Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Subnetwork Analysis for Multistationarity in Mass Action Kinectics

MPG-Autoren
/persons/resource/persons86167

Flockerzi,  D.
Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86157

Conradi,  C.
Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Flockerzi, D., & Conradi, C. (2008). Subnetwork Analysis for Multistationarity in Mass Action Kinectics. Journal of Physics: Conference Series, 138, 012006. doi:10.1088/1742-6596/138/1/012006.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-9684-0
Zusammenfassung
Since quantitative knowledge of the complex (bio)chemical reaction networks is often very limited, formal methods that connect network structure and dynamic behavior are needed in mathematical modeling and analysis. Feinberg's Chemical Reaction Network Theory allows for the classification of the potential network behavior, for instance, with respect to the existence of multiple steady states, but is computationally limited to small systems. Here, we show that by analyzing subnetworks associated to stoichiometric generators, the applicability of the theory can be extended to more complex networks. Moreover, based on mild conditions regarding multiststionarity of such subnetworks, we present an algorithm which establishes multistationarity in the overall network. For example-networks inspired by cell cycle control in budding yeast, the approach allows for identification of key mechanisms for multistationarity, for model discrimination and for robustness analysis. The present paper continues and extends our work that has appeared in PNAS (cf. [6]). © 2013 IOP Publishing [accessed 2013 June 14th]