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Abstract

The general sufficient condition obtained by the author in a previ-
ous work is analysed with respect to its "nearness” to necessity. It is
found that for physically reasonable approximations the condition is
in some sense necessary and sufficient for stability against all modes.
This together with hermiticity makes its analytical and numerical eval-
uation worth for the optimization of magnetic configurations.

In a previous note [1] the author has derived a general stability condition
which is sufficient for stability with respect to purely growing modes. The
derivation is made possible by manipulating the linearized equations of re-
sistive MHD in such a way that they can be put in the form(see [1] for the
derivation and notations, it is recommended to read [1] together with this
letter)

NV 4+ P¥ + QU =0 (1)

with N and P symmetric real and positive operators. Then according to [2]
one obtains the condition

§W = (7,Q,7) > 0, (2)



sufficient for stability with respect to purely growing modes. @, is the sym-
metric part of Q which can be split in @ = Qs + Qa, Qo being the antisym-
metric part. ( , ) is the usual notation for the scalar product as in (1], where
the explicit form of (2) is given. We reproduce it here again

W = / dr (4 Po(V-€)? + (£-V P)V-£)
+/dr(VxA)2—/dT§xJ-VxA+
Ty fer-(A — ¢ x B)(B-V)"1(1/10)(V0 - V x A)

—fd-r(A—{xB)-Vx (V x A)1/n0 (3)

Condition (3) is equivalent to (2) if all quantities in it are real but is not
hermitean. It is, however, obvious to obtain an hermitean form of (3) by
constructing the adjoint (by integrations by parts) of Q or as indicated in
[1].

As already known (see [3]) condition (2) becomes necessary and sufficient
for all modes if Q. = 0. In the incompressible case with tokamak ordering,
Tasso and Virtamo derived in such a limiting case some time ago a necessary
and sufficient condition (see [4]) which has been evaluated numerically(see
[5]). In the general case it does not seem possible to find a system of dynamic
variables for which Q. = 0. One can, however, "upgrade” conditions (2) or
(3) for two interesting situations 1) for Q. ~ € small, which is related to the
tokamak scaling and 2) N = 0 or neglecting inertia, which is valid for time
scales much larger than the Alfven or acoustic time scales.

1) Qa~ ¢

Let us first show that for Q, = 0 any unstable mode must be purely
growing. For that purpose assume

v = BWHIJD(I‘), (4)
w = wwo + Yo (5)

with wo and o real. Insert (4) and (5) in (1) to obtain

(two + v0)?N ¥ + (iwo + 70) P¥o + (Qs + Qa)¥o = 0. (6)

8]




Multiplying by W3, integrating over the plasma volume and using the usual
notation for the scalar product, (6) reduces to

[(76 — w§) + 2i70w0) (Yo, N o) + (70 + iwo) (To, PTo) + (Yo, (Qs + Qa) ¥o) = 0.
(7)

Since N, P and @, are hermitean the imaginary part of (7) is
2y0wo(Wo, N'¥o) + wo(Wo, P¥o) — (To, Qu¥o) = 0. (8)

Since N and P are positive and if we assume Q, = 0 and 7o > 0 it follows
from (8) that wp = 0. This proves that for Q, = 0, exponentially unstable
modes must be purely growing.

Assuming that condition (2) is violated for some test function, it follows
that for e = 0 a purely growing mode with wp = 0 exists and satisfies (6) for
Qo = 0. Now supposing that @, is small and of order ¢, we expand (1) up
to first order in e

U= ‘IJO + 6\1’1, (9)
w = + €1, (10)
"J’SN\I’g'f“yoP‘I’o-f'Q,\pD:O, (].].)

270wi N¥o + 2NV, 4w PUg + v%PU; + Q¥ + Q. U, = 0. (12)

Multiplying (11) and (12) by ¥} and integrating over the plasma volume we
obtain

15 (o, N¥o) + 70(Po, P¥o) 4 (¥o, Q,¥0) = 0, (13)

27ow1 (Yo, N¥o) + wi(¥o, P¥o) + (Yo, Qa Vo) +
’)’3(‘1’01 NY¥1) + v(%o, PUy) + (¥, Q,¥,) = 0. (14)

Using (11) and the fact that N, P and @, are hermitean (14) reduces to
w1 [290(%0, N¥o) + (Yo, P¥o)] + (¥o,QaTo) = 0. (15)

Since the original system of equations is real and the mode is purely growing
(wo = 0), ¥y can be chosen real without loss of generality. It follows then
from (15) together with the positivity of 4o, N and P and the antisymmetry
of @, that
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This means that if the purely growing eigenmode had to acquire some real
frequency through Q. = ¢, this frequency is of order €* or higher. A small
Q. affects the unstable spectrum very weakly.

2) N = 0, or neglecting inertia

Equation (1) becomes

PU +(Q, + Qa)¥ = 0. (17)
Multiplying by ¥ real and integrating over the volume we obtain

o(v, PY

2O _aw,Q.u) (15)

We see that the positive form (¥, P¥) is a Liapunov functional if conditions
(2) or (3) are verified. Now these conditions are sufficient for stability against
all modes not the purely growing only.

The analysis brougth in this note cannot make condition (2) necessary
and sufficient for all modes but gives more weigth to it.One could say that
the condition is "nearly” necessary so that its analytical and numerical eval-
uations may be worth doing. As mentioned in [1] condition (2) reduces to
the ideal MHD energy principle and to the resistive energy principle of Tasso
and Virtamo (see [4]) in the appropriate limits. Extensive numerical calcula-
tions in those particular limits for ideal MHD (see [6]) and for resistive MHD
(see [5]) show that both ideal and resistive modes can be stabilized if 3 is
small enough, the safety factor large enough and the current distribution well
chosen.

Condition (2), however, may be violated in general by test functions remi-
niscent of resistive ballooning or resistive drift modes or other residual modes.
Nevertheless, its degree of violation can be taken as a "measure” for the opti-
mization of magnetic configurations. Similarly to previous work (see [5]) the
numerical evaluation of the condition is made possible due to its hermitean
form.
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