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Abstract: With the rising application of systems biology, sensitivity analysis methods have been widely applied to study the
biological systems, including metabolic networks, signalling pathways and genetic circuits. Sensitivity analysis can provide
valuable insights about how robust the biological responses are with respect to the changes of biological parameters and
which model inputs are the key factors that affect the model outputs. In addition, sensitivity analysis is valuable for guiding
experimental analysis, model reduction and parameter estimation. Local and global sensitivity analysis approaches are the two
types of sensitivity analysis that are commonly applied in systems biology. Local sensitivity analysis is a classic method that
studies the impact of small perturbations on the model outputs. On the other hand, global sensitivity analysis approaches have
been applied to understand how the model outputs are affected by large variations of the model input parameters. In this
review, the author introduces the basic concepts of sensitivity analysis approaches applied to systems biology models.
Moreover, the author discusses the advantages and disadvantages of different sensitivity analysis methods, how to choose a
proper sensitivity analysis approach, the available sensitivity analysis tools for systems biology models and the caveats in the

interpretation of sensitivity analysis results.

1 Introduction

Cell behaviours are not only determined by the characteristics
of individual biological components but also by the
interactions of such components acting together as a
system. Systems biology approach with mathematical
models has emerged as a powerful tool in studying the
dynamics of the biological systems, because it provides a
way to predict emergent network properties and to uncover
the principles of cellular networks by merging prior
knowledge with experimental data and model simulations
[1]. The development of predictive dynamic models
requires the information about the initial conditions and
kinetic parameters that characterise the biological systems.
Unfortunately, the parameters of systems biology models
are difficult and sometimes even impossible to measure
with biological experiments. In addition, some parameter
values have large variations among different experimental
conditions. Thus, our confidence on the model predictions
is limited due to the uncertainties of the model parameters.
Sensitivity analysis is a classic technique to determine how
the fluctuations in mathematical model outputs can be
apportioned to the variations in the model inputs [2].
Sensitivity analysis plays an important role in dynamic
analysis of systems biology models [3]. First, sensitivity
analysis can provide valuable insights about how robust the
model outputs are with respect to the changes of model
inputs and which model inputs are the key factors that
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affect the model output. In addition, sensitivity analysis is
important in model development. It helps us to test whether
a model prediction is dependent on the model assumptions
and guide parameter estimation and experimental design
[4]. Sensitivity analysis is also useful for model
simplification by quantifying the dependence of model
outputs on its inputs. The values of the insensitive
parameters might be fixed and some processes may be
simplified or eliminated [5]. Last, but not the Ileast,
sensitivity analysis can guide experimental analysis. With
sensitivity analysis, one can pinpoint which model inputs
contribute most to the wvariation in model outputs
(experimental observations). The most sensitive model input
parameters and their corresponding biological processes are
the potential targets for further experimental analysis.

Sensitivity analysis has a long history and it has been
widely applied in different fields such as environmental
modelling study [6], economic modelling for decisions
making [7], chemical kinetics [8—10] and biological
modelling analysis [11, 12]. In this review, we particularly
focus on the sensitivity analysis approaches applied to
systems biology models. In addition, we limit the
discussion of relevant model inputs to the Kkinetic
parameters and the initial conditions of systems biology
models. Although the systems biology models discussed
here are in the format of ordinary differential equations
(ODEs), the sensitivity analysis approaches are generally
applicable to other formats of biological models.
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2 Local sensitivity analysis

There are two types of sensitivity analysis approaches: local
and global sensitivity analysis. Local sensitivity analysis is
a common approach that the sensitivity of a model output is
performed by computing the first-order partial derivatives of
the system output with respect to the input parameters,
which can be viewed as the gradients around the
multidimensional reference parameter space [9]. The second
type of methods is global sensitivity analysis, which is used
to quantify the overall effects of the model inputs on the
model output by perturbing model input parameters within
large ranges. The introduction of global sensitivity analysis
approaches will be presented in the next section.

The systems biology models discussed here is a system of
ODE that is dependent on a certain parameter set p and initial
conditions y;(0), which is

dy; _

= f0pp ) i=12 (1)

Local sensitivity analysis studies the changes in the model
outputs (e.g. ODE variable y;) with respect to model input
(e.g. parameter p) variations around a local point in the
parameter space, which are quantified by the sensitivity
coefficients. Mathematically, the sensitivity coefficients are
the first-order derivatives of model outputs with respect to
the model parameters
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where y; is the ith model output and p is the model input
parameter.

2.1 Finite difference approximation

There are different methods for the calculation of the
derivative. A simple method is computing the derivative by
finite difference approximation

S, = Wi ~ Yilp + Ap) —y,(p) 3)
ap Ap

In reality, the accuracy of numerical approximation depends
on perturbation size (Ap) and the precision of the numerical
simulation for the model system. In most cases, the ODE
models do not have analytic solutions and they are solved
with numerical approximation. Therefore the parameter
perturbation should be small enough to have a small error
in the finite difference approximation, and large enough to
reduce the dependence on the simulation inaccuracies from
ODE solver. As a rule of thumb in practice, we can start
from a small perturbation of the model input (e.g.
Ap = 0.001 x p), then change the perturbation size (Ap)
smaller or bigger and compare the results. If the results of
sensitivity do not change significantly, the local sensitivity
analysis result is robust and trustable.

2.2 Direct differential method

Another way to compute the derivatives is the direct
differential method, which solves the differential equations
for the sensitivity coefficients [9, 13]. These differential
equations are differential output y; with respect to the model
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input parameter p over time.
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We can further derive by using the chain rule of differentiation.
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It is worth noting that (9f;/dy;) in (5) is an element of the
Jacobian matrix (J) of the ODE model. Thus, (5) can be
rewritten as

ot p dyp Iy Wy S,
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The matrix f,,, J and . have the following definition
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The initial conditions of the ODE system (6) can be
determined by the relationship between the model input
parameter p and the initial conditions of y variables [9]. If
model input p is not one of the initial conditions, thus
S;(0) = 0 for all i based on the definition with (2). If the
model input p is the initial condition for yy, then S;(0) =0
for i # k and S;(0) =1 for i = k. The sensitivity of ODE
system (6) can be numerically solved with the CVODES
solver in the SUNDIALS library [14, 15].

The advantage of the direct differential method over finite
difference approximation approach is that it avoids the
difficulty of selecting the variation size Ap by trial and
error [9]. Furthermore, the sensitivity of different variables
with respect to a certain parameter p can be solved
simultaneously by the direct differential method. The
disadvantage of the direct differential method is that the
Jacobian matrix (J) needs to be defined and it is time-
consuming especially for large-scale problems.
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2.3 Adjoint sensitivity analysis

The direct differential method described in the previous
section becomes computation-demanding if the sensitivities
for many parameters are analysed [15, 16]. To reduce the
computation cost, an alternative adjoint method was
developed. In the adjoint method, a Green’s or kernel
function matrix K(#, 7) is constructed for (6), which satisfies

dK(¢, 7)

T JOK(t, 1), Tt ®)

K(r,n=1 9)

The sensitivity of .§ with respect to the parameter p can be
rewritten with the constructed Green’s function (see [17] for
details)

t
S(t) = K(z, O)Sg —i—j K, n)f (1) dr (10)

0
In the integral part of (10), the first argument (¢) of K is fixed,
whereas the second argument (7) is varying. To evaluate the
integral part in (10) more efficiently, an adjoint strategy is

employed. The differential equations for the adjoint Green’s
function K*(7, t) are defined as

WD gk, <1 (b
dr

Kt ) =1 (12)

and solved backwards in time from ¢ to 0 using the following

Table 1 Definition of control coefficients in MCA analysis

identity
K*(1,t)=K(t,7) (13)

The numerical calculation of (10) was described in [16, 17].
The sensitivity coefficients obtained by (10) are the same as
those obtained with (6). The difference between the adjoint
method and direct method is the numerical methods. The
adjoint method is computationally less expensive than direct
method when the number of parameters is greater than the
number of species (for detailed explanation, see [9]).

2.4 Metabolic control analysis (MICA)

Depending on the selected model output and model input,
several types of sensitivity coefficients are defined in
different sensitivity analysis studies. MCA is a standard
mathematical framework for quantifying how the properties
of a biochemical reaction network depend on the network
parameters. MCA was originally developed to study the
metabolic networks [18—-22], but the concept was later
applied to other biological networks such as cell signalling,
genetic networks and other biological processes [23—25].
The central idea of MCA analysis is the control coefficient
that quantifies the relationship between model output y (e.g.
concentrations and fluxes) and input x, which is a
normalised derivative and defined as [18-20, 22, 26]

Cy,=)—c><a—y=alny
Ty ox dlnx

(14)

Different control coefficients are defined in MCA analysis
based on the choice of model output y and input x (Table 1).

Name Output, y Input, x Reference
e-elasticity coefficient the reaction rate v; the species/metabolite [20]
concentration C;
i G oy
v; 9C;
m-elasticity coefficient (parameter-elasticity coefficient) the reaction rate v; the parameter p; [27, 28]
. pl- ov:
=
v, 9p
concentration control coefficient the species/metabolite the reaction rate v; [27]
concentration C;
Ccl = Yi 8
T dp by
flux control coefficient the flux J; the reaction rate v; [27]
iV o,
Fi— . 2
Fd oy
sensitivity flux control coefficient the flux J; the enzyme or species [18, 20]
concentration C;
Si= G 8
T JaG
response coefficient the steady state of state the parameter p; [26]
variables or fluxes
i PG L pi_Pd
17 C; ap; T J: ap;
i p/ i p]
time-dependent response coefficient concentrations or rates at time t the parameter p; [29-31]
Rit—_Pi_ 8Fi(t) or Rit_Pi. ?Ji(t)
/ Ci(t)  op; / Ji ap;(t)
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It is worth noting that different names of control
coefficients have been reported during the historical
development of MCA theory. Some researchers made
agreement on the uniform nomenclatures for principle types
of coefficients [32]. Two types of coefficients were defined:
global and local coefficients. The global coefficients refer to
the sensitivity measurements in the entire system. Global
coefficients are usually calculated from a given steady state.
In contrast, the local coefficients stand for the individual
functional entity that is ‘isolated’ from the system [32, 33].
The meanings of ‘local’ and ‘global’ coefficients defined
here are with respect to the system, rather than the
parameter space. For instance, elasticity coefficients are
local coefficients, while control coefficients and response
coefficients are global coefficients [26].

3 Global sensitivity analysis

The definitions of sensitivity coefficients described above
indicate that local sensitivity analysis is estimating the
derivatives at a particular point in the model parameter
space. However, it is likely that biological model inputs
such as rate constants and initial concentrations are varied
within a large range in different cell types and cellular
environments. For this reason, global sensitivity analysis
approaches were applied to quantify the sensitivities of
the model outputs with respect to large variations of the
model input parameters. This section aims at introducing
the principles of different global sensitivity analysis
approaches instead of explaining the detailed algorithms
for these methods. The examples of global sensitivity
analysis applied to systems biology models are described in
Table 2.

3.1 Parameter space sampling: Latin hypercube
sampling

Global sensitivity analysis approaches require taking samples
to mimic the variations in model inputs. Therefore parameter
space sampling is essential for global sensitivity analysis.
Simple random sampling is an easy method to generate
samples from a predefined distribution. However, it is
shown that simple random sampling may require a large
number of samples to cover the entire range of the model
inputs [49], which results in the computation-demanding
issue for complex models. Latin hypercube sampling is an
alternative method because it is an efficient method to
sample random parameter vectors while guaranteeing that
individual parameter ranges are evenly covered. This
method was first developed by McKay Conover in 1979
[50] and later extended by Iman et al [51]. In general,
Latin hypercube sampling can generate the input
distribution with fewer sampling iterations than the simple
Monte-Carlo sampling to achieve a similar accuracy.

The procedure of Latin hypercube sampling for selecting
M different values from each of N variables xi, x5, ..., X,
can be summarised as: (i) Divide the range of each
variable into M equally intervals; (ii) From each interval,
randomly select a value with respect to the probability
density in the interval; (iii) The M values thus obtained
for x; are paired randomly with the M values of x,. These
M pairs are combined in a random manner with the
M values of x3 to form M triplets, and so on, until a
(M x N) matrix is formed. The implementation of Latin
hypercube sampling is available as functions in different
programming languages. For example, Latin hypercube
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Table 2 Global sensitivity analysis methods applied to
biological models

Method name Computational  Application examples

cost and references

MPSA low NF-«B signalling pathway
model [34]
JAK-STAT signalling
pathway model [35]
complementary system in
immune cells [36]
endothelial calcium
signalling [37]

TCR signalling pathway
model [11]

TCR signalling pathway
model [11]

HIV model [38, 39]
pharmacokinetic
model [40]
circadian rhythm
model [41]

NF-«B signalling pathway
model [42]

IL-6 signalling
pathways [43]
growth model of
hybridoma cell [40]
CD95-induced apoptosis
model [4]

TCR signalling pathway
model [11]
TRAIL-induced cell death
model [44]
thermodynamic gene
expression model [45]
TCR signalling pathway
model [11]
TRAIL-induced cell death
model [44]
growth model of
hybridoma cell [40]
TCR signalling pathway
model [11]

IL-6 signalling
pathways [43]
thermodynamic gene
expression model [45]
genetic circuit model [46]
P13 K/Akt signalling
pathway model [47]
tumour growth and
dendritic cell therapy [48]

PRCC medium

Morris sensitivity low
analysis method
(Morris method)

WALS medium

Sobol sensitivity high
analysis method
(Sobol method)

FAST high

RS-HDMR high

sampling can be implemented by using ‘lhsdesign’ function
in MATLAB [52].

The advantage of Latin hypercube sampling compared to
simple random sampling is that it can guarantee that the
parameters are uniformly sampled from the corresponding
distribution. For example, if we generate 10 samples for the
two variables, x and y, 10 (x, y) data points are to be
sampled. The two variables are assumed uniformly
distributed between 0 and 1. If the samples are generated
with Latin hypercube sampling method, the sampling points
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Fig. 1 Sample’s design for two variables with different sampling methods

a Samples taken with Latin hypercube sampling method. They are uniformed distributed in different intervals for x and y
b Samples taken with simple random sampling method. There are no samples falling into the intervals (0.5, 0.9] for variable y

of x and y will be equally distributed between 0 and 1
(Fig. 1a), which means that x and y will have one and only
one sample at each of the 10 intervals (0, 0.1], (0.1, 0.2],
(0.2, 0.3], ..., (0.8, 0.9], (0.9, 1). In contrast, if the samples
are drawn from a uniform distribution by simple random
sampling, more than one sample may fall into some
intervals while no samples might hit other intervals (Fig. 15).

3.2 Multi-parametric sensitivity analysis (MPSA)

MPSA method (also called regionalised sensitivity analysis)
was first proposed by Hornberger and Spear [6] in the field
of hydrology. It is a sensitivity approach based on Monte-
Carlo filtering. Cho et al. and Zi et al. [34, 35] first applied
this method to study cell signalling pathways. The MPSA
method was later used in the analysis of other systems
biology models [11, 36, 37].

The basic principle of MPSA method is to evaluate the
model output for the randomly generated parameter sets and
then evaluate the parameter sensitivity based on
Kolmogorov—Smirnov  statistics by classifying the
parameter sets. The modeller selects the parameters and
randomly generates the parameter space from a given
distribution. Latin hypercube sampling method can be used
for parameter sets sampling. In the next step, an objective
function (model output) is computed for each random
parameter set. The random parameter set is then classified
as acceptable or unacceptable by comparing its objective
function value to a threshold, which can be defined as
the average of all the objective function values. If the
objective function value is smaller than the threshold, the
parameter set is classified as ‘acceptable’ or ‘behavioural’;
otherwise it is ‘unacceptable’ or ‘non-behavioural’. For
each parameter, the parameter sets are sorted with the
increment of this parameter values. Correspondingly the
cumulative frequency is calculated for both acceptable and
unacceptable cases. Finally, parameter sensitivities are
measured by the maximum vertical distance of the two
cumulative frequency curves based the Kolmogorov—
Smirnov statistics [35]. The calculated MPSA sensitivities
are between 0 and 1. Larger parameter sensitivity indicates
that the corresponding parameter variation has large impact
on the defined model output. The detailed algorithm and
implementation of the MPSA method have been described
before [34, 35].
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3.3 Partial rank correlation coefficient (PRCC)
analysis

PRCC analysis is a sensitivity analysis method that calculates
the partial rank correlation coefficient for the model inputs
(sampled by Latin hypercube sampling method) and outputs
[11, 38, 53, 54]. The PRCC method assumes a monotonic
relationship between the model input parameters and the
model outputs. Therefore the PRCC method can be used
only when the model outputs are monotonically related to
the model input parameters. The monotonic relationship
between the input and output can be examined by input—
output scatter plots [38].

The calculated PRCC values are between —1 and 1 and
they are comparable among different model inputs [11].
The sign of the PRCC wvalues shows the qualitative
relationship between the model input and model output.
A positive PRCC value implies that when the
corresponding model input increases, the model output will
also increase. A negative PRCC value indicates a negative
correlation between the model input and output. The
magnitude of the PRCC sensitivity measures the importance
of the model input in contributing to the model output [38].
Details about the PRCC method were described in previous
publications [11, 38, 54].

3.4 Morris sensitivity analysis method

The Morris method is a screening sensitivity analysis that
is based on an elementary effect [55]. The elementary effect
is calculated by changing one parameter at a time. The
parameter is sampled p discrete times from a predefined
distribution. The sensitivity analysis of a model output for &
parameters requires a £ x p grid. Considering the sensitivity
analysis of a model output y for the £ model parameters, the
ith model parameter can be scaled in the interval [0 1] and
may take values from {0, 1/(p — 1), 2/(p — 1), ..., 1}. The
elementary effect of the ith parameter x; is defined as

cen X)) —(x)
< (15)

Y X X, X A X

d(x;) =

where x is the reference parameter set 0 = [xy, X5, X;—1, Xz,
x; <1 — A and A is a predefined multiple of 1/(p — 1).
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The average of the elementary effects quantifies the
importance of the parameters for the model output, while
the standard deviation of the elementary effects indicates
the non-linear effect of the model parameters on the model
output [55, 56]. A large mean of elementary effects implies
that the corresponding model parameter has an important
influence on the model output. A high standard deviation of
elementary effects indicates that either the parameter is
correlated with other parameters or the parameter has non-
linear effects on the output [56]. The Morris method has a
low computational cost, which is appropriate to study large-
scale models.

3.5 Weighted average of local sensitivities (WALS)

Bentele ef al. [4] proposed a WALS coefficient to measure
the global parameter sensitivities. The concept of this
method is similar to the Morris sensitivity analysis method.
In this approach, local sensitivity coefficients are calculated
at different random locations within the parameter space.
For each parameter, the occurrences of local sensitivity
coefficients in different parameter sets are weighted based
on a Boltzmann-distribution weighting function, exp(—E/
kyT), where the variable E can be defined as the weighted
least squares error (WLSE) between the perturbed model
output and reference model output (or experimental
observation). The denominator ‘k,7° is a customisable
scaling factor, which can be defined as the minimum of
WLSE for all the sampling parameter sets [11, 12]. The
weight factor for the local sensitivity of parameter p in the
parameter set x; is defined as

2 WLSE(x,)
Wp—exp( min (WisEQy), i=12,..~5) 1

The global sensitivity coefficient of parameter p is
calculated as

N
k. Kk
WALS, = ;Spwp (17)

where Sll,f is the local sensitivity of parameter p in the
parameter set xy, w]; is the weight factor defined by (16),
and N is the number of sampling parameter sets.

3.6 Sobol sensitivity analysis method

The Sobol method is a variance-based sensitivity analysis
approach that makes no assumptions on the relationship
between the model inputs and outputs [57]. The basis of
the Sobol method is the decomposition of the variance
of the model output function f(x) into summands of
variances in combinations of input parameters in increasing
dimensionality [57]

k k k
FE=f+ Y A+ YD filknx)+ -
=1

=1 j=itl
+ fix (s X e Xy) (18)
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The total variance D is defined as

p=| rwi- g
2
~| rwa-(] we) a9
Q QO

The partial variances are computed from each item in (18) and
defined as

D, i, = j o jfz(xila Xiys s xix)dxildxiz B dxi& (20)

The variance of the model outputs D and D, ; ; can be
approximated by Monte-Carlo integrations.

The Sobol global sensitivity indices are calculated by

g

Dy ..,
Si]iz...is = D ' (21)

The term S; ; ; gives the fraction of the total variance which
is apportioned to the individual model parameters or
the combination of them. For example, S; = D;/D is called
the first-order sensitivity index, which quantifies the
contribution of the parameter x; to the output variance.

Homma and Saltelli suggested the total effect sensitivity
index as an extension of the Sobol sensitivity indices,
which is defined as the ratio of the sum of the related
partial variances [58]

Sy =58+, 22)

where S,; is the complementary set of practical sensitivity
indices that parameter x; appears. For example, S; = S§,+
S1» + 813 + 8,3 1s the total effect index of model parameter
x; for three-model input parameters. The total effect
sensitivity index quantifies the overall effects of a
parameter, in combination with any other parameter(s), on
the model output.

The Sobol method is computation-demanding because it
requires a large number of model simulations with the
winding stair algorithm [11, 12].

3.7 Fourier amplitude sensitivity test (FAST)

Another variance-based global sensitivity analysis is FAST.
The FAST method was proposed by Cukier and Shuler
et al. [59-61] to study the chemical reaction systems in
1970s. The FAST method assumes that each model
parameter is statistically independent from all the others [9].
The parameter is sampled from the following transformation
function

pi = pie = pletitn ) 23)

where p! is the reference value for parameter i. w; is an
element in a set of linearly independent integer frequencies.
s is a scalar variable. G; is a defined transformation function
that transforms the probability density of the parameter into
s space [62].
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The expectation of the model output can be evaluated by
A 1 (™
EQy) = 2—[ f(s)ds (24)
T)

where f(s) = f(G1(sin(wy5)), Ga(sin(wys)), . .. , Gi(sin(wys))).

According to (24) and the application of Parseval’s
theorem, the output variance D can be approximated by
performing a Fourier analysis as [63]

D~2) (4} +B)) (25)
i=1

where 4; and B; are the Fourier coefficients

1 w

4, = ﬁj_wf(s) cos(js) ds (26)
1 w

Bi=5- I_Wf(s) sin(js) ds 27)

The partial variance in FAST method is approximated by
DIMT~2% (42, +B;,) (28)
p=1

The FAST sensitivity index is calculated with the following
approximation

B2
GFAST _ & ~ I(A pw ) (29)
T D™ 22. (A2+Bz)
=1\ J

The implementations of the FAST method are complicated
and they are available in [54, 59, 60, 62]. The
computational cost for the FAST method is very high
because it needs a large number of model evaluations.

An extended FAST (eFAST) method was proposed by
Saltelli et al. [64], in which a transformation function G;
was recommended as

1
G, = G,(sin w;s) = = + —arcsin (sin(w;s)) (30)
a

The eFAST method has a better transformation function than
the classic FAST method because it provides uniformly
distributed samples for the parameters [64].

3.8 Random sampling high-dimensional model
representation (RS-HDMR)

HDMR is another variance-based method, which was
introduced for improving the analysis of the input—output
behaviour in high-dimensional systems [65, 66]. The
HDMR method has been applied to the global sensitivity
and uncertainty analysis of the mathematical models.
It expresses the model output f(x) as a combination of
the model inputs x, which is a statistical ANOVA
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decomposition [67, 68]

fx) = fo+Zf(x>+ > S x)

1<i<j<n

+ i (s X, X)) (1)

where the component function f; is a constant corresponding
to the zero order effect and the first-order component function
fi(x;) describes the independent contribution of the ith
parameter x; to model output f(x), the second-order
component function f;(x;, x;) represents the pair interactive
contribution of the two model parameters x; and x; to model
output f(x) and the last term gives the cooperative
contributions of all the input variables to the model output.
Previous work indicates that HDMR expansions to the
second order can provide a satisfactory description of the
model output for many systems [65, 67].

The sensitivity analysis method by RS-HDMR is based on
the RS-HDMR component functions, which have the
following forms

Jo= Lnf (x) dx (32)

S, x)dx' = f 33)

Kn—1

o= |

fx) = | f O fw) =)~y (4

where x’, x” are x without the element x; and x;, X;. dx’ and dx”
represent the product dx;dx,...dx, without dx; and dx;dx;,
respectively. For RS-HDMR component functions, the
model input x; is rescaled such that 0 <x; < 1.

Using the orthogonality of the component functions,
RS-HDMR defines the total variance o [47, 65]

RIS SA M TRy

1<i<j<n

The RS-HDMR sensitivity indices, S; (=1, 2, ..., n,), are
defined as the portion of the total variance o represented
by the variance of the zth component function. In addition,
total sensitivity indices S can be defined as the sum of the
sensitivity indices S; descr1b1ng the first and the second-
order (or higher orders if wanted) component functlons of a
model input x;. The total sensitivity indices S describe
both independent and higher-order effects of the model
input x; on the model output [47]. The approaches for
calculating RS-HDMR component function were described
in the previous publications [67, 69—71].

The advantage of RS-HDMR global analysis method is that
it works well even when model input parameters contain large
uncertainties, which is critical for the application to systems
biology models where model parameters are not precisely
identifiable [46].

4 Discussion

4.1 Sensitivity and identifiability of biological
models

In this review, we have introduced different sensitivity
analysis methods that are applied to systems biology
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models. Biological models seem to be very robust to the
changes of many parameters. Gutenkunst et al. investigated
the sensitivities of 17 published systems biology models
and studied the model output variations to the parameter
changes. They found that systems biology models exhibit
sloppy sensitivity spectra because the behaviour of the
models is very insensitive to many parameter changes [72].
The general sloppiness in biological model parameters
implies that it is difficult to uniquely determine the model
parameters by fitting to a few experimental data. However,
the parameters of some biological models can be calibrated
and well-constrained with multiple experimental data sets.
For these data-based models, local sensitivity analysis may
be very powerful to pinpoint the key factors that affect the
model behaviours. The sensitive parameters might be useful
for further investigation of the biological mechanisms. For
example, local sensitivity analysis has recently been
employed to identify the critical signalling steps that are
responsible for the linear detection of the Epo ligand
concentrations [73] and the ultrasensitivity of signalling
responses in TGF-B pathway [74]. Therefore the precision
of model prediction from local sensitivity analysis is
dependent on the identifiability of model parameters. On
the other hand, local sensitivity analysis can be used to
construct Fisher information matrix (FIM) for parameter
identifiability analysis, which determines whether certain
parameters can be identified from the experimental data [5,
75, 76]. The FIM is a function of the local sensitivity
matrix. The 95% confidence intervals of the estimated
parameters can be approximately calculated from the
Cramér—Rao lower bound for the variance of the estimators
based on the FIM (see [76] for details).

4.2 Pros and cons of global sensitivity analysis
approaches

Here, we discuss the advantages and limitations of some
global sensitivity methods as a guidance for the application
of sensitivity analysis in biological models.

4.2.1 MPSA method: The MPSA method is easy to
implement. It has some global properties: the whole range
of input parameter values is covered and all the input
parameters are varied at the same time. The Kolmogorov—
Smirnov analysis in the MPSA method relates not only to
the main effects as variance-based methods, but also
highlights certain types of interaction effects [2]. While the
MPSA method can be very useful in providing the overall
impact of the input parameters on the model output, it also
has some limitations: (i) It can be subjective as the modeller
need to choose a threshold for defining the ‘acceptable
behaviour’. (ii) It is not always obvious to select a proper
distribution of parameters to guarantee the Monte-Carlo
simulations generate sufficient ‘acceptable’ hits that make
the statistical analysis meaningful [77]. Previous practice
with hydrological models has shown that the fraction of
‘acceptable’ behaviours is barely larger than 5% over the
total simulations for large models (e.g. with number of
input parameters >20), indicating a lack of statistical power
[2, 78]. (iii) If some parameters are highly correlated with
each other, the marginal distributions cannot separate under
the acceptable classification and thus underestimate the
importance of some parameters. The Kolmogorov—Smirnov
test is sufficient to ensure whether a parameter under
analysis is important. However, it does not provide a
necessary condition for importance. In other words, the
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unimportant parameters identified by the MPSA method do
not make sure that they are trivial to the model output.
Such feature of the MPSA method implies that it may
perform incomplete assessment of the analysed parameters
and might lead to some false-negative results. Further
complementary analysis (e.g. by applying other global
sensitivity analysis approaches) is necessary to verify that
the unimportant parameters are not involved in the
interactions [2].

4.2.2 Morris method: The main advantage of the Morris
method is its computational efficiency due to the relatively
low computational cost. A drawback of the Morris method
is that the sensitivity measure is only qualitative as it only
gives an overall measure of the interactions. When the
model is non-monotonic, the distribution of the elementary
effects, d(x;), may have negative elements, some effects
may cancel each other out when computing the mean
[79]. Thus, the mean measure is not reliable for ranking
the importance of the parameters. In the implementation of
the Morris method, the choice of the size of the levels p
and the parameter A may also affect the robustness of the
results.

4.2.3 PRCC method: The PRCC method is more robust
than simple correlation coefficients analysis approaches as it
uses rank transformation statistic. Rank transformation of
the data can transform a non-linear but monotonic
relationship to a linear relationship. This increases the
applicability of PRCC sensitivity analysis method as linear
relationship is not required for it. However, the performance
of the PRCC method is limited by another assumption that
the model output should be monotonically related to the
model input parameters. Thus, the PRCC analysis results
may be misleading or not accurate in case that non-
monotonicities exist in systems biology models [54].

4.2.4 Variance-based sensitivity methods: Saltelli
et al. [2] suggested to use the variance-based sensitivity
analysis approaches (e.g. the Sobol, FAST, HDMR methods)
when such application is possible. This recommendation is
based on the advantages of the variance-based methods:
independence on model linearity or monotonicity, capability
to obtain the impact of the full range of each input parameter
variation and allowing the interaction effects among input
parameters. The main drawback of the variance-based
approaches is their high computational cost because they
require more model evaluations than other types of methods.
It can become prohibitive for the application of variance-
based methods in the case of computationally laborious
models including large amount of parameters and state
variables.

4.3 Choice of sensitivity analysis methods

A general question for applying sensitivity analysis to systems
biology models is: how to choose a sensitivity analysis
method? The answer is dependent on many factors, for
example, the number of input parameters, the computational
cost of the running model, the uncertainty of the model
parameters, the correlation and interactions among the input
parameters and the features of the model (e.g. linearity or
monotonicity). There is no absolute good sensitivity analysis
method for all the models because most of the methods have
their pros and cons as mentioned in the previous section.
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Here, we list some guide rules for the choice of sensitivity
analysis approaches (for more details, see [2, 80]).

4.3.1 Local or global sensitivity analysis?: In general,
local sensitivity analysis is relevant to study how small
perturbations of the model inputs affect the model
behaviours, while global sensitivity analysis is more
favourable to investigate the impact of large model input
variations. The derivative-based local sensitivity approaches
are attractive due to their low cost in computation time.
Yet, the fatal limitation of a local sensitivity approach is
that it is unwarranted when the model parameters are non-
identifiable or uncertain (e.g. with uncertainties of different
order of magnitude). In other words, the derivatives are
only informative at the base point in the reference
parameter set and do not explore other positions in the
parameter space [2]. Local sensitivity analysis is proper for
linear systems or the analysis of the input parameters that
are identifiable. As the predictability of global sensitivity
analysis does not rely on the identifiability of model
parameter set, global sensitivity analysis approaches are
more suitable for determining which of the uncertain input
parameters are more important for the variation in the
output of interest.

4.3.2 Choice of global sensitivity analysis methods:
First, the computational cost of the sensitivity analysis
method should be taken into account. For example, the
variance-based methods require high computational cost.
Therefore these methods might not be a good choice for
large models with many parameters to be analysed. The
screening-based Morris method is useful as a first step in
dealing with computation-demanding models containing a
large number of input parameters. In addition, the features
of the model should also be considered. As a starting point,
one can judge the non-linearities, non-monotonicity and
correlation between the input—output parameters by
coefficient of determination (R*-value) or scatter plot. For
linear models, all the global sensitivity analysis methods are
applicable. Sampling-based approaches (e.g. MPSA, WALS
and PRCC) are recommended because they have low
computational cost. For non-linear but monotonic models,
the PRCC method can perform well. For non-monotonic
models, the Morris method will produce poor results
because the importance of the parameters might be
underestimated due to the cancelling out in computing the
mean of the elementary effects. In addition, the PRCC
method should be avoided because it assumes a monotonic
model input—output relationship. In this case, the variance-
based approaches such as the Sobol method, FAST and
HDMR are recommended if the application of these
methods is possible [80].

4.3.3 Application of Latin hypercube sampling
method: Latin hypercube sampling is useful for the
sampling-based sensitivity analysis methods as it ensures
the samples to be evenly drawn from the full range of the
desired distribution functions. A small number of samples
are needed to mimic the distribution functions and
correspondingly the number of required model evaluations
can be reduced. A drawback of Latin hypercube sampling is
that it can yield a biased estimation of the variance of the
distributions. Thus, Latin hypercube sampling should be
avoided for generating sample distributions in the variance-
based sensitivity analysis methods [80].
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4.4 Timing matters for sensitivity analysis

As the impact of model parameters on the model output
changes over time, time-dependent parameter sensitivity
analysis has been proposed to study the effect of parameter
variation on model output at different time [29-31]. A
parameter may have positive impact on the change of
model output at early stage, but its effect can switch from
positive to negative due to the complex feedbacks in the
biological network. Therefore one needs to know not
only which parameters are critical for affecting a model
output, but also at which time point they are important.
Moreover, traditional sensitivity analysis methods are
computed for persistent parameter change, which means
that parameters are constantly changed over time. Based on
the consideration of time effect, Perumal and Gunawan
recently pointed out that the sensitivity of a parameter is
also dependent on the time when the parameter is changed.
Accordingly, Perumal and Gunawan proposed a new
method called impulse parametric sensitivity analysis,
which is useful to understand when the parameter variation
will cause the change of systems dynamics [81].

4.5 Software tools for sensitivity analysis
of systems biology models

The numerical implementations of sensitivity analysis
methods are tedious especially for some global sensitivity
analysis algorithm. This imposes a demand for systems
biology community to develop tools that allow automatic
sensitivity analysis of systems biology models. Several
software tools have been developed to perform sensitivity
analysis for biological models, for example, BioSens [82],
COPASI [83], SBML-SAT [12], Systems Biology Toolbox
2 [84], SensSB [85], TinkerCell [86] and Virtual Cell [87].
These software tools can perform local sensitivity analysis
and some of them are able to execute global sensitivity
analysis (e.g. SBML-SAT, SensSB and Systems Biology
Toolbox 2). Recently, a new method and tool have been
developed to map the sensitivity of the model outputs by
sensitivity heat maps and a global summation law [88].
Most of these sensitivity analysis tools support the models
encoded in systems biology markup language (SBML) [89].
SBML is a standard markup language for the systems
biology community to represent and exchange biological
models. The feature of SBML support in the software
tools allows the users to perform sensitivity analysis
conveniently. Although a few sensitivity analysis tools have
been developed, there is no easy-to-use library for the
implementation of all the available sensitivity analysis
methods. A collection of benchmark examples of systems
biology models is still missing for testing and comparing
different sensitivity analysis methods and tools.

4.6 Final remarks

To sum up, different sensitivity analysis approaches are
available for the dynamic analysis of systems biology
models. In practice, one needs to carefully choose the type
of sensitivity analysis method based on the model features
and the purpose of the study. In principle, sensitivity
analysis provides a good starting point to identify the input
parameters that have strong impact on the model output
behaviours. However, sensitivity analysis does not provide a
direct explanation or mechanism for such effects [80]. One
should be cautious about the precision of sensitivity analysis
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results especially when the model parameters are not
identifiable. The sensitivity analysis results should be

carefully interpreted. For example,

a local parameter

sensitivity analysis result might be over-interpreted for

predicting the knockout effect

of the corresponding

biochemical reactions because local sensitivity is based on
small parameter perturbations. In practice, perturbation
experiments are necessary to test the sensitivity analysis
results. Further experimental analyses are important to verify
model predictions and understand the dynamics of cellular
networks.
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