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Abstract

With the present report we begin the presentation of a numerical code,
RAYIC, which has been developed with the purpose of applying ray
tracing methods to the study of ion cyclotron heating of large

tokamak plasmas. This report discusses the theory and displays the
equations used by the code. In addition to a presentation of the
Eikonal approximation and its use for the description of waves in
axisymmetric plasmas of arbitrary meridian cross-section shape, the
report contains a summary of a simplified antenna model, and of a
treatment of the singular layers (two-ion hybrid and/or cyclotron

resonances) where most of the absorption is expected.

This report has been prepared under the contract JB1/9020 between the

IPP-EURATOM Association and JET.
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1. Introduction

RAYIC is a numerical code for the study of the propagation and absorption
of ion cyclotron waves in large tokamaks of arbitrary cross-section,
using the methods of geometric optics /1/. In the present report, we
describe the physical model used for this study. In a companion report
the structure of the code will be presented, together with the in-
structions for its use. Finally, a third report will rassemble some
examples.

For a reliable description of h.f. plasma heating, a solution of
Maxwell equations in the real plasma geometry is required. In the case
of a tokamak plasma, the dielectric tensor depends on density and
temperature, which are functions only of the magnetic surface, on the
one hand; and on the magnetic field intensity, which is a function of the
distance from the vertical axis on the other hand. This combined depen-
dence, together with the presence of the rotational transform, is such
that a representation of the h.f.fields in terms of normal modes with
separate variables is not realizable. On the other hand, in large de-
vices, such as JET, even at the relatively low frequencies in the ion
cyclotron resonance domain, the average wavelength is short compared to
the plasma dimensions,

(1) i % Lt > 4

C
where k, is the wavevector component perpendicular to the static mag-
netic field, a the plasma radius, and Wi the ion plasma frequency. More-
over, under appropriate conditions, a substantial fraction of the launched
power is absorbed in a single transit through the resonance layers in the
plasma. Under these conditions, the Eikonal approximation provides a
powerful tool for the approximate solution of the problem of wave
propagation. This method, introduced in section 2, and specialized in
section 3 to the Tokamak geometry, reduces the solution of Maxwell
to the integration of a set of ordinary differential equations, namely the
ray equations of geometric optic, and the equation descrfbing the
transport of power along the rays.
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To write these equations explicitly, two ingredients are required: the
dispersion relation of the waves in the frequency range of interest,
and an adequate description of the plasma equilibrium. These topics
are discussed in sections 4 and 5, respectively. Thus in section 6 the
basic set of equations which is integrated by the RAYIC code is pre-
sented.

The Eikonal approximation alone is not sufficient for the evaluation of
the power deposition profiles in the plasma. In the first place, a set
of suitable boundary conditions has to be specified. This requires some
information on the field pattern radiated by the antenna. For this pur-
pose, we have incorporated in the code a model of the antenna which is
described in section 7.

At the other end of the computation, the difficulty arises that the
Eikonal approximation often breaks down precisely near the singular
surfaces (ion cyclotron resonances and/or two-ion hybrid resonances)
where most of the absorption is Tikely to occur. A separate investigation
of the behaviour of the waves near these singularities is therefore
necessary. A summary of these investigations is presented in section 8.

While the description of the code itself will be the subject of a se-
parate report, it is worth mentioning here that the subroutines dealing
with the boundary conditions near the antenna, and with the power ab-
sorption at resonances, have been conceived as "peripherics", essen-
tially independent from the core of the program. Thus if a more sophistic-
ated antenna model is desired, or a better theory of the resonance sur-
faces becomes available, these subroutines can be changed without inter-
fering with the main part of the code.

It would be completely misleading to pretend that ray tracing,

even supplemented by a separate treatment of the antenna and of the
resonance layers, can satisfactorily describe every ion cyclotron heating
scenario in large plasmas. Section 9 will be devoted to a discussion

of the limits of the ray-tracing approach. This section should to some
extent play the role of a summary of the present status of the theory,
for the hurried reader not interested in the details of sections 2

to 8.
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The circumstance that ray tracing is far from providing a complete
description of how ion cyclotron heating will work is perhaps disap-
pointing, and the question could be raised whether some more compre-
hensive theoretical approach should be preferred. Unfortunately,

no such approach is available at present, and it will take some time
to develope one. On the other hand, provided its limitations are not
overlooked, ray tracing can be of great help in understanding ion
cyclotron heating.

In the course of this work we have benefitted from the help of several
people. Our first investigations of the application of ray tracing to
toroidal plasma have been undertaken in collaboration with A. Cardinali
/1/. The antenna model is heavily indebted to the work of K. Teilhaber,
G. Lister, and J. Jacquinot /2/. The wave behaviour near singular sur-
faces is being studied by M. Ottaviani and the present author. Where
appropriate, the results of these studies will be separately published
in more details.

Finally, we wish to thank 0. Debarbieri, who has provided a predictor-

corrector subroutine for the integration of ordinary differential
equations, particularly appropriate for the application to ray-tracing.

2. The Eikonal approximation

The Eikonal approximation for waves in magnetized plasma has been dis-
cussed by Weinberg /3/ and Bernstein /4/; its application to waves

in toroidally confined plasmas has been further investigated by Brambilla
and Cardinali /1/. For completeness, we recall here the basic equations
of the theory and their meaning, without rigorous justification.

Anticipating that the fields are expected to be locally similar to
plane waves with slowly varying wavevektor Et the basic assumptions
of the Eikonal theory can be stated as follows:
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a) the length characterizing the non-locality (dispersion) of the di-
electric tensor is short compared to the wavelength:

(1) ’k-’-vﬁ << 4
C\.
(2) |C£_:__m("l = 4 ’HZO/‘.{:!/'!:Q...
R Ve
for all the species of charged particles (parallel and perpendicular
refer to the direction of the static magnetic field, Vin and Q. are

the thermal velocity and cyclotron frequency, respectively).

b) the dielectric tensor varies only moderately over a wavelength,
so that for example

(3) B e K| << 1

c) The antihermitean part of the dielectric tensor is small compared
to the hermitean part

(4) lef}[ 1S |a£‘d'|

(i.e. the fractional absorption per wavelength is moderate).

Under these conditions, a solution to Maxwell equations is sought in

L (5 QL LoJC)

the form

Ee(B)e
—
where it is assumed that the amplitude EF and the (real) "local wavevector'
——7
(6) & (%) =

are slowly warying functions. Substituting (5) into Maxwell equations
and collecting the largest terms, one obtains in the usual way the local
dispersion relation
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(7) H (Ji{’; z) = ek \%i(h;%j—gc!ka) —-&fj =0

(we omit the frequency dependence; the antihermitean part of ¢ is
neglected because of assumption c)). Equation (7) is a partial differen-
tial equation for the Eikonal function S; its characteristics are the
ray equations of geometric optics

(8) dr  H dk O

dt K de 9%
The parametert has no immediate significance; this form of the ray
equations has however the advantage of being explicitly Hamiltonian.
If a ray is followed by integrating Eqs. (8) with initial conditions
(f ,?2) satisfying (7), the dispersion relation remains satisfied

]
throughout, since

i8) dH _ oH dk LH d7 _0
oz @K Olt 912 oz

At the same time, the evaluation of the phase S reduces to a quadrature:

(10) S(z) =S(%,) + S G?a e )l

Finally, the identical vanishing of the determinant (7) allows the
determination of the field polarization at each point, i.e. of the
unit polarization vector

(11) e, = _.__._—-,E_E('E) é’i-é*hf i
|E ()]

The surfaces I : S(?) = cte are the "wavefronts". By definition,

¥ is everywhere perpendicular to the wavefront. For ray tracing to pro-
duce meaningful approximate solutions of Maxwell equations, the linear
dimensions and the radius of curvature of wavefront must be large
compared to the local wavelength; only then diffraction effects can be
neglected. This is also the condition for concepts such as local wave-
vector, group velocity, or power flux through the ray pencil, to have a
physical content. Finally, it is clear that the knowledge of an initial
wavefront ZO, together with the dispersion relation, completely specifies
a set of initial conditions for the ray equations (8).
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To close the Eikonal approximation, the ray equations have to be
supplemented with an equation for the slowly varying amplitude [Ezl,
or, equivalently, for the transport of energy. This equation is con-
veniently written in the form of a generalized Poyinting theorem:

o ¢|E |2
S, =—2y. k!
(12) ol R )rh e
= c? s N = w"é’wggHg
(13) £ = S EEX@“EQ] v RSk
— X A ~
(14) EWQ,-_ Eik -éi - eW?

§k is the energy flux, including the contribution from the coherent
response of the particles to the waves. The r.h.s. of Eq. (12) takes
into account dissipation. It is easily shown that

w o sRl= L2 (R ew

The amount of power absorbed by each species is also immediately determined

A

by decomposing € into the contributions from the different kinds of charged

particles.

3. Ray Tracing in Tokamaks

In an axisymmetric plasma, a further simplification follows from the
fact that the coordinate %: is "ignorable", hence
S

(1) m:—:o\’e.

i




= B

Thus

(2) S E‘T) = d’"r (é) + e

‘?QZY @ ;Rfeq\

Yo,

where é; is the position vector in the meridian plane, and 3¢ = 3@/R
the unit vector along (P’ R being the distance from the vertical axis.
The subscript p stays for "poloidal". With (1) and (2)-(3), the ray
equations reduce to

(4) d._é’ = ?_i O[Z el

It is important to realize, however, that in this simple form
the Eikonal approximation is incompatible with the way I C waves
are normally excited.

Let A¢ and AT denote the angular aperture of the antenna (or of an
antenna element if several are used) in the toroidal and poloidal direction
respectively. A¢ and AD- also characterize the region over which the

field amplitude (lEﬁl in Eq. (2-5)) is approximately constant in front

of the antenna, where the initial wavefront s has to be located. For

the validity of the Eikonal approximation A¢ and AQ- should satisfy

(5) m@.Acb,\»:-j_ (.C,R qu >4 4,(1 fnq,w )

(6) qxr-A%“»i

where a is the plasma radius. Due to the large refractive index of the
fast wave, condition (6) can usually be satisfied by choosing the initial
wavefront at a layer where the plasma density is already sufficiently
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large. On the other hand the dimensions of the antenna in the toroidal

direction are usually far too small to make it possible to satisfy
condition (5).

The difficulty can be overcome by representing the total field as a
superposition of the form

m Bl = 2 E @) etk (o, (@) et -ut]
(n(? = (712t U i:ﬁl;-v

and applying ray tracing separately to each partial wave. Since the
“’) do not depend on @3, condition (6) is automatically
satisfied. On the other hand, by choosing the amplitudes En appropriately,

amplitudes ?n (

it is always possible to reproduce the field launched by any antenny
configuration.

The price paid for this enlargement of the scope of ray tracing is that
the explicit evaluation of the total field (7) becomes excedingly tedious.
If the goal is the investigation of plasma heating, however, such an
evaluation is not required: the information obtained from ray tracing
about each partial wave separately (k. and k, at each point, occurrence
of reflections, etc.) is more directly relevant than the knowledge of

the total field. This is because the flux of energy P. through any axi-
symmetric surface Zp (such as a strip of wavefront o reduces to the sum
of the contributions from each partial wave separately. Indeed (eva-
luating Pzr at the plasma edge, where only the electromagnetic contri-
bution is present)

2 > — —
. ES gzrgool? 7 ne(E7x B) 42, -
C -y - =7 —d
= ﬁ_rRe %SZP(;E”PX R X Em?)]'&zp} = %’?(m@)

By integrating Eq. (2-13) over a portion of ray pencil bounded by two
wavefronts separated by a small phase difference do, the equation for
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energy transport can be cast in the form

g dP(n) e
(9) ki S R ’Pm
T

where {74 is given by Eq. (2-14) and

H
10 w — % '_ﬁf@*@S
Ho) ek(_ kl hgg; X

Equation (9) can be integrated simultaneously with the ray equations,

with the spectral distribution of the power radiated by the antenna as
initial condition; this allows the explicit evaluation of the radial power
deposition profile.

Equation (9) also suggests a natural choice of the independent variable
for ray tracing, namely the poloidal phase o itself. The change from t to o
is simply performed by dividing both sides of Eqs. (4) with

olo— = %H

11 —

) de. “r 9K
With this choice of the 1ndependent variable, for example, the graphical
display of successive wavefronts along a ray pencil is much simplified,
and provides a very useful visual summary of the wave behaviour. It is
moreover shown in /1/ that the vanishing of do/dt is the most common
occurrence of a breakdown of the Eikonal approximation. With o as
independent variable, the integration of the ray equations is automatical-
ly stopped in such cases, thus ensuring that the approximation is not
used beyond its domain of validity. It is perhaps not superfluous to
stress here that the frequently preferred choice of the time of transit
of signals as independent variable (implemented by dividing Eqs. (4)
with dt/d 1=~ 3H/3w) is not only numerically inconvenient, but com-
pletely pointless when dealing with a steady-state situation.
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4. The dispersion relation of ion cyclotron waves

The dispersion relation of waves in the ion cyclotron frequency range
has been the object of a long series of investigations; for a summary,
we refer to Brambilla /5/. The complete dispersion relation for a Vlasov
plasma is needlessy complicated; its use would make ray tracing quite
slow. A development for small Larmour radius and small electron inertia
gives an accurate approximation, including all the relevant physics,

but sufficiently simple for computational purposes:

(1) H(w,-\i:f{) = Am_t-Bfnii— €
%(/\+e) L2 =
-[0-9) + (7-RN + (= e

C = (=R)(m/-L)

Here n = Kc/w; the other quantities are defined as follows:

(3) S = %LR*—L)
(ae_ W
R=1+ :T_ZQ ZJ ZE Lo+$2 SZI)

L={+ _ge E“DP)(OC (eg) + )

G:*Z“)HM p- w w %
, w+SZ, w+2S?J
A=

ukﬂ|§1 2 (% ey )+ (3 R@%J)}

27 r‘zE ?5 4+ 2]t ¢ ¥ |

M-‘~

Ao

i

I
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The summation extends over the species of ions; the other notations

are standard:

< - QTl_’n €2 Z’Z- Q & B

Wp
m (4 mcC

(4) Vg = ET/'m

BE == w~ﬂ%‘ m= 0%l *2

rﬂ
TRAL a
] &t
© Ze)= £ Edu e

(only the real part of Z is taken into account in writing H; the
imaginary part enters in the evaluation of EA, cfr. below).

Equation (1) describes two waves: the fast (extraordinary, or compressional
Alfvén) wave, with approximate dispersion relation

2. AL _ CH/,Z -R)(m/~ L)

2
(™ —S)
and the lowest Ion Bernstein wave, with approximate dispersion relation
2
(7) m.L:QB = - L -
CS;

It does not describe the slow cold plasma wave (ordinary or Shear
Alfven wave): this omission is justified whenever the plasma pressure is
not too low,

_ 8 o
(8) l’b - IB’L ~ ,me'/'m,{,

(me’mi being the electron and ion masses, respectively). In a large
Tokamak, this condition is usually violated only close to the plasma
edge, where the Eikonal approximation is anyhow non valid, and the role

of ray tracing is taken over by the theory of the antenna.
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The other "singular surfaces",on which the Eikonal approximation is bound
to breakdown, are easily identified by inspection of Eq. (1). They are

a) the fundamental and first harmonic of the ion cyclotron resonances

(9) w =S21- w =2
Here the antihermitean part of the dielectric tensor becomes comparable
to the hermitean part;

b) the two-ion resonances in multispecies plasmas (confluence of the
fast and Bernstein waves at ng -S ~ 0, cut-off at ng = L). In the
so-called "minority" regime, when the concentration of the minority
species is small, the two-ion hybrid resonance can merge with the
Doppler-broadened ion cyclotron resonance of the minority species
itself;

c) 1in a single species plasma near w = ZQj a similar cut-off-confluence
pair occurs, due to the locally large value of 0y In this case too,

the confluence merges with the cyclotron resonance if k, is sufficiently
large.

Since most of these failures of ray tracirg occur near or coincide with
the layers of strong absorption, it is often necessary to make a se-
parate study of the behaviour of waves impinging on such layers. The
present status of these investigations is summarized in Section 8.

From Brambilla (1982) we also cite the expressions for the components of
the unit polarization vector 3k (Eq. 2-11), which are needed to write in
explicit form the energy transport equation. Introducing a local "Stix"
reference frame x, y, z with z along the static magnetic field Bo’ and

x in the direction of ﬁl =k - (K-ﬁo) §0/Bg, we have




= T4 =

(10)
e_< Ke L @—t)rnL—'w,]
- S"‘T ("”//*'”L)
Ce = —Kmm, "P—rnl
where L

(11)

and Ke is the normalization constant required to make @’I{fek) = 1.

In the "Stix" frame, the components of the vector Tk (Eq. 10) are

= 5—%%,: ex@&eq,_+ kes) +
(12) + %__]_(A[8+|2+€l€_‘2+2ﬁ€+€_)(2
1,=0
g ¢
‘TZE Ei; (32 (}%LQ +— ) +

_ 4 wiel 290
zcll_@—% ah)'+|‘29he+ ) Bh/l (J}
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Finally, we write down the quantity Y =Y§(e) + ijz(y) describing
the dissipation, decomposed into the contributions from the

electrons and each species of ions: For the electrons:

) (ELD) (THe)

Yo =Tk  * 7Tk

2

(ELD 3 =% 2
wy T aw rie el
UTHP) ‘2

2
Y = hrm F)QI e )&dl
where B = UJPQ V+ﬁa 3"“n
P
@ C E}e
The first term here describes parallel Landau Damping, the second
Transit Time Magnetic Pumping by the electrons. Due to the large

values of nE and of the ratio Ieylzllezlz, the latter is usually

a much more efficient mechanism for electron heating. For the ions
we have

(©) ~% e k2 2
1 Y= rxge Jag GRA I
4 hzvl. :
B
J )
{ —X,- 2
YU o e 2”-%2—;” hi:'ﬂl'l&rl

J

representing the contribution from the fundamental and the first
harmonic of the cyclotron resonance, respectively.
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5. Description of the equilibrium

Let X,Z be orthogonal coordinates in any meridian plane, with X

horizontal and Z vertical, and with origin on the magnetic axis

R = Ro' The set of magnetic surfaces is parametrically described
by the equations

(1) X =X(¢,9) 2 =Z(¢,9)

The variable ¢ labels magnetic surfaces; it is arbitrarily normalized
so that

(2) O$\P§i

(¢ = 0 on the magnetic axis, ¢ = 1 on the plasma surface); E} is
the usual poloidal angle (Fig. 1).

The unit vectors parallel and perpendicular to the magnetic surface
in the meridian plane are

= _ ) - —>

Qt = —-Sun%e,x -l-CA:rS’l:e,E
(3) —*-4)_ Xe(#)__(‘,o:\te,x-l- wtez
Ooﬁ’t:i%—g dng = 2 49X
NZoB N0

(4) NZ (gg) 99)%

It is also convenient to define an angle o such that

(5) Q»GZ-WO'ETX-PMG'E"Z




(6) e N‘Tgi g %"3—%
- Gy G

(7) —>LP= JN} -:P _V*Q ) %’U{%

. Vi Vg =-G/]°

2292 .
o :;a: % sp26 = Noletnt)

Note that
2 2 4,2 v
(11) J = NO,NC—'G

When the equilibrium is given in the form (1), the variables
(4/,?3,Q>) are naturally used to implement ray tracing. Their
metric tensor is
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The fact that in general G f 0 implies that these coordinates are
not orthogonal. (Only if the cross-sections of the magnetic surfaces
are concentric circles it is easily seen that 0 =1 = O and G = 0.)

The representation (1) implicitly contains also a complete information
on the pressure and poloidal field profiles /6/, in a form however
inconvenient for rapid computation. Instad, we assume that p(y) is
known (compatibly with Eq. (1)), and proceed to evaluate Bp(w,ff).

The total magnetic field can be written

o By S W

By taking the curl of this equation, the components of the current
density are found to be

G _RON& d_lg)]—
C de

(14)

—
g —

R J d¢

o o= TalGE] Gl

(the plasma radius a is inserted in the definitions in such a way
that the cylindrical T1imit is most easily obtained; the quanties B
and BT must be independent from Erto ensure that div. B = 0 and

J, = 0).

g =0

By substituting (13) - (15) into the pressure balance equation, we
obtain the Grad-Shafranov equation in the form

- r(“’ {qﬂ( B, 1) - gGRH S

QTF—-OE113.+..E§ EST'&P GJE&F
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Since Bp(w) is independent from J, while the coefficients contain f
explicitly, this equation must be regarded as a restriction on the
possible form of Eqs. (1). Indeed, Eq. (16) has been used /7/ to find
classes of possible equilibria. Here, however, we already suppose
that Eqs. (1) describe, albeit possibly only approximatively, a true
equilibrium, and are therefore compatible with Eq. (16). Hence we
come back to Eq. (15), and we proceed as follows.

The total toroidal current flowing within a magnetic surface v is

an T :Jq(rf ﬁf))dv :\i{g S;S@ J 'Jcp((f!//a)

We can therefore define an average current density

AVG

(18) J g?J @29 J&/S(J
(19) Sy = f%olﬁ‘

(S(v)ay is the area between the magnetic surfaces Y and Y+Ap
in the poloidal cross-section) so that

T L
w TW=IsWI

It is now natural to assume that JAVG(w) is known, for example that
1'5, so that (20) can be rewritten

SS@ r'e (“/2‘31‘{
j W[Te (4] O]l

By averaging Eq. (15) over the magnetic surface (with weight
J/a) we immediately obtain

it is proportional to (Te(w))

(20) I@) o ITOT
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(21) BP @,): 2 _I_(}ﬂ

. a/\@)

(22) /\@;) = J JJS“

Note that assigning JQVG(w) is equivalent to assign the second

arbitrary function BT(w) in the r.h.s. of the Grad-Shafranov
equation, since by averaging (16) multiplied by R, /R we have

g olqz z_trrx 4’)014) + Bl olq/(/\ 8!’@)

] _J

(note that A'(y) ¥ ANy) since <J¢BT> % <J¢>-<BT>).

This equation is, however, difficult to integrate accurately, since
it expresses BT(dBt/dw) as the difference of two almost equal quan-
tities. On the other hand, BT(w) differs from B0 only by a correction
of order B << 1: a negligible error is made by assuming in the ray
tracing code that B, = B, i.e. that the toroidal field is identical
with the vacuum field, qp = BoRo/R' The quantities required in the

| B (2N B
(24) fon ® = Bcp ) /éi—%%
= (% 2
and ca B, A(¢)

e




- ‘BT =
Rs
O 1%

are negligibly affected by this approximation.

(25) 9. = Gl 1+ ton*®

The description of the equilibrium, insofar required for the im-
plementation of ray tracing, is thereby complete. We only note that
the safety factor q(y) in the present notations is given by

" 2 i 1 Jsl. Brl¢)
e q@) L"ZFILS o) Bf’m

6. The ray equations in y, apcoordinates

The natural variables for the ray equations in the plasma equilibrium

described in the previous section are of course y, D, together with

the "conjugate" wavevector components

B -2 .
$ = )(fa‘[)

(1)
k _’M
6750 X" 99
Qw and kg are the covariant components of K in the poloidal plane;

the covariant component conjugate to the toroidal angle ¢ is

E¢ = Ng = cte. We will write covariant components with a tilde, to

distinguish them from the physical components, for which the usual
notation is retained.

In terms of these variables, the ray equations are
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(2)

On the other hand, the dispersion function H depends only on the
"Stix" components k, and k., where perpendicular and parallel refer
to the local direction of the static magnetic field. To relate k,

and k, to %w, fe and nP , we first introduce the physical components

in the np,ﬁ' coordinates, namely
k= (k) - g( RN Re
37 _ .j_-“v
ke = (R:2e)= Nc%a
In term of these, the Stix components are easily found to be

= %JF%?;Z
(4) *Ilif?: kocon® - SFsn®

R
k) =

‘Picwrn@ E rﬂ?cm@
where CD= atan (B /B¢) is given by Eq. (5-24).

(3)

R

With the help of Eqs. (3) and (4), writing the ray equations ex-
plicitly reduces to an exercise in implicit derivation. Since these
equations constitute the core of the numerical code, we list them here
in detail. For convenience, the physical components of the wave-
vector are used throughout in the right-hand sides. Moreover, we

use ¢/w as unit of length, so that we do not distinguish between

-+ > >

k and n = ck/w.




(5) ’_B_H Nz

© b - 2/( Gk Lk . 2 ®H
( W YM@) ke T Ne oK,

H C)Hfale?’ QH’% AH Y (4%
(7) @4) = 3% 94} ah 9¢/+Z{@§i)'<ﬁ’aqj)

o) ()RS

oH _oH 'akl LPHR, 1795
® 30 okoB ‘oK, Foee (Q’asz)(sz’as)

The derivatives of H are

A 5,
(9) BR_L "8/\

(10) E)}: -15_3"”/,2("#)\+€)—L&\(4z+6)+ R)\ﬁ}
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2 2
= L5 %y Ve
5= 3 ZJ Slzg.gzj W(xq)
SKTER T RIS
(18) © mgg—H: — Bmé”i* G
2
Bme:: ——QPQ(:H‘ef‘Q)
(14) ® N
@
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(here and in the following GJ" J\j, ’t:]., LJ., Rj denote the contribution

of ion species j to e, A, ¥, L, R, respectively);
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The derivatifes of Kk are given by
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Finally, from Eqs. (3-24) and (3-25) we obtain:
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To the equations listed here, we must add the energy transport
equation (3-9), i.e.

dP(ng) _ __X_“_:.?@?)

do QE’F-T)

(30)

Yy was given in Section 4, together with the expressions for the
polarization vector, and the "Stix" components of T. With Egs. (3)
and (4) we have also

R '
K s = i;;_(ﬁ%j; -+ {Qﬁ:{%

i @@)Tﬁ

1
+ ﬁﬁgu;\@.‘[’;

The explicit list of the equations used in the RAYIC code is thereby
complete.
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7. Coupling, and boundary values for ray tracing

The ray tracing code requires two pieces of information about the way IC
waves are launched:

a) the spectral decomposition of the coupled power among toroidal
wavenumbers, P(nq);

b) for each partial wave, the shape of a wavefront and the distribution
of the power flus (Poynting vector).

On the other hand, the knowledge of the antenna impedance, which is the
most complicated item in the theory of the antenna (Messiaen et al. /8/,
Teilhaber and Jacquinot /9/) is not explicitly required. We have taken
advantage of this fact to develope a simple model of the antenna which con-
veniently provides the boundary conditions for the RAYIC code.

The simplified geometry is sketched in Fig. 2: x, y, z correspond to the
radial, poloidal, and toroidal directions, respectively. Our procedure
consists in circumventing the evaluation of the selfconsistent current
distribution in the antenna, by assuming that each element can be modeled
as a section of transmission Tine (Fig. 2) whose inductance, capacitance
and radiation resistance, L, C and R respectively, are known from the re-
ferences cited above (R can be evaluated also within this model). Then
the current distribution along the antenna is immediately found by
solving the transmission line equations

d'm r d i
&g :-‘3J¥ Jgj:-ﬂllx

(1)

QL‘R‘U{)L %\=*th

with boundary conditions Ex = 0 at the short terminals, [Ex] = V/(w-a)
at the positions of the feeding coaxials, where V is the applied voltage
and w-a the distance antenna-wall. The current Jy(y) is then a continuous
function of y, with discontinuous derivatives at the coaxials feeders;

in each section it is represented as a simple combination of sinusoidal
functions with propagation constant
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(2) = VOEE GJ(%: L_l}::)

(R << wL is usually neglected). Assuming that the z-distribution is
uniform in each element, we then easily have also the Fourier spectrum of
the current distribution,

) (. . n m,z)
& 33&”3‘;’“1) :'Lz—_T)?—.HJjGIZ)e (j‘jf 2 Jaadz

To simplify the algebra further, we assume that the distance between the
antenna and the Faraday cage can be neglected, and we disregard the trans-
verse magnetic modes (EZ {0, By = 0) localized between the screen and

the wall. These modes contribute to L and C, and, if the Faraday cage is
not closed laterally, to the loading resistance of the antenna; they
cannot contribute to radiation into the plasma, however. A straightforward
calculation then gives the power spectrum in the form

: U}} an"mz)] QRE Y[—* @7:‘”&)

Pl = Cle- % [y

(4) m-

Here the constant is determined from the normalization condition
(5) 2 ?(ﬁnfj) 2?_
M, loT
|

(this step allows one to dispense with the knowledge of the antenna im-
pedance). The form factor Zp (ny,nz) takes into account the geometry of
the vacuum region between the wall and the plasma surface. Introducing
the notation

2 2 2 __Ef
(6) Yr=m ’*’7‘5“-1 Vtzj/{y:ﬂ

d

Zb can be written
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(w is the distance between the plasma and the wall, a the distance bet-

ween the antenna and the plasma). Note that for large n§ 2 >> 4
'})- _fpl('{
(8) A © i T
b my-A

This exponential decrease of Zb is due to the evanescence of these waves
between the antenna and the plasma edge.

The function Yp(ny,nz) which appears in Eqs. (4) and (7) is the surface
admittance of the plasma to plane waves,

: B m m'x:O)
(9) YF (’”J.f’”g) - Deliyme

where Ey, BZ are the solution of the cold-plasma fast-wave equations

(_3_3 “lt gDE +(.(_’n +fn S)B

_.rnJD B%—L@f}g-R)@z-L) E(Lf

(10)

(i) 28 dB,

satisfying the appropriate radiation condition at large density (where
the WKB approximation is valid):
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(This condition corresponds to the assumption that all the power is absorbed
in a single transit, in the spirit of ray tracing; it could however be
easily modified to take into account a nonvanishing standing wave ratio
within the WKB region too). In Egs. (10)-(12) R, L, S, D are the elements

of the cold plasma dielectric tensor in the notations of Stix (1961).

In the code, Eqs. (10) are integrated numerically, with the same density
profile as for ray tracing, but neglecting the variation of magnetic

field and the rotational transform; it is of course assumed that no
"resonance"” ni = S, occurs in the near field region of the antenna.

To specify the boundary conditions completely, we have to choose an ini-
tial wavefront, ZO, and the y distribution of the power flux along ZO.

In the present plane model, the obvious choice for Zo is a plane parallel
to the plasma surface. In the toroidal geometry of the code, o has to be
specified by giving the equation of its cross-section with a meridian plane,
in the form

(13) Zo" (“':‘?@’) 3}35‘43;\

The usual choice is a strip of magnetic surface, iy = cte.
It is also immediate to write the power flux distribution as a function of y
i sl E*), for each partial wave with specified nz(n?):

~

T ) C Rl T eyl

I

(14) ; . v A:(:h—"h/)
1%*3@3"'”2)18 @Hiﬂé)‘{b@,mz)e y "4/ d

where C is a normalization constant such that‘fbx-d = P(nz).
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8. Wave behaviour near singular surfaces

Since the Eikonal approximation often breaks down precisely where most of
the absorption is expected, it is essential to investigate separately the
behaviour of the waves near the singular layers. This can only be done

in some details by reducing the problem to one in a single space variable.
Work on these Tines by M. Ottaviani and the present Author is in progress,
and more detailed results will be presented elsewhere. The content of this
section should be considered of a preliminary nature.

Near a two-ion hybrid resonance, the following conditions justify a simpli-
fication of the geometry to obtain a one dimensional model /10/.

(1) The main space dependence of the dielectric tensor occurs through the
variation of the magnetic field intensity B in the horizontal direction X;
the rotational transform does not play an essential role (contrary to
what happens near ion-cyclotron harmonics).

(2) The incident field ~an be locally assimilated to a plane wave obligueiy
impinging on the singular layer.

Under these conditions the wave propagation can be described by a set of
ordinary differential equations in the space variable X, such as those
which have been investigated in details by G. Swanson /11/. We have
generalized these equations to take into account oblique incidence. More
importantly, we have re-derived the hot plasma contributions, in order to
resolve the ambiguity in the position of the X-derivatiges /12/; thus our
equations conserve the total power flux gk (Eq. (2-13) in the absence

of dissipation.

These differential equations have to be solved, imposing the appropriate
radiation conditions far from the singular layers. "Exact" solutions
were obtained in two situations:
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(a) in a single species plasma near the first ion cyclotron harmonics,
w = ZQci' In this case the singularity is due to the confluence between
the fast wave and the lowest ion Bernstein wave.

(b) in a two species plasma near the two-ion hybrid resonance, provided
that the ratio Z/A of one ion species is not an integer multiple of
Z/A of the other species (e.g., He;+ ina H or aD’ plasma). In
this case the fast wave couples with an acoustic wave with a very

short wavelength.

An approximate solution only has been obtained in the remaining case,
namely

(c) near a two-ion hybrid resonance when the fundamental cyclotron
resonance of the minority species coincides with a cyclotron harmonic
resonance of the main species (e.qg. H minority in a D* plasma).

These solutions (and, indeed, the differential equations themselves) are
only valid when the singular layers are well separated from the Doppler-
-broadened cyclotron harmonic resonances. The corresponding upper limit
for |k.| can be written /5/

2

w 4 V t :

<pu Y <
8 < Gn e = Ry,
in case a), and

Vi
) ,m ' _"Wu., < _riﬂ.t:m’b:.,
Me

in cases b) and c). Under these conditions. the power reflected and
transmitted on the fast wave branch, and the power coupled to the acoustic
(or Ion-Bernstein) wave can be expressed in terms of the optical thickness
of the evanescence layer
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Here Lo’ Ro’ S0 are the values of L, R, S without the contribution of

the minority species, n, is the vertical component of the refractive

Z

index (which is assumed essentially constant in the singular layer), and

S S 2
(5) C(g_( =i ’n; s, Lh// Rc;)(,/nr/_LU)
U‘n//‘go)

is the (squared) horizontal component of the refractive index of the
fast wave, again the absence of the minority species contribution.
Finally

(6) NE %(%E) ' %RT)
!

Hineeh '

while % is zero in case b), and

By b‘z W
(7) OB: (*E—ﬁ)'(ERJ
()% ¢
Haun Spec.

in cases a) and c). RT denotes here the distance from the vertical axis.

Since §is automatically zero in case a), we can express the coefficients

of transmission T, reflection R, and of coupling A to the acoustic (or
Ion-Bernstein) wave with a single formula for all three cases:
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a') incident wave arriving on the singular layer from the low magnetic
field side

R [egen) - epl2n]
YT ept 2t )
A =1+exp(- ﬂ(fr],wa)) - t’XrL-#“]J - e"{“("”)z)

b') incident wave arriving on the singular layer from the high magnetic
field side

R=0
= exp (-2t 1))
A= A= ep(-2(q+))

(in case a') the wave encounters first the cut-off, then the resonance,

—_
w
~—
.-.._l
|

while in case b') the opposite situation occurs; wave transformation
is always more efficient in the latter configuation.) Note that in
both cases

(10) R+T+A =41

This is a consequence of the fact that the differential equations describing
the field conserve the power flux in the absence of dissipation.

In the present version of the code, the power coupled to the acoustic wave
is attributed to the electrons /13/. Of the relfected power (case a')

or the transmitted power (case b'), a fraction U is absorbed by the ions
at the nearby cyclotron resonance; this fracion is estimated by integrating
the plane-layered limit of the power transport equation (3-9) through

the cyclotron resonance.
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Of course, much interest is also attached to the situation in which con-
ditions (1) or (2) are not satisfied: in particular, in cases b) and c),
this is the situation in which direct ion cyclotron heating of the minority
species is expected to dominate. In the limit of strong Doppler broadening,
when the singularity of the cold plasma limit is smoothed out, the code
successfully integrates the ray equations through the resonance layer.
Although strictly speaking the condition that the antihermitean part of

the dielectric tensor should be small is violated there, it is reason-

able to assume that the results are nevertheless essentially correct.

Unfortunately, the intermediate case is often encountered, in which neither
the plane-layered nor ray-tracing apply. Since usually a broad range

of nu values is launched, there is always a portion of the spectrum for
which this occurs. Hence the RAYIC code in its present form is able to
account only for the fate of a fraction of the launched power (cfr.

next section, b)).

9. Discussion

That ray tracing cannot provide an answer to every question in connection
with IC plasma heating should already be clear from the previous sections.
Here we present a more systematic, albeit necessarily incomplete, dis-
cussion of the Timits of this approach.

a) The most severe drawback of the ray tracing method is its inability
to deal with situations in which single transit absorption is weak. The
method in its present form is unable to account for the fate of that fraction
of power which is either transmitted or reflected from resonance layers.
It is of course conceivable to follow the reflected and transmitted rays
as many times as necessary until all the power is absorbed: a set of
appropriate boundary conditions is easily worked out for this purpose.
This would be of T1ittle help, however, unless an estimate of the quality
factors of the different n modes could also be worked out. In the weak
absorption situation, even the theory of the antenna /8/, /9/ should be
completely reformulated.
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In the weak absorption limit, the eigenmode representation of IC waves
would clearly be more appropriate. Unfortunately, such a representation
has been thoroughly worked out only in cylindrical geometry, mostly with
simple radial density profiles (cfr. e.g /14/). Its extension to the
tokamak geometry, particularly in the presence of singular layers, is
certainly a formidable problem.

In the cylindrical case, where analytic solutions are possible, it has been
shown that the ray tracing and the eigenmode approaches are equivalent
under very unrestrictive conditions (the first proof of this statement

is due to Pekeris /15/; recently, Pekeris methods have been applied to IC
waves by Connor and Colestock /16/). The results of Pekeris and Cole-

stock suggest that a judicious application of ray tracing could help to
progress also toward the understanding of eigenmode structure in more
complicated geometries.

b) Ray tracing, combined with what is known about the wave behaviour near
resonances, is in principle capable of predict accurately the single-transit
power absorption, resolved in space and according to the particle species.
It should, however, be kept in mind that the treatment of the resonance
layers sketched in Section 8 is much more qualitative than the Eikonal
approximation. In particular, little can be said on the transition
situation, when neither the cold plasma two-ion resonance, nor the Doppler
broadening of the ion cyclotron resonance dominate the wave behaviour.

In spite of a long term effort, particularly by Swanson /11/, a com-
pletely satisfactory understanding of all possible situations has not yet
been worked out.

c) Ray tracing is by definition inadequate to estimate diffraction effects.
For example, surface waves guided between the wall and the outer plasma
layers are left out of consideration. While there are some indications

that such effects should be small, no quantitative estimate of their
importance in the general case is available.
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d) Minority and cyclotron harmonic heating lead to anisotropic supra-
thermal ion populations /17/. We have taken this into account by allowing
for different parallel and perpendicular temperatures. The energy gained
by resonantly accelerated particles, moreover, can be thermalized partly
on the electrons and partly on the ions, and can be partly lost on trapped
particle orbits diffusing out of the plasma. Estimates of the relative
importance of these processes can be easily made by drawing from the
theory of neutral beam injection heating; Montecarlo methods have also
been applied in this context /18/. A treatment of these processes is a
necessary interface for the coupling of the RAYIC code to a tokamak trans-
port code.

In conclusion, ray tracing appears to be much more useful in improving
our understanding of IC waves propagation, than in making the kind of
quantitative predictions ideally required by transport codes simulating
tokamak discharges. Since to our knowledge no better approach to this
problem is available, it is only honest to admit that many topics still
await an adequate treatment. Skillful theoreticians can be kept busy
for some time to come in this field.
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Figure Captions

Fig. 1: qi,i} coordinates and magnetic surface cross-section

in a meridian plane.

Fig. 2: Model of an antenna element as a strip of transmission

line.
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