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Abstract

Exact three-dimensional volume current solutions of the magnetohydrodynamic
(MHD) equations are presented. The configurations are infinitely extended along
a straight axis and have neither cylindrical nor helical symmetry. All field lines
lie in planes orthogonal to the axis and are closed around it. The surfaces of
constant pressure have elliptical cross-sections whose ellipticity and orientation

are arbitrary functions along the axis.



I. Introduction

In magnetohydrodynamic (MHD) theory plasma equilibria are governed by the

equations
JjxXxB = VP,
j= V¥HB, (1)
ViB = 0,

where P is the plasma pressure, and B and j are the magnetic field and the
current density, respectively.

Of particular interest are configurations which have smooth nested surfaces
F(r)= const of constant pressure. Equations (1) imply that the magnetic field
lines are embedded in these surfaces. If each field line traces out a pressure surface,
the pressure surfaces and the magnetic surfaces coincide. In cases where all field
lines are closed the definition of a magnetic surface F (r)= const is somewhat
ambiguous [1] and F may differ from F. Since we shall focus on the physically
relevant pressure surfaces, however, this distinction need not disturb us.

Equations (1) are nonlinear partial differential equations with both real and
complex characteristics, and no general theory about the existence of solutions
is available. If the equilibrium is independent of at least one coordinate, they
can be condensed into a single quasilinear elliptic equation [2, 3, 4]. In this case
explicit solutions with smooth nested pressure surfaces are known. This refers to
axisymmetric toroidal solutions (no dependence on toroidal angle) [5], cylindrical
configurations (no dependence on z-coordinate) [3] and helical configurations
(dependence on helical and radial coordinates only) [6]. Many more pertinent
references exist.

In the absence of these three (continuous) symmetries numerical evidence [7]
indicates that magnetic fields governed by Egs. (1) are subject to field line chaos
and regions of ergodicity. No smooth, nested flux surfaces would then exist. This
is found even in the much simpler case of force-free equilibria, with VP = 0
and j = AB [8]. Theoretical considerations [9] make this behaviour plausible
for solutions of Egs. (1). Recently, it was even proved analytically that toroidal
equilibria with smooth pressure surfaces and purely poloidal closed field lines

(symmetric to the equatorial plane) cease to exist if axisymmetry is violated [10].
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In spite of these negative results it is known that equilibria without the above-
mentioned three symmetries but with smooth, nested pressure surfaces neverthe-
less do exist. There are two such cases: First, there are toroidal equilibria with
mirror symmetry with respect to a poloidal plane and with small plasma beta
[11]. Owing to the symmetry all field lines are toroidally closed. No explicit
solution, however, was given. The assumed mirror symmetry was essential in the
proof of existence. Second, Woolley [12] derived two classes of ezplicit solutions
without continuous symmetries. They are “straight” configurations extending
towards infinity. All field lines are closed around a straight axis. In spite of their
fundamental importance as regards the existence of three-dimensional solutions
of Egs. (1) Woolley’s solutions do not seem to be well known. In connection with
work on nonexistence of equilibria [10] one of Woolley’s classes was rediscovered
recently [10, 13]. Contrary to Woolley’s expectation these equilibria, however.
have no toroidally closed counterpart, as was shown in [10]. The solutions found
in [12], just as those discussed in [11], have mirror symmetry with respect to a
plane (more precisely, with respect to two, mutually orthogonal, planes).

Here, we give a new explicit class of solutions of Eqgs. (1) with finite pressure
gradient and without any of the three continuous symmetries. As a distinc-
tive feature, these new equilibria have no mirror symmetry with respect to one
or more planes anymore. This proves that mirror symmetry observed in the
previously known classes of solutions is not a prerequisite for the existence of
three-dimensional equilibria.

In Section II we present the equilibria found, while in Section III their relation
to Woolley’s solutions [12] is discussed, a common ansatz for both being used.
This discussion brings out more clearly the problems encountered in solving the

nonlinear Egs. (1) than would a mere presentation of the new solutions.

II. Equilibria without symmetries

Our solutions of Egs. (1) are “straight” configurations extending from, say, —oc <
z < oo, in a Cartesian coordinate system z,y, z. All field lines are closed curves,
concentric around a straight axis at * = y = 0 and embedded in planes orthogonal
to this axis. They are ellipses whose ellipticity and orientation are free functions
along the axis.

In detail, the magnetic field is given by



B = VF X VG(z), (2)

where F, in polar coordinates, with z = r cos#, y = rsin#, is given by

i 2

F= i

{1 — u(z) cos[28 —v(z)]}, (3)

and G is related to u(z) by

€ _HA=. (@)

dz ¢

The pressure is linear in the surface label [™:
P(F) =R+ AF. (5)

In Egs. (3)-(5) ¢, Po and Py are arbitrary constants, while u(z) and v(z), besides
u? < 1, are arbitrary functions of their argument. From Eg. (2) it follows that
B-VF = 0, which proves that the surfaces I" = const are also magnetic surfaces.

In Cartesian coordinates F' is

4P1(1 —uz)
—2u(z)sinv(z) 2y + [1+ u(z)cosv(z)] v’} (6)

Flz,y,z) = { [1—wu(z)cosv(z)] =*

According to Eq. (2) the field lines are determined by the intersection of
the magnetic surfaces F' = const and G = const, where the latter reduce to
z = const, see Eq. (4). The field lines are thus concentric ellipses, provided
that u? < 1. The latter statement is more evident from Eq. (3). The half-axis
ratio ﬁ-{- u)/(1 — u) of the ellipses is governed by u(z), while their orientation
with respect to the z-axis, say, is determined by v(z). Indeed, a rotation of the

coordinate system by an angle 9(z) = v(z)/2 according to

|
S

# = zcosd(z)+ysind(z), j = ycosv(z) —x sind(z) (

changes F into the nonrotating form

—c?
F(z,

J.z) = —— —u) #? u) 7). ]
9,2) = 4Pl(l_ug){(l )&%+ (1+u)§° ) (8)




The components of the magnetic field are given by

BI(I-,y,Z) — Eﬁ [TISinl’T—(1+llCOSI‘)y] .
C . .
Bilz.yz} = W o [(1 —ucosv) z —usinv y] , (9)

B.(z,y,z) = 0.

It is elementary to check that B = (B,, By, B;), P and F from Egs. (9), (5) and
(6) satisfy Egs. (1).

The constant ¢ is related to the longitudinal current density j. as follows:

&

J: = Vel (10)
In the special case v(z) = 0 Eq. (6) reduces to

i o2 y?

Flz,y;2) = 4P, | 14 u(z) + 1 —u(z)

(11)

Together with Eq. (5) this is equivalent to the mirror-symmetric solutions given
by Woolley [12] in his Eq. (3.2), with the identification u = ((* —1)/(¢* + 1) and
CWoolley = —C/2.

The fact that the solution (6) for F(z,y, z) i1s related by a simple rotation to
the less general solution (11), valid for v(z) = 0, is not trivial. Woolley’s second
class of solutions, for example, cannot be transformed into a more general one by
replacing z, y in F(z,y,z), i.e. in the pressure P(z,y, z), with &, y, Eq. (7), no
matter how G(z) is chosen.

An MHD equilibrium of finite radial extent can of course be obtained by
bounding the plasma with a conducting wall at some F' = Fy = const. This also
prevents the pressure from becoming negative at large r. According to Egs. (5)
and (3) the pressure always decreases with growing distance from the axis. For
| F| < |Fy| nonnegativity of the pressure is assured by taking the central pressure
P, large enough.

A necessary condition for the existence of equilibria is that I = § d{/B be the
same for all closed field lines on a given flux surface, I = I(F), (B = |B|, dl =
length element along B) [14]. Evaluation of I with Egs. (9) and (3) yields I =

47 /c, which is constant, not only on F' = const, but also absolutely, for all F.
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Some examples of pressure surfaces (3) are presented in Figures (la) - (2c).
The z-axis is in the vertical direction. Two solutions which incorporate noncon-
stant functions u(z) and v(z) and which are therefore devoid of symmetries are

shown in Figures la and 2a. In Figure la u(z) is a periodic function:
u(z) = 0.3—0.1sinz, v(z) = z, (12)
while in Figure 2a u(z) is localized to a small region around the origin:
u=—04e"%%" | u(z) = 0.25z. (13)

From the continuum of nested surfaces F' = const two surfaces are presented in
each case.

The equilibrium surfaces shown in Figures la, 2a are, so to speak, nonlinear
compositions of solutions which exploit either u(z) alone or v(z) alone. This
composition is shown in Figures 1b, 1c, 2b, 2¢c. Figures 1b, 2b differ from Figures
la, 2a in that they have v(z) = const = 0. They are thus examples of Woolley-
type solutions. They are still three-dimensional solutions, i.e. they depend on
x, y and z, but they have the double mirror symmetry discussed above. In Figures
lc, 2c, finally, u(z) is replaced by a constant, —0.4 and 0.3, respectively, while
v(z) is left unchanged in relation to Figures la, 2a. These solutions are helically
symmetric. They are shown here in order to illustrate the contribution of the
functions v(z) to the full solutions (6) with u(z) and v(z) given by Egs. (12),
(13). '

III. Relation to other three-dimensional equi-
libria

In this section a unified description of the known three-dimensional “straight”
equilibria with plane closed field lines is given. This puts the solution discussed
in the preceding section into perspective, and the method may also be helpful in
finding other three-dimensional equilibria.

With the ansatz

B = VHXV:z (14)




for the magnetic field Egs. (1) reduce to

(AH)0.H +8,P =0,
(A;H)0,H +,P =0,

9. [(0-H)* + (8,H)* +2P] = 0. (16)

Here, we are working with Cartesian coordinates, H = H(z,y,z), P = F(z,45,2),
and A, denotes the two-dimensional Laplacian in the z,y-plane. Note that the
pressure is now assumed as a function of the variables z,y, z, and that, therefore.
the simplified ansatz (14) (in comparison with (2)) is sufficient [1]. From Eq. (16)
one has the representation for P,

P(e,y,2) = Bley) 5 [(@H) +(@,H)] , (17)

which, inserted in Egs. (15), yields

0.5 = (8,H):0,H — (9.H)0?H ,

(18)
Oyp = (0:H)0.0,H — (0,H)0*H .
The integrability condition for p reads
0:0,p — 0,0:p = (0:H)0yArH — (90,H) 0, 0,H = 0, (19)

which, in turn, is the condition for the following (local) representation of A, H:
A.H = f(H,z) (20)

with arbitrary profile function f. In order to ensure that p does not depend on
z, H has to satisfy in addition the relations following from Eqs. (18):

0.[(8,H) 8,0,H — (8,H)?H) = 0,

(21)
0. (8,H) 8.0,H — (8.H)9?H] = 0.

So, instead of solving Egs. (15), (16) for H and P direct, one can solve the two-
dimensional problem (20) with arbitrarily given function f first and then try to
satisfy the compatibility conditions (21) for the z-dependence of H.
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The solutions of Ref. [12] and the foregoing section fit easily into this scheme:
consider first the case with constant (with respect to H) profile function f = f(z).
If H is taken of the form

H = a(z)z? + c(2)y?, a,c>0, (22)

with z-dependent coefficients a and ¢, Egs. (20) and (21) reduce to the equations

f = 2a+¢c), 0.(ac) = 0, (23)

which leave one function of z free. These solutions correspond to the first class

in Ref. [12]. If the more general ansatz
H = a(z)z® + b(z)zy + c(z)y?, a,c>0 (24)
is tried, Eqs. (20) and (21) furnish the conditions

f = 2(a+¢), 3,(4ac—b*) = 0, (:

o
o
—

which leave even two functions of z free. Noting that due to the different repre-
sentations (2) and (14) F and H are related by

H = F—i—l 1 —u?(z) , (26)

one can easily check that the solution of the foregoing section satisfies the condi-
tions (25).

Consider second the case with linear profile function f = kH, k = const. An

ansatz for H of the form

[§%]
-]
~—

H = a(z)g(z) +c(2)h(y) (

here leads to the conditions

[N}
o0
s

dig = kg, 0°h = kh, d.(ac) = 0. (

v

For positive as well as negative K solutions of Eq. (28) with closed poloidal con-
tours of H and with one free function of z exist; these solutions correspond to

the second class in [12].




Some further remarks are in order. In the case with constant profile function
the most general second-order polynomial (in = and y) for H contains first-order
terms, too. These terms lead, however, only to a z-independent shift of the center
of the poloidal section and no further free functions appear. On the other hand,
if higher than second-order polynomials are used no solutions with nontrivial z-
dependence exist at all. The reason is that for higher orders Egs. (21) furnish
too many independent conditions for the coefficients of the polynomial. In the
case with linear profile function a generalization of the ansatz (27) with mixed
terms did not prove to be successful. Finally, one should mention that analytic
solutions of Eq. (20) with closed poloidal sections exist also for nonlinear profile
functions, e.g. f = ce™ [15]; solutions of this type with nontrivial z-dependence,

however, could not yet be found.
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Fig. la Fig. 1b Fig. 1c

Fig. la: Pressure surfaces F' = const without symmetries. Deviation from circular
cross-section: u(z) = 0.3 — 0.1sin z. Helical-pitch function: v(z) = =. Vertical

interval: z € [0, 67).

Fig. 1b: Same as Fig. la, except that v(z) = const = 0. Surfaces with mirror

symmetry.

Fig. 1c: Same as Fig. la, except that u(z) = const = 0.3. Surfaces with helical

symmetry.
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Fig. 2¢

Fig. 2a: Pressure surfaces F' = const without symmetries. Deviation from circular
cross-section: u(z) = —0.4exp(—0.3z%). Helical-pitch function: v(z) = z/4.
Vertical interval: z € [-9, 9].

Fig. 2b: Same as Fig. 2a, except that v(z) = const = 0. Surfaces with mirror

symmetry.

Fig. 2c: Same as Fig. 2a, except that u(z) = const = —0.4. Surfaces with helical

symmetry.
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