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TEARING MODE STABILITY IN 1D AND 2D

W. Kerner, H. Tasso

Abstract

A stability code for tearing modes in 1D and 2D straight
equilibria in the tokamak scaling has been developed. It
finds the lowest eigenvalues of a Hermitian problem which

is obtained analytically by a reduction of the full problem.
The main advantage is the powerful handling of equilibria
with several resonant surfaces and displaying poloidal and
radial mode couplings. The code has been successfully tested
by comparing it with explicitly known analytical results

for external kinks.

This work was performed under the terms of the
agreement on association between Max-Planck-Institut
flir Plasmaphysik and EURATOM.




Introduction

Since the disruptive instability, which often terminates

tokamak discharges, is likely to be caused by destruction of

the magnetic surfaces, it is desirable to understand the

tearing mode behaviour of a plasma. A consistant treatment of
the linear tearing mode stability requires 1) resistive toroidal

equilibria, 2) computation of complex eigenvalues.

As a first step in such a program we consider straight geometry.
Even in this case the complex eigenvalue problem is difficult,

and so we restrict ourselves to the lowest order in the tokamak
scaling for which a reduced Hermitian problem can be derived []]}
The question of stability can be decided from this Hermitian eigen-
value problem, for which powerful numerical techniques [z,jl exist.
This energy method holds for configurations with arbitrary cross-
sections. The perturbation is of multihelical character linearly
coupling single helicities at resonant surfaces through the two-
dimensionality of the equilibrium. A general 2D stability code has
been developed which combines the energy method and the finite-
element representation of the perturbation. It is emphasized that
the principal value of the energy integral at the singularities, as
introduced in [:{], is evaluated analytically and thereby kept out

of the computation.

In this paper we describe the method for general 2D equilibria and
give results for circular (1D) and elliptical (2D) cross-sectioms.
For elliptical cross-sections good agreement (better than 17%) with
analytical results for the ideal external kink instabilities of

Ref. [ﬁj is found.

The paper is arranged as follows: Section II formulates the problem
and describes the method of solution. The results are presented in
Sec. IIT for 1D equilibria with two singular surfaces and for 2D

equilibria with elliptical cross-sections. The results and convergence



properties are finally discussed in Sec. IV.

II. Method

We consider resistive systems in a static equilibrium. The

equilibrium magnetic field B and current density J are given by

B= "z« Vy + B, Ve

;-_-. Iy v2 = _;_": v x E (1)

where ¥Z is the unit vector along the plasma column with length L.
The poloidal flux fr satisfies the equilibrium equation
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with an arbitrary pressure profile PL‘{') . Moreover, Bz and the
electric field

E= 11 = %@y v ©

where 7, 1is the resistivity, are constants in the equilibrium.
General two-dimensional equilibria are evaluated numerically with
the Garching equilibrium code [}I, which is modified for straight
geometry. At present only configurations with up-down symmetry

are being considered. The[?uestion of stability is decided by

1:[: SL = SW-4 8K, where

Sw= [de {4 |[GA|" + A" “:‘;’ (A-a) 1}

Sk = [dt |Aa]" @

minimizing the functional

The sign of A governs stability, A is the z component of the

. A ;
vector potential of the perturbed field, and A is the weighted
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surface average of A, which is taken as zero at the boundary.

In the case of a Fourier expansion for A in a flux coordinate

system g, e.t
(w8 + ntva/u)
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A is given by
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where the surface quantity'? denotes the safety factor. The ex-

tremum of 8\V'is evaluated by means of the Galerkin form, where

the a_ () are expanded into linear elements &, = :“M Kk ek (t‘f)
(see Ref. [3:[), leading to a matrix eigenvalue problem.

In order to simulate a plasma-vacuum-wall system within this theory,
one need'only make the resistivity very large and hence the current
very small in the "vacuum" region. The Jacobian of the flux coordi-
nate system is chosen as {I' = Q(Y)/Bz[\') = 1(?)/81, which ensures
that the magnetic field lines are straight. A radial coordinate s,
similar to a radius, 1is introduced as &I:: S‘?Q , where y& is the

value of the flux function at the plasma surface.

The potential energy and kinetic-like energy matrices read as:
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For L  Fourier components and M radial finite elements the
dimension of the matrices D = LM becomes very large. But the
matrices can be ordered so that they have a band structure with

a band width of 2 L, for which fast solvers, in particular for

the smallest eigenvalue, exist (see, for example, [ﬁ]). For a
given numerical equilibrium the mapping into flux coordinates

is performed once using the ERATO [ 2] algorithm and stored on disc.
The data for all mesh sizes in the stability code are obtained

by interpolation. This is demonstrated by the following flow chart:

equilibrium
disc

mapping
disc

2D tearing mode stability

Fig. 1 Flow chart of the code structure

III. Results

a) Circular cross-section (1D)

Our tearing mode stability code has been applied to various

profiles, including hollow currents for which several singular
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surfaces occur in the plasma[}:l. A recent .appl:'chation[7:1 to a
profile obtained from the Diichs transport code concerning Intor
studies has been performed. The typical profiles have two singular
surfaces, as shown in Fig. 2. The region with j = 0(sz1,0) in the
figure corresponds to a vacuum. For this equilibrium there are un-
stable modes with wave numbers n = 1, m = 2; n = 2, m = 3 and

n =23, m=>5. The eigenfunction for the free surfacen =1, m = 2
mode is shown in Fig. 3a. The dotted line, indicating the resonant
surface, is very close to the plasma boundary. By placing the wall
at s = 1 then =1, m = 2 mode can be stabilized, but not the other
tearing mode instabilities. Figure 3b) displays the n = 2, m = 3

mode.

b) Elliptical cross-section (2D)

The first studies with our code are aimed at reproducing known re-
sults. Since analytical results for the tearing mode are not available
in the literature, we examine the stability of ideal external kinks,
which can be considered as limiting tearing modes. The stability limits
for elliptical cross-sections, constant current density, and a vacuum
surrounded by a wall placed at confocal ellipses are known from Ref [z].
The elliptical equilibrium is analytically simple and allows the mapping
and the interpolation procedure of our code to be checked. In our stu-
dy the wall is taken as an ellipse having the same half-axis ratio as
the plasma boundary and hence does not coincide with the confocal
ellipse of Ref. [}:1. However, our wall lies between an inner and an

outer confocal ellipse as in Fig. 4. In the plasma and the vacuum
dj
ds

at the interface. This §-function is simulated numerically within one

intervening in functional (4) is zero and has a §-function behaviour

mesh cell across the boundary. Figure 5 shows the results for an ellipse

with a half-axis ratio of 2. It can be proved that the m = 2 mode is un-—

stable for nq < nq < ng £ nq £ 2.0, where nq. and nq denote the mar-

ginal values from the theory [E:l for the inner and outer confocal ellip-
ses, and nq the marginal value obtained with the code. The quantity

SAP denotes the value of s at the plasma vacuum boundary,and s = 1.0 de-

notes the wall. The numerically obtained limit nq lies between nq and

nq. and agrees well with their average values, as can be expected.
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Especially for a distant wall the broadening of the unstable domain
for nq to values smaller than 1 is established. The larger marginal
point nq, = 2.0 is easily reproduced. However, it is found that for
a large vacuum region many radial finite elements are needed to give
the stability limit. This is shown in Fig. 6, where SAP = 0,25. The
eigenvalue A is plotted versus nq for different radial mesh sizes,
from M = 125 to 2000 and for a fixed number of Fourier components

L = 9. These data allow extrapolation to an infinite number of mesh

points, showing a poor dependence of X on N as 1/N.

It is concluded that the chosen numerical method with regular, linear
finite elements does not represent well the marginal point. The term
IV_,_AI2 in the potential energy does not balance sufficiently the second
term, which is proportional to |A12. Better finite elements will be

used in the future. The convergence with respect to the number of Fourier
components has the expected exponential-type behaviour. It is emphasized
that the convergence properties get much better if the wall is nearer

the plasma surface. In this case the gradient of A becomes more pro-
nounced and the "pollution" is smaller. This argument also holds for

the typical tearing mode with its steep gradients at singular surfaces !

IV. Discussion and conclusion

The stability code presented in this paper is able to answer the queétion
of "tearing-like'" stability concerning 2D straight equilibria in the to-

kamak ordering. The reduction to a Hermitian problem and the use of fast

solvers for lowest eigenvalues lead to great accuracy in determining the

marginal points. This accuracy overcompensates,in our opinion, the inabi-
lity to compute growth rates, which in fact are affected by all the

missing physics too difficult to consider numerically.

The main achievement is the accurate computation of modes with several
singularities, especially for 2D equilibria. The code is successfully
tested by comparing it with the particular case of an elliptical plasma

for which explicit analytical results are known. This test shows remarkable
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accuracy, as shown in more details in the paper. Some cases need,
however, more than a thousand radial mesh points, which suggests

the use of other finite elements, possibly hybrid elements.

A great challenge confronting the numerical determination of stability
of dissipative plasmas is the handling of non-Hermitian problems which
arise as soon as, for example, the tokamak scaling is abandoned. The
only hope now is to solve 1D problems. Fast solvers for the lowest

real part of eigenvalues are missing.

Acknowledgement:
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the code.
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Figure Captions

Fig.
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Fig.

Flow chart of the code structure.

Safety factor q and current density j profiles of a 1D

equilibrium with vacuum (s21.0).

Unstable eigenfunction A for a 1D equilibrium with

a) n=1,m

b) n=2,m

2 and free boundary

3 and fixed boundary.

Plasma with elliptical cross—section (b/a = 2.0)
surrounded by a wall with the same ellipticity and with

the corresponding inner and outer confocal ellipses.

Domain of unstable n = 1, m = 2 ideal external kinks,
where SAP denotes the value of s at the plasma vacuum

boundary.

Convergence studies for the n = 1, m = 2 ideal external
kink with SAP = 0.25. The eigenvalue X is plotted versus
nq for a fixed number of Fourier compornents (L = 9,
m=-6, -4, -2, 0, 2, 4, 6, 8, 10) and for different

radial mesh sizes (M = 125 to infinity).



20

0.0 04 0.8 12 1.6

Fig. 2




qe ‘614 bg Dl

Ol SO 9l 4 80 70
00 g

00

- e e e - - - e e - = s
e e G e GEe SED EED CIN AN SED SIS GED SED SED S G GED SN G5 G oD e S

{

i

I i
[ |
| i
! ]
H 1

€0 0




VARSI

¥3tne-2o
Y3INNI:'D

35d17713 1v204NO9D {







bu 080 GLLD GL0
(o]
G0
P o]
(o]
O
o] i
° omﬁl\. JIOO
o /
\ 35d17113 ¥3NNI
(o) 0\ \
° d 7/
° 00z 3Sd1113 ¥31N0
5
o .\ rm.Ol
g /
i g /
/
v
Gzl &
O
0001
052y oc




	IPP 1_190 Deckblatt
	IPP 1_190 Text

