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�We present a new reduction technique for complex chemical reaction networks.
� This easy-to-use method is universal and ensures conservation of mass.
� We exemplify the reduction technique for a C1 microkinetic reaction network.
� The significantly reduced reaction network shows still an excellent agreement.
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a b s t r a c t

Sustainable and efficient processes require optimal design and operating conditions. The determination
of optimal process routes, however, is a challenging task. Either the models and underlying chemical
reaction rate equations are not able to describe the process in a wide ranges of reaction conditions
and thus limit the optimization space, or the models are too complex and numerically challenging to
be used in dynamic optimization. To address this problem, in this contribution, a reduction technique
for chemical reaction networks is proposed. It focuses on the sensitivity of the reaction kinetic model
with respect to the removal of selected reaction steps and evaluates their significance for the prediction
of the overall system behavior. The method is demonstrated for a C1 microkinetic model describing
methane conversion to syngas on Rh/Al2O3 as catalyst. The original and the reduced microkinetic model
show excellent qualitative and quantitative agreement. Subsequently, the reduced kinetic model is used
for the optimization of a methane reformer to produce a hydrogen rich gas mixture as feed for polymer
electrolyte membrane (PEM) fuel cell applications.
� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

As economical and ecological aspects play a significant role in
the design of chemical production processes, model-based opti-
mization is crucial for the rational derivation of the best process
route and optimal equipment for efficient and sustainable produc-
tion [1,2].

Reliable process optimization requires quantitative and suffi-
ciently accurate information about the underlying physical and
chemical phenomena. With increasing computational power, new
theoretical approaches and advanced numerical algorithms, it is
now possible to use microkinetic multi-step descriptions of chem-
ical reactions, based on first principles, for reaction engineering
purposes. Today, such microkinetic models for reaction systems
with small molecules, e.g. ammonia [3] and nitrogen oxides [4–
6] have been derived. Recently, the interest in C1 chemistry, espe-
cially methane conversion into syngas components, has grown
considerably. Microkinetic models for methane catalytic partial
oxidation [7], reforming [8–11], oxidative coupling [12], and
CO/H2 oxidation [13] are available, but also models that are able
to deal with multiple chemical regimes for methane conversion
at the same time [14–17].

But the high complexity of detailed microkinetic reaction mod-
els turned out to be a challenging feature, especially for
model-based reactor optimization. The microkinetic rate
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Notation

Latin
Symbol Description (unit)
A pre-exponential factor (– or 1=s)
a specific surface area 1

m

� �
ci concentration of component i mol

m3

� �
ĉi ¼ ci

c g
t;0

dimensionless concentration of component i (–)

Di diffusion coefficient of component i m2

s

� �
EA activation energy J

mol

� �
ĵi ¼ ji

c g
t;0kref

m
dimensionless external molar dosing flux (–)

k reaction rate constant (reaction specific)
km mass transfer coefficient m

s

� �
k̂m ¼ km

kref
m

dimensionless mass coefficient (–)
Mi molar mass kg

mol

� �
N number of . . .(–)
n molar mass flux mol

s

� �
n̂ ¼ n

c g
t;0kref

m
dimensionless molar mass transfer flux (–)

nSc exponent of Schmidt-number in Sherwood-correlation
Sh ¼ KShRenRe ScnSc
� �

(–)
p total pressure (Pa)
R universal gas constant J

molK

� �

rj rate of reaction j mol
m2s

� �
T temperature (K)
t time (s)
xi molar fraction of component i (–)

Greek
CRh active site density mol

m2

� �
� error (–)
� void fraction (–)
H surface coverage (–)
mi;j stoichiometric coefficient of component i in reaction j (–)

ri chemical production rate of component i kg
m2s

� �

s ¼ agckref
m t dimensionless time (–)

Superscripts
c catalyst
g gas phase
gc gas/catalyst interface
k index number
ref reference

Subscripts
0 initial state at t ¼ 0
Com components
final final state
i component index
j reaction index
Re reactions
t total
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expressions are strongly nonlinear functions of temperature, gas
phase concentrations and catalyst surface coverages and interde-
pendent. Furthermore, the reaction rates often cover many orders
of magnitude, which results in bad model scaling and ill-posed
numerical problems. For this reason, comparative simulation stud-
ies [18–22], but only few rigorous optimizations are found in liter-
ature to improve the design of catalysts, reactors and processes.
E.g., for the ammonia synthesis Jacobsen et al. [23] derived an opti-
mal catalyst on the atomistic scale based on volcano curves com-
puted from first principles.

The objective of the present work is to combine microkinetic
models and rigorous reactor optimization. To overcome the before
mentioned numerical issues, a new reduction technique for
microkinetic reaction network models based on network-wide
analysis of errors in the predicted reaction rates is proposed.
Previous reduction techniques for chemical reaction networks are
based on progressive species reduction with reparametrization
[24], element flux analysis [25], integer linear programming [26],
principle component analysis [27] and reaction route graphs [28–
30].

Progressive species reduction with parametrization of the reac-
tion rates uses a global error function to gradually reduce the num-
ber of species in the reaction model with element flux analysis.
Afterward the model parameters are re-estimated within their
uncertainty region using a genetic algorithm. Although this proce-
dure opens a very elegant path for reparametrization of the reac-
tion model, genetic algorithms need be used with great caution,
as the results may strongly depend on the configuration of the
genetic algorithm. This further increases computation and imple-
mentation complexity significantly. Element flux analysis consid-
ers the fluxes of one element, e.g. carbon, from one molecule to
another and judges the significance of a reaction by comparing
the magnitude of the element fluxes between different reactions.
The larger the element flux, the more significant the reaction will
be. However, this method requires the considered element to be
present in every reaction. If this is not the case, this reaction cannot
be compared with the others properly. This limits the method to
reaction systems that share a common element.

Reaction and species elimination with integer linear program-
ming (ILP) is an automated, optimization-based reduction method.
Besides integer formulation that is in general hard to handle, this
method requires additional solvers and optimization routines.
Furthermore, the mass balance of the reduced system is not
ensured.

From a systems engineering point of view, the reaction route
graphs are very fascinating. The authors [28–30] established an
analogy between reaction networks and electrical circuits. By con-
sidering reactions as chemical resistors, this information can be
used to identify major barriers within the reaction network. In
analogy to electrical engineering, they are able to use this informa-
tion to derive a chemical reaction that behaves as an equivalent
resistance. For small systems, the authors were even able to deter-
mine analytical solutions. Unfortunately, this method is difficult to
use for complex chemical reaction networks, as the determination
of the reaction route graphs is very difficult.

All these previous approaches are not fully suitable for use in
rigorous dynamic optimization, where universal and computation-
ally cheap methods are desirable. To avoid reparametrization
issues and complex numerical methods, we here aim for an
easy-to-use reduction approach based on sensitivity analysis that
does not require special network properties or problem
statements.

The present work is structured as follows. First, a methodology
for preprocessing and reduction of a given microkinetic model is
derived, demonstrated and discussed in detail. For these purposes,
the microkinetic model proposed by Maestri et al. [14], which
describes the conversion of methane to syngas components on
Rh/Al2O3 as catalyst, is used as example of industrial relevance.
In the second step, a validation of the reduced kinetic model is car-
ried out. Finally, the reduced kinetic model is utilized for rigorous
reactor optimization. For this purpose, we apply the Elementary
Process Functions (EPF) methodology proposed by our group [1,2].
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2. Kinetic modeling for reactor optimization

2.1. Selection of kinetic model

In heterogeneous catalysis, one has to differentiate between
macro and microkinetics. Microkinetic models describe reaction
kinetics at the catalyst, without any interference from internal or
external transport phenomena, while macrokinetic models repre-
sent a combination of heat and/or mass transport and chemical
reaction. In rigorous process optimization over wide operating
conditions, microkinetic models are preferable, because the reac-
tion kinetic parameters are not masked by transport effects and
therefore valid within a broad range of reaction conditions.

Within microkinetic models, elementary and lumped rate
expressions have to be differentiated. Elementary microkinetic
models aim to represent all mechanistic reaction steps and thus
take intermediates of the surface chemistry into account.
Lumped models (e.g. Langmuir–Hinshelwood or Eley–Rideal) on
the other hand involve simplifications (e.g. quasi-stationarity, rate
determining step (RDS), and most abundant surface intermediate
(MASI)). For this reason, elementary step models offer a more fun-
damental understanding of the molecular processes taking place
on the catalyst surface. However, even for simple reaction systems
with small molecules and few species, elementary microkinetic
reaction models often result in large-scale networks, due to the
large number of species considered and multiple reaction path-
ways. Microkinetic networks often suffer from bad scaling behav-
ior, because under certain reaction conditions parts of the
network are almost or completely inactive. Moreover, compared
to lumped kinetics, a much higher number of kinetic parameters
has to be identified. But, elementary microkinetic models allow
for an accurate description of the chemical system over large
ranges of concentration, pressure and temperature, since no rate
determining step is assumed [31]. This is an essential property
for the optimization of chemical reactors, as it is in general not
known a priori in which range of operating conditions the optimal
process performance can be achieved. On the other hand, large
scale, strongly nonlinear, and badly scaled kinetic models can
cause problems when it comes to optimization.

Therefore, a compromise between elementary microkinetics
and lumped models, while still of much higher level of detail and
complexity than traditional kinetic approaches such as, e.g.,
Fig. 1. Scheme of the original microkinetic r
Eley–Rideal or Langmuir–Hinshelwood is needed for rigorous reac-
tor optimization. Thus, the key element is the reduction of microki-
netic models to obtain more compact kinetic models that are still
valid over a large range of reaction conditions. For this purpose,
we identify a subset of the full microkinetic reaction network
which contains the most significant elementary steps.

2.2. Reduction approach

The general steady state mass balance on the catalyst surface at
a given gas phase concentration c g

i can be formulated as follows:

0 ¼ Nrðcg; T;HÞ with N ¼ ½mi;j�; r ¼ ðrjÞ; cg ¼ ðc g
i Þ; H ¼ ðHiÞ

ð1Þ

where mi;j is the coefficient of species i in reaction j, and rj the rate of
reaction j. All reactions are considered reversible, characterized by a
forward rj;f and backward reaction rj;b.

rj ¼ rj;f � rj;b ð2Þ

The here proposed model reduction technique is based on the
recalculation of the flux distribution in the network, when a reac-
tion (k) is removed from the network. The remaining reaction rates

rk
j

� �
must ensure that the component mass balances are fulfilled,

Eq. (1). As a consequence, the individual reaction rates change from

rj
� �

to rk
j

� �
due to a different flux distribution inside the network to

compensate for the ’removed’ reaction. The kinetic parameters of
the original model are reused. These mass balances in terms of
the reduced network sound as follows:

0 ¼ Nkrkðcg; T;HkÞ ð3Þ

where the superscript k denotes the removed reaction k.
Now, we calculate the error �k between the original and the

reduced model as a sum of all deviations in the reaction rates.

�k ¼
PNRe

j¼1 rj � rk
j

� �2

sk
ð4Þ

To make the errors �k comparable for different reaction condi-
tions (e.g. temperature), all values are scaled by the variance sk

of the recalculated rates rk
j .
eaction network for C1 chemistry [14].



Fig. 2. Parameter ranges at different surface coverages/compositions for the reaction rate constants at 800 K. � and H represent the parameters for an uncovered surface. (1)
16 orders of magnitude coverage dependence; (2) 38 orders of magnitude for forward/backward reaction; (3) 45 orders of magnitude covered overall.

Fig. 3. Considered sub-network for the dehydrogenation of methane.
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sk ¼
PNRe

j¼1 rk
j � �rk

� �2

NRe � 1
ð5Þ

The average reaction rate �rk is calculated from the following
equation.

�rk ¼
PNRe

j¼1rk
j

NRe
ð6Þ

If the cancellation of reaction k yields a large error �k, this reac-
tion was important for the network, because it can only be com-
pensated by a large change in the flux distribution inside the
network. Therefore, this reaction is considered to be significant
and thus cannot be removed from the network. Consequently, only
reactions that yield small deviations from the flux distribution of
the original model are removable. These reactions need to fulfill
the following condition

�k
6 �max ð7Þ

where �max is the maximum error bound. This is a user-defined
threshold to steer the degree of reduction. If a large error �max is
allowed, this will yield a strongly reduced and quickly computable,
but less accurate kinetic model.

The model reduction method sketched above has several fea-
tures. First, it is neither dependent on the original network struc-
ture nor on any particular formulation of the reaction rates and
thus is applicable to any microkinetic model. Second, it focuses
directly on the actual fluxes in the network, rather than the con-
centrations or other measures and fulfills the mass balances by cal-
culating the resulting flux redistribution in the network. Third,
only one parameter ð�maxÞ is needed to be specified, which makes
the concept user friendly and quite easy to use.

The intrinsic nature of this method is to identify non-significant
edges of the network graph at given reaction conditions to obtain a
reduced model at a defined error. If several reaction conditions
(e.g. pressures, temperatures, and chemical regimes) shall be taken
into consideration, the reduction approach must be applied for all
those conditions individually. As the balance equations have to be
satisfied for every calculation, the determination of the errors can
be computationally demanding for systems with a very high num-
ber of reactions. Of course, one can use advanced methods for the
optimal design of experiments in order to determine a minimum
set of in-silico experiments to reduce this computational effort.

Usually, the computationally most demanding part in the
reduction framework is to solve the mass balance (Eq. (1)). As
every reaction in the reaction network needs be perturbed, the
mass balance must be solved ðNRe þ 1Þ times. If all reaction rates
(original and perturbed) from Eq. (1) are known, the reduction
approach is executed by calculating the reaction rate errors (Eqs.
(4)–(6)) and verifying the reaction significance with Eq. (7).
These equations are easy to implement and computationally



Table 1
Reduction method exemplified for dehydrogenation of methane under catalytic partial oxidation reaction conditions at 800 K.
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inexpensive. Assuming that the major calculation time is con-
sumed to solve the mass balance (Eq. (1)), the computational effort
for the presented method scales linearly with the size of the reac-
tion network. Therefore, the required computation time can be
estimated to

ttotal ¼ DOFðNRe þ 1Þ � tcalc ð8Þ

where ttotal is the overall computation time, DOF the degrees of free-
dom, NRe the total number of reactions and tcalc the typical time
required to solve the mass balance (Eq. (1)). The degrees of freedom
(DOF) are the number of all investigated reaction conditions. In case
only one temperature, pressure and composition is considered,
DOF ¼ 1. If, however, three different temperatures, two pressures
and five different compositions shall be examined, the degrees of
freedom increase to DOF ¼ 3 � 2 � 5 ¼ 30. Using Eq. (8) one can
already estimate the computational effort a priori and plan the
number of investigated reaction conditions accordingly in order to
find a reasonable compromise between computational effort and
validity of the reduced network for different reaction conditions.
Fig. 4. Reduced reaction network for dehydrogenation of methane under catalytic
partial oxidation conditions at 800 K.
2.3. Demonstration example

To describe the mechanism of the conversion of methane to
syngas, the C1 microkinetic model from Maestri et al. [14] is used.
This model is able to describe several chemical regimes, namely
methane steam and dry reforming, catalytic partial oxidation,
hydrogen and carbon monoxide combustion and water gas shift,
on a Al2O3 supported rhodium catalyst. It was derived from first
principles, combined with semi-empirical methods and experi-
mental data. The model is thermodynamically consistent and
applicable in a large range of temperatures (500–1150 K).

The full scale reaction network is shown in Fig. 1. It consists of
12 adsorbed species, free active surface sites (not shown in Fig. 1)
gas phase species. Hydrogen, oxygen, and methane are assumed to
adsorb dissociatively on the catalyst surface. The species are con-
nected by 41 reversible reactions, including adsorption/desorption
and surface reaction steps.

The microkinetic reaction rate of each elementary reaction step
is formulated as a power law where the stoichiometric coefficients
of the species participating in this step are used as reaction orders.

rj ¼ kjc
�mgasspecies;j

gasspecies

YNCOM

i¼1

H
�mi;j

i ðchemisorptionÞ ð9Þ

rj ¼ kj

YNCOM

i¼1

H
�mi;j

i ðsurface reactionÞ ð10Þ

The rate constants kj are determined from the following
equations:
kj ¼ sj

ffiffiffiffiffiffiffiffiffiffiffi
RT

2pM

r
T
T0

� �bj

exp � EA;j H; Tð Þ
RT

� �
ðchemisorptionÞ ð11Þ

kj ¼ AjCRh
T
T0

� �bj

exp � EA;j H; Tð Þ
RT

� �
ðsurface reactionÞ ð12Þ

One reason for the high accuracy of the here considered C1

microkinetic model is the fact that the activation energies are
not constant, but temperature and coverage dependent functions.
For the detailed formulation of these functions the reader is
referred to [14]. From the numerical point of view
coverage-dependent activation energies are difficult, since they
introduce additional nonlinear dependencies into the balance
equations. To demonstrate this issue the rate constants were calcu-
lated at 800 K. In Fig. 2 the ranges of possible values for the forward
and backward rate constant due to composition changes on the
catalyst surface are depicted.

At low surface coverage (no influence of adsorbed species on
activation energies) the rate constants in the network already vary
over 45 orders of magnitude. While most rate constants feature
values between 100 s�1 and 1017 s�1, some rate constants are very
small, e.g. carbon desorption from the surface (10�29 s�1; reaction
24). Also, the forward and backward rate constants can differ sig-
nificantly, such that the related reactions are quasi-irreversible
either in forward or backward direction. For carbon
ad-/desorption the difference of the rate constants covers 38 orders



Table 2
Considered chemical regimes for the reduction of the microkinetic model and their
assumed representative gas phase compositions.

Regime xCH4 xO2 xH2 xH2O xCO xCO2

CPO 0.55 0.27 0.12 0.0 0.06 0.0
SR 0.41 0.0 0.14 0.41 0.05 0.0
DR 0.41 0.0 0.09 0.0 0.09 0.41
WGS 0.0 0.0 0.25 0.25 0.25 0.25
HC 0.0 0.31 0.62 0.07 0.0 0.0
CC 0.0 0.31 0.0 0.0 0.62 0.07
ALL 0.17 0.17 0.17 0.17 0.16 0.16
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of magnitude. Furthermore, for a single reaction, the species
adsorbed on the catalyst also have a significant influence on the
rate constants. As shown in the Fig. 2, reaction 5 (2OHs $ H2Os +
Os) depends strongly (16 orders of magnitude) on the amount of
species adsorbed on the catalyst. Not shown here is the influence
of the temperature, which further changes the values of the rate
constants drastically within the range of temperature relevant in
a technical process (500–1150 K).

Due to the large span of rate constants, it is very challenging to
use this complex microkinetic model for rigorous reactor simula-
tion and even more difficult for reactor optimization. Therefore,
the significance-based method presented in Section 2.2 was
applied in order to reduce the C1 microkinetic network model to
a smaller set of reaction steps.

For illustration, first the method is demonstrated for a
sub-network, namely the dehydrogenation of methane to carbon
on the rhodium surface. The relevant reactions 24–37 of the full
network are shown in Fig. 3.

The gas phase composition ðxCH4 ¼ 0:55; xO2 ¼ 0:27; xH2 ¼
0:12; xH2O ¼ 0:0; xCO ¼ 0:06; xCO2 ¼ 0:0Þ and the temperature
(800 K) were fixed. Table 1 summarizes the obtained results. In
the first row, the reaction numbers according to Fig. 3 are listed.
The second row shows the reaction rates of the original network
rj. The subsequent rows contain the recalculated distribution of
reaction rates rk

j , where the kth reaction is set to zero. The last

two lines comprise the mean reaction rate �rk and the variance sk.
Finally, the errors �k are calculated according to Eq. (4) and listed
in the last row.
Fig. 5. Reduced microkinetic model for C1 chemistry. Regimes: catalytic partial oxidation
carbon monoxide combustion for temperatures between 400 K and 1200 K
To reduce the system we allowed a maximum error of
�max ¼ 1 � 10�3. All errors larger than �max are highlighted with a
gray background color in Table 1. From these results, one can con-
clude that, for the considered reaction conditions (i.e., temperature
and the gas phase composition), the dehydrogenation of methane
mainly proceeds via a surface reaction with the hydroxide ion
accompanied by the generation of water. This pathway is much
faster than the oxidative dehydrogenation or the direct dehydro-
genation via hydrogen elimination, except the direct dehydrogena-
tion of CH (reaction 31). Furthermore, the reduction method does
not only identify the most significant reactions, but it also reveals
species that are not crucial for the accurate description of the
important chemical events on the surface. Considering the ad-
and desorption reactions 24–27 of the radical gas phase species
ðCÞg ; ðCHÞg ; ðCH2Þg , and ðCH3Þg , according to our method, these
steps are also not important, thus they do not occur in the gas
phase at the here considered reaction conditions. Therefore, the
reaction steps 24–27 and also the above mentioned gas phase spe-
cies are not taken into consideration in the reduced microkinetic
reaction network. However, all adsorbed species are still required.
The reduced network is shown in Fig. 4. In this sub-network, the
number of reactions was reduced from 14 to 5 and the number
of species from 9 to 5.
2.4. Case study: reduction of C1 microkinetic model and validation

In the next step the complete original reaction network was
reduced, which was carried out in the same way as for the dehy-
drogenation of methane shown in Section 2.3. The reduced reac-
tion network should be capable of representing different reaction
regimes being embedded in the original network, namely methane
catalytic partial oxidation (CPO), steam (SR) and dry reforming
(DR), water gas shift (WGS), hydrogen (HC) and carbon monoxide
combustion (CC), and a regime that includes all major gas phase
components (ALL) based on specified extent of reaction. The
desired validity range of the reduced kinetic model with respect
to temperature is 400–1200 K. In order to get an adequate repre-
sentation, differently reduced networks for different chemical
regimes have to be determined. Appropriate gas phase composi-
tions were chosen at which different chemical regimes are
, steam reforming, dry reforming, water gas shift reaction, hydrogen combustion and



Fig. 6. Chemical production rates ri for the original and reduced reaction kinetic model at 800 K. (���5% error; � � � � 15% error).
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dominant (as shown in Fig. 2). As evaluation temperatures 400,
600, 800, 1000, and 1200 K were used (see Table 2).

For all these reaction conditions, the reduction method was
applied. The results are shown in Tables A1–A7 of the appendix.
For clarity, only the errors (common logarithm) of the reactions
log10ð�kÞ are listed. Here, the same threshold for the error
�max ¼ 1 � 10�3 was used as for the example system. Reactions that
cause an error greater than log10ð�maxÞ ¼ �3 are highlighted with a
gray cell background. The individual reactions that are required for
each chemical regime within the considered temperature range are
also highlighted in the first row. The original reaction network was
reduced from 41 to 21 reactions (see Fig. 5). Due to the change of
the network structure, some components are not connected to the
network anymore. These isolated species were also deleted from
the reaction network. Thereby, the number of components was
reduced from 28 to 18.

To check the qualitative and quantitative agreement between
the original and the reduced network, a simulation was performed,



Fig. 7. Gas phase matter element moving through the process from time t ¼ 0 up to the final residence time t ¼ tfinal . At each time step, the gas phase is in contact with the
solid catalyst phase via a gas film.
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where the kinetic behavior with identical conditions (inlet compo-
sition, temperature, pressure, . . .) was compared. Here, we focus on
the overall production rates for the dominant gas phase species
(CH4, O2, H2, H2O, CO, CO2). The simulation was carried out at
800 K for a chemical regime where all major gas phase components
are present at equal molar amounts at the reactor inlet. The parity
plots (Fig. 6) show excellent agreement between the original and
the reduced model. All errors in the production rates of the species
are below 5%. The maximum error is found at gas phase conditions
with small hydrogen production rates (4.2% error) while the aver-
age error for hydrogen production was 0.07% and the overall aver-
age error was 0.05%. Also, for other chemical reaction regimes no
larger error between the original and reduced microkinetic model
was found.
2.5. Comparison with other reduction methods

Finally, we compare the here proposed ‘reaction significance’
based reduction method to alternative methods found in literature.
In particular we consider Elementary Flux Analysis [25], Relative
Production Rates and F-Test [32]. For all these methods, a reaction
mechanism and a temperature have to be specified.

In Elementary Flux Analysis (EFA), the reactive fluxes (sources
and sinks) for every atom (here: carbon, hydrogen, oxygen) are cal-
culated and sorted in a descending order. Then, a user-defined cut-
off is set (e.g. 1%) and all reactions below this cutoff are removed
from the network.

The method of Relative Production Rates (RPR) is similar to
Elementary Flux Analysis. However, here the focus is not on chem-
ical elements, but on molecular species (e.g. methane, water, car-
bon dioxide). For every species, the total conversion rate
(production and consumption) can be calculated. All reactions
are considered to be important, whose magnitude relative to the
total flux is larger than a user-defined threshold.

Using the F-Test, the significance of models and their parame-
ters are judged. More detailed information is provided in [32].

Applying the before mentioned reduction techniques to the
example system (C1 microkinetic network) good agreement
between the methods was achieved as shown in Table 3. Gray
blocks represent the significant reactions for the different models,
while non-significant reactions are white. The results of the here
proposed method (reaction significance) are confirmed by at least
two of the other reduction concepts, both for the significant and
non-significant reactions. All other concepts show unique results
(reaction that are significant or not), that differ in at least three
reactions from our method and the others.
The concept of ‘reaction significance’ offers the advantage that
it is a universal method and it is easy to implement. The interpre-
tation of the results is straight forward. E.g., for EFA and RPR the
case frequently occurs that a reaction is significant for a certain
species but not for another and it remains unclear whether a reac-
tion is really significant in this case. Furthermore, using the here
proposed method, a reduction with respect to the number of reac-
tions and components is achieved. For RPR this is not possible,
because at least one reaction for the production of each species
is kept. Using a user-defined threshold, there is only one degree
of freedom to steer the degree of reduction, which directly indi-
cates the obtained error in the overall flux distribution. In this
regard, other methods focus on the magnitude of the individual
reaction rates and their impact on the overall production rate for
an element/component.

The F-test-significance is very low (here 20%) as no repetitive
simulations with ‘‘experimental noise’’ are possible. Compared to
optimal reduction concepts no MINLP optimization is required
with all the additional difficulties that are introduced by imple-
menting and solving the optimization problem, where neither
globally optimal nor feasible solutions can be guaranteed.
3. Reactor optimization

3.1. Model

In this section, the application of the reduced microkinetic C1

network for the optimization of a methane reforming reactor is
presented. For this purpose, we make use of the previously pro-
posed [1] and applied [2,33,34] methodology of Elementary
Process Functions (EPF). This concept allows for a rigorous and
apparatus independent optimization of chemical processes, only
considering a representative matter element traveling through
the process. As a result, a trajectory in the state space is identified
which connects initial and final states of the fluid element, that are
not necessarily fixed. In order to steer the matter element from its
initial to the final point, the external fluxes acting at the matter ele-
ment are used, in particular the mass and energy fluxes. In the
beginning, we consider unlimited fluxes in order to identify the
maximum performance potential of this process. According to
our EPF concept, this first step is referred to as level 1. However,
for the technical realization of the proposed process concept,
unlimited fluxes are not feasible due to transport limitations.
Thus, the influence of limited fluxes on the process performance
is evaluated (level 2). In the end, this yields a technically feasible
approximation of the process (level 3).
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Here, the usage of the reduced microkinetic model with the EPF
concept for level 1 is demonstrated. A sketch of the fluid element
and the fluxes is shown in Fig. 7. The aim of the process is the pro-
duction of a hydrogen rich product gas for low temperature fuel
cell applications (e.g. PEM fuel cells). Hence, the objective is a max-
imum hydrogen concentration at the outlet of the reactor (Eq.
(13)). However, the platinum catalyst in PEM fuel cells is known
to be sensitive to carbon monoxide [35]. This yields an application
related additional constraint for the optimization to ensure oper-
ability of the fuel cell (Eq. (23)). A maximum concentration of
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10 ppm carbon monoxide shall not be exceeded. Another con-
straint is related to the rhodium catalyst (Eq. (22)). To obtain long
term stability, temperatures above 1000 K need to be avoided. The
just discussed two constraints are related to the chosen processes
and materials, but do not originate from the EPF methodology
directly.

To adequately describe this system, balance equations, thermo-
dynamic models and kinetic rate expressions are needed. The opti-
mization problem and the required equations are summarized in
Table 4. To optimize the system, a dimensionless formulation of
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Fig. 9. Flux distributions at different times during the optimization.

Table 3
Comparison of different reduction methods.
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Table A.1
Overall errors log10 �k

� �� �
of removed reaction for catalytic partial

oxidation of methane at different temperatures. Significant reac-
tions are marked in gray.
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fuel cell applications.
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ĉ g

t ¼
p gT0

pg
0 T

ð21Þ

Process constraints T 6 1000 K ð22Þ

x g
CO;final 6 1 � 10�5 ð23Þ

F. Karst et al. / Chemical Engineering Journal 281 (2015) 981–994 991
the component mass balance for all gas phase components (CH4,
O2, H2, H2O, CO, CO2, N2) was used (Eq. (14)), which accounts for
accumulation, mass transfer to the catalyst surface and external
dosing of components. Further, a total mass balance is required
(Eq. (15)). On the catalyst surface, the component mass balances
(Eq. (16)) cover all adsorbed species (free surface sites (s), Hs, Os,
OHs, H2Os, COs, CO2,s, COOHs, Cs, CHs, CH2,s, CH3,s). The catalyst is
assumed to operate at quasi-stationary conditions and the balance
accounts for mass transfer between gas phase and catalyst, and a
chemical source/sink, which includes the microkinetic model.

The mass transfer between gas phase and catalyst is described
with the Maxwell–Stefan equations (Eq. (19)). The matrix of diffu-
sion coefficients Dij was estimated with the help of literature cor-
relations [36, p. 11.5]. The thermodynamic behavior of the
system is described by ideal gas law (Eq. (21)).

As optimization variables the external mass fluxes ji of
methane, water, and oxygen were chosen along with the optimal
temperature profile.

To find the optimal solution, the DAE constrained optimization
problem was discretized in time using orthogonal collocation on
finite elements [37]. The resulting system of nonlinear algebraic
equations was implemented in AMPL [38] and solved with the
algorithm CONOPT [39]. Solving the optimization problem took
roughly 22 min on a desktop computer (Intel(R) Core(TM)2 Duo
E8400 CPU @ 3.00 GHz; Ubuntu 10.04 operating system, 2 GB
memory).
Table A.2
Overall errors log10 �k

� �� �
of removed reaction for steam reforming

of methane at different temperatures. Significant reactions are
marked in gray.



Table A.3
Overall errors log10 �k

� �� �
of removed reaction for dry reforming of

methane at different temperatures. Significant reactions are
marked in gray.

Table A.4
Overall errors log10 �k

� �� �
of removed reaction for water gas shift

regime at different temperatures. Significant reactions are marked
in gray.
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3.2. Results

According to the obtained optimal results (Fig. 8), the matter
element initially starts at a moderate temperature (720 K) and is
heated up until it reaches the maximum feasible temperature
(1000 K). This accelerates the reaction and leads to a fast steam
reforming of methane at high temperatures. Significant amounts
of hydrogen and carbon monoxide are formed, while only a small
quantity of carbon dioxide (6 2%) is generated. No dosing of
methane, water or oxygen is desirable during the steam reforming
process, but all available methane and water should be fed at the
reactor inlet. The catalyst surface mainly consists of free surface
sites (P 60%) due to the high process temperature. The most dom-
inant species is dissociated hydrogen (Hs) with approx. 30%.

After methane steam reforming, a regime shift is initiated by
rapidly reducing the temperature of the matter element from
1000 to 500 K and dosing of a discrete oxygen peak at a reduced
temperature of approximately 830 K. The injection of oxygen at a
higher temperature would result in combustion of hydrogen and
partial or total oxidation of methane. At this reduced temperature,
oxygen is mainly used for the reduction of the carbon monoxide
concentration. This step is essential to ensure an output concentra-
tion of 10 ppm or less for the further use of the product gas in low
temperature PEM fuel cells. Also, small amounts of hydrogen and
methane are oxidatively converted as can be seen from the gas
phase concentration profiles. The concentration of carbon monox-
ide is reduced by preferential oxidation from 2.7% to 10 ppm. The
amount of carbon dioxide increases from 1.6 to 4.2%. During the
preferential oxidation the temperature is decreasing monotoni-
cally. This does not only prevent the parallel oxidation of the
Table A.5
Overall errors log10 �k

� �� �
of removed reaction for hydrogen

combustion at different temperatures. Significant reactions are
marked in gray. The rates of reactions 10 to 41 is zero because
no carbon is available in this regime.



Table A.6
Overall errors log10 �k

� �� �
of removed reaction for carbon

monoxide oxidation at different temperatures. Significant reac-
tions are marked in gray.

Table A.7
Overall errors log10 �k

� �� �
of removed reaction for an equimolar

gas mixture at different temperatures. Significant reactions are
marked in gray.
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desired hydrogen but also affects the equilibrium of the water gas
shift reaction to further convert carbon monoxide and water to car-
bon dioxide and hydrogen. The regime shift is most apparent on
the catalyst surface, where the composition changes drastically.
Due to the lower temperature, the portion of free active sites grad-
ually decreases, while the dehydrogenated methane species (espe-
cially CH2,s and CHs) are more dominant. Also, an increased amount
of adsorbed carboxylic groups (COOH) on the surface is obtained.

Due to the chemical regime shift from methane steam reform-
ing to water gas shift reaction and preferential oxidation of carbon
monoxide, also the flux distribution in the reaction network
changes significantly as illustrated in Fig. 9. Here, the individual
net (sum of forward and backward) reaction rates and their direc-
tions are shown for a typical steam reforming (Fig. 9(a)) and pref-
erential oxidation (Fig. 9(b)) regime.

During steam reforming, major parts of the reaction network
are active. The conversion of methane proceeds via dissociative
adsorption on the catalyst surface and a further dehydrogenation
to carbon, which then forms carbon monoxide and carbon dioxide.
The required oxygen is provided by water dissociation, whereby
large amounts of hydrogen are formed. As oxygen is not fed to
the system and therefore is not present in the gas phase, oxygen
adsorption/desorption on the catalyst surface basically does not
take place.

During the preferential oxidation of carbon monoxide, the flux
distribution in the reaction network changes significantly. First of
all, oxygen adsorption is the fastest step in the reaction network
and methane is no longer consumed. The reaction pathway for
methane has even turned towards methanation, but the reaction
rates are rather small and no significant methane generation takes
place according to the methane concentration profile (Fig. 8). To
convert carbon monoxide to carbon dioxide, CO reacts with OHs

either directly or via an adsorbed carboxylic group to carbon diox-
ide, but the direct oxidation of CO with Os does not take place. Due
to the changed reaction conditions, hydrogen also re-adsorbs on
the Rhodium surface and is being oxidized to water.

The optimal results have been validated with the original reac-
tion network. Under identical temperature and dosing profiles, the
final molar fraction for hydrogen was 12.54%, which differs by
Dx g

H2
¼ 0:016% (relative error: 0.13%) from the value determined

with the reduced reaction network ðxg;final;�
H2

¼ 12:53%Þ.
4. Conclusion

In this contribution, a new method for the reduction of complex
microkinetic networks that consider elementary steps is proposed
and illustrated. This is especially helpful for the optimization of
chemical reactors, where on the one hand detailed rate expressions
are desirable that are valid and accurate over large ranges of tem-
perature, pressure, and composition. On the other hand simple and
manageable models with favorable numerical properties especially
regarding scaling and model complexity are desired.

For our proposed reduction method, emphasis is put on the
resulting error between the original and the reduced reaction
model to ensure quantitative agreement. A sensitivity study was
performed to determine the influence of every reaction step on
the flux distribution in the network at different chemical regimes.
This reduction technique was applied to a microkinetic reaction
network for C1 chemistry [14]. The original and reduced networks



994 F. Karst et al. / Chemical Engineering Journal 281 (2015) 981–994
were further compared and a validation showed an average overall
error of less than 0.05% in the predicted production rates.

Because of its general formulation, this reduction technique is
also applicable to other chemical or biochemical reaction networks
of arbitrary complexity and structure. This reduction method is
easy to implement and no additional solver or optimization pack-
ages are required. Compared to other methods, we directly focus
on the overall network error that is introduced by the modified
network, rather than only taking the magnitude of the reactions
in account, while fulfillment of the mass balance is still ensured.
A single parameter �crit steers the degree of reduction in the num-
ber of reactions and the number of components.

The reduced reaction network was successfully used to derive
an optimal methane reforming reactor for fuel cell applications
based on dynamic optimization. The results indicate a segmented
reactor concept with isothermal methane steam reforming at high
temperature in the beginning and an oxygen dosing strategy and
temperature reduction for the preferential oxidation of carbon
monoxide to carbon dioxide afterwards. It was further shown that
the reaction flux distribution in the network significantly changes
due to the different chemical regimes, which further emphasizes
the need of adequate microkinetic reaction models for the reliable
optimal design of chemical reactors.
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