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Abstract

Using a modified method of steepest descent in a multidimensional
space of Fourier coefficients which represent the plasma boundary,
the critical beta of sharp boundary model tokamaks is maximized
for fixed values of aspect ratio and poloidal beta under the
constraint that the plasma be stable with respect to axisymmetric
MHD modes. In the subclass of elliptical cross-sections it is de-
monstrated that the omission of nonaxisymmetric stability is of
minor influence for the determination of the optimum shape. Since
for small aspect ratio there is a preference for doublet type
shapes, a theory of axisymmetric stability for sharp boundary

doublets is included in the paper.




Introduction

It is well known that in tokamak equilibria B can be increased
by using vertically elongated plasma cross-sections. Generally,
the relation between B and the plasma elongation is even mono-—
tonic, and the benefits of this relation are only restricted
by stability. Unfortunately, owing to axisymmetric MHD instabi=-
lities [ 1,2] , there is a rather small upper limit for the
plasma elongation which allows a moderate improvement in B for

small aspect ratio only.

However, B depends not only on elongation but also on other
details of the plasma shape such as ellipticity, triangularity
etc., and furthermore it is strongly influenced by the current

distribution.

An optimal optimization of a tokamak would maximize R by
adjusting the plasma shape as well as the current distribution,
thereby observing some constructive and technical restrictions
and observing the constraint that the plasma be stable with
respect to all possible plasma instabilities, ideal and non-
ideal, axisymmetric and nonaxisymmetric. Apart from the
supposition that this problem would have no solutiom, it is in
any case far beyond the scope of present-day possibilities.

One is thus forced to settle for less ambitious objectives and

still hope to obtain results showing the correct trend.



In this paper a constant pressure sharp boundary tokamak model
is used to determine a plasma shape which, on the one hand,
causes the highest possible B -values and, on the other, is
still stable with respect to axisymmetric MHD modes. In this
choice of plasma model only the influence of the plasma shape
may be used for maximizing R, the equally important current
distribution not being variable. Furthermore, we have not
included wall stabilization since with fixed external walls
the optimum shape would depend too strongly on the wall shape.
In addition, a simultaneous optimization of the wall shape
would at least double the parameters of the problem. Neverthe-
less, inclusion of wall stabilization would appear as a

rewarding ingredient.

Regarding the omission of nonaxisymmetric modes, we believe

that at least for the surface current model (SCM) the optimum
shape (the shape for which B becomes maximum and the plasma is
still MHD stable) is determined much more strongly by axi-
symmetric than by nonaxisymmetric stability. One argument in
favour of this opinion is that for the SCM each plasma shape

is stable with respect to nonaxisymmetric modes if only q is
chosen large enough, while stability with respect to axisymmetric
modes cannot be achieved by any choice of q unless the plasma
shape is chosen properly (Ref. E l]). An even stronger argument
results from considering elliptical plasma cross-sections.
Figure | shows the maximum B compatible with nonaxisymmetric
stability as a function of the plasma elongation according to

Ref. EZ3]. Also shown is the region which is stable with respect



to axisymmetric modes calculated according to Ref. [ 2:]. Only
the shaded area is stable with respect to both axisymmetric and
nonaxisymmetric modes, and it becomes obvious from this diagram
that the optimum elongation is essentially determined by the
boundary for axisymmetric stability, while the maximum achiev-
able of B, or, according to egs. (1.2) - (1.3) in section I,
equivalently the critical safety factor q, is essentially

determined by nonaxisymmetric stability.

In the literature there have already been attempts to maximize
B by adjusting the plasma shape, see e.g. |:4:| I: 5]. However,
firstly most of them were restricted to nonaxisymmetric modes
and the severe restrictions coming from axisymmetric modes
according to Fig. | were thus not included. Secondly, the
optimization was performed in a very restricted class of shapes.
In our paper we admit a quite general plasma shape and, starting
with a stable shape of relatively low B, we maximize by a modi-
fied steepest descent method in a space of Fourier parameters
which determine the plasma shape. Thus, no preconception of the
optimum plasma shape is contained. This method forces us to
calculate the stability of very many rather different looking
equilibria, a process for which the surface current model is
especially suitable since the stability problem can be reduced
to a one-dimensional numerical problem on the plasma boundary
and since the computer time for calculating the stability of

one specific equilibrium is fairly short.



The high flexibility of the SCM is paid for with a rather
exotic current distribution, and the question of the relevance
of the corresponding stability results arises. Restricting

the discussion to axisymmetric stability, we note that
according to our results in Refs. [ 1,2] for simple plasma
cross—sections such as ellipses etc., at infinite aspect ratio
exactly the same stability boundaries are obtained as for a
diffuse current model (DCM). For small A, the perturbations
which minimize sz for the SCM are found to be nonlocal
external gross modes, for which the details of the current
distribution are of minor importance, and the SCM may therefore
be expected to be a similarly good approximation to reality

as it is known to be for stability with respect to the nonaxi-
symmetric m = n = | gross mode. Recent numerical studies of
axisymmetric modes for diffused current models [(Sj show an
excellent qualitative agreement with our SCM calculations. Thus,
we may expect results which are qualitatively correct, and the

SCM appears as a useful guide through parameter space.

The paper is arranged as follows: in Sec. I we summarize the
equilibrium properties of the SCM as needed in this paper and
discuss the representation of the plasma shape together with
an appropriate coordinate system. Since in the course of
optimization doublet-type shapes come up, certain specific
problems arising in the stability theory of axisymmetric modes
for doublet shapes are treated in Sec. II. In Sec. III, the
method of optimization is discussed, and in Sec. IV numerical

results are presented.



I. Equilibrium properties and representation of the plasma

boundary

We use cylindrical coordinates R, 6, z and dimensionless

quantities as introduced in Refs. El ]and [ 27]. The aspect

ratio A will be defined by

Rmax =1+ 1/A , Rmin =1-1/A

) (1.1)
the middle of the plasma thus being located at R = 1 (see
Fig. 2). For the poloidal equilibrium magnetic field on the

plasma boundary, we have

! 2 L2
B=gx [1+ B (R = 1) ] i (1.2)
where Bp is related to the plasma pressure and the poloidal
field B0 =] at R =1 by Bp = 2p/B§ . With the usual integral
definition of the safety factor q we use the B -definition
2
B
B = p/(p+ 5Pl{p _ ) and have the relation
22,2
B=8_/(1 +A°q°/ ; 13
p( q qg) (1.3)
where
A dl
= e — 3 (1'4)
g = 2 f R2B

the integration extending over a poloidal cut of the plasma

surface. Bp is restricted to values

8, < BF = A%/ 2a - 1). (1.5)



Instead of R we shall also use the parameter

a? =% (1 - B8)/8. (1.6)

We note that our definitions of B and Bp use magnetic field
quantities in the middle between Rmax and Rmin , while
averages over the plasma surface are also frequently used.
Especially in an optimization procedure, this may lead to
slight differences which, however, appear to be unimportant in
view of the approximate character of the SCM. On the other
hand, our definition allows of more explicit equilibrium
relations, a fact which proves to be an important advantage,

especially in the numerical optimization procedure.

To describe the plasma boundary we introduce polar coordinates
S, u in the 6 = const planes as shown in Fig. 2 and consider

only plasma boundaries which are symmetric with respect to the
equatorial plane z = 0. Using a Fourier representation, we thus

have

N

s = s(u) =08, s nu + ... (1.7)

and R=1+s(u) * cos u ,

where in our numerical procedure only a finite number of coeffi-
cients is taken along. Although a good approximation of an
arbitrarily given boundary may require a relatively large number
of Fourier coefficients, it turned out in our optimization

procedure that for N * 10 an increase of N leaves the optimum

value of B practically unchanged.




Apparently, multiplication of a curve s(u) with a constant A
leads to another curve SA(U) = g (u), which has the same shape
properties as s(u) and differs only in aspect ratio.We used this

by rewriting

N
s(u) = ¢ . [ 1 + I c, cosn Ll], (1.8)
n=1

where now the coefficients c cee Oy determine the specific

1’

shape, while c determines A.

According to eqs. (1.1) and (1.8) we must have

N N
Max [ (1 + Z cn cos n u) cos u_J = = Min E (1 + z ¢, cos n u)
n=1 n=1

+ cOs Ll] (1.9)

and hence one of the coefficients Cps wees Cy is dependent on
i

the others. For Cla wees Oy given and with eq. (1.9) being

satisfied,c isrelated to A by, for instance,
7

N
= ¢ + Max [ (1 + z cn cos m u) cos u | (1.10)
n=1

| —

In our numerical calculations, instead of the polar coordinate
u we have used an "adapted" coordinate v on the plasma boundary,

which is related to u by

1 (u)
AN KZ/AZ dl
v =on2 : (1.11)

§ J1l+ 28 a1
where k(u) is the curvature of the curve defined by the

plasma boundary in the 6 = const plane, and 1(u) the arc length

of it measured from u = 0. Since dv/dl is essentially proportional



to k, for constant stepsize Av the numerical grid points become
denser at boundary sections with large curvature than on those
with small curvature. With these adapted coordinates, much

faster numerical convergence for noncircular plasma cross-sections

was obtained than with polar coordinates.



I1. Axisymmetric stability of doublet-type equilibria

In our paper on the stability of sharp-boundary tokamaks with
respect to general axisymmetric modes [ 2:] we restricted our
consideration to plasma cross—sections z = z(R) for which z(R)
is a single-valued function for z > 0 and z < 0. In doublet-
type configurations as shown in Fig. 2 this assumption is no
longer valid, and since in the procedure of optimization at
low aspect ratio there is a preference for doublets, we must
develop a stability theory for these. According to Ref. [ 2],
in 62 = 8W + Wy * 6W the multivaluedness of z(R) affects
only awpl, while GWS and 5wv may be calculated as for single

-valued functionsz(R). Thus, we shall consider her only the

minimization of GWpl, which is given by eq. (3.7) in Ref. [:2 ],

. B £ 2 42 g
6wp1=€“ﬂpj [REg+m, +p +3x CEg+n,~p Jdrdz
(2.1)
= WE, n) ,

where £ and n are the x and z components of the perturbation,
and ER = g% , etc. If we split £ and n into contributions which
are symmetric and antisymmetric with respect to the z = O plane:

£ ="+ g%, n=n%+ 0%,
where ES(R, -z) = ES(R,Z), Ea(R, -z) = - ga(R,z) etc., then
GWﬁl separates into two independent contributions

sw o= wE®, n®) + weE?, n). (2.2

pl



Now, awpl must be minimized with respect to £ and n for given
E. =n‘*E= np £ + n,n ,

where the vector n with R-component n, and z-component n, is the

R

normal vector on the plasma surface. Since

s a s
np & +mn,n =€n ’ (2.3a)
a s _ ,a
np E + n,n = an ’ (2.3b)
we shall denote
s /e S a a a s
SHo) = WS, 0%, oWl = W(Ed, %), (2.4)

. C e . S a .
where in the minimization of swpl and 5Wp1 we must prescribe on

the boundary the values of Ei and Ei respectively.
In the R,z -plane, we shall divide the plasma interior into the

regions R . R <R
i =

< and R < R < R , which we call "doublet
in - 1 T =

= max

regions", and the region R, < R < R, which we call non-doublet

A

region (see Fig.2). As in Ref. [ 2] , the variation of 6Wp1(eq.(2.1))

yields the Euler equations

R -a £ _
(Eg *+ n)g * @ =0 ,
R2 % 0‘2 R
(2.5)
2 2
(£, + n B T8 5 =g .,
R z 2 9 R .
R+ a

with the general solution
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2
RS L (2.62)
n=nhR)z + g(R) , (2.6b)
where the abbreviations
2 2
yigy = 222 2.7)
o
and
2 2 2
- Y_ - " a -5 R ' i -a
h(R) == - £+ = W E ] (2.8)

are used, and where f and g are arbitrary functions of R. In dealing
with ngl and 6w;1’ according to eqgs. (2.4) we have to single out
solutions with appropriate symmetry properties. Since these symmetry
requirements have different consequences for the non-doublet region
and doublet region (s) (the latter may amount to one or two), we
shall treat the regions separately. Let us first consider the non-
doublet region R, < R < R_.. There, the plasma above z = 0 is
connected with the plasma below, and from eqs. (2.6) we obviously

obtain

e2z0 , nP=gm , (2.9)

s _ YzéR) F®), n? = h@®)z . (2.10)

(sl
I

These Euler solutions must be inserted in the conditions (2.3)

on the plasma boundary. Introducing the arc length 1 on the boundary
z = z(R), with the notations f(1) = f(R(1)), % = df/dl etc. and
using

n. =z , n =-R , (2,113
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we obtain after a little calculation

a
&= En/nz

and

'f+(

For uniformity in the case £, © Es underlying eqs. (2.9) we

introduce a function
f(1) = 0

and formally keep eq.(2.6a).

(2.12)
kﬁ s
- En $ (2.13a)
yoz
(2.13b)

According to the definition of the non-doublet region, n, nowhere

vanishes and thus eq. (2.12) everywhere defines a unique function

g(R). We shall discuss the problem of appropriate boundary

conditions for eq. (2.13a) in connection with the corresponding

problem for the doublet region (s).

Let us now turn to the doublet region (s). There, except for

R = R, and/or R = Rr , the Euler solutions £ and n may differ above

1

and below z = 0 since the plasma regions are disconnected.

Perturbations, which in each separate plasma region are Euler

solutions, are given by

2

£? = YT £'(R) * signz with £'(R)) = £'(R) =0, (2.14a)
ns = h(R) z * signz+ g(R) , (2.14b)
. 2

= rw, (2.15a)
n® = h(R)z + g(R) + signzwith g(R)) = g(R) =0 . (2.15b)




The additional conditions in eqs. (2.14a) and (2.15b) take care of
the symmetry requirements at the endpoints of the doublet region(s)
and in Appendix A they are shown to be automatically satisfied on the
assumption R ¥ 0 at z = C, R = Rl and/or R = R_. Since the pairs

a s s a . .
£, n and £, n are independent, in eqgs. (2.14) and (2.15)

different functions f(R), g(R) may occur; we have used the same

notation just for convenience.

We again determine f(R) and g(R) by inserting eqs.(2.14) - (2.15)
in the conditions (2.3) and restrict ourselves to the region

z > 0. There, for given R a condition arises at two boundary points
P and % (see Fig. 2) since for each point P on the doublet boundary
there exists a ''conjugate' point %. Marking all quantities at

. ; . & i : a
conjugate points with and omitting the superscripts ® and

we obtain at P and P respectively the quations

2

Y ' =

4 MR £' + nz(h z + g) En . (2.16)

YZ N . - "

— 1 =

5 "R f' + nz(h z + g) gn . (25 17)
Multiplying eq. (2.16) by n_ z, and eq. (2.17) by n, z, and sub-
stracting the two yields

1 EE T 12 B ; YZ
e TS = iy .2 - Y '
g(R) = | = (g, =7 W £'0 ~= (& =on, ¥ ]s (2.18)
(z=2) n, z

Once f(R) is determined, g(R) is also given.
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Turning to the determination of f, we multiply eq. (2.16) by
n» eq. (2.17) by n, o, substract both, and after a little

calculation, switching from the variable R to 1 using eqs.

(2.11), we obtain

PN (QEE:EE 3,_.5 ¥ Lég_:_égl ) £ - 33? £ = 4R (EUR —'EHR) (2.19)
SR ?(Z_%) Y2 YZAI'{ {z = 2) .

We shall now discuss the boundary conditions to be imposed on the
differential eqs. (2.13) and (2.19).0n the plasma boundary, firstly at the

two points where R = R . and R =R and secondly at the point(s)
min max

z =0, R= R1 and/or R = R_, we have R = 0, np = 1, n, = 0, and

with £ = n - £ = En and eq. (2.6a) we obtain

25ﬂf{=o : (2.20)

It is immediately seen from eq. (2.19) that at the second mentioned
point(s), because of R = 0 in the denominator of the f-coefficient,
eq. (2.20) is automatically satisfied for each solution £(1). Thus,

there remain two real boundary conditions (2.20) at R ., and R s
min max

and they must still hold if only one doublet region exists and

either R . or R is reached at z = 0 in the non-doublet region.
min max

Further boundary conditions result from the requirement that awpl

become a minimum. Since 5Wp1 contains the R-derivative of £, eq.

(2.1), a discontinuity of £ in the R-direction would blow up 6wp1

to an infinite value, and to avoid this, according to eq.(2.6)




together with £ also f'(R) = %(1)/&(1) and %(1) must be equal

at the connecting endpoint(s) of non-doublet and doublet region(s).
It is shown in Appendix B that the Euler solutions (2.9), (2.10)

and (2.15), (2.16) actually minimize 6wp1, if in addition there

is equality also for f(1). We note that the continuity requirement
for f and % is not self-evident. Firstly, in the transition from
non-doublet to doublet regions some of the coefficients in the
differential equation for f are discontinuous. Secondly, after
continuity of f and fis imposed, E and hence, according to eqs.
(2.6b) and (2.8), also the z-component n of the perturbation

will in general be discontinuous. To summarize, the number of
conditions on the boundary now obtained is twice the number

of independent differential equations, and it is shown in

Appendix B that unique solutions f(1) thus exist which define single
-valued functions f(R) = £(1(R)). Furthermore, it is shown that for
given Ei’a (1) the minimum of 6 W>?? is given by a contour integral

pl

over the plasma boundary,

,a 5 $R2+u2
J

Min 6W° = 218 £¢1) £°'%(1) di. (2.21)
P R n

1 6 p

The numerical evaluation of Min SWSia requires the solution of

boundary value problems for ordinary second order differential equations
and a contour integration. Standard methods are applicable, for

both purposes, the use of the adapted coordinates of Section I

speeding up numerical convergence. As for convex plasma cross-sections,
the essential step is then, after adding the contributions 6WS and

5wv, to minimize sz with respect to Ez and Ei . All this can be

carried out completely by analogy with Refs. [ l:] and E 2] » and



the minimum of sz thus obtained will be denoted by

; 2
wmin Min (8§°W) i (2.22)

For a typical doublet type cross-section with symmetry around

the R = | line we show the antisymmetric minimizing perurbation

in Fig. 3. The instability in Fig. 3 is a (discontinuous) vertical
downshift combined with a constriction of the upper doublet wings
which makes it easier for the plasma to slip through the toroidal
current loops needed close to the plasma in the z = O plane in order

to create the waist of the equilibrium shape.

If for doublet-type equilibria the stability boundary is calculated
by minimizing sz in the subset of slip-mode perturbations, Ref.[ 1],
which by definition are q-independent, almost exactly the same

result is obtained as with full minimization. Thus, the almost
complete independence of axisymmetric stability on q observed

earlier at convex plasma cross-sections, Ref.[LZ], transfers to

doublet type cross-sections.




III. Optimization of the plasma boundary

According to the theory of equilibrium as presented in Section I,
the quantities q, Bp, A and the shape determining Fourier coeffi-
cients Cpo seer Oy in eq. (1.7) are, with one exception, independent
parameters. From eq. (1.2) we conclude that in order to obtain

large 8, the independent quantities A and q should be small, B
should be large, and the dependent quantity qg should be large.

B depends on the plasma shape through qg, which for given A
obviously increases with the circumference of the plasma cross-—

section and particularly with the vertical elongation.

In a given experimental set there are structural restrictions on

1/A and practical limits on Bp, and in a planned experiment any
lessening of these restrictions is limited by economical constraints.
Therefore, it appears reasonable to keep both quantities fixed
during optimization. With fixed A the parameter c in eq. (1.8)

becomes a dependent variable, and we choose c, as another dependent

1
variable in order to satisfy condition (1.9). Since for fixed
other parameters 8 is numerically found to vary monotonically with

c2, it is convenient to employ c2 as a dependent variable for the

adjustment of B during the optimization.

For given aspect ratio, the optimization leads to vertically
elongated cross-sections, and since for these the q dependence of
the boundaries for axisymmetric stability is especially weak (for

convex shapes there is no dependence at all; see Ref. [ 2]), we




also chose q as a fixed parameter, and we arbitrarily chose q = 1.
With this choice we cannot expect to obtain the correct optimum
values of B, but according to our considerations in the introduction

we may expect a good approximation to the optimum plasma shape.

The physical problem of finding a configuration with maximum B
which is still stable with respect to axisymmetric modes is mathe-
matically the problem of finding the maximum or supremum of a
function of very many variables under the constraint wmin > 0. This
is known to be a hard problem, and the method of steepest descent
would present itself as a useful tool. However, the existence of
several unstable modes may make Wmin a nonanalytical function of the
equilibrium parameters, and particularly this function is not

given directly but in a highly implicit manner. There are thus

very inconvenient obstacles to applying this method, and we

therefore developed a modification which we shall now describe.

According to the foregoing we have the following classification

of variables: A, ﬁp and q are prescribed quantities, Cqs Cpy vevesCy
are the free variables of the problem, c, ¢y and c2 are dependent
variables, and B is the quantity to be maximized by variation of

the free variables Cas «vey Oy

Our optimization procedure starts with a circular cross-section, i.e.

Cp =Gy = ceen. =0y = 0, a configuration which according to Ref.

is stable, W . > 0. Then, with unaltered c,, ..+, cy ve increase B
min 3

stepwise with appropriate readjustment of c, ¢ and Cy until wmin< 0.

[ 2]
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Next, with the last value of B fixed, we try to bring wmin
back to a positive value. This is done by changing Cqs Cpurene
one after the other such that wmin assumes a relative maximum
with respect to the variable whose turn it is. Numerically,
this was accomplished by a stepwise increase or decrease of the
variablé whose turn it is, with ever growing stepsize for in-
creasing Wmin and with a return to the starting stepsize after
a change of direction due to decreasing wmin . Generally, the
maximizing property of a c; gets lost after its turn is past

and therefore after Cy the procedure is restarted with c,. As

3
soon as a positive value of Wmin is reached, we interrupt the
variation of the independent variables and, fixing their last
values, we again increase B stepwise with appropriate readjust-
ment of c, S and <, until Wmin < 0. Then the variation of the

Cys wves Cp is resumed as above. In this way B increases step

by step, and with given minimum stepsize of the several operations
the whole procedure ends after a finite number of steps. wmin
then assumes approximately a relative maximum with respect to all
free variables simultaneously and is still negative. Going back

to the last B with positive wmin the procedure is restarted with
smaller size of the several minimum steps until a desired accuracy

is reached and the parameters corresponding to the last positive

Wmin can be used as optimum parameters.

In Fig. 4 our method is graphically illustrated by a two-dimensional

analogue.
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IV Numerical results

It is clear from the last section that in order to obtain an
optimum plasma shape, the stability of very many intermediate
configurations must be calculated. The numerical methods for
calculating the stability of each specific one of them have
been presented in Ref.[ 2 |, modifications due to the occurrence
of doublet-type cross—sections are described in Section II, and
the methods for obtaining an optimum shape are found in Section

IIT.

Figures 5a) and 5b) show the optimum shapes which we obtained

with q = 1, Bp = | and Bp = 2, respectively, for different values

of A. For each optimum shape the maximum property of wmin with
respect to all of the free variables simultaneously was tested,

and one of the tests is shown in Fig. 6. For large A the optimum
shapes are almost circles. With decreasing A gradually a preference
for straight vertical sections develops which are a little longer

on the side near the axis of symmetry, the optimum configurations
thus looking like a combination of racetrack and D-shape. This kind
of optimum shape varies continuously with A and gets more and more
pronounced with decreasing A until at £%3.8 for Bp = | and A*% 5.9
for Bp = 2 a sudden qualitative change occurs: if A is only slightly
below A¥ , in the process of optimization a constriction of the plasma
boundary develops forming a doublet-like plasma shape. With con-
stantly increasing B this constriction becomes tighter and tighter

until finally a stage is reached where we can no longer trust the
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accuracy of our code since near z = O the curvature of the boundary
becomes too large. It thus cannot be decided whether the optimization
procedure comes to an end at a certain very constricted doublet shape
or goes on trying to tear the plasma into two separate tori. In the
case A < A* we have therefore shown intermediate shapes in Figs.
7a), b) for which we can still trust our code. In addition, for

A > A™ ye also started with constricted shapes and observed that the
constriction was gradually reduced in a subsequent optimization until
the same optimum shape was obtained as when starting from a circular
shape. This indicates that no obvious bifurcation is present,
although bifurcation generally cannot be excluded in this way. The
shapes shown in Figs. 5 and 7 were obtained with between 10 and 12
Fourier coefficients (c, ¢ and c, being included in the account).

A further increase of their number brought no visible change in the
optimum shape. In Table | we have listed the values of c and C s vres
C8 for Bp = | and several values of A, which allows reconstruction

of the optimum shapes and the indented shapes with A < A of Fig.

7a with sufficient accuracy.

Since we have arbitrarily chosen q = | and not considered nonaxi-
symmetric stability we cannot expect the optimum values of B to be
accurate. We have therefore only calculated the enhancement of 8

as compared with the B value of a circular cross-section at q =1

and present the results in Fig. 8. (The small circles and crosses
below A = A¥ indicate the B values of intermediate doublet shapes).
Since the B enhancement changes only slightly when a larger but still
equal value of q is chosen for both the circular and optimum shapes,

the curves in Fig. 8 will only need a marked down-correction if
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in the transition from circular shape to optimum shape after
inclusion of nonaxisymmetric modes q must appreciably be in-
creased. For comparison we have shown in Fig. 9 (Bp =1, q=1)
the enhancement of B which can be obtained with elongated

ellipses.
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Conclusions

Employing & modified method of steepest descent in a space of
Fourier coefficients which determine the plasma boundary we
maximized B for fixed values of A, Bp and q under the constraint
that stability with respect to axisymmetric perturbations is
observed. Thereby q was fixed only for convenience in spite of the
far reaching q independence of axisymmetric stability. Although
nonaxisymmetric stability was excluded, we expect rather reliable
results for the optimum plasma shape but less reliable for the

maximum B.

It turned out that for large A only very small deviations from
circular shape are possible, that for decreasing A the optimum
shape is a superposition of racetrack and D-shape, and that

below a Bp-dependent threshold A¥ (e.g. A™ * 3,8 for Bp = 1 and

A* 2 5.9 for Bp = 2) doublet-type shapes are preferable. Across
this threshold the optimum shape is a discontinuous function of
A such that below it the optimization procedure went on producing
higher and higher B with more and more constricted stable doublet
shapes until it had to be stopped because of numerical accuracy
problems. Down to A™ the gain in B by shaping the plasma increa-
ses monotonically with decreasing A and increases with Bp for
fixed A. Across the threshold A* it jumps to much higher values,

and it thus appears rewarding to fall below this threshold.
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Appendix A

We consider the boundary line(s) R = R, and/or R = Rr' With

i §
f(l) = f'(R) ﬁ(l) the eqs. (B10) from Appendix B may be written
in the form

1 4 1 24
f (Rl) == €n(R1,0). f (Rr) ) En(Rr.O)- (A1)
¥ Y
Because of Ei(Rl,O) (=) Es(Rr,O) =0 the condition(s)

in eq. (2.14a) is (are) thus automatically satisfied.
From eq. (2.18) we obtain there

2

g=(_ -% ng £/ . (42)

According to (Al) with nR(Rl,O) (=) nR(Rr’O) = 0, both

nominator and denominator vanish. With n, = - R we therefore get
R (E - I?n f')/i (A3)
= dl **n " & "R

For gn = Ez the bracket is a symmetric function of 1, its derivative
vanishes and on the assumption that R # O condition(s) (2.15b) is

(are) automatically satisfied.
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AEBendix B

We shall first show in subsection a) that the Euler solutions
minimize 62W, assuming unique existence and single-valuedness.
These are proven afterwards in subsection b).

a) let g? (R,z) be the vector function made up by the Euler

solutions (2.9), (2.10) and (2.14), (2.15) in the different

subregions of the plasma, and let § = Ef + E] be an arbitrary

: . v o
perturbation which satisfies n + £ =n * § = gn so that

n* El =n El *n, n1 = 0, (B1)

With the notation of eq. (2.1) we have

I
sy = we®n®) + e, b e w0l (B2)
where
1ot 5 (Crel + 14»51)(50+ 0+§_0)
2 6 °p R Tz TRVBRT TR
2 1 o
+%(€;+n;'%)(E;+n2-%)]dez. (B3)

. . o . . p

Using the Euler equation for £, we should like to integrate this
: o ; ;

by parts. However, since n and 5; are discontinuous across the

separation line(s), in the strips R, = € < R < R + € and/or

1 L

R -ec< R < R +e the integrand is left as it stands, and because
it is finite although discontinuous, there is no contribution from

; ol . i 5.3
the strip(s) to W in the limit € » 0. From the remaining sub-

regions we then obtain, after partial integration and use of the

Euler equations (2.5),
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5 1 o 0 Eo a2 o o Eo
=gwﬁpzf(°£)[R(€R+n +§)+§(ER+”z_i)jdl'
(B4)
Insertion of the Euler solutions (2.6) yields
2 2
1.0l D I, a +R
- E‘"szf(ﬂ E) ==t dl. (B5)

The sum contains separate contributions from the different
subregions, the line integrals extending over the closed contours
formed by separation line(s) and sections of the plasma boundary.
The contributions of the latter vanish because of eq. (Bl) while
each separation line contributes twice, one contribution with

n, = - 1 coming from the right and a second with n

R = | coming

R
from the left adjacent region. Finally, since across the separation

line(s) with £ also El must be continuous and since alongside

R = const, n, = 0 and dl = d=

Z. max Z _max

we! 5 “2+Ri ( | “2+R12c ( I

7 =- gﬂap[——-R—l—-— J Af £ (Ryy2) dz (+) "‘f{:_—J AE_E R,z )dz ],
zlmin zrmin

(B6)
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where, for example,

Af_ = lim L £®_+e€) - £(R, - = i (B7)
£%0
The case En = Ei, which according to eqs. (2.1), (2.4) and (2.9)
should have no contribution from the non-doublet region, is properly

included by means of the convention (2.13b).

. i ; P 1 i :
Since according to 1ts definition W(EI, n) >0, it 1s readily seen

from eq. (B2) that for

Afl = 0 and/or Afr =0 (B8)

because of WOI = 0 the minimum of wal is achieved if

E] =0, i.e. § = 55 . Since MinGWp1 = W(Eo,no), eq. (2.21) can be
obtained from W0]/2 by replacing g} with g?. Because of eqs. (B8)
there is no contribution from the separation line(s) while this time
the plasma boundary contributes. Thus,eq. (2.21) is obtained from
eq. (B5) by the replacements W°1/2 - Minéwpl, (n -.El) - En and by
connecting the line integrals over the sections of the boundary.
Again with eq. (2.13b) in the non-doublet region the case En = Ei
is properly included.

b) We now show that the system of differential equations (2.13)

and (2.19) coupled by the boundary conditions required in Section II
has a unique solution. We consider only the case with two doublet

regions, the case with one being quite analogous.

Let us define the arc length to the upper end of the separation lines
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by
1.=1(R) , 1, = 1(R)) . (B9)

Because of k(lr) = é(ll) = 0, two terms in eq. (2.19) diverge
at the separation lines, and, equating them, with é(lr) = - é(ll) = ]
and E(Ir) = 2(11) = 0 we obtain

A

. _ . _ i * . _ . _ ~ .
0 =B =% g0 R, Fap = Ee -2 g ap Ray

| &

(B10)

In the case £_ = gi we have %3(1r) - 22(11) = 0 and with eqs. (B10)
this proves that the conditions in eq. (2.14a) are automatically
satisfied, as shown in appendix A. Since in this case £(1) = O in
the non-doublet region, the continuity requirement for %(1) across
the separation lines is already satisfied.

s
In the case En = Enit leads to the boundary value problem

f+af+bf=i ; £Q) = £, Q) =°§ (B11)

in the non-doublet region, where a,b and i are short notations for
the coefficients of eq. (2.13a). Note that we have

b<o0. (B12)

We introduce two solutions f; and fi of the initial value problems

]
—

. _ 1
£ (1) =0, £ (1)

+2 2
£,(1;) =0, £.(1)) = (B13)
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for the corresponding homogeneous differential equation and an
arbitrary special solution fi of the inhomogeneous one. As shown,
for example, in the Appendix of Ref.[ 2], it follows from

inequality (B12) that

o1 22
fh(ll) # 0, fh(lr) $#0. (B14)

Inserting the general solution f = fi *+ ¢, f; t ey fﬁ into the
boundary conditions (B10) yields a system of two linear equations
for ¢, and ¢y with nonvanishing coefficient determinant because of
(Bl4), and thus for the non-doublet region a unique solution £(1)

is obtained. We denote its values at the endpoints by

f(lr) = fr § f(ll) = f (B15)

l .

Let us now turn to the doublet regions, and for simplicity

consider only the right one. The two cases En = Ei and En = Ei

can be treated simultaneously. We introduce

1tn = l(Rmax) . (B16)

Since f(1) must be continuous at 1r and since at 1m we have the

condition (2.20), we must now consider the problem
f+af+bf=1i; f(lm) =0, f(lr) = fr’ (B17)

where a,b and i are the coefficients of eq. (2.19) and f(1l) has

to be determined in the interval 0 < 1 < 1.

Connecting at 1 solutions of initial value problems in L >1>0
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and 1m <1 < 1r we temporarily introduce a solution fh of the
homogeneous and a solution fi of the inhomogeneous problem

which satisfies

fh(lm) = fh(lm) = fi(lm) = fi(lm) =1 . (B18)
For both we construct '"conjugate' solutions
£,(Q) = £.(1) , £, =£Q) . (B19)

Writing down eq.(2.19) at the conjugate point it is seen that fh(l)
and fi(l) are also solutions of the homogeneous and inhomogeneous

differential equations respectively. Obviously, we have

e .
A

fh(lm) = - fh(lm) = fi(lm) = - fi(lm) = | (B20)
and hence fh(l) and fh(l) are linearly independent.

The two homogeneous solutions derived from them

~

1 1
Bp=7 Ep * ) By =g (B = 5 e

and the special inhomogeneous solution

s _ | P
fi o E—(fi + fi) (B22)

derived from fh’ fh and fi’ fi have the properties

's _ 8 _ a _
fh(lng = fi (lm) =0, fh (1n?— 1, (B23)

and the most general inhomogeneous solution which satisfies

the first of the boundary conditions (B17) is




33
£f=£54c £8 (B24)

Using the fact that also the coefficient b in the diff. eq.

(B17) is negative, it can again be shown that

%§(1) >0 for 1>1. (B25)

From this and fﬁ(lm) = | we get f;(lr) # 0 and the coefficient
cg in the solution (B24) may thus be uniquely determined from the

second boundary condition (B17).

We note that the different solutions of initial value problems
employed above exist according to standard mathematical theorems,
and thus the existence and uniqueness of the functions f(1) is
proven. It follows immediately from eqs.(B21) and (B22) that the

solution (B24) satisfies the condition

£(1) = £Q1) ,

i.e. it defines a single-valued function f£(R) = £(1(R)). In the
non-doublet region the problem of multi-valuedness does not arise,
so that finally the unique single-valued existence of the Euler

solutions is demonstrated.
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Figure captions

Fig. 1 Stability diagram in an e-B plane with boundary for
axisymmetric stability (n=0) according to Rebhan, Salat,
in Ref.[ 2:] (vertical straight line) and for nonaxi-
symmetric stability (n#0) according to Freidberg, Grossmann,

in Ref.[ 3]. stable region shaded.
Fig. 2 Doublet cross-section with coordinates.

Fig. 3 Minimizing antisymmetric perturbations (unstable) in a typical

doublet-type plasma with A = 3, Bp =1, q=1.

Fig. 4 Two-dimensional analogue of the optimization procedure,

path through parameter space dotted.

Fig. 5 Optimum shapes depending on A
a) forq =1, B_ =1 b) forq =1, B_ = 2,
P P
axis of symmetry to the left.

ig. f i ; i
Fig. 6 Test of the maximum property of Wmln for the optimum
shape at A = 5, Bp =1, q = 1. All quantities are normalized

with their values at optimum position.

Fig, 7 Constricted doublet-type cross—sections obtained for
A < A¥at intermediate steps of the optimization procedure
a) for B =1 and b) for B8 = 2,
P P

axis of symmetry to the left.
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R enhancement over circular shape as a function of A

*

for the optimum shapes with A > A" and the intermediate

shapes with A < A¥ of Figs. 7a) and b)

B enhancement of optimum shapes and elliptical shapes for

Fourier coefficients, eq. (1.8), of optimum shapes for

Bp = | and several values of A.
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Stability diagram in an e-f plane with boundary for
axisymmetric stability (n = 0) according to Rebhan,
Salat, in Ref.[2:| (vertical straight line) and for
nonaxisymmetric stability (n # O) according to Freid-

berg, Grossmann in Ref.l: 3] , stable region shaded.
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Table 1

A 16 4 3.8 3.8b

. 6.5 - 1072 1.3 - 107" 3.1 107 3.2 - 107 3.3 107
e - 9.0 107 1.6 - 1002 -2.2-1072 7.4 - 1072 1.2 - 107
o, 15-10° 3102 oa7 o007 -8z o007 2420007
c; 8.6 107 1.8 - 1072 4,1 = 107 1. = 98 1.5 - 107
c, -2.5-107 3.0 - 102 -3.2-102 -8.6- 1072 9.3+ 1072
s 2.6+ 107 3.9-10° -5.0-10° 3.6+ 1072 3.6 + 1072
e, -1.3-107 LZs W2 w=LEsWT =g3-10° 1.8+ 1072
., 22107 L3~ T = 555 100 9.1 - 1072 9.1 - 107
e 4.4 - 1073 3,7 ~ 10 42102 -49-107° 3.0 - 107




