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Abstract:

The generic properties of the nonlinear interaction of
three driftwaves with finite k,, are investigated. The different
types of stationary or quasi-stationary states are characterized
by the bifurcation diagram in Yqs K parameter space, where Y,
measures the mode excitation and k the parallel wave number. The
transition to turbulence corresponds exactly to the Ruelle-Takens
picture: steady state + periodic solution + doubly periodic solu-
tion + turbulence, in contrast to the period-doubling route usual-

ly observed in low-dimensional dynamic systems.



I. INTRODUCTION

Drift-wave turbulence seems to be the dominant micro-fluc-—
tuation process in tokamak plasmas and is the most likely cause
of the anomalous transport observed. Several recent experimental
studies1)2) have shown the presence of small-scale turbulent
density fluctuations with typically k_,_pi ~ 1, where ch is the
ion gyroradius, which appear to exist across the whole plasma
cross—section. Although average amplitudes may differ signifi-

2 =8 5 . .
- 10 in the plasma interior and more

2)

cantly, being E/no ~ 10
like ?f/nO o 10_l at the plasma edge °, all these density fluc-
tuations are generally associated with nonlinear drift waves.

Wave number spectra are broad and so are the frequency spectra

for fixed values of the wave number. The latter observation is

of particular importance, indicating a state of strong turbu-
lence which cannot be described by standard weak turbulence
theory. Drift waves exist owing to the presence of a density or
pressure gradient. They may be excited by various instability
mechanisms, e.g. collisions (dissipative drift instability),
inverse electron Landau damping (universal instability) or

trapped particles (trapped electron instability). While the classi-
fication of linear drift instabilities is rather complete, non-
linear theories describing the saturated and probably turbulent
state are still quite crude, emphasizing various nonlinear sa-
turation effects. One may generally distinguish between two
approaches: a) The driving mechanism is turned off by a nonlinear
process, e.g., by a modification of resonant particle orbits, which
occurs at an amplitude sufficiently low to preserve the linear
mode structure essentially. An example is the theory of stabiliza-
tion of the universal instability due to resonant electron diffu-
siona). However, since the frequency spectra would be rather
narrow, it appears that this saturation effect is not the dominant

one in typical tokamak plasmas. b) Amplitudes are excited to le-
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vels sufficiently high for fluid-type nonlinearities to be-

come important as in hydrodynamic turbulence. While the total
wave energy still depends on the magnitude of the excitation,
e.g. the linear instability growth rates, the spectra are essen-
tially determined by the mode-coupling processes and have rather
universal properties. Several different mode-coupling theories
of drift-wave turbulence have been discussed in recent yearsa)s),

each emphasizing the importance of a particular nonlinear term

in the fluid equations.

Because of the quadratic form of the nonlinear terms the
basic interaction involves a triple of modes with I &i = 0.
Hence the lowest-order model contains just three modes. Though
such radically truncated systems cannot of course yield a quan-
titative description of the turbulence, it is quite generally
assumed that they already contain essential features thereof.
They may give rise to, for instance, random or chaotic behaviour,
the best known and most intensively studied example being the Lo-
renz equations6) as the simplest model of Rayleigh-Bénard con-—
vection. For the drift-wave problem a three-wave model was re-
cently investigated by Terry and Horton7). Although these authors
find stationary turbulent states to exist under certain condi-
tions, the average wave amplitudes are too high relative to the

8)

usual estimates. In a subsequent article ’ the authors were then
able to show that including substantially more modes (" 20) con-—
siderably reduced the turbulence levels. Using a model with even
more modes (" 400) Waltzg) obtained turbulence amplitudes in

rough agreement with experimental observations on tokamaks.

In the present paper we return to the three-wave approxima-
tion but refine the physics included. It is well known that drift
waves are strongly influenced by the shear of the magnetic field.
In the presence of shear they generally have a finite parallel
component of the wave number and thus couple to sound waves. This

coupling gives rise to two different effects. Since sound waves
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propagate along the magnetic field, they are easily dissipa-
ted by collisional viscosity or Landau damping and thus lead
to effective damping of the coupled wave system, which one
could call a sound=drift-wave. On the other hand, the coupling
changes the dispersion properties and introduces a new nonli-
near term, leading to lower effective turbulence levels even
without the additional parallel dissipation. It is this second

effect which we include in our model by allowing finite k.

In a preceding paper‘o) we restricted our attention to
drift waves excited by electron-wave resonance as discussed by
Terry and Horton7). Our main result was that for k, ~ 0(1)

(in the units to be given in Sec. II) the saturation turbulence
levels are substantially smaller than for k, = 0 and are con-
sistent with conventional estimates. Here we now investigate

the generic properties of the three-sound-drift-wave equations
more closely. The model is of substantially higher dimensionali-
ty, having ten independent dynamic variables as compared with
four in the Terry - Horton model, k,, = 0. Our aim is to give a
complete overview of the asymptotic (regular or turbulent) so-
lutions as a function of two parameters k and Y, characterizing

the size of the parallel wave numbers and the mode excitation.

The organization of the paper is as follows: In Sec. II
the model equations are derived and some of their basic proper-
ties are presented. These equations are solved numerically.

The numerical approach and the different diagnostic methods of
analyzing the long-time properties of the solutions are dis-
cussed in Sec. III. Section IV gives a general discussion of
the bifurcation diagram, while in Sec. V several specific paths
in Y,» % space are followed in greater detail. Section VI

summarizes the results.




IT. MODEL EQUATIONS

In the presence of magnetic shear there is in general a
parallel (to the magnetic field) variation of the density fluc-
tuation n' of a drift wave which generates a parallel ion flow

J, where n and J satisfy the equations

on'

==& gl &V E‘(YE"'YP)I =0 (1)
%%; + ;% V,.P + e Vad + v ¢V, T =0 (2)
Here
%= E V6D
o
o = - QCEBO C22E + (v v W) 9.4

are the E x B and polarization drifts, respectively, n = n_ +n',
n_ is t?e unperturbed ion density, §o is the applied magnetic
field, b = QO/BO, P is the ion pressure, which will be neglected
in the following, e and m are the ion charge and mass, Qci is
the ion gyro-frequency, and ¢ is the fluctuating electrostatic

potential,

We use the following units: (Te/noe)(pS/Ln) for ¢,
nOcSpS/Ln for J, Ln/cS for t, and 1/Ln and 1/pS for V,, and V,
respectively. Here Ln is a length characterizing the average

density gradient, c_ is the sound speed and o, = cS/Qci.

In the presence of shear the global configuration is ne-

cessarily inhomogeneous. In slab geometry one usually chooses
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coordinates such that B = BO(; + ﬁi ;), where LS is called the
shear length. To define individual® Fourier modes and their in-
teraction, one must consider local (in x) Fourier transforms

¢k, which is only possible if kxps >> Ln/Ls’ so that modes

may phase-mix and become statistically independent over a dis-
tance where the direction of B and hence the parallel components
of the wave numbers do not vary substantially. This picture of
"radially" local modes is just opposite to that of global eigen-
modes which are strongly correlated in x.However, as has recent-

1)

ly been shown1 , the latter do not persist at finite amplitude,

but one has instead k_~ k_. Since typically k p_~ 1 and L_/L_~ 20,
ple y y s s n

the above condition for the validity of the local Fourier repre-

sentation 1s satisfied.

If the response of the electrons is assumed to be linear,
then by using the quasi-neutrality condition the Fourier compo-
nent of the density fluctuation n] is related to that of the fluc-

k
tuating potential ¢k by the following expression:

| I— i

where Gk results from the nonadiabatic response of the electrons.

Since the mechanisms for the nonlinear interaction coming
from the terms V + n (yE + Yp) have already been studied, we should
like to shed some light on the effect of the third nonlinear term,
Ve VJ. We therefore omit for the moment the nonlinear terms in
eq. (1). In this case, eqs. (1) and (2) reduce to (writing

in 3¢k/3t =Y ¢k)

d¢k

T;E_ = Yk¢k -1k ¢ -1 k"Jk 5 (3)

vk
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T =~ 1 ket + ) (ky x kKy)- b bt T (4)
k'+k'"=k
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The linear dispersion relation derived from eqs. (3) and (4)

is
w? - (ky +iy)w-KkK>=0, (5)

K being written instead of k, for the sake of simpler notation.

For K << ky and y << w, the solution of (5) is

K2
w, = ky (1 + 15? s (6)

We now investigate the simplest case of just three inter-
acting modes which form a triangle with ki + kz + k3 = 0. Their
projected components on the magnetic line B are K, Kz, K3 ,
respectively. We express the j—th mode ¢j in terms of real posi-

tive amplitude aj and real phase angle aj:
¢. (t) = a. (t) exp {- ia. (£)} . (7
J J J

aj(t) can be divided into two parts, aj(t) = wjt - gj(t), on the
"
assumption that aj(t) << w,, where w. is given by eq. (6). If

weak nonlinearity is assumed, eq. (4) for the j-th mode can be

written
dd - K K
...._..‘]. = = 1 = L - _Bi - %*
dt lKj¢j A (U-‘E wm)q’g ¢m ] (8)

* N
where ¢j is the complex conjugate of ¢j, A= % bk, xk;
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and {j, %, m} is a cyclic permutation of {1, 2, 3}. Here we

have neglected higher orders in the nonlinear terms.

Substituting eq. (7) in the time derivative of eq. (3),
using relations (6) and (8) and neglecting small terms, we ob-
tain the model equations for the amplitudes aj and total phase

o =0y + oo + Gg:

da.
—l = -
e Pj aj A Dj a, a cos a, 9)
a.a
{%? = Aw + A z D. ;’ sina , (10)
{j,e,my I %
K K K.z
vhere T = 0] = Koo} o D, = =3 = Emypeq & —lyy and
i i i3 ioow ey wy W,

Aw = wy + wy + wiy. Equations (9) and (10) have the same form as
discussed by Terry and Horton7) for real susceptibilities. In

keeping with their derivation the conditions for steady state are

sgn (Yj) sgn (Yg) - sgn (Ym), (11)

]
]

sgn (Dj) - sgn (Dﬁ) - sgn (Dm). (12)

On the assumption that Yj >0, Tos ¥ * 0, these conditions are
satisfied only if the mode j has a parallel phase velocity inter-

mediate to those of the other two modes,

w w. w
A W (13)
m J

= e

(or the inverse inequality). This is also the condition for para-
metric decay of a large amplitude wave j into two waves, one with

higher phase velocity, the other with lower. We thus find that
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the nonlinear term in eq. (2) has a stabilizing effect in the
three-sound-drift-wave interaction when the inequality (13) is

satisfied.

Let us now turn to the full nonlinear equations (1), (2).

Writing in addition to eq. (7)
J.(t) =b. () exp { - iB.(t)},
J 3 J

we derive the three-mode truncation model in terms of the ten

real dynamic variables aj s bj s Bj = aj - Bj , and o = o1 + ap + @z
d_a.i
= vy.a, + K.b.sin6, - A(F.coso~G.sina) a. a (14)
at 3% 3 j ] j £ m’
®;
= = Kj aj81n6j + 2A [ézbmcos (a—Bm—ej)-ambgcos(a—ej—ﬁgil,
(15)
de. b. a. a,a
—1 =y, + K. (=L - =1-)cosh, + A(F.sina + G.cosa)
dt ] 3" o bJ- J ] ] 3

+ 2A [égbmsln (a—Gm-Bj)—amb231n(a—6j—92i]/bj, (16)

Fex 3 K.b. . ) aga
—= Aw + .51 ——é—l— cosf. + A Z (F.sina+jSosa) = =z,
4 j ] {j,2,m} d ]

(17

Here Fj, Gj are the coupling coefficients arising from the nonlinear
polarization drift and the ExB density convection, respectively,

o . 2 _ a . .
Fj = klg klm and Gj ék Gk » as given in Ref. 7. The energy

balance can easily be obtatned £2om eqs. (14) and (15)

2 2 3
(a, + b.) = .L
T ] 1=

dav - d 1
dt ~ dt 2 j

e w

Y.a. . (18)
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Using an appropriate volume element in the ten-dimensional phase-
space (generalized cylindrical coordinates to account for the po-

sitivity of the amplitude factors aj 3 bj),

3 2 2
dv =.I_ {da, d bj d Bj} da, (19)

one can easily calculate the change of dV from eqs. (14) - (17):

3
da. db. de.

XN g LA g Al B g ds 8 5 3 de
dt .”. a. da, j dt b. db. jdt 36. dt d0. dt

=1 73 ] ] ] ]

3 )

= % 29 s (20
1=1 YJ

We thus see that the volume changes uniformly over all phase space.
A necessary condition for bounded asymptotic solutions to exist

is that y_ =y + vy + vy < 0.
t 1 2 3

Equations (14) - (17) are a generalization of the three-wave
equations discussed in Ref. 7, to which they reduce for Kj = 0.
In a parallel paper we investigated the effect of K on the solu-
tion for values of parameters Fj’ Gj’ Yj’ mj corresponding to elec-
tron drift waves driven by a particular instability. In the present
paper we choose the parameters somewhat more arbitrarily in order
to study the generic properties of eqs. (14) - (17). While for realis-
tic drift wave parameters solutions are mostly turbulent, we concen-
trate on cases where regular solutions, in particular steady states,
also exist, so that the transition to turbulence determined by a par-
ticular sequence of bifurcations can be followed. As outlined in Ref.
7, stable steady-state solutions are most easily obtained if both
Fj and Gj satisfy condition (12). In particular, we choose the va-
lues of Fj’ Gj’ Yz’ Ya’ and Aw as in Fig. 5 of Ref. 7. The linear

frequencies mj are chosen such that Dj also satisfy eq. (12), which
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according to the discussion given above should further increase
the probability of obtaining a steady-state solution. If a coor-

dinate system is assumed such that k, * z = 0, the parallel com-—

ponents Kj are given by the y-compo;ent of the magnetic field,
Kj/kyj =K = By/Bo' Having thus fixed the parameters Fj, Gj’ Ej’
Wes ¥, Vs Fj = {0.297, - 0.237, - 0.06}, Gj = {-0.2247, 0.2012,
0.0235}, 51 = (0.8935, 1.2048), 52 = (- 0.4436, - 0.8032), 33 =
(- 0.4499, - 0.4016), ws = {0.47065, - 0.25615, = 0.2945}, Aw =
0.08, Yz = - 0.25, Ya = - 0.0191, we study the properties of the
time-asymptotic solutions as functions of the excitation strength
Y 0 < Y, < 0.2691 (the upper boundary corresponding to Y ™ 0)

and the parallel wave numbers, characterized by k, 0 £ « < 1.

III. NUMERICAL SOLUTION AND DIAGNOSTICS

Except for very special cases, eqs. (14) = (17) can only be
solved numerically. We first compute steady-state solutions. We
solve the set of nonlinear equations resulting from setting the
l.h.s. of (14) - (17) equal to zero, using a generalized Newton's
method. To examine the stability of these solutions, we consider
the corresponding linear eigenmode equations. A necessary and suffi-
cient condition for stability is that all eigenvalues y (with d/dt
= y) have negative real parts. In the case of instability the actual
solution must be obtained from the time-dependent equations. These
are solved by a standard Runge - Kutta IV method. As can be antici-
pated from eqs. (16) and (17), problems could arise if aj or bj
come close to zero. Special care has to be taken in such an event.
Starting from either the (unstable) steady state or from the solu-
tion in a neighboring point in Y.» K space, time integration was
performed over a sufficiently long period to allow the solution to

settle into the asymptotic (quasi~)stationary state.

Various types of numerical diagnostics are used to quantify
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the properties of the asymptotic solutions: a) Time traces of
aj, bj’ cosa, cosb,. For regular (periodic or quasi-periodic)
solutions these give a rather good indication whether or not the
solution has become stationary. Strongly turbulent solutions are
easily identified, but the transition from regular to turbulent
behaviour is difficult to recognize. In certain cases solutions
have been followed for up to 20,000 time units. b) Frequency

spectra of a,. As in experimental studies of Rayleigh-Bénard con-

vection or s;milar systems, frequency spectra, if taken over suffi-
ciently long times, seem to give the best characterization of a dy-
namic state. Simply or multiply periodic solutions are easily
verified and well distinguished from a turbulent state. They are
thus very sensitive diagnostic tools to study bifurcations, in par-
ticular the transition to turbulence. Frequency spectra are obtained
by Fourier-analyzing time traces of a1(t) over typically 2000 to
4000 time units, using 16,000 to 32,000 grid points. c) Poincaré
maps. Various types of Poincare maps are considered. In most cases
the hyperplane, whose intersections with the phase space orbit is
recorded, are given by cosa = 0, either a = %% mod 2m or o = 6
mod 27m. Since only two-dimensional projections of the nine-dimension-
al hyperplane are practically useful, there are 36 different combi-
nations of variables, only a few of which have actually been ana-

92 25 T and bz, b3 Vs b1.
(limit cycles) and doubly periodic orbits (2 - tori ) can thus be

lyzed, mainly a,, a, vs a While periodic orbits

rather convincingly identified, it is difficult to distinguish in

this manner between higher-dimensional solutions (e.g. 3 - tori )
n+1
1

vs. aT. In contrast to strongly damped systems with a large phase

) 6
space contraction rate such as the Lorenz model ) or the three-wave

2)

i : ; 1
system recently investigated by Wersinger et al. , the present

and truly chaotic solutions. d) one-dimensional maps, e.g. a

equations do not lead to a quasi-one-dimensional map in the turbu-
lent case. This type of map is therefore less useful here.

e) Maximum Liapunov exponent 0. This quantity characterizes the ex-
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ponential divergence of neighbouring phase space orbits in the
turbulent case. We use a definition introduced by Benettin et

1.13)

a which is particularly suitable when numerically integra-

ting a system of differential equations such as eqs (14) = (17):
1In |—]. (21)

Here ]do| is the initial separation in phase space between the
original ogbit xj(t) and a neighbouring orbit xﬁ(t), dg s

I(x. - %) . where xj are the ten variables a1,+++., 0. Both or-
J bits are followed for a short time t and the final separation
|d1| is recorded. Now the orbit separation is set back to the ori-
ginal value |d0|, but the orientation is chosen at random. Thus
after N repetitions or a total time T = Nt, N values of ldi' are
obtained and the expression ¢ is formed. It can be proved that
under suitable conditions o becomes independent of |d0|and T

0 is well suited to illustrating the characteristic difference
between regular and chaotic orbits, but is difficult to evaluate
for weakly turbulent solutions and hence is no good monitor of

the transition region.

IV. CLASSIFICATION OF SOLUTIONS , BIFURCATION DIAGRAM

In this section we present an overview of the possible types
of solutions depending on the parameters Yl and k. The results are
summarized in the bifurcation diagram shown in Fig. 1. Solving the
stationary equations, we find steady-state solutions for practically
all points in the Y, sk space considered except in a narrow strip
along the right-hand boundary, where no bounded solutions exist.
But only in the region indicated in Fig. 1 are these solutions

stable, with all eigenvalues having negative real parts. On crossing
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the boundary of this region there is a Hopf bifurcation charac-
terized by a pair of complex conjugate eigenvalues crossing the
imaginary axis. In the adjacent region one finds periodic solu-
tions or limit cycles determined by a single frequency w; (and its
harmonics). In the Poincaré map the orbits converge to a finite

set of points as the solutions become stationary.

The region where stable periodic orbits exist is bounded by
lines where there is a second Hopf bifurcation determined by the
appearance of a second frequency. Beyond these lines solutions are
in general doubly periodic, orbits covering two - tori in phase
space. They are characterized by two generally incommensurable
frequencies w;, w2 (and their combination frequencies). The Poin-
caré maps are simply closed orbits where, however, some folding may
occur. There are two distinct types of tori corresponding to either
mz(l)m 0.02w, or mz(z)m %% w, which we call torus 1 and torus 2.
Typical frequency spectra corresponding to these types of solutions

are given in Figs. 2 and 3.

No new bifurcation lines appear. The lines separating the limit
cycle domain from the torus domain cross at two points. Hence the
regions of stable two-tori are bounded by lines where in addition

(2)

to the second frequency a third frequency seems to appear, wsz
a 1 1) . i
in addition to wz( ) for torus 1 type and wz( ) in addition to w2

(2)
for torus 2 type. These lines are found to give the tramsition to
chaotic orbits or turbulence. No stable three-tori are observed.
Frequency spectra consistently show that in conjunction with the
third discrete frequency broad-band noise appears, characterizing

the onset of stochasticity.

No other types of bifurcations are found, in particular no
period-doubling bifurcations. In fact, the behaviour displayed in

Fig. 1 corresponds precisely to the Ruelle-Takens picture of the
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transition to turbulence and is in contrast to the transition

via a sequence of period-doubling bifurcations, the Feigenbaum
model, which is realized in several three-dimensional dynamical
systems such as the three-wave mode-coupling equations by Wer-

singer et a1.12)

. It is interesting to compare their results
with those presented here. While in Ref. 12 the increase of com-—
plexity (period doubling) and tramsition to turbulence occurs
when increasing the wave damping, in our case chaos occurs when

the driving of the unstable mode is increased, while no chaotic

orbits are found in the case of weak driving, Y + 0. Although
parameters are in general different, in particular the ratio ;
|Yt|/ﬂm, which is larger in Ref. 12 (stronger damping) than in I
our case, the origin of the different types of behaviour observed !
seems to stem from the higher dimensionality of the present model. 1
It is well-known that because of phase space contraction along
the orbit two-tori do not exist in three-dimensional systems.
On the other hand, higher-dimensional approximations of the

Rayleigh-Bénard equations such as the 14-dimensional truncation

4)
5)

y 1 : ’ ;
recently studied by Curry or the N-dimensional truncations,

1 -
N £ 136 by Maschke et al. show a similar sequence of two Hopf
bifurcations as in our case in contrast to the three-dimensional

Lorenz model.

V. DISCUSSION OF PARTICULAR TRANSITIONS

In this section we discuss in greater detail the behaviour
along two specific paths in Y, » K space as well as the transi;ion
to vanishing x corresponding to the model of Terry and Hortom °,
these being indicated by short, heavy lines in Fig. 1. We first
consider the change of the solution as ¥, is increased for constant
k = 0.65. The first Hopf bifurcation from steady state to a periodic

solution with w = 2.0 occurs at Ty = 0.119, the second Hopf bifurca-
1
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. . 1
tion to a two-torus with w = w ) = .03 at v 0.121, while
2 1

2
the third frequency wo=w (2) = 0.6 appears at y = 0.1375,
2 1

(13

which marks the onset of turbulence. Frequency spectra illustra-
ting the different states are shown in Fig. 4a - d. It is inter-

esting to note that the contribution of the second (low) frequen-

1) . . . .
cy w ) is strongest close to the lower bifurcation point
2

¥, =z 0.121, leading to a strongly modulated oscillation as shown

in Fig. 5 (at t = 2000 the solution has nearly reached its asympto-
(1)

2

and almost vanishes near the upper bifurcation point Yl = 0.1375.

tic state). When y 1is increased, the w line becomes weaker
1
For 0.136 <y < 0.1375 the solution is again almost simply peri-
1

odic with maximum amplitude, a

1)
w
2

= 0. At the bifurcation point
Tmin 2

reappears together with the third frequency mz( ). Along

with the discrete frequencies broad-band noise is generated, Fig. 4c,
which for larger values of y completely dominates the spectrum, Fig.
1vs.a and a, vs. a, for the doubly peri-

2 1 3 1
odic case y = 0.13 are given in Fig. 6. Note the folding of the
1

4 d. The Poincaré maps of a

projected orbit which occurs when aj come close to zero. Other com-—
binations such as b2 vs b1 show similar maps as is expected if

the orbit covers a two-torus.

The second path in y , x space, which we follow in detail, is
the vertical line y = 0.69 for 0.3 > « > 0.2. Decreasing k we
encounter a bifurcaéion at k = 0.267, where in addition to the fre-
quency ml a second frequency wz = wz(z) appears, Fig. 7a. Between
this value and k = .225 the motion is in general doubly periodic, i.e.
the orbit covers a two-torus in phase space. There is, however, a
strong tendency to locking of the frequency ratio to certain rational
numbers, which makes the solution almost or exactly periodic. This
behaviour is shown in Fig. 8, while Fig. 7b and c give the frequency
spectra for k¥ = 0.264 where w /w = 7/2, and for k = 0.243 where
mlfw2 = 18/5. The range of fréquéncy ratio locking terminates at
k = .225, where the solution becomes turbulent, probably owing to

the appearance of a third low frequency component, Fig. 7 d. The
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transition to a visibly turbulent solution is very sharp in
this case. It should be noted that there is no region of hyster-
esis, the transition occurring at the same point whether moving

downward or upward in k.

Let us now consider the transition « - 0. Since it occurs
at rather small values of « it could not have been resolved on
the global bifurcation diagram in Fig. 1. For the present choice
of parameters the Terry — Horton equations do not give rise to
stochastic solutions. There is a periodic solution for 0 = Yid 0.12
and a steady-state solution for 0.12 3 Y, £ .2475, while for
e .2475 no bounded solutions exist. The sequence shown in Fig. 9
illustrates the transition « -+ 0 for y = 0.09. For k = 0.025 the
solution is still strongly turbulent, ;ig. 9a; for x = 0.008, Fig.
9b, it is weakly turbulent, but with the main frequency being
significantly different from the lines characterizing the periodic
solution at ¥ = 0. The latter solution only becomes apparent for
k < 0.003, see Fig. 9c for « = 0.0016. Hence we find that at least
for the present set of parameters the Terry - Horton model is quite
exceptional, being valid only at very small values of the parallel

wavelength, k << 0.01.

Finally, in Fig. 10 a, b is plotted the Liapunov exponent as
defined in eq. (21) for a regular, doubly periodic solution
(Yl = 0,122, « = 0.65) and a stochastic state (Yl = 0.09, « = 0.16).
In both cases one has N = 500 and T = 10. While in the first case

o slowly approaches zero, it remains finite in the second, o = 0.055.
VI. CONCLUSIONS
We have investigated the interaction of three sound-drift-waves,

an obvious extension of the three-drift-wave model of Terry and Horton

to include the effect of the coupling of drift waves to sound waves



_19_

owing to the presence of finite parallel wavelength (which
always arises in a sheared magnetic field). Whereas in a com-
panion paper10) parameters corresponding to a particular drift
instability are considered, our present interest is in the ge-
neric properties of this ten-dimensional model, in particular
the bifurcation sequence and transition to turbulence. As illus-
trated in the bifurcation diagram in Fig. 1, there are only four
possible states: steady-state solutions periodic, doubly
periodic and turbulent orbits. No regular states with more than
two independent frequencies seem to exist. The appearance of a
third discrete frequency is intimately linked to the existence
of broad-band noise, which is the very definition of turbulence.
Hence the model gives a nearly perfect example of the Ruelle-

16
Takens ) route to turbulence:

steady state (fix point)

- periodic orbit (limit cycle)
Hopf bif.
> doubly periodic orbit (2-torus)
Hopf bif.
> turbulence
(Hopf bif.)

= unstable 3-torus ?7)

This is in contrast to the period doubling route (including

tangent bifurcations) of Feigenbaum, which is realized in most
low-dimensional (particularly three-dimensional) systems. No period
doubling bifurcation at all is found in our model, though its
existence for other values of the parameters cannot be completely
excluded. No case of hysteresis, i.e. dependence of the asymptotic
solution on the initial conditions, was observed, nor any strongly
intermittent turbulent solutions. The case k = 0 appears to be

rather exceptional, at least for the present choice of parameters.
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Solutions are quite different (and nonturbulent) from those

[}

at finite k = 0.1 - 1, the transition taking place at small

k - values, x < 0.01.
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FIGURE CAPTIONS

Fig. 1 Y - k bifurcation diagram-

1
Fig. 2  Frequency spectrum of a typical torus 1 type solution-
Fig. 3 Frequency spectrum of a typical torus 2 type solution.

Fig. 4 Frequency spectra of orbits encountered along the path
Kk = 0.65:
a) periodic orbit; b) doubly periodic orbit;

¢) simultaneous appearance of third frequency and broad-band

noise; d) strongly turbulent state.

Fig. 5 Time trace of a1(t) corresponding to the parameters of case

b) in Fig. 4.

g» 35 VS. 3, for two different cross-
sections: a = w/2 and 37/2.

Fig. 6 Poincare plots of a

Fig. 7 Frequency spectra of orbits encountered along the path
y = 0.09
1

a) doubly periodic orbit; b) periodic orbit with wl/w2 =7/2
and basic frequency 0, = 0.15; c¢) periodic orbit with

wl/w = 18/5 and Wy = 0.06; d) appearance of w and onset
2 3
of turbulence.
Fig. 8 Frequency ratio w /w in the k - range of existence
1 2

of torus solution for Yl = 0.09.

Fig. 9 Frequency spectra illustrating the transition k » 0

for v = 0.09.
1

Fig. 10 Maximum Liapunov exponent ¢ for a) regular orbit (torus)

b) turbulent state.
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