

Fig. 7: Crossection of a Helias reactor at ¢ = 0°. The region filled with ferritic
steel is shown in grey color. The Poincaré plot is computed without any effect

of the ferritic blanket. (ur = 1)
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Fig. 8: Crossection of a Helias reactor at ¢ = 0°. Magnetic surfaces modified
by a ferritic blanket. (i = 1.3)

Fig. 9: Crossection of a Helias reactor at ¢ = 36°. Vacuum field of coils
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Fig. 10: Magnetic surfaces modified by a ferritic blanket. ¢ = 36°. (i, = 1.3)
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Fig. 11: Effect of ferritic blanket: p = 1.3, p = 1 in one period. ¢ = 0°
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Fig. 12: Effect of ferritic blanket: p = 1.3, p = 1 in one period. ¢ = 36°

Symmetry breaking field errors are particularly dangerous since resonance phenomena
may lead to island formation. This effect requires high precision of the coil system and
the toroidal arrangement of coils. Symmetry-breaking perturbations also occur if the
structural components violate the basic symmetry of the magnetic field, which either
arises from geometrical errors or from inhomogeneities of the ferritic steel. To study
this effect the extreme case of one field period without ferritic material (n = 1) and four
periods with p = 1.3 have been computed. The results are shown in Figs. 11 agnd 12. The
modification of the magnetic field in the inner region is small, mainly the islands at the
boundary are increased by some amount.

6. Conclusions

Because of its low activation potential ferritic/martensitic steel is one of the main can-
didates as structural material in a fusion reactor. In stellarator reactors the presence of
ferritic material in breeding blanket and shield has the disadvantage of modifying the
magnetic field of the coils. In order to investigate this effect, a straight stellarator has
been analysed where analytic methods are applicable. The strong magnetic field of a
fusion reactor leads to a saturation of the steel and the effective permeability is smaller
than 2. In the case of a Helias reactor it is expected to be in the order of 1.3. The
effective permeability depends on the local magnetic field, however in the present
computations it is assumed as a constant throughout the blanket region.

The model of a straight stellarator shows the expected reduction of the inner magnetic
field and the reduction of the rotational transform. In case of p = 2 this can decrease the
transform by 20%. The comparison with toroidal geometry shows that the analytic
computaion of the straight stellarator is a good approximation to the toroidal stellarator.

In order to study the effect in a Helias reactor a homogeneous shell of 0.4 m width and
an effective permeability of 1.3 has been modelled around the plasma. The geometry is
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given by the shape of the first wall. As shown in Fig.6 the rotational transform is only
reduced by a small amount, any extra island formation was not detected (see Fig. 8 and
10). If the basic symmetry of the magnetic field is also preserved by the presence of
ferritic structural material, the modification of the magnetic field stays at a tolerable
level, the small reduction of the rotational transform can easily be compensated by a
proper arrangement of the coils.

Symmetry-breaking perturbations may arise by inhomogeneities of the steel and its
ferritic properties. As an example the extreme and unlikely case of a full period (one in
five) without ferritic structure has been computed, showing that the islands at iota = 1
are perturbed by less than a factor of two in size. These results suggest that small
inhomogeneities of the effective permeability do not lead to dangerous perturbations of
the magnetic surfaces.
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