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The Jross MYD instabilities of straigqht cylindrical
nplasmas with elongated cross-sectioan are investigated hv

solving the 1linearized MHD equations as an initial
houndary-value problem on the computer, The linearized
equations are Fourier analvzed along the ignorable

coordiinate of the equilibrium in order +t95 reduce ¢the
computation to two dimensions., The method 1is applied ¢to
find the fixed-bonundary instabhilities of an equilibrium with
rectangular walls, Starting with an Aarbitrarv initial
perturbation and €ollowing it for manv Alfven transit times,
ve find that the domirant instability overvhelms all stable
oscillations after several e-fo5lding times, We determine
the growth rates of the fastest groving instabilities as a
function <f the eaguilibrium parameters, Then ve examine the
spatial structure of the physical variables (y!,R1,pl), e
find that the cross section of the velocity field displavs a
Aistinctive <convection pattern, This structure becones
spatially concentrated arount the point of maximum
rotational transform as the equilihrium current is decreased
to the marqinal point and concentrates near the wall as the
current is increased, Given the equilibrium o' (¥)=
Jae ¥ /%, ¥(wall)= 0, we find that the marginal current
density Jg. for each mode increases as the cross section is
elongated, But the growth rates of +the higher azimnthal
m-modes increase with elongation and their intervals of
instability overlap with the lower m-modes.
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1e Introduction

By elongating the cross section of Tokamaks and Pinches
i+ is hoped that higher current densities may be used for
stable plasma confinement 1/, 72/, 713/, Raising the
current density should increase +the nplasma beta A4 (A =
o/ (p+R8?/2) ) and should improve Ohmic heating. Computer
methods are available for calculating these two-dimensional
MHD equilibria given the profiles ( p(¥) and rBu= I(}) ),
boundary c<onditions and central current density Jge 747/,
/5/, /6/. However, the current density of these devices is
thonght t29 he limited not hy equilibrium consideratiosns hut
by the effect of gross MHD instabilities., What is needed
then is a method for studving the instabilities of anv
computed two-dimensional equilibrium, We have developed a
computer code for this purpose, O0One of the immediate gnals
of +this study 1is +to determine what equilibrium shape and
profile is needed to5 achieve the highest possible current
density f(or /2 ) within the plasma. A lonqger range goal is
to understand the nature of the driving €forces and the
ultimate physical effects of gross MHD instabilities when
they exist.

One 2f the simplest and maost flexible ways to study
instabilities with a computer 1is +to inteqrate the ™HD
equations forward in time starting with an arhitrary initial
perturbhation -- or, more precisely, %o solve the initial
houndary-value probhlen, By linearizing the MHD equations
and consiiering one Fourier <component ({in the ignorable
directioson of the equilibrium at a3 time, ve reduce the
computation to two dimensions, For an unstable equilibrium,
the fastest exponentially-growing mode ultimately dominates
over all other motion making it 3 simple matter to determine
the growth rate and the spatial form of the instability
eigenfunction, The results are independent of the 1initial
conditions provided the initial nperturbation is not
completely orthogonal to the fastes* growing eigenfunction.
No expansions or Aapproximations are used =-- although
practical considerations 1limit the method to high-/2
equilibria with smooth current oprofiles and to gross
instabilities,

The most important 1limitation of the model 1in its
oresent form is +*hat the ideal MHD equations are applied
throughout the 4Aomain -- there is no wvazuum or resistive
region ontside the plasma (althouqgh the eguilibrium current
and pressure may he <zero around a central part of the
Aomain), Hence the instabilities studied here must be
~lassifiei as "fixed-bhoundary modes" /7/ or "internal kink
modes™ /3/ as opposed to "free-bonndary kink" instabilities
vhere the singular surface lies in a vacuum region and the
flux surfaces there are able to change topology. This
~hange in topology may he a3 crucial effect making the




physizal <consequences of the modes entirely different,
However, estimates rade for the circular cylinder
equilibrinm implv that the growth rates of the modes may be
~omparable under the conditions of hiqh—ﬂ and 1low aspect

ratio considered here /7/, /9/.

The practical restriction ¢to hiqh-/g comes from the
ohservatisn that the growth rate scales with the B-field
induced by the plasma currents while the rate of computed
plasma motinn scales with the total B-field, The lowver the
A, the slowver the growth rate compared to the computation
rate, More precisely, the computation rate is determjned bhy
the maximum maqnetosonic velocity Vae = (R2/Q + xp/gfz over
the domain, Therefore we must avoid zero densitvy L, and
the incomoressible limit ¥ —>6o, and low/ , p << B2,

This work on the linear equations may be considered as
the first step +o5 a full study of t+the gross plasma
instabilities, The expverience and results gained here are a
useful starting point for the nonlinear three-dimensional
prohlem, as well as for various non-ideal MHD models which
include, for example, resistivity (as an approximation to
the free-houndary kink instability problem), viscosity, and
other transport effacts,

In saction 2 we descrihe the model 1in its analytic
form, The essential points of the numerical procedure are
presented in section 3, Section U4 hegins with a gqualitative
discussion of the instabilities before presenting graphical
summaries of the growth rates and marginal points which wvere
found for a particular euilibriunm. S




2.1 Basic Eguations

The ideal MWD equations provide one of the simplest
mnodels for describina the grnss motion of a plasma /10/.
They may he +thought of as 3 simplified form of the moment
equations withont +*ransport coefficients, and Maxwvell's
equations, The <ontinuity equation (1) prescribes the tinme-
and space-dependience of the mass densitv @ { the evolution
7f the €£11id velocityv v is determined by the equation of
motion (2Y and the plasma pressure p by the pressure
equation (3). Faraday's lav (U4) descrihes the development
of the magnetic field BRB; Ampere's law (5) determines the
current Aaensity J and Ohm's law (A the electric field E,

? -
;?f + VoW = 0 n
- -5 .
?(z*:-V)7+Vp-JxR=O (2)
2¢
? - -
5t P + Veip vV + (} =1 p (Vev) =C (3)
> F. vxT =09 (4
'3? R 4+ X E =\ )
- -
J = ¥x R (5‘
- - -
E+vxx R =7 {R)
The condition VeR = 0 is oreserved by Faraday's 1law if
i+ is imposed initiallv., The charge density 6" = WV eE is

not rcalculated, since it is not needed in any of the
equations, The comrbination of the equation of continuity
and the pressiure equation vield the adiabatic equation of
state (conservation of entropy):

(Z +3.9) (pg¥) =0

Rv means »f this relation the mass Adensity could be
eliminated,

The =2quations are written here in rationalized Gaussian
units with ¢= 1 (c...speed of light), Dimensionless forns
will he provided later (4,2 to facilitate <conversion o
other units,




6

2.2 Linearizatinon_and_Fourier Transformation

e

¥e shall now discuss our reasons for choosing %o
ronsider the linearized €form of the ahove equations and for
taking the T¥ourier transform of the perturbed auantities
along the ignorahle coordinate of the equilihrium.

The most fundamental reason for linearizing the
equations is that the results may then be expressed as the
sum of eigenfunctions, The advantage is that +the form of
each eiqgenfunction Aepends upon only the €form of *the
equilibrinm and is independent »of the <choize of initial
perturbation, Also a good Adeal 1is known about the
properties of the eigenfunctions, The eigenfunction
Aecomposition of each of the perturbhation variables may be
written

wt

x;t th
U(X, ..) - Ux' (X\ e + n¥‘(x) e + LR N + d“’ "" (x‘ e

I+ can be proved in general that all the eigenvalues e 3
¥2 ,... and @ are real -- there is no overstablitiy /10/.
"nder some conditions algebraic growth can arise from the
real spectrum in the neighbourhood of & =0 and
exponentially damped oscillations can be extracted from the
continons spectrum in much the same manner as Landau damping
zan arise from the continous Case-Van Kampen spectrum of the
viasov equation /11/. When solving +the initial value
problem with an arbitrary initial perturbation, we first
observe MHD oscillations wvwhose period 1is given bhy the
average magnetosonic velocity transit time, If an unstable
plasma is allowved to evolve long enouqgh, the fastest growing
mode ultimately dominates all other plasma motion., Then it
is a simple matter to determine the growth rate and the
spatial eigenfunction for the fastest qrowing mode
associatedl with a given equilibrium, This determination |is
sur primary obiective,

It should be kept in mind that the eigenfunction

analysis is used only for the interpretation of our results
and not in the process of the computation itself.

Now consider the Pourier analysis of the perturbation,

This step becomes an advantage only if the Fourier
components evolve independently of each other -- only if
there are no convolution integrals in the equations, This

advantage is fulfilled if we use the linearized system and
if we consider a Fourier deconmposition only along the
ignorable coordinate of the equilibriunm, Given these
conditions, and assuming the existence and convergence of
the PFourier Adecomposition, we need to consider only one
¥ourier harmonic, characterized by the wave number k, at a
time, Ry doing +this, we reduce the computation to *wo
spatial dimensions with an enormous saving of computer space
and time as Aiscussed below.




a) Linearization:

We linearize the equations aroundi a given Stationary
equilibrinm represented by the variables p® and RO (v0 = (
is omitted); the equilibrium is formally Aefined as:

v. POy & o= '50 x ‘x‘qo (7
Jo = W xBo (2)
V.-_R.o = N (9‘

The perturbhed state 1is uniquely represented hy the
seven variables

- -
vl . Rt , p!

vhich are determined by the equations:

02-0 - - = -
ga?vl'FVp‘-Jl!Bo-JoxB‘

= 0 (1)
? - -
57 pt+ V. (poy1) + (Y- po(w.vl =0 (11)
2 -
- Rl JoR ¢ =
Py + U x 0 (12)
J1 = vy 1 (13)
—- - -
F1 + yv1 x Bl = ( (14)

together with appropriate boundary conditions and initial
values, Note that the size »f the perturbation variables is
immaterial; the perturbhation of the pressure, for example,
could he represented hy p = po + €vl where the s-ale €acztor
£ mav be taken arbitrarily small so that €p! << p® even for
large values 2f p!,

by Fourier Transformation:

4e consider one Fourier harmonic of the perturhation
with wava length A along the ignorahle coordinate z of the
egqnilibrium,

k2
m(x,v,zv = re( mi(x,y e ) (15)

vhere k= 2T/A . The two dimensional perturhation vector
1 {x,v) must be complex since its individuaal components may
have diffarent phases alonqg z., It follows that

: 2
re((i k mtex,y) 7)) (16)

?
5‘% R (xr Y,Z)




Linearizationr and Pourier transformation reduce the
initially posed problem, namely the solution of g%qht
equations for the eight 3D quantities ¢, ¥, b, =
f(x,v,z,t) to_the solytion of seven equations for the seven
2™ quantities v, pt, Bt = f(x,¥,t). FEven with ¢the slight
complication that these quantities are compnlex, and the fact
that the equilibrium quantities have +to be stored in
addition to these perturbed quantities, the <computation is
qreatly simplified. To 1illustrate this, we write the
problem in the f5llowing schematic forms

nonlinear 2D 3D
3n = +
problem equilibriunm perturhation
0 -
(¢ ) (¢
- n -0‘
v v
’ k:
ﬁ 7(x,y,z,t\ = { (x,v,t) + Re( o‘% !x,y,tﬂ)
P pO nl
-5 - -
4 BJ E BO B1
8 REAL 5 PEAL 7 COMPLEY
variables - variables + variables
(3D grid) on a 2D grid

If we use 3 grid with 20 meshpoints in each direction, we
can estimate the storage requirements for the +two
alternatives:

3D: v¥(20,22,20) -=> R 0C? numbers per variable

8 real var,: 64 300 numbers =-=> 256 0CC bytes
27Ns V{20,290 --> 400 numbers per variahle

5 real var.: 2 0C2 numbers

7 cplx var,: 5 6C) numbers

7 600 numbers =--=-> 30 400 bytes

This example illustrates that the two-4dimensional forn
requires only a *enth of the storage compared with the full
3D problem; furthermore the computation time is less by at
least an arder of magnitude,



2.3 Initial BRouyndary-Value Problem

The system of vpartial differential equations for the
auantities - v
vt , p! and B!

is listed in full Ae~tai] in APPENDIX A.

Roundary conditions:

The boundary values were chosen to conserve enerqgy and
to isnlate the system, The Aiscussion o5f the enerqgv balance
(APPENDIX R) leads to the following boundary conditions:

pt = C (17
T "
£t = 3 (18)
=
Verl = 9 (19)
s . >
The analytically equivalent form vl = ( was ngt used for
numerical reasons. Eq,(19) is nused to ﬂegermine 1, at the
wall, The alternative of extraponlating E!, 5 the wall gave
the same numerical results for the qgrowth rate, However,
Fa. (19) implies <zero charge at the wall wvhizch seens

physically reasonable,

Initial conditions:

A stapndard initial condition was designed t5 excite any
choice or all of the m= 0,1,2,3 modes. The velocity field
vas perturhed with a2 pattern resembling the radial
displacement of these modes as thev appear in known circular
~ylinder ~cases: the B! and p! ¢€fields were 1initially set
equal to _zero. The choice of B1 initially equal to zero
ensures VeB = 0 and it ensures that the perturbhed state has
the same topoloqv as the equilibrium state,
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3. Numerical Solution

In this section vwe shall Aescrihe the numeri~al methois
of solution: the rTeader whn 1is not interested in these
technical details may skip to the results in section 4,

3.1 calcnulation of the Egqulibriun

—— e . — —— —— — ——— — —

Any eguilibrium satisfying the basic equilibriam
equations (7-9) <can be used as +the inpnt data for our
instability program provided there is no fine structure on
the scale of the grid, However, if the wall is not a flux
surface foar the equilibrium, or if the pressure is not zero
a3t the wall, care must bhe taken in choosing the houndary
conditions €for the perturbations when conservation of enerqgy
is desired,

For straight cylinders and axisymmetric toroids, it is
convenient to 1introduce the poloidal flux function
satisfying

Bo = V¥ y 2z + 30, 7 (20)

3 - ‘ -
This relation assures ¥ RO = (, Then it follows fron
Zgs. (7-9) for a straight cylinder equilibrium with arbitrary
cross sezction that

p' (¥ + BB (¥ =3, = -p2p (21

There 1is a similar formulation for axisymmetric toroidal
equilibria, In general, no solution exists in the toroidal
geometry if the spatial dependence of 4 or J; is given and
the functions p(}) and rB,= I(}) are sought /12/, Hence
we must specify (p(V),I(PH and solve for ¥(x,v), ot
equivalently Ja(x,¥), in order to have a single consistent
equilibrium specification suitable for hoth straight
cylinder and toroidal calculations.

In the program used here, the equilibrium is calculateAd
bv prescribing (p(}~),I(P‘)), and the houndary values for
W, and the value of the current density Jac in the center
9f the domain, Von Hagenow's /13/ form of the Runemann fast
Poisson soalver is used iteratively to find Pﬂx,y\ in the
rectangular domain, This procedure is so fast and trouble
free that it is used routinely as an integral part of the
instability code.
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3.2 Solution of the Initial Boundary Value Problem

——— s e > e e . ——— — — — T ——— e — >

1) Calculation Mesh

The equlibrinm quantities YO0::= {p“ ,B0f are stored as
BTALxl4 variables: all perturbed quantities vi::= {1, opt,
R1 are represented hv COMPLEX wvariabhles and <zomplex
arithmetic is used for their calculation., The variables are
defined on a staggered 2D(x,y) qrid as follows:

v 1
i
| | \
o | o ->! 4x <K~ 0
[ | |
R R bom tm————t
\ {
o \ le] o o | 0
i |
+ + +
| {
o | 0 o { o
| { &
+ + + 7. $ m—==la
LR
| {
V.
o | o ° Yie ! Ay
{ |
+ + + $ —mem=p-
| .}
o 1 o o) (o] ! o)
\ \
v o ey g e e e mccrcccncca=- -=D
x
o} 2 o} 2 o}

Pig.1. caleulation,grid,

On the grid denoted by o, aly*ﬁhe equilibrium quantities VO
and the perturbed velocities v! are defined:

Non=grids g°, P23 v, v, v,
SEL IR T T O TR T DY
J2, 3%, J3, Jr, I, J¢

ressure and

®

On the 7Jrid dennted by +, the perturhed
magnetic field are defined:

e/

Pe¥agnidscoiloms 35 { Pt nBls B

t
e
-

A
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by Differance_ Zguations

We have used a simple explicit scheme to inteqrate the
partial Aifferential equations €orwvard in time, For the
differenca approximation we assume that all quantities are
linear €unctions hetween the meshpoints, In particular for
the approximation of spatial derivatives of products Ffeq ,
ve generally used the product of the space averages, i.e.:

2 ?)
5z (feq)  — 5= (<> <> ) (1)

and pnot the space-average of the product

2 i
< ey (€eq) > = e (<€ eg>) (R)
The aporoximation (A) ensures the identity:
) >/ 2
5= (feq) = g w + £ (sz (3)
but violates 2 92 2 2
W 5% T

vhereas the approximation (BY violates fa) and conserves
(by. It turns out that identity (b 1is needed to ©preserve
< o8 = N0 so that difference form (B) is used for the
approximation of Faradav's law (effectively the E -field |is
elevated +5 a basic quantity -- the form ¥V x(vxB) is not
expanded out). On the other hand identity (a) is needed to
make the pressure equation unique and to help to conserve
energv; so that Aifference form (A) is used for the pressure
equation, Details »f the difference approximation are given
in APPENDIY C,

c) Solutionn_ Procedure

nd
D

The f5llowing ¢€flovwchart shows 1in which order k

several equations are integrated in time:

—— — —— — —— —— > — ————

Fig.2 Flow chart,
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For the explicit scheme that we use, the maximum time
step permitted %y numerical stability considerations is
determined by the maximum magnetosonic velocity over the
egquilibrium grid:

At < AX/Vpyg (22)
An advantage of the linearized svstem is that this maximum

time step is <constant during a run, We used 0.8 9f the
maximum value,

3.3 Calculation_of Growth Rates _and__Tests

A suzcession of three criteria is used to2 evaluate the
grovth rate: €first, the choice is made of one variable at
one qrid point to he stored for every timestep (tvypically
Re (W} (9,7)) €for example), This variable is examined over a
block »of time steps, If +the wvariable repeatedly <changes
sign over a number of Dblocks, that particular plasma
equilibrinm is assumed to be stable. ThigT"is ehef=€LTSt
test, If the variable does not change sign over a bhlock of
time steps, the natural logarithm is taken at every step and
3 linear least squares fit is made in order to find ¢the
arowth rate, the initial value, and the standard deviation,

Intvl) = 1n(vi(t=0)) + (¢ (23)

The relative standard deviation is then used in the seconi
criterion, However, it was found that even when this is
smaller than C,0071 the growth rate mav Arift by as much as
.1 from block to block, Hence, the relative Arift of the
growth rate is used in the third criterion.

Another ©possible choice of criterion -- using the

number of e-fnlding times 92f the instability -- vas
Aiscarded because the criterion for converqgence depends +no
much on the kind of initial conditions taken, More

e-folding times are needed when very little of the mode is
excited by the initial <conditions than when the initial
conditions are almost identical to the final mode,

At the end of each run, the differential arowth rate

X' A (1n(v1))
= (24)
A
At
is examined over the whole spatial qrid in order to make
sure that only one eigenfunction remains, For well
converged rurns, ¥a is typically nniform to ten pnercent or

so except in the corners or near the null points of the
variable heing examined, However, we found that *the growth
rate determined by the least squares fit generally converged
1ong hefore the Aifferential growth rate becomes uniform,
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We ~all the uncstable mode with the highest growth rate
the "dominant mode™ and ones with the lover arowth rates the
"cuhbdominant mndes", We used several techniques +o find the
subdominant modes:

T™hera are generally a finite set of equilibrium
~onditions where the growth rates of two modes are the same,
As we chanqe the eguilibrium conditions to cross this point,
the final eigenfun~tion o€ the dominant mode can be nsed as
the initial corditions of the next run to excite what is now
the suhdominant mode, In this way the qgrowth rate curves
can be followed under each other, Tnfortunately, this
technique breaks 4own as *he disparity hetween the growth
rates bhecomes larqe (as the equilibrium is changed). A
lit+le bit of the dominant mode is always excited.

Hence a second technique was devised which relies on
the symmetry properties of the modes as they exist on
equilibria with symmetries, For our equilibria, it wvas
found that even and odd modes exhibit even or odd4 reflection
symmetries across the midplane of the rectanaular cross
section. The parity of the symmetry condition is different
for each variable but the parity of the collection of
variables taken together as an eigenvector just flips as vyou
shift your consideration from the even t5 the 244 modes, or
if the phase (kez) of any given mode changes by 970 along
the z axis. Since the transition hetween dominant and
subdorinant modes qgenerally takes place hetween even and 244
modes, tha technique of forcing symmetry conditions upon the
modes can be used +5 extend the study of modes as they
become subdominant; (it also saves computer time). However,
when there are large differences hetween the growth rates,
+this technique also breaks down., ™odes with a 9C0 shift of
phase along the z axis, relative to the modes which were
deliberataly excited, grov large enougqh %o mask the
subdominant modes.

Four checks of the program were made: First of all the
time step wvas varied: the growth rate remainsunaltered for
time steps up to C.2 of the maximum allowed by numerical
stability (see Eq. (22)). Second, the grovth rate remains the
same to within 1% as the numbher of meshpoints is doubled
from 1% t5 34, Third, a form of energy conservation was
zonsiderei. The full energvy conservation 1is derived 1in
APPENDIY 8, A shorter conservation law of the 1linearized
equations -- omitting the second osrder quantity v2 -- was
used instead so that the time derivative of the conserved
quantity <could be found explicitely using only the first
order guantities. We found that +he integral of this
conserved quantity grows at a rate of Just 1% +of sthe
kinetic energy. Finally, the €favourable comparison made
between our sqnare cylinder results and circular cylinder
results are discussed in section 4.1,
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4. Results
"p to this point we have described the initial
houndary-value method as it applies to finding MHD

instahilities, Now we shall present a detailed npicture »of
the instabilities that we have found -- first by examining
individual examples, then by plotting the qrowth rates
collected over many runs as a function of the equilibriunm
parameters, and finally by collecting the marqinal opoints
deduced from many graphs of the growth rate and plotting the
marginal current density or g-value or 2 as a function of
b/a and kea,

T
|

———

T

@.

X

Flux Surfaces

*ig.3 A cross section of the equilibrium _Aomain
and the flux surfaces (p'(¥)= JQJ“/}@ Ve

Historically, we first studied an equilibrium with
uniform longitudinal current density., But all +the results
that are presented in this report were derived using the
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equilibhrinm specified by

o' (VY = G k7K, Pl =0

Rge I ar,

(25)
80:1

£illing a straight rectangular cvlinder, Here, the
longitudinal current Adensity is mildly concentrated in the
~enter of the domain and is zero at the walls. This has the
advanrtage of keeping the instabilities awvay from the walls
hut  generally keeping them broad endsugh to make effective
use of most of the aqrid, Furthermore, this aquilibrium has
a number of simplicities not found in the uniform current
model -- for evample all the nested flux surfaces have the
same ratio of madior o9 minor axes (vertical to horizontal
Aimensions). These flux surfaces are illustrated in Fiq. 1.
Since there 1is no poloidal zurrent, there is a one-ts2=one
rolation hetween the central cnrren*t density, Jgo , the
central gq-value, g , and the central local- /£ -value, fc .
211 these formulae and a more detailed Aiscussion 2f the
properties of this equilibrium are given in APPIENDIY D.

The most striking feature of the instabilities we have
found is the convective nature @f the velocity field, The
m=1 instability is not dust a shift of the plasma towards
the wall in a corkscrew manner =-- rather it 1is a flow
pattern vhose cross section 1looks like tvo vorticies rolling
0ff each other as shown in Figq.4., This pattern, as well as
the pattern of all the other perturbation variables, 1is
helically twisted as we proceed down the tube 1in the
z-direction,

Tn order *o understand the effect of this velocity
field, it is instructive to look at other representations of
the same m=1 mode, The two dimensional representation 2f 2
cross section of the perturhed pressure in the lover part of
¥ig.4 shows a single maximum peak symmetrically opposed to 2
minimum valley. This picture of the n=1 instability can be
hrounght more in line with our usual intuitive picture if wve
look at contour plots of the same perturbed pressure and
then the corresponding contour plots of the sum »of

eguilibriam and perturbed pressure shown in Fig.5. {The
numbers 5 to 9 represent positive values andehld ftos0d
represent negative values of the variabhle). Tt fg” clear

from Fig.5 that the double vortex pattern of Fig.U results
in a helical shift of the plasma as well as convection of
material around the closed flow pattern (and in general some
compressioan).
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perturhed pressure p! and the sun
at z=C and z=L/4

Not shown in +these illustrations is the flow pattern
along +!} z=-direction {iqnorahle cooriinate of the
eguilibhriam, which is found to he small when the
instabilitv is localized away from the walls., We have also

examined a number of other ohvs1¢al variabhles such as
measures for the compression (VeV), the vorticity (Y xV),
the B8-fialds, zurrent densities, and electric fields, which

will be presented in future reports,

A crass section picture of the m=C mode shown in
Fig.6 €£or Hhoth the z=C cross section and the -L/u section
(a quarter of a wavelenght 4own the tube), At z-“ there is
clearly ~ompression towards the center of the box, vwhich is
evident €rom both +the velocity field and the verturhed
pressure profile., 7In this cross section there is almost no
7-velorityv, However, a quarter of a wavelength down t

NH-
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tube we see a €low pattern almost entirely representing flow
along the tightly coiled B-field, There is no perturhed
pressure in this cross section., The flow patterns half way
and  three quarters of the way down the tuhe are exactly the
negative 2f the patterns a quarter and half way down
respectively -- i, e. at the half wavelength there is
expansion and at the three-quarter wavelenaqth there is flow
along the field lines in the opposite direstion,
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Fig.5 m=C mode in a square cylinder; velocity
fields at z=0 and z=L/4, perturbed pressure
at z=0.

The velocity field of the m=2 mode is shown in Fiq.?”
£or cross sections at z=0 and Z=L/U4. There are clearly four
convective cells wvhich have 3 helical pitch which bhrings
them half-vay around as we proceed the full length Aown the
tuhe, In general, e observed a helical pitch »f 1/m for
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the higher m-modes. This m=2 mode was difficult to excite
in the sguare cvlinder hecause it is fairly localized and
hecause it is unstahle 2ver only a narrow range of current
Aensities.,

k-a=1 b/la=1 q.=20 m=2

‘AVA'..,,gqu'A. P 4 4 4 4 4« 9« 4 49« 494 @« 9 v <«
« Y 5 v » > > 4 P 4 4 9« v a v Y 4 4 4 ¢ v ®» ®» b s & & 4
4 w9 w. ¥ a4 4 9 v b & Vv v 9 o9 * P > 4 ¢ ¢ 4 & e ¢ e e« 4 4 o
P 4 4 P B > » & 4 <« 4 & & , , =« Y P A q 4 » — — » b g @ v
v‘»bt/",\/‘,_‘\qu.c "41"//\‘\.“'
...,f/\u‘,\\,,.. ..‘,,\\\‘/‘,...
<..“\/1\\/‘f.,‘, "“/\\\ //\Q'
S B B o G Sl o IR RS e 5N 7 ty
504'//0\'\ //0\’\1.(4 .'.l\‘/ \\ ff'
".‘l/\\,’\k"" ".i\.///\\\/,'
s % Y \"’\\/'/'4v‘ A. 9 pr 9 /'/f\\\».v
l'y.‘\—of\g/.q"‘ v'.»,h\'\ /.;’,
» Y 9 5 v » b ¥ v 4 @« 9 @ P vV P 9 A p A g e o & 4 v > oy
v & & A& , 9 @ 4 » v v 4 4 » & T 4 & y v b e > e e b sy
T 4 v b s b P g b Y 4 a4 a4 g , @ T 4 A by e v @ a4 a & b s
L I TR G T S N St gt [T R e SO 4« o > 5 > B » B B B B » » ®
z2=0 z=L/4
Fig.? 2 mode in a square cvlinder: velocity

m:
fields at z=( and z=L/4,.

This vortex structure is not a peculiar effect due to
the «corners of the rectangular d»omain, The same vortex
motion appears in the m=1,2,3,... modes of a circular
cvlinder, as shown in Fig.8 (uniform current density "Taylor
profile") Aderived by means of a separate program /14/, wvhich
integrates the one-dimensional radial MHD equations. The
features »of these modes are qualitatively the same as those
we have found in the square cvlinder. Near the lowv-current
marginal points, where the modes are localized away from the
valls, ve have found quantitative agreement between the
growth rates of the nniform current square cylinder and the
circular  cylinder: .using. . results first: given. to us by
sakanaka /15/. VNote in Fig.8 that each azimuthal mode m is
characterized by 2m vortex cells, Also there exist distinct
radial modes (not shown) which are characterized by nodes in
the radial velocity. These higher radial modes are less
interesting %o wus than the fundamental mode because their
gqrowth rates are always smaller and because they are more
localized.



21

Uniform Current k-a=1

[

4

&
¢
]
N
~
~
~
~
~

Fig.,3 Circular
density,
sections
mn==%,2%3

Refore 1looking
elongating the
spatial extent
Aensity

Cross

of the instahilities
(and growth rate)

cvylinder with uniform current
R0O-field, and mass density; cross

of the velocity fields for typical
and 4 modes,

at how these

modes are altered by
section, let

us consider how the

changes as the current
are chanqgei.




x
e
2.
=4
e
1]
o
(@]
]
3
0"
ezeld

v 9 v » 4 49 4 s a Dbbd"'i
|
I<1vvvv>54117vv>'i
“4“VDLACVF’.“£
I
E'P‘4<vvnqcv>-“‘i
|
'v P P & a4 4 w® » 4 ® » & Ao a4 v 'i
> Pp)“,k\ ’A“‘q' ‘i
|
<"'1/“}{’\\""i
‘vv,llk ‘1 ’\\,""i
b Y OV g ﬂ’ R vy v
x\ J" 4
AVV(\\’f\\/‘P"‘
b“‘t\"""r""d

a 4 & a2 b v g 4 B vy v e« & » » o,

q > L > > v < 4 ' v v < < a < > :
i

q ) v > ® 1 v < > v v < < < v >

] v v v > L] <4 4a » > v Pl v ] v v

¥ig.3 m=1 mode near *+he marainal point; velocity
fField anAd pertur bed pressure; square
oV

linder, kea=1,



The m=1 mode that wvwe showed in PFigs.4 and 5 is
typically the way +he mode appears far from the marginal
points., 3But as we decrease the current density close to the
marginal point, where the growth rate goes to zero, the same
mode concentrates near the center of the 4qomain as shown in

Figs; 9% This behavior is typical of all the observed modes
as the current density is decreased to each of their 1low
current marginal points, The centers of the vortex cells

move closer together, the extent of the velocity field
hecomes smaller, and the peaks of the perturbed pressure
profile move closer together, roughly in that order (the
extent of the perturbed pressure profile 4is generally
broader than the extent of the velocity profile),

As the current density is increased, or equivalentlv as
the central g-value is decreased, toward the second marginal
point, we find that the instability concentrates near the
wvall. The series of three velocity profiles in Fig., 10 shows
this behavior from marginal point to marginal point (see the
b/a=1.,5 curve in Fiqg.18 for the growth rates at the g-values

indicated in Fig.10). The velocity profiles at z=0 and a
quarter »of a wavelength down the tube are shown for each
g-value, A possible explanation for this behavior is that

each mode is unstable over a given range of g-values or
current densities and that the spatial extent of the
ohserved modes reflects the spatial extent of the range of
unstable g-values or current densities, This explanation is
necessarily simplistic since Adifferent features of the
instability (such as the velocity field and the perturbed
pressure profile) have different spatial extents,

In support of this hypothesis, we present contour plots
of the nperturbhed pressure in Fig.11 showing an m=3 mode
surrounded by an m=5 mode. 1In this illustration, positive
valnes of the perturbed pressure are represented by numbers
from 5 to 9 and negative values by numbers from 4 to 0. The
five positive maxima around the edge of the A4omain are
bounded by regions with the number 5; these alternate with
negative regions bounded by the number u, In the central
part of the domain, the three regions »of positive perturbed
pressure are characterized by the numbers 8 or 9 and the
negative regions by the numbers 1 or 0, Hence we conclude
that we are observing an m=3 mode surrounded by an m=5 mode.
(This configuration shows up bhetter on the pertur hed
pressure plots because the very small velocity fields
associatei with this m=5 mode produce a perturbed pressure
vhich 1is magnified by the steep gradient in the equilibrium
pressure near the wall.,) The local g-value (for each flux
surface) 1increases from 3 in the center to infinity at the
vall. The m=3 mode is unstable at the central g-value of 3
but is believed to be stable at much higher g-values. The
m=5 mode is expected to be unstable €for g-values 1in the
neighbourhood »f 5,
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Hence the hvpothesis is supported; bhut the avidence
does not tell us which equilibrium parameter is responsible
for the localization -- e.g, the local a-value or <current
density or other related parameter, Alsn ve expect that the
structure shown in Fig,11 is at the limit of the resolution
for the 13 by 304 qrid that we used in this run,

k-a=1 blazg Qq.=30 m=3, 5
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Fig.11 Perturbhed pressure pls rectangular
cylinder, ke3=1; m=3 surrounded by m=5
mode.,

Aowever, there is evidence that the spatial extent »of

the 1instabilities 1is related +*o the spatial form of the
-value (rotational +transform) rather +than that of the
urrent density or other equilibrium parameters. TIn case of
highly elongated (h/a>2) rectangular cvlinder filled with
Steep maximum near the walls and a broad minimum through the
center, %e find that the m=1 mode near the 1low-current
marainal point is spatially concentrated near the ends of
the domain around the maxima of the rotational transforns,




(vhile the current density, mass density and BO field are
111 uniform). Howvever this ohservatiosn must be investigated
further in order to isolate the effects of shear, radial
iependence of br/a, and other characteristics of elongated
equilibria.

Now we shall examine the effect of elongation on the
spatial €form of the observed fixed-houndary instablities.
As in the circular and square cvlinder, there are distinct
azimuthal modes, each characterized by 2m vortex cells of
the velority field and m positive maxima of +the vperturbed
pressure profile, We have studied the modes m=0,1,2, and 3
using elongations bhetween b/a = 1 and 8.
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Fig. 12 m=0 mode for a rectanagular cylinder, h/a=4,
kedAseg £ WP 5i062%1 1 CROBSis Bections: i 9% the
velocity field at z=0 and z=L/U4.

A typical example of an m=0 mode is shown in Fig,12.
For the purposes of presentation, the four-to-one
rectangular domain is represented here by a two-to-one pnlot,
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The velozity vectoars have heen normalized s»5 that the
maximum x or y component over the whole grid is 0.9 2€¢ the
minimua qrid spacing, The components of +the velocity
vectors are all in scale for hoth cross sectinn views.

Note that the motion from side +95 side, €for this m="
mode, 1is much less than the motion €from top to bottom. The
perturbed pressure plots (not shown) 120k like an elosngated
version of the corresponding square cvlinder mode.

k-a=1 b/a =4 qc:O,G m=1
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¥ig. 13 m=1 mode for a rectangqular cvlinder, t/a=y,
k‘a=1' qc-_- C-6n

Two examples o2f the m=1 mode are presented in order to
shovw how the mode changes as the low-current {high g-value)
marginal point is approached, Fig, 13 shovws the m=1 mode far
from the marginal point, Almost all the motion is in the
z=C plane, where the plasma shift is vertical. However the
magnitude of the maximum perturbed pressure (not shown) is
nearly the same in the two <cross sections, This is
consistent with the velocity picture since the gradient »of




28

the eqULILhrlum pressure is much steeper from side to side
than it is from top to  hotton, Nevertheless, the
rredominant displacement of the plasma is planar, as would
result from the sum of an m=1 and m=-1 helical d4isplacement.

k-a=1 bla=4 Qc=12 m=l
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The picture looks quite different for current densities
near the marq1na1 papint, as shown in *iq.13. There is much
more side-tp-side motion in the z=L/4 cross section. The
centers of the vortex cells are closer toagether, ht the
overall extent of the mode does not appear to be more
1o~alized., The peaks of the perturbed pressure (na2t shown)
are localized near the ends of the z=0 cross section and
they assume the form of a ridge and long valley along either
side of the z=L/U4 cross section, This behavior might be
explained by the fact that the spatial vprofile of the
a-valune becomes more €flat as the cross section is elongated
£or our choice of equilihrium (see Fig,22 in APPENDIX M.
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A typical example of the m=2 mode for elongated cross
sections is shown in Fiq,15, As the 1low-current marqinal
point is approached, the mode concentrates in the center of

the domain as expected,
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Fig., 15 Typical m=2 mode for a rectangular
cvlinder, b/a=2, kea=1, g.= 1.56.
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4,2 Growth Rates

Yp to this point we have considered the instability
features as they are observed in individual runs, Now we
shall present the instahility growth rates as a function of
the equilibrium parameters and mode numbers.

The equilibrium we are considering (see APPENDIY D) is
~haracterized by two independent parameters -- the central
current Adensity Jg. and the elongation brsa. Instead of Jac
we might equivalently use the zentral rotational transform

or the central g-value q¢ (see Eq. (Df)) or the central
beta, /. , (see Eq.(DTV).

The modes are characterized by the wvave length A,
along the ignorable coordinate of the equilibrium
(equivalently k,a = 2Tas/X ) and the azimuthal mode number m
vhich we nbtain bv counting the number of positive maxima of
the perturbed pressure arosund a flux surface as described in
the last section,

The results are presented in rationalized Gaussian
units with c=1, B¢ =1, §2 = 1 and a = 1, For conversion to
practical units multiply the growth rate by the Alfven
transit time '

BTk5] - .

& e

8
hsec—1] = 2.18 x 10
3ﬁ /A afcm) (mjf:m-I]oA\’/2

vhere A is the ratio of ion mass *2 proton mass and .n-is the
particle density. The conversion €actor for the current
density is

JZ[A/cm?] = 796, J (2m

Oour investigation bhegan with the very short wave
length, A = 2%Wa, (k#a=1). For short wavelengths, ve expect
relatively broad ranges o2f instahility and 1large growth
rates -- comparable %o the Alfven tansit time across the
plasma <olumn, The growth rates €for the m=1,2,and 3 modes
are shown in Pig.16 as a function of the central current
Aensity for the elongations by/a= 1,2, and 4. The first
surprising feature is that the high current marginal point
could not be found in many cases., For example, <£oer—byawd
the growth rate of the m=1 mode is 10° for a current density
nf 1010 and bh/a= 8, On the other hand, the m=2 mode is
nnstable osver only a narrow range of current densities €for
h/a=1. I+ is very difficult to excite hecause its growth
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rate is low and it is spnatially localized. This situation
~hanges Aramaticallyv as we elongate the cross section of the
cvlinder, The rande of instabilitv €for the m=2 and 3 modes
rapidlv spread ont and they hecame much easier ¢o excite
because t+they are less localized in space (as well as J, ).
The domains of instahilitv merge with +those 92f the 1ower
modes and the maximum arowth rates increase wvwith elongation
until the high current marainal point <an no longer he founAd
(see Fig. 17V, However, the slope of the grovwth rate as a
function of J3. in the neighhourhood of the marqinal point
q0es to a finite lirit as the cross section is elongated (we
have gone up to hrsa= %),

Fixed Boundary Rectangular Cylinder
ka =1 P'y) = L.wly,

1 T T
32 1 05 Qqe—

Pig. 16 Grovwth rate as a function 9of the <central
current Adensity for kea=1, bh/a= 1,2,4 and
n= 1,2, 3.




The b/a=2 and U parts of Fig.16 show <~lear examples of
several modes existing simultaneously under the same
eaqnilibrium conditions, It was possihle to separate even
and o0d4 modes by nsina svmmetry conditions but we found no
way to suppress the m=? mode for examole in order to follow
the m=1 mnde down the marginal point for bs/a>? ., Because of
+his effact, we were completely unahle to estimate the m=1
marginal point for br/a>6 ., As the cross section 1is
elongated, it appears that successively higher nodes take
aver as the dasminant mnde which masks all the 1lower modes
under it,

One more effect indicated 1in Fig.16 is that the a=C
mode appears to make a smooth tramsition over to an m=2 mode
as the current is decreased =- either they are distinct
modes with the same growth rate or there is only »2ne mode
which undergoes a transition, On the velocity plots this
appears as a migration of newv pairs of vortex centers in
from the wall, 0On the 2D plots of the perturbed pressure,
there is a gradual distortion of +the p! surface as the
single maximum of the m=0 mode splits into two.

i

0.6

0.4-

*ig. 17 Growth rate as a function of the central
~urrent density for kea=1/2, =1, and a
varietvy of elongations b/a,.

A detailed study of the behaviour of the m=1 mode for
h/a hetwaen 1 and 2 and kea=1/2 is shown in Fig,17 for ¥
versus Jy. For this longer wavelenath (kea=1/2) the m=1



high-current marainal point <could he found for the square
~vlinder hut the arowth rates are an oarder in magnitude
smaller than +the kea=1 case, Note how the low-current
marginal point remains nearly constant vhile the
high=-currant marainal point rapidly expands out of the
range, ani apparentlv to infinitv, as b/a 1is increased
hetwveen 1 and 2. The low-current marqginal point begins to
~hange appreciablv onlv when H/a 1is increased to 4 and
above,

In 7ig. 18 we see the clearly nested form of the qrowth
rate curves, for kea=1/2, plotted as a function o€ the
central q-value. VNote that the low-current marginal points
2f Fig,17 <corresoond to the high-a marqginal points »of
Fiq.1%, The separation of the marginal noints is clearer in
1:']'_,;_152_

0.4 - ~
0.2 1 -
\\\
0 AN
0 —q

Fig. 1% Growth rate as a function of the central
q=valne ¥ea=1/2, m=1, and a variety of h/a,

The plot of ¥ versus a is suitable for extrapolating to
the marginal point only for smaller values of b/a and kea,
When either of +these nparameters is large, the ¥ versus a
curve appears to Join the Y =C axis tangentially, We
generallv need X versus Jy DPlots to determine the bhest
estimate o»f the marqginal point,
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4,3 M™arginal Points

The next level of data reduction is to +tabulate the
marainal points, estimated by extrapolation of the qgrowth
rate curves, and to present a picture of how the marginal
equilibrium parameters vary relative +o each other; for
example how does the marginal current density varv with b/a
and ¥ea, We shall consider the low current marginal points
for each m-mnde separately. It should he kept in mind that
the 1lower-m marginal points are generally hiuried under the
higher-m qrowth rates, Tt makes sense to opresent the
lower-m marqgqinal points only because there is reason %o
believe that the higher-m modes are less dangerous and are
selectively suppressed hy non-ideal MHD effects,

In %ig.19 the marginal opoints for the m= 1,2, and 2
modes are plotted as a function of b/a for €ixed wavelenath
(kea=1), Three equivalent choices are made €or the
dependent variahle: the central current dersity J; ., the
central a-value q¢, and the central beta A, . Since there is
no Dpol9oidal current, there is a one-+o-one relation between
these parameters., The reqgions of instability lie ahove the
curves for J,. and /3. and lie below the q. . curve,.

T™he curves in Fig.19 include series of runs at h/a of
2,6,4,3,2,17. The m=1 curve cuts off at b/a=U4 Dbecause at
areater =2longatinns the marginal opoint 1is huried so far
under the m=3 curve that we have no confidence in onur
extrapolation to the marginal point., The m=3 mode is not
continued below br/a=4 partly because we d4id not look for it
in every series of runs and partly because its growth rate,
i+s interval »of instability, and its spatial extent are all
so small for b/a<2 that it is nearly impossible to excite,

T+ should be reemphasized that we are considering only
fixed-houndarv moades, The margqinal points and growth rates
for +the plasma-vacuum free-houndary modes are known to bhe
anite Aifferent from the fixed=-houndary modes in the
circular cylinder and elliptical cylinder cases studied
hefore /77, /9/, /18/.

T+ should also bhe ¥kept in mind +hat all results
presented here are based on a particular equilibriunm
(Eq.(25)). Preliminary studies of the m=1 mode on the
uniform current rectangular equilibrium for 1 < h/a < U4 and
kez = 1 indicated that the marginal current density does not
increase with elongation, but may decrease.

In Figs.20 and 21 vwe confine our attention to the m=1
mode and we plot the marginal points for different values of
kea and h/a, The *trends observed in the kea=1 case persist
as kea is decreased to 1/2 and 1/3., T+ should be noted that
the qrowth rates are sunbstantially reduced as kea is
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decreased., ETxtrarolating to longer wavelengths, Pigs.2C anAd
21 indicate that +the marginal g-value qgoes to unity
independient of hv/a, Consequently the ~central current
Aensity Ji scales like br/a, for large elonqgations, and like
/N, for long wavelengths,

Marginal Points k-a=1
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Ry axamining Figs.19, 27 and4 21 we can answer the
nriginal questinn which motivated this investigation: <an
one force a higher «current density throuqh the plasma by
elnangating it? If we confine our interest to anv osne mode,
the answver 1is ves, One gets Aramatic improvements for the
zurrent density as b/a becomes agreater than 2, The marginal
/3 for each mode responds immediately as b/a 1is 1increased
ahove 1, The marginal q -value for each mode reaches a




broad maximum as b/a is increased; this maximum shifts ¢9o
higher b/a for highker m-moAdes.
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Tigs. 29,21 ®arqginal Jg, gq¢, and A, for the m=1 mode
as a function of h/a and X\ /2w%a = (kea)—-1,

However, if all +the modes have equally important
physical consegquences, then Fiq, 16 suggests that one cannot
increase the current density (or 3 ) by increasing the
elongation, The higher m-modes become much more unstable
with increasing hs/a and their 1intervals of instabhility
overlap with the lower m=-modes,



5. Conclusions

We have deronstrated in this paper that gqrsss MYD
instabilities can be investigated by solvinag the 1linearized
MHD  eqnations as an initial boundary-value prohlem on the
computer,

Ve have applied this method to study the 142a]1-MED
fixed-boundary instahilities 9o9€ a straight cyvlindrical
caguilibrium withk rectangular walls, We find that:

1) the marginal cnrrent density for each mode
zonsidered separately increases as the cross
section is elonqgated;

2) the interval 2f unstahle current Adensities for
aach mode broadens and overlans with lower
n-modes as the cross section is elongated;

3) the maximum grovth rates 1increase with
2longation:

4y the modes become spatially concentrated near
the marginral points;

§) vortex patterns are apparent inrn the velocity
field of each instability,

A number of extensions are envisioned for this methoAd,
Among them we are considerings

1) Aifferent <classes of equilibria and a wider
range o2f parameters;

2) iifferent geometries =-- toroidal, helical,
non-rectangular bhoundary:

3) adding small amounts of non-ideal MHD effects
such as viscosity and resistivity:

4y free-boundary plasmas;

5) +the nonlinear, three-dimensional problen,
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Initial Boundarv-Vailue Problem:
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APPENDIX 3

Energy Ralance:

Multiplication 0of the basic equatigns with é‘;v?
(Fg. (1)), ¥V (Ea. (22, 1/(¥-1" (Eq.(3)), B (£q.(4)) and
adding them up yields the energyv halance:

) 1 1 1 1 Y - - -
—~{-Qvz ¢+ — p+ - 82y +V -Qv?2 ¢ — plv ¢+ TxB p= 0
% |2 -1 2 2 £-1

The enerqgy balance of +the 1linearized equations is
derived either by linearizing this equation up +to second
order or adding up the 1linearized basic equations up t»o
second orAier,

—

— -gO(vl\ s p2 + - (Bl) + (BOR2) +
2% | g-1 2
(31
+ v jg. (p1T1 + pOT2) + Eiyxh1 F24R0 =0
-1
3 - 4 "
For the second order quantities v2, p?, B2 the
£o1lowing equations can he derived:
D+ 2 ® e -~ - - - - -
0 =v2 + Q1 -yl + o0viVyl & 2 = J1gR1 - JOyR2 - J2%xRO = 7
R 5V < g € Vv Vo Jix X X )
{R2)

% D2 + W(DIVY) + (F-Np! (V¥ + ©(poOV2) + (f-1)p0(RV2) = 0

(R3)
D, v=p -
— 2 w2 =N R
> R + ¥Vx= 0 (RY)
e e
J2 = Wx B2 (B5)

=9 - =P 5 -
F2 4 ylxRB1 4+ y2xBO

0 {(BA)
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Difference Approximation:

An explicit methnd is nsed; i.e. the time derivative is
ipproximated by
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Space averages:
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APPENDIX D Equilibrium Properties
We have made our most intensive study of the
equilibrinm specified by

pr ¥y = 3 ks, Fall= o
(DN
Rg =1, Q0 =1

in a straight rectanqular cylinder, €or reasons described in
section 4, A number of unexpected simplicities were found
for this particular equilibrium: First an analytic solution
exists:

Vs Yoo Xx ; Ty
= Zl.sin ( S 7Y ) e sin {( ryvA ) (D2)

The origin here is at the lower left corner of the 4qomain so
that the maximum flux is in the center of the domain, Other
possible solutions of Eg.(D1), with node 1lines running
through the domain, will not be considered here, 0Osing the
equilibriam equation Eq. (21), the central flux ¥ is related
to the central current density J by

;“".=J.2c/((z§)2*(;.2)2) (D3)

Then the pressure profile, from Eaq, (D1), is:

p(hy) = 3- T3 ¥2 /b (D)

The poloidal B-field is determined from Eq. (20). The flux
surfaces are illustrated in Fig.3.

As the rectangular btoundary is elongated, the
egquilibrinm has the interesting feature that all the nested
flux surfaces have the same ratios o€ major ¢to minor axes
{vertical to horizontal dimensions). This statement holds
true for any flux functions with the form ¥ (x,y)=
f(x/a)e*f(v/b), where b/a 1is the ratio of the axes., If we
examine any given flux surface, the ratio of the ©poloidal
R-field at the midplane and at the vertical axis is als»o
bra, These features are identical to those of the
elliptical equilibrium carrying uniform longitudinal current
density.

But unlike the uniform current ellipse, the rotational
transform for this equilibrium varies from a maximum value
in the center to zero at the edge, The rotational transform
€ (the reciprocal of the g-value) is computed using the

formula
LAy = q = apk sk (D5)

using a program written by PF,Pohl 20/ to <compute the
longitudinal flux X.(?‘) within .a:flux synface .J. = .constant;
The croass section of ¢the rotational transform along the
vertical axis is shown in Fig.22, The rotational transform
goes to zero at the wall because the poloidal field has a
stagnation point (is zero) in the c<orners.
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The central ag-value fits the empirical formula
a2 + h?

gd .= ° (D€)
Jaa aeh

which is the same as the formnla for the (uniform) q-valne
in the uniform current ellipse. The beta-value, defineAd
1ozally by the formula

b
g = (D7)
p + R2/2
can be calenlated analytically. It assumes its maximunm
value in the center of the Aomain:
K 1
max = (D)

oot (360)2 (1/7a2 + 1/b2)t2/uqé$
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