

PRISM

System Specification

Handbook

Version 1.0

Edited by:

Eric Guilyardi, Reinhard Budich, Guy Brasseur and Gerbrand Komen

 2

 3

PRISM

System Specification

Handbook

Version 1.0

 4

 5

PRISM
System Specification

Version 1.0

Edited by

Eric Guilyardi

Centre for Global Atmospheric Modelling; University of Reading, United Kingdom

Reinhard G. Budich

Max Planck Institut für Meteorologie, Hamburg, Germany

Guy P. Brasseur

Max Planck Institut für Meteorologie, Hamburg, Germany

Gerbrand Komen

Het Koninklijk Nederlands Meteorologisch Instituut, The Netherlands

February 2003

 6

ISBN Nr. 90-369-2217-8

This handbook in its most recent edition can be found under http://prism.enes.org

It can be ordered via email from prism-director@enes.org .

 7

Contributors

MICK CARTER
Hadley Centre for Climate Prediction and
Research, United Kingdom

CORINNE LEQUERÉ
Max Planck Institut für Biogeochemie, Ger-
many

GABRIELLA DEMARTINO
Koninklijk Nederlands Meteorologisch
Instituut, Netherlands

ANGELO MANGILI
Centro Svizzero di Calcolo Scientifico,
Eidgenössische Technische Hochschule
Zürich, Switzerland

RALF DÖSCHER
Rossby Centre, Sveriges meteorologiska
och hydrologiska institut, Sweden

SERGE PLANTON
Météo-France, France

HELGE DRANGE
National Energy Research Scientific
Ccomputing Center, Norway

JAN POLCHER
Institute Pierre Simon LaPlace, France

THIERRY FICHEFET
Université Catholique de Louvain-la-Neuve,
Belgium

RENÉ REDLER
C&C Reserch Laboratories NEC Europe Ltd.,
Germany

MARIE-ALICE FOUJOLS
Institut Pierre Simon Laplace, France

MARKKU RUMMUKAINEN
Rossby Centre, Sveriges meteorologiska och
hydrologiska institut, Sweden

ERIC GUILYARDI
Centre for Global Atmospheric Modelling
University of Reading, United Kingdom

MARTIN STENDEL
Danmarks Meteorologiske Institut, Denmark

ROSALYN HATCHER
Hadley Centre for Climate Prediction and
Research, United Kingdom

HANNES THIEMANN
Modelle & Daten, Max PlanckInstitut für
Meteorologie, Germany

LUIS KORNBLUEH
Max Planck Institut für Meteorologie,
Germany

SOPHIE VALCKE
Centre Européen de Recherche et de
Formation Avancée en Calcul Scientifique,
France

CLAES LARSON
European Centre for Medium-Range
Weather Forecasts, International

NILS WEDI
European Centre for Medium-Range
Weather Forecasts, International

STEFANIE LEGUTKE
Max Planck Institut für Meteorologie,
Germany

 8

 9

Foreword to the PRISM System Specification

Guy Pierre Brasseur and Gerbrand Komen

PRISM and ENES co-coordinators

A major challenge for the climate research community is the development of comprehensive Earth
system models capable of simulating natural climate variability and human-induced climate
changes. Such models need to account for detailed processes occurring in the atmosphere, the
ocean and on the continents, including physical, chemical and biological processes on a variety of
spatial and temporal scales. They have also to capture complex nonlinear interactions between the
different components of the Earth system and assess how these interactions can be perturbed as a
result of human activities.

Accurate scientific information is required by government and industry to make appropriate deci-
sions regarding our global environment, with direct consequences on the economy and lifestyles. It
is therefore the responsibility of the scientific community to accelerate progress towards a better
understanding of the processes governing the Earth system and towards the development of an
improved predictive capability. An important task is to develop an advanced software and hardware
environment in Europe, under which the most advanced high resolution climate models can be
developed, improved, and integrated. To achieve this, over 30 institutions, including university de-
partments, research centres, meteorological services, computer centres and industrial partners are
collaborating in a European Network for Earth System Modelling (ENES, http://www.enes.org).

One of the activities fostered by ENES is the European Union's PRISM infrastructure project,
which will provide a flexible environment to easily assemble and run Earth System Models
(http://prism.enes.org). The present handbook, produced by the PRISM System Specification Work
group under the chairmanship of Eric Guilyardi, is the result of the first phase of the project. The
work group was appointed by the PRISM Steering Committee in January 2002 to ensure proper
gathering of inputs and requirements from the scientific and technical communities. It surveyed
existing solutions, tools, and associated expertise the project can benefit from. The handbook pro-
vides the basis for further implementation of the PRISM infrastructure. In particular, the PRISM
model assembly work package will now collect and integrate the component models and the
PRISM software packages as they become available.

We expect the handbook to be a living document, that will stimulate discussion about standards in
Earth System modelling, not only in Europe but also in research communities elsewhere in the
world. The PRISM System Specification Work group will continue to be active and welcomes
comments (ericg@met.reading.ac.uk).

We acknowledge the hard work and dedication of the PRISM System Specification Work group
and PRISM Director Reinhard Budich in compiling this volume.

 10

 11

 Content

CONTRIBUTORS.. 7

FOREWORD TO THE PRISM SYSTEM SPECIFICATION .. 9

CONTENT .. 11

EXECUTIVE SUMMARY .. 15

REDOC ... 19

I - SCIENTIFIC AND FUNCTIONAL REQUIREMENTS .. 19
I.1 Scientific Aspects... 19

I.1.1 PRISM components .. 19
I.1.2 Conservation principles... 19
I.1.3 Universal parameters... 20
I.1.4 General Recommendations.. 21

I.2 Inputs to Components and Physical Interfaces ... 22
I.2.1 Introduction... 22
I.2.2 Discussion ... 23

I.3 Simulations and Coupling Configuration.. 25
I.3.1 List of Simulations .. 25
I.3.2 Coupler Requirements... 26

I.4 End User Interface .. 35
I.4.1 Functional Requirements... 35
I.4.2 Operational Requirements... 42

II - DESIGN OPTIONS FOR THE PRISM ARCHITECTURE ... 43
II.1 PRISM System General Architecture.. 43

II.1.1 Terminology and Concepts ... 43
II.1.2 System model .. 46
II.1.3 Software life cycle... 50
II.1.4 Security ... 51
II.1.5 Specific Design Choices and Constraints.. 53
II.1.6 Software Packages Investigated .. 53
II.1.7 Discussion on the architectural choices... 55
II.1.8 Cooperating systems ... 56
II.1.9 Risks.. 57

II.2 PRISM Coupler, Including Coupler Review... 59
II.2.1 Introduction - Definitions.. 59
II.2.2 Possible Requirements and Design Options for the PRISM Coupler .. 62
II.2.3 Coupler review.. 73

II.3 Data Management, Analysis, Visualization and Archiving .. 79
II.3.1 Processing Library .. 79
II.3.2 Visualisation.. 79
II.3.3 High Level Architecture.. 80

II.4 PRISM user interface.. 83
II.4.1 Design Options and Constraints .. 83
II.4.2 Commercial Components.. 84
II.4.3 Hardware/Platform Interfaces ... 84
II.4.4 Software Interfaces.. 84
II.4.5 Communication Interfaces .. 84
II.4.6 Performance .. 84
II.4.7 Extensibility .. 85

III - PRISM SYSTEM CONSTRAINTS... 87
III.1 Review of Component Models .. 87

III.1.1 List of Models ... 87

 12

III.1.2 Technical Aspects ... 88
III.2 Review of Existing and Future Target Computer Platforms... 91

III.2.1 Evolution of the HPC Market.. 91
III.2.2 HPC Architectures: State-of-the-Art and Trends... 92
III.2.3 Conclusion and Recommendations ... 97

III.3 Software Engineering Process, Coding Rules and Quality Standard... 99

ARCDI... 103

I - BASIC CHOICES .. 103
I.1.1 PRISM Components.. 103
I.1.2 Conservation Principles... 103
I.1.3 Universal parameters... 103

II - A PROPOSAL FOR STANDARD ATMOSPHERE/OCEAN/SEA ICE INTERFACES ... 105
II.1 Introduction .. 105
II.2 Interface design constraints.. 105

II.2.1 General constraints.. 105
II.2.2 Model components constraints.. 106

II.3 The Proposal... 107
II.3.1 Introducing new modules .. 108
II.3.2 Physical interfaces... 109
II.3.3 Discussion ... 110

III - SYSTEM ARCHITECTURE.. 111
III.1 Introduction .. 111
III.2 Terminology and Concepts ... 112
III.3 The Local System, a Basis for Development... 113
III.4 Architecture of the Generalized Web Services Concept ... 113
III.5 From Analysis to Design: The Process-to-Component-Translation of the PRISM System 116
III.6 Proposed Architecture .. 124
III.7 Specifications, Definitions and Standardized Interfaces Needed for the Implementation of the System 127
III.8 From Design to Implementation: The Component-to-Deployment Translation 128
III.9 Implementation Plan, Deliverables and Desirables ... 130
III.10 Integration with other Projects... 133
III.11 Risks.. 134

IV - SYSTEM COMPONENTS .. 135
IV.1 PRISM Coupler and I/O Library .. 135

IV.1.1 Coupled Model High Level Architecture .. 135
IV.1.2 Detailed Functionalities for the PRISM Coupler and I/O Library... 140

IV.2 Diagnostics and Visualization .. 153
IV.2.1 Introduction... 153
IV.2.2 Meta-Data and File Format Definitions for Model Output and Data Exchange .. 153
IV.2.3 High-level Architecture... 154
IV.2.4 Processing Library .. 155
IV.2.5 Visualization ... 157
IV.2.6 Archiving .. 160
IV.2.7 Statement of licensing ... 160

IV.3 User Interfaces ... 161
IV.3.1 Introduction... 161
IV.3.2 General Implementation.. 161
IV.3.3 Administration Interface ... 162
IV.3.4 Adaptations ... 162
IV.3.5 New features ... 164

V - SOFTWARE ENGINEERING PROCESS, CODING RULES, AND QUALITY STANDARDS....................................... 165
V.1 Introduction .. 165
V.2 General Software Development Guidelines.. 166
V.3 Coding Conventions for the Development of PRISM Components... 167
V.4 Component and Unit Testing .. 182
V.5 System Testing and Validation.. 184
V.6 Code Maintenance Issues ... 186

 13

REFERENCES ... 191

GLOSSARY .. 193

APPENDICES: ... 201

APPENDICES TO REDOC I.2.:... 202

APPENDICES TO REDOC I.2.:... 202

APPENDIX TO REDOC I.3: .. 226

TABLES .. 235

FIGURES .. 237

 14

 15

Executive Summary

This document presents the first version of the PRISM System Specification Handbook. It surveys
the existing solutions, tools, and associated expertise the project can benefit from. The document
consists of two parts. The first part, "Requirements, Design Options, and Constraints" (REDOC)
summarizes the requirements on a coupling system that is regarded as 'ideal' in the sense that it
fits the perceived long-term (order 5/10 years) requirements of the scientific community undertak-
ing earth-system simulations, both from a scientific point of view as well as from the users point of
view. It gives in addition relevant design options as well as foreseeable constraints by models and
technologies. The second part, "Architecture Choices, Detailed Design, and Implementation" (AR-
CDI), describes the actual choices that will guide the work envisaged for the 3 years of the project.
Due to the numerous interactions between the groups, several issues are not yet resolved or even
foreseen and will require more inputs from the community. Hence this first version of the handbook
(and in particular ARCDI) should be understood as evolving working documents.

Science: Subsystems of the PRISM earth system model are: atmosphere, atmospheric chemistry,
land surface, ocean, ocean biogeochemistry, and sea ice. These components can be either global
or regional. The main scientific principles that will be followed are: physically based local conserva-
tion of fluxes across coupling interfaces and global conservation of heat, water, ocean salt content,
as well as (biogeo-) chemical species. Parameters and functions common to more than one com-
ponent model will also be consistently defined (i.e., earth radius, π, gravity...).

Standard PRISM physical and algorithmic interfaces between components are proposed, inviting
the modelling teams both to comment them and to organize their developments to adopt them over
time. Though clear guidance will be given for the implementation, it is not expected that all models
will comply with the proposed physical interfaces within the first three years of the project. Thus,
the initial assembly and testing of the PRISM system will use non-standard physical interfaces.
This possibility will remain an option in the final PRISM system. Particular treatment of atmosphere
/ atmospheric chemistry and ocean / ocean biogeochemistry interfaces is needed since the models
share the same physical space and hence many physical processes.

As of Sept 2002 about 30 models (global and regional) have expressed interest to be part of the
PRISM system:

Atmosphere: ARPEGE-Climat, ECHAM5, HIRHAM, LMDZ, RACMO, RCA, Unified Model atmos-
phere, HadRM3H;

Atmospheric chemistry: INCA, KNMI_TM, MOZART;

Land surface: ISBA, MOSES, ORCHIDEE, RCA-soil;

Ocean: C-HOPE, MICOM, MOM, HYCOM, OPA, RCO, Unified Model Ocean;

Sea ice: LIM, NERSC, RCI, UMI;

Ocean biogeochemistry. HADOCC, PISCES, HAMOCC.

Technical development: The core of the PRISM technical developments consists of the system
architecture, the PRISM coupler and I/O library, the diagnostic output library and the user interface.

The PRISM system architecture will deliver the infrastructure necessary to configure, submit and
monitor coupled experiments. The design will allow these activities to be done remotely, via the

 16

web. A local system will be provided to enable model developers to run the configuration tool with-
out the web service infrastructure to test their models. The local system is based on the same
software to ensure a transparent transition between the local and the web services infrastructure
system. A centralized architecture that minimizes the administration and duplication of resources
will best fulfil the PRISM requirements (remote access, modularity, extendibility). The system pro-
posed will meet the specific demands of the three types of actors within PRISM: the users, the
model developers and the PRISM system administrators. The PRISM system architecture will
benefit from proven software packages and expertise available within the community (PrepIFS,
SMS,...).

The PRISM coupler will drive the whole coupled model, ensuring the synchronization of the
different component models and the exchange of the coupling fields directly between the
components or via additional coupling processes. When needed, the coupler will perform
transformations on the exchange fields. Another important part of the coupler is a library linked to
each component model by which they are interfaced to the rest of the PRISM system. As I/O and
data exchange share many characteristics, it was decided to develop one common model library
for both purposes. The different constituents of the PRISM coupling system are therefore the
Driver, the Transformer, and the PRISM System Model Interface Library (PSMILe). The PSMILe
includes the Data Exchange Library, which performs the exchanges of coupling data, the I/O
library, coherence checks of metadata and data, and local transformation routines. This PRISM
coupler will benefit from the expertise gathered with the OASIS coupler, developed at CERFACS
and used extensively by the community.

For diagnostic outputs, a flexible library of tools will be built to facilitate processing and analysis of
data in the common PRISM data format and to promote sharing of data and analysis programs.
High-End and Low-End graphical interfaces, respectively local and remote, will be developed to
process and display the data. The meta-data standard chosen for the output of PRISM model data
and for data exchange is the CF convention. NetCDF will be the supported file format for output
and data exchange but the system design will allow for other file formats to be added. NetCDF-CF
is emerging as the international standard for earth system and climate data and its use is
encouraged in the PRISM community.

A PRISM Software Developer's Guide specifies guidelines, conventions, and standards for design,
implementation, documentation, and quality assessment of any software that will be developed in
the frame of the PRISM project under the consideration of portability, sustained performance, and
ease of use.

 17

Requirements,
Design Options,
Constraints:

REDOC

 18

 19

REDOC

I - Scientific and Functional Requirements

I.1 Scientific Aspects

The PRISM model components and their general relations are defined, and scientific
principles, which need to be obeyed for any combination of components, are presented. Global
parameters that need to be consistently defined in all components are discussed.

I.1.1 PRISM components

Understanding the climate system is one of the great challenges at the beginning of the
millennium. Coupled Climate Models (CCMs) are the most comprehensive tools to study the
climate system and the mechanisms through which the different components interact. However,
these models can be extremely complex, therefore care must be given to the technical aspects of
the CPU intensive simulations based on such CCMs, as well as on the physical interactions
between their components.

In the framework of the PRISM project, an attempt is undertaken to bring models of subsystems of
the climate into a common framework. The following components are involved in PRISM:
atmospheric general circulation models (AGCM), atmospheric chemistry models (AC), ocean
general circulation models (OGCM), models of the ocean biogeochemistry (OC), land surface (LS)
and sea ice (SI) models. The component models can be global or regional. The envisaged
modularity of the PRISM system would allow to include additional components such as ocean
waves, continental ice sheets, and volcanic or solar models.

I.1.2 Conservation principles

Field exchange between the PRISM components should meet all conservation laws, and unphysi-
cal internal sinks in the coupled model should not exist. This is a prerequisite for the coupled model
to be able to run stable simulations for indefinitely long time periods (e.g. paleo simulations). Ide-
ally, all conservation laws have to be satisfied locally up to the accuracy of the algorithms em-
ployed in the models. A scheme that is locally conservative necessarily guarantees the positive
definiteness of non-negative quantities. This would imply global conservation as well, provided that
all fluxes are consistent across interfaces, or in other words, that sinks in one model component
have a corresponding source in the component at the other side of the interface. The exchange of
any specific quantity between component models should be accompanied by the exchange of
other quantities associated to it in the source model and subject to a conservation law. If for exam-
ple the formation of snow in a particular atmospheric model goes along with the release of latent
heat of fusion, the same amount of heat of fusion must enter the ocean when the snow falls into
the ocean. Likewise, if raindrops do not change temperature in the atmosphere during their lifetime
after formation, then no sensible heat flux should occur with the flux of precipitated water. Accord-
ingly, conservation laws can be formulated for continental or glacier/ice sheet runoff. Conservation

 20

laws are also required for biogeochemical elements (i.e. C, P, N, S, Si, Fe, ...) and isotopes (14C,
13C, 17O, 18O, 15N, ...).

I.1.3 Universal parameters

To allow for a meaningful communication between the components of PRISM, additional
prerequisites need to be met. In particular, universal parameters (i.e. parameters and equations
common to more than one PRISM component) need to be consistently defined. The following list
gives some examples:

Astronomical parameters Earth radius

Calendar used (this determines length of day and year and angular
velocity)

Physical parameters Gravity acceleration
Solar constant and its variability
Latent heat of fusion/evaporation for ice/water
Density of pure/sea water
Specific heat of pure/sea water
Reference density of sea water
Stefan-Boltzmann constant
Full equation of state for sea water (density as a function of temperature,
salinity and pressure)

Model parameters Initial and stop date of experiment/run
Length of integration
Frequency of saving restart files
Frequency of saving analysis files

Table 1: Examples of Universal Parameters

Of particular importance is the choice of the model calendar, which is essential to synchronise and
control the flow of the PRISM system and to trigger events of the PRISM components. Models use
calendars with a constant number of days per year (30 days per month or 365 days per year
ignoring leap years) or the standard Gregorian calendar with 365 or 366 days per year. Other
calendars with orbital characteristics different from the present ones of the earth (e.g. different
lengths of days) may be needed for paleo simulations or simulations of other planets. While the
Gregorian calendar should be preferred, it is essential that the other options are not excluded in
the PRISM specifications. However, the same calendar must be used by each component in a
coupled simulation.

Several calendar/time-control tools exist, and three of them are currently under investigation,
namely

• The ECHAM5 tool developed at MPI-HH,

• The ESMF tool developed at NCAR, and

• The IOIPSL module.

A summary of functionalities as well as comments on the ease of use of the tools and a
recommendation for use will be distributed in the near future.

 21

I.1.4 General Recommendations

Other points raised during the discussions of the by PRISM system specifications:

• Atmosphere models are sometimes coupled to simplified versions of other components of
the climate system (e.g. soil water and energy sub-component, simplified chemistry,
mixed-layer ocean, thermodynamic sea ice, ...). The PRISM system should be able to
preserve fast communication with these simplified components.

• From a physical point of view, sea ice and the upper ocean are intimately linked (sea ice
is the solid phase of sea water), and sea-ice growth, decay, and drift mutually affect
thermodynamics and dynamics of the oceanic mixed layer. Treating them independently is
considered as problematic. If the sea ice - ocean system is to be separated into two
components, it will be necessary to at least adhere to the following two requirements:

o Sea ice and ocean grids should be congruent and the former should have a resolution
at least equal to that of the latter. This is important in order to ensure conservation of
freshwater, salt, heat and momentum both locally and globally. It is also crucial for
appropriately resolving the ice front and horizontal freshwater fluxes at the interior of
the ice pack.

o Sea ice and ocean model time steps should be equal in order to guarantee that sea
surface temperatures remain above the freezing point (or close to it if super-cooling is
allowed) and that variations in mass, energy and momentum exchanges between the
ice cover and the mixed layer occur on realistic time scales.

• The relation of RCMs to the global PRISM system components is rather straightforward. A
global model component feeds into the corresponding component of an RCM, at the
lateral, and in some cases, at the upper or lower boundaries. The relation can be one-way
(GCM to RCM) or two-way (the RCM also returns information to the GCM). The latter is
not planned during the PRISM project phase. Coupling may be online or offline. In online
coupling, a GCM and a RCM are run concurrently, in offline calculations the GCM data
are read from disk.

RCMs require large-scale forcing data at their lateral (geographical) boundaries in addition to the
forcing data needed also by GCMs. When these data are provided by a GCM in an on-line coupled
simulation, the RCM needs to lag the GCM sufficiently so that temporal interpolation between two
successive lateral boundary data sets can be done. Interpolations in time and space have to be
performed in order to obtain boundary data at the RCM's resolution and time-step.

 22

I.2 Inputs to Components and Physical Interfaces

At a first stage in the design of standard physical interfaces, an attempt was made to list all
the inputs to the physical components identified in PRISM. A discussion of these initial lists follows.
The second stage of this design is made in ARCDI with a proposal of standard physical interfaces.

I.2.1 Introduction

The definition of a standard set of physical and algorithmic interfaces between the different PRISM
component models is done in a two-stage process. First, each component model group (PRISM
WP3b-h leaders and respective communities) was asked to list all inputs required by each
component model to solve its prognostic/diagnostic equations. The list of inputs should be model
independent and solely based on the modelled aspects of the physics of the earth system as we
know it today, and on those aspects we anticipate to become important in future modeling studies.
For each identified physical field the following was required:

1. An explanation of why this field is needed (corresponding process),

2. The SI unit

3. The shortest time scale that will presumably be physically resolved in future developments

4. Issues (like sub-grid scale, multiples options ...)

5. Rating (Essential, Desirable, May-be, Unlikely in the next 5-10 years)

6. Likely model component origin of field (Atmosphere, Atmospheric Chemistry, Land Surfaces,
Ocean, Sea Ice, Ocean Biogeochemistry)

Work Package Leader Related documents / Appendices under

http://prism.enes.org/

3b Atmosphere Serge Planton Results/Handbook/Appendices/redoc_I.2_App_atmos.html

3c Atmospheric chemistry Guy Brasseur Results/Handbook/Appendices/redoc_I.2_App_atmoschim.html

3d Land surfaces Jan Polcher Results/Handbook/Appendices/redoc_I.2_App_lss.html

3e Ocean Eric Guilyardi Results/Handbook/Appendices/redoc_I.2_App_ocean.html

3f Sea ice Helge Drange Results/Handbook/Appendices/redoc_I.2_App_seaice.html

3g Ocean Biogeochemistry Corinne Le Quéré Results/Handbook/Appendices/redoc_I.2_App_oceanbio.html

3h Regional models Markku Rummukainen Results/Handbook/Appendices/redoc_I.2_App_regional.html

Table 2: Links to the input required for the standard physical and algorithmic interface

The results of the first round can be found at the sites given in Table 2.

 23

Once these inputs were gathered, the definitions of the interfaces started. A couple of meetings
and many email discussions were needed to launch this ambitious goal in the community. First
results and analyses are presented below in the discussion section. This is an on-going process
which will continue until all the groups involved agree on a common forward looking set of physical
interfaces.

I.2.2 Discussion

A rapid inspection revealed that the interfaces need to be discussed again as they are too close to
the current state of models and are not forwarding looking enough for an adoption within PRISM.
Some of the critical points, which were noted are reported here.

Sub-grid scale surface heterogeneities of sea ice are very large at the resolution of presently used
global models and it does not seem satisfactory to compute grid averaged fluxes over the coarse
grid of an atmospheric model without any knowledge of the diversity of the surfaces. It thus seems
foreseeable that there will be a need in the near future to account for these inhomogeneties in the
computation of the fluxes at the atmosphere surface and therefore the physical interface should
include the information needed to do this.

The approach used by the atmospheric group, to require the inputs separately from the various
surfaces, is very forward looking. It opens a lot of doors for future development. In the same way
the ocean interface should discriminate between the inputs on the sea-ice fractions and the open
water in order to allow for parameterizations taking into account strongly localized processes (e.g.
convection in leads).

Furthermore, one expects that the time scales at which these fluxes are computed become critical
when the diurnal cycle needs to be taken into account and that there is a need for the sea-ice to be
coupled to the planetary boundary layer of the atmosphere model. Thus the interfaces of the land
surface and the sea-ice to the atmosphere should be very similar. As one may note in the table for
the atmosphere, all surfaces are expected to provide different quantities. This means putting a
heavy burden on the atmosphere models and is a potential impediment to future developments. It
should be examined in detail why this is so and whether this difference can be based on physical
principles or whether it is only due to some historical heritage. The distinction between the land
surfaces and the ocean can be understood since their time scales of response to atmospheric
forcing are different, but it is not obvious that there should be a distinction between land surface
and sea-ice.

The difference in ocean and land-surface treatment raises the question whether we wish to cut
ourselves off from the possibility of having a fast reacting ocean layer. It will need to be discussed
in detail where the differences are and how they need to be treated as they bring a lot of
complexity to those atmosphere models, which include both interfaces.

The atmospheric chemistry input table contains variables, which are from existing models and will
probably evolve in the years to come. This will need to be factored into the proposed interface. The
most prominent example for the evolution would be the distinction between convective and
stratiform precipitation, which will disappear as cloud parameterizations become more complex.
For the land surface it was chosen during the development of the PILPS-4c interface (Polcher et al.
1996) to request grid-box average and variance from the atmosphere (or another description of the
second moment of the distribution) as they are more general and correspond to a general
mathematical description of the sub-grid scale variability.

 24

The proposed interfaces should avoid using model dependent variables. Examples for the latter
type would be surface field capacity, temperature of the top soil layer, or vegetation type. These
variables are conceptual in nature and can thus not be compared at our scales to observations and
the range of values will vary greatly from one land-surface scheme to another. It does not seem
very wise to base a general interface on these model dependent variables since they will change
when for instance modifications will be made to the vertical discretisation or the representation of
vegetation types. Their meaning will also change from one model to another as one model will for
instance use biomes types for it's vegetation classes while the other will prefer plant functional
types.

In many tables, surface temperature is used as a variable without any distinction being made
between radiative surface temperature and the variable used in the turbulent exchange with the
atmosphere. These two variables are of different nature and are linked to distinct physical
processes. In some models they might be interchangeable but this is not generally true.

These issues need to be discussed again in detail and new proposals made (see ARCDI) before
some final interfaces are adopted for PRISM.

 25

I.3 Simulations and Coupling Configuration

In order to capture the scientific requirements of coupled simulations that should be feasible
with the PRISM system both on the short term or at a later stage, desired and foreseen coupling
configurations and associated coupler functionalities have been investigated by a questionnaire
and ranked by the PRISM community. The evaluated questionnaire and comments can be found at
http://prism.enes.org

I.3.1 List of Simulations

The PRISM system consists of a multitude of atmosphere, ocean, chemistry, land surface, sea ice
and ocean biogeochemistry models, both global and for regional sub-domains (see list of models in
ARCDI I.3).

These can be combined in different configurations. The simplest configuration of the PRISM
system involves a coupled atmosphere/ocean model. Coupling of atmospheric and ocean models
has been performed at a number of institutions for several years now. The PRISM system will
allow for more complex configurations by adding modules for land surface, sea ice, atmospheric
chemistry and oceanic biogeochemistry. Several combinations with different degrees of complexity
are possible.

The inclusion of the other modules is a rather novel approach. Therefore a list of desirable
simulations that should be feasible with the PRISM system both during the runtime of the project
and in a longer perspective has been set up from the response of the modelling community to a
questionnaire. The result is tabulated in appendix 'REDOC I.3 Requirement summary table'.

Regional coupled simulations proposed by the PRISM community for the runtime of the PRISM
project are:

• Offline simulations driven by external dynamical fields which are read from files at given
time intervals (e.g. GCM->RCM offline coupling)

• Interactive (online) simulation

• Regional chemical/transport model nested into a global chemical/transport model

• Run the regional simulation consisting of only a regional atmosphere and land surface
model or alternatively a regional ocean and sea ice model. This means that the global
model would provide the lateral boundary conditions for the atmosphere and the ocean,
respectively, and the appropriate set of surface forcing over the regional domain.

• For regional models in PRISM, the aim should be to have the same flexibility of multiple
coupling interfaces as in global model systems, i.e. concerning each of the atmosphere -
ocean, atmosphere - land surface, land surface - ocean, atmosphere - sea ice and sea ice
- ocean links

• It is necessary to run the regional simulation for any part of the globe

Simulations more likely to be done after the first PRISM project phase are:

• For regional models: simulations with same degree of complexity as in global simulations.

 26

• For ocean biogeochemistry: offline simulations with degradation to coarser grid and cou-
pled simulations with regional models.

Simulations, which are envisaged for a later phase, are:

• For regional models: two-way GCM-to-RCM coupled online AORCM simulations with the
PRISM coupler.

• For ocean biogeochemistry: coupled simulations including fluxes of tracers associated
with the hydrological cycle

• For sea ice: coupled simulations of several centuries duration.

I.3.2 Coupler Requirements

Clearly, not all requirements for the PRISM coupler can be met equally or at the same time.
Therefore, a number of coupler options have been evaluated by the PRISM community to be either
Essential, Desirable, Maybe of interest, Useless or that the person responding is Not qualified
to answer. Comments and clarifying remarks from the PRISM community have been added. Note
that in this context "essential" is judged from a scientific point of view, which does not imply that all
of these points will be fulfilled during the project phase of PRISM in case the realisation is regarded
as difficult.

General Requirements

"The same version of a component model should be usable as part of a coupled model in the
PRISM System and outside the PRISM system in stand-alone runs." - Essential

The validation of the atmospheric component of a coupled model, the initialization phase of the
coupled simulations, as well as many scientific applications (sensitivity experiments in
complement to coupled simulations, 2xCO2 simulations etc.) may require stand-alone simulation
to be performed with the component models of the coupled model.

Regional models will be used both as a component in the PRISM system, but also elsewhere,
driven with archived GCM results or global operational analyses. The interface should allow for
both alternatives.

The opposite direction is also desirable: the PRISM system should provide pseudo models,
which have the standard interface and read data from files.

E. g. atmospheric chemistry models need to be driven by atmospheric data without coupler
using already existing data (files), e.g. from ECMWF.

"The PRISM coupler allows intrinsic characteristics of the component models (e.g. length of a time
step) to change at run-time". - Maybe

This may be useful for periodic-synchronous coupling. Note, that in some atmospheric
chemistry models the time step for certain processes differs from the advective time step, e.g.
for aqueous chemistry. The time step of meteorological fields on input may differ from the
advective time step as well.

"The PRISM coupler allows coupling data characteristics of the component models (e.g. units, grid
co-ordinates, mask, parallel decomposition, ...) to change at run-time". - Maybe

 27

This is of interest to the land surface component. Although difficult to control automatically,
changes of land/sea mask values, e.g. from drying lakes under climate change conditions, may
become an issue in the near future. Adaptive grids are unlikely to become an issue in ocean
modelling in the next few years. There may also be interest in changing coupling data
characteristics from a computational point of view: if parallel decomposition changes are
foreseen as a means of dynamic load balancing.

For atmospheric chemistry modelling, we want to split up the atmospheric chemistry into 8
processes: coupling to advective transport, convective transport, turbulent transport, dry
deposition, wet deposition, chemistry, emissions and photolysis. There should be a choice in the
coupler configuration for any of these processes to be incorporated either in the atmospheric
model or in the atmospheric chemistry model. The calling order and time step should be set in
the coupler configuration for each of these processes separately. The parallel decomposition
needs to be modifiable at runtime (to optimize in particular chemistry and photolysis).

Controller/Driver Requirements

General:

"The PRISM System can also be used to assemble and run coupled models based on component
models which do not conform to the PRISM Physical interfaces given that they include the well
defined PRISM System Model Interface Library". - Essential

PRISM will recommend a standard interface but the technical interface should allow both other
interfaces and an evolution of the standard.

"The PRISM System can be used to assemble and run coupled models based on an arbitrary
number of component models (not only the full coupled model assembling all PRISM model
components)." - Essential

This modular approach is essential for climate science. Many climate simulations are (and will
be in the future) performed using the atmospheric component without complete coupling. It may
also be useful for atmospheric chemistry after PRISM (see previous paragraph).

Model Execution:

"The PRISM System should be able to run the different component models concurrently, in a
regular sequence (one after the other), or in some pre-defined combination of these two modes." -
Essential

This covers the present mode of functioning of the coupled models and might be useful from the
point of view of PRISM expandability and optimization on different platforms. Different
alternatives should be possible. Running RCMs online with GCMs could imply concurrent
execution, although slightly shifted in time (by a time step or longer if the GCM and RCM have
different time step lengths, necessitating time interpolation between two consecutive coupling
fields). Also, requirements for offline coupling should be met, i.e. provision of coupling-input
from archived data.

"The PRISM System should be able to control dynamic model execution, i.e. one or more
component models may be launched and/or finished at pre-determined points in the simulation." -
Essential

 28

This is needed for "time-slice" type experiments in terms of a regional simulation within a global
model. The same could apply for e.g. AGCMs. Chaining different static simulations can probably
fulfil these requirements. In any case, this option should be open for post-PRISM.

There are also potential applications for complex coupling. For instance by running alternatively
(with data exchange between them) a coupled ocean/atmosphere plus a simplified chemical
model and a coupled atmosphere/chemical model.

"The PRISM System should be able to control conditional model execution, i.e. one or more
component models may be launched during the simulation only if a particular scientific condition is
met." - Desirable

This might be useful in the future. However, in the atmospheric chemistry component, it could
also be handled internally. As in the previous paragraph, there are potential applications for
complex coupling.

"The PRISM System should be able to control a global coupled system flexible in terms of
executables (extremes are: each component is a separate executable, or: all components run in
parallel or in sequence within only one executable)." - Essential

Some pairs of components will often run in the same executable (ocean + sea-ice for instance).
However, the interface definition/implementation should be independent of this aspect.
Important, since there is a large range in the computational costs of atmospheric chemistry
components.

This offers potential for adaptation to different coupled model configurations using components
of different complexities. Note: Presently, in the SMHI coupled RCM all models run in a
separate executable, using OASIS.

"The PRISM System should be able to give some statistic on the load balancing of the run." -
Desirable

For run-time performance.

Coupling Exchanges Management:

"End-point data exchange: when producing coupling data, the source model should not need to
know what other model will consume it; when asking for coupling data a target model should not
need to know what other model produces it." - Essential

This allows for flexibility and easy check of coupling consistency. Although not absolutely
necessary, information about sources and targets will allow adaptation to known biases and
errors in some models.

Termination and Restart:

"The PRISM System ensures that the whole simulation shuts down cleanly (both for regular and
unforeseen termination) in an intelligent way (e.g. after a restart file is saved), and an error report is
generated if one component aborts." - Essential

A condition for facilitated debugging or continuation of an aborted job.

"After a machine breakdown, the PRISM System ensures automatically a proper restart of the
coupled system." - Essential

 29

Should be pursued if technically feasible, but not necessarily automatically. Same as in previous
paragraph, but continuity in the flow of outputs from the components should also be ensured.
The atmospheric chemistry models require correct initialization upon re-start, otherwise the
results will not be reproducible.

Other controls:

"The PRISM System warns the user if the coupling and I/O frequencies are not synchronized." -
Desirable

Transformer Requirements

"The PRISM coupler should provide the following transformations (OASIS transformations are
given as examples):

Time Operations:

Time Averaging - Essential

To avoid these calculations in the atmosphere component, but this also implies to transfer more
data to the coupler. This could be useful for example over a finite coupling (GCM to RCM) time
interval.

Accumulation (e.g. of concentration changes, convective mass fluxes, turbulent fluxes,
precipitation, radiative quantities) over time is required, since budgets are very important in
chemistry.

Time interpolation - Essential

It is important to avoid these calculations in the components (for instance wind interpolation for
transport of species in the chemical component).

Another example would be the interpolation between two time steps or archived time levels of a
global simulation to the time level of the regional model for regional simulation boundary
conditions.

Minimum or maximum over a certain time range - Maybe

This appears to be only diagnostics that could be calculated within the component models.
However, one could think of uses for this, e.g. in vegetation models where exceeding a critical
temperature leads to a collapse of a population. In ocean biogeochemistry models, exceeding a
critical salinity might have similar effects. If information from a global model arrives less often
than every time step, absolute minimum/maximum values might be missed unless this feature is
present.

Another application is to check maximum Courant numbers for advection schemes that are
Eulerian rather than (semi-)Lagrangian.

Other time operations - Maybe

Spline interpolation might be introduced.

The land surface-modelling group also needs an operator to perform a time sum and time
variance calculations. The last one could also be obtained by the operations listed, but it would
be simpler if it can be accessed directly.

 30

Calculation of the median may be very useful when we use highly variable non-Gaussian dis-
tributed meteorological quantities such as diffusion coefficients or cloud parameters.

2D Spatial Interpolation:

Nearest-neighbour (Ex: NNEIBOR) - Desirable

Nearest-neighbour Gaussian weighted (Ex: GAUSSIAN) - Essential

Note: This is presently applied in the SMHI RCM using OASIS.

Bilinear (Ex: BILINEAR) - Essential

Bicubic (Ex: BICUBIC) - Essential

First order conservative remapping (Ex: SURFMESH) - Essential

Essential for atmospheric chemistry (converting 2-D emission distributions)

Second order conservative remapping - Essential

Higher order conservative remapping - Essential

Remapping using user-defined remapping info (e.g. runoff remapping) (Ex: MOZAIC) - Essential

Essential for weighted interpolation.

Other - Maybe

3D Spatial Interpolation:

Note: At least one 3D interpolation is essential to the GCM-RCM coupling.

Nearest-neighbour - Essential

Nearest-neighbour gaussian weighted - Essential

Bilinear - Essential

Bicubic - Essential

First order conservative remapping - Essential

Second order conservative remapping - Essential

Higher order conservative remapping - Essential

Remapping using user-defined remapping info Essential

Essential for weighted interpolation.

Other - Essential

An interpolation using grid cell air mass as weight (linear in pressure) is essential.

 31

1D Spatial Interpolation:

Nearest-neighbour - Essential

Nearest-neighbour gaussian weighted - Desirable

Bilinear - Essential

Bicubic - Essential

First order conservative remapping - Essential

Second order conservative remapping - Essential

Higher order conservative remapping - Essential

Remapping using user-defined remapping info - Essential

Essential for weighted interpolation.

Other - Maybe

Other transformations:

These should only be local transformations, and any algebraic transformation should be
allowed, e.g. sqrt, power 2, ...

A masking relative to a variable, i.e. max(var,0), keeping only positive values, is required.

Transformations which combine two variables need to be considered, e.g. if moisture transport
shall be computed.

For these operations, a higher-level language should be used so that one can deal with fields as
objects and not only vectors of variables. As an example, CDAT uses PYTHON.

Conservation: ensure global energy conservation between source and target grid (Ex: CONSERV)
- Essential

Essential to keep a scientific environment.

Combination of different parts of different coupling fields or of other predefined external data (Ex:
FILLING) - Essential

This may facilitate sensitivity experiments or regional coupling of atmosphere and ocean.

Algebraic operations with possibly different coupling fields or predefined external data and
numbers as operands (Ex: BLASOLD, BLASNEW, SUBGRID, CORRECT) - Essential

See previous paragraph for remarks.

Specific algebraic transformations - Essential

Here the PRISM community has not agreed on one statement. One argument is that we should
find agreement on common interfaces so that such transformations are meaningful, the other
argument is that there should be no such transformations at all, since there should be no
physical knowledge in the coupler.

 32

Indexing operations: - Essential

This may facilitate regional coupling, sensitivity experiments etc.

Useful for regional coupling and for forcing a basin based hydrological model with a grid-based
atmosphere.

For atmospheric chemistry probably useless, scattering and gathering (see below) may be
useful.

Spatial "collapse" operations: collapse of any dimension or combination of dimensions by various -
possibly weighted - statistical operations (mean, max, min, etc.) - Essential

Useful for sampling forcing data from a global domain for the finite boundary relaxation zones in
a regional model.

Subspace: extraction of subspaces or hyper-slabs in any combination of spatiotemporal or other
dimension - Essential

Essential for sampling forcing data from a global domain for the finite boundary relaxation zones
in a regional model.

Desirable in spatial dimension for chemistry optimization.

Merge: replace n dimensions by an index dimension by sampling at n-dimensional points, e.g.
replace a lat-lon-height field with values along a trajectory - Desirable

Others:

Calculation of weight functions (runoff remapping, grid interception etc.).

The following transformations occur frequently in atmospheric chemistry models:

Tracer cell mass to mass/volume mixing ratio or to concentration.

Making 3-D advective air mass fluxes mass conserving.

Inversion of a nlevel x nlevel exchange matrix for convective transport.

In principle the land-surface community has no specific requirements on the experimental
design or the ability of the coupler. A major point is efficiency since data is exchanged between
land surface and atmosphere at a very high frequency. The exchanged fields are only two-
dimensional, but there is a huge number of such fields.

All operators should deal properly with undefined variables. This is not only essential for
observed data, but also has applications in the modelling world. If e.g. cloud water should be
averaged, this should be done only when clouds are present.

It is necessary to maintain the positive definite quality of some variables after interpolation (e.g.
for concentrations of chemical species, since most chemical modules will crash otherwise).

Other coupler properties

"The PRISM coupler should be able to give some statistics on the coupling fields (mean, max, min,
etc.) Ex: CHECKIN, CHECKOUT in OASIS - Essential

Extremely useful for debugging.

 33

"The PRISM coupler should support source and target coupling domains that totally or partially
overlap (e.g. global atmosphere with a regional ocean, regional model nested into global model,
etc.)" - Essential

Essential for regional coupling (sensitivity experiments, regional climate simulations etc.).

On the other hand, it is useless for global atmospheric chemistry: it requires global overlap.
Coupling to a regional atmospheric model makes no sense in view of the constituent fluxes
through the boundaries of the region.

"The PRISM coupler should automatically perform some basic transformations (units - e.g. Celsius
to Kelvin, order of dimensions - e.g. source (x,y,z) to target (z,y,x), etc.)" - Essential

The amount of these operations should be limited if common interfaces are defined.

For coupler related transformations (grids, ...) but NOT for physical transformations, since there
should be no physical knowledge in the coupler.

Desirable options: change direction of axes, change origin of x, y-axis.

"The PRISM coupler should recognize the type of coupling data (flux, vector, scalar) based on
meta-data description, and automatically provide relevant transformation operations (this choice of
transformation will be validated or invalidated by the user)." - Essential

Might be useful to provide 'default' interpolation methods (e.g. conservative for fluxes, non-
overshooting for positive definite variables, interpolations appropriate for vector fields when grid-
poles occurs etc.).

If applicable to rotation of wind components, e.g. when interfacing a rotated regional model
domain with a non-rotated global model domain.

It should also point out inconsistencies (e.g. different units).

 34

 35

I.4 End User Interface

This part describes the operational and functional requirements of the user interface (UI).

I.4.1 Functional Requirements

I.4.1.1 Setup / Configuration of an Experiment

This function incorporates the preparation and validation of an experiment resulting in a self
contained specification, which can be used for

• Submission

• Comparison with other experiments

• Database storage and exchange

• Experiment identification

Several groups of parameters have to be defined to achieve this:

• Scientific parameters

• PRISM specific parameters common to all experiments

• Execution host specific parameters

• Administrative parameters
Feature Description Importance
Experiment identifier Auto system generated E
Choice of components Reject incompatible choices E

Experiment-specific access control Allow different users to control the experiment execution O

Timed execution Ability to set a time for execution O
Archiving options Relevant user information needed by the archiving subsystem E
Select execution host Select execution host, relevant run-time parameters E
Validation of configuration No submission of invalid setups E
Specify computing resources Job limits like cpu-time, number of cpu's, memory, etc. E
Diagnostic choices Selection of pre-defined verification/diagnostic/post-processing

packages etc.
E

Coupling options Selection and control of available coupling components, coupling
frequency, transformations etc.

E

Input/Output options For instance post - processing frequency, format, restart files E
Statistics/ Logging/ Debugging/
Trace options

Parameters related to above E

Table 3: Features of the GUI

Note that execution host specific parameters are transient between different hosts.

 36

A list of all parameters from all components and their constraints has to be provided. This list
should be produced in a validating format such as XML.

Enable incorporation of existing tools to auto-generate setups and parts thereof.

Table 3 lists the features the work package has contributed. Each feature has an indicator for its
importance as optional or essential. Essential equals to a deliverable.

Experiment identifier

The ability to uniquely define an experiment and supply a user defined description. It needs to be
investigated if a PRISM wide identification or a naming local to the executing PRISM host or a
combination is best suited. The identifier, which is likely to be used for identification in the
preparation, monitoring, archiving and retrieval process should be in any case system generated.

Design Constraints

This feature is likely to be different on all sites if not the same archiving system is used (which is
unlikely).

Choice of components

The ability to couple one or more components in one or more experiments/ensembles.

Design Constraints for Choice of components

This feature is likely to be difficult to implement if not all users can access all components or if not
all components are implemented on all sites. The choice relates to whether the configuration
server is made aware of all PRISM sites installed components or if all sites are expected to
implement all components.

Experiment specific access control

The ability to specify individual access control for different functions such as monitoring, execution,
archiving etc.

Design Constraints

A PRISM system wide implementation of a fine-grained security policy is likely to be difficult to
apply and manage. In particular, if different interfaces are used to run the experiment, access the
data, visualisation etc.

Archiving options

The ability to define specific archiving options.

 37

Select execution host

The ability to select a host for the experiment dynamically. A basic translation between platform
specific settings may be provided. It should be noted, that many host specific parameters are
transient and on exchange of experiments between hosts are likely to be exchanged with a default
set for the chosen host.

Design Constraints

This feature is likely to be useful but it should be realized that individual translations of specific
system parameters between different hosts are not maintainable. A local knowledge database
should instead provide appropriate defaults for the offered configurations at this site. This requires
support from the local site.

Timed execution

The ability to define a time for execution.

Design Constraints

This feature depends on the load/management of the executing host. SMS provides many features
to allow timed execution.

Validation of configuration

The ability to prevent mis-configured experiments. This should be transparent to the user.

A check system of this kind can be implemented with a rule based knowledge database. This will
provide one of the main tools for later maintainability and flexibility of the UI, which will be very
important.

Design Constraints

This feature is already in the PrepIFS system.

Specify computing resources

The ability to specify cpu-time, number of processors, memory, queues etc.

Design Constraints

See comment on execution host.

 38

I.4.1.2 Specific Requirements - Submission and Control of Execution of an
Experiment

Functionality

The User Interface should provide the functionality to remotely submit and control the execution of
an experiment. Table 4 lists the features the Work Package has contributed. Each feature has an
indicator for its importance as optional or essential. Essential are deliverables.

Table 4: Job Control: Functions and the Graphical User Interface

Design Constraints

All features are available with the SMS/XCDP tool by ECMWF. However, all of these features are
dependent on the capabilities of the model implementation. If these features are to be
implemented, all model developers have to program to make the models re-startable etc. A further
complication arises for coupled models where the coupling mechanism may have specific
requirements. Expertise needed from other work packages. The management and modifications of
experiments at run time has severe security implications and may not initially be implemented for
that reason in a distributed environment.

I.4.1.3 Specific Requirements - Monitoring of an experiment

The UI should provide the functionality to remotely monitor the progress and the status of a running
experiment. Ideally, the UI should provide a view of the structure of the experiment.

Function Description Importance
Submit/start options Queue experiment for execution, start options E
Restart Restart from database/archive/restart files, restart from temporarily

suspended state
E

Pause/Interrupt Interrupt run of experiment (perhaps dependent on specific condition -
see "stop") The difference to "stop" is that it is intended to continue the
run within a certain time frame or without changing parameters. This
could imply for example to keep certain files online and let them not
migrate onto tape.

E

Stop (+clean) Let experiment run until a specific condition is met; manual or
automatic shutdown. Especially the scientific and technical conditions
may become important as it is intended to let inexperienced users run
experiments. Stop at restart points. Stop at specific scientific condition
(e.g. temperature difference between ocean and atmosphere at
specific exceeds certain limit) Stop at specific technical condition – e.g.
disk is filled up to a certain percentage

E

Kill Stop experiment immediately E
Modify Modify parameters, scripts, etc. at run-time. O
Manage Manage experiments within a team. I.e. allow access to features to be

shared amongst users.
O

 39

Feature Description
Notification of events User notified of status changes: aborts, completion etc as they occur
View experiment View of experiment progress and structure

Table 5: Feature and Capability Listing

The UI should notify the user in case of a specific event. Notification might be a message in the user inter-
face, email, SMS, pager ...

Design Constraints

A web interface is highly desirable but security restrictions may limit the technically possible func-
tionality. If possible a graphical view should be provided.

I.4.1.4 Provision of Results of an Experiment

Functionality

The UI should provide the functionality to access the results of an experiment. Results are defined
below.

Table 6: Results and the GUI.

I.4.1.5 Visualisation of Experiment Results

Functionality

The UI should provide the basic functionality to visualise the results of an experiment.
Requirements with respect to the GUI are listed in Table 7 below.

Design Constraints

Ideally the visualisation and archiving functions should be integrated with the configuration user
interface and have the same look and feel.

Result Description
Scientific diagnostic output Output from model, see wp2c
Statistics System use etc. should be defined to be compatible/comparable between

hosts
Raw data Data output from model (components). Realistic sizes must be defined
Logfiles Output listings for each task of an experiment
Other %

 40

Table 7: Access and the GUI

I.4.1.6 Access Control and Security

Functionality

The UI has to provide a sufficient security level, which has to be defined. This is linked to the sys-
tem security model and the features this model should provide.

This project involves many partners with different security requirements. There is a potential con-
flict between usability and high security. Realistic levels of both are essential. The following terms
are used in the text:

Table 8: Security – terms and the GUI

It is important to understand that the implementation of a system security model is not a function of
the UI. As an example, the UI applies the security model by encrypting communications on specific
operations. For every operation the necessary levels of security should be defined. The administra-
tion involved in the chosen levels should be evaluated.

Table 9: Authentication and the GUI

Issue Description
Integration This defines the look and feel of using "one" tool as well as dictates the

command and data interfaces
Realisation technology (applet,
html, platform-specific)

This is related to the integration issue and the interoperability

Archive access If visualisation of archived material is needed then some archive
browser needs to be provided.

Term Definition
Authentication Establishing the unique identity of the user
Access control Defines who can do what.
Security Preserving the authentication and enforcing the access control.
Accounting Monitoring of system usage of users/groups

Feature Description
Authentication Implement the security model
Message security The status of message content. Encryption or validation? Can the user

choose the desired level?
Access control Provision of an access control interface
Definition of user groups See above
Provide events And who can use them???
System accounting ???
Override access control Setting access control on individual experiments???

 41

Functional Requirements

Authentication

The ability to uniquely establish the identity of the user. An Interface to provide a unique token is
needed. By message box or file browser for example.

Message Security

The ability to define the level of security in the communication, i.e. switch on encryption. Do the
communications in general need encryption?

Access Control

The ability to define who can do what, where and when. Is there a central administrator? Do we
need to develop an access control interface for the USER INTERFACE? Fine-grained control
should be an optional feature.

Definition of User Groups

Related to above

System Accounting

The ability to monitor the system usage of users/groups.

Override Access control

See access control.

Operations and Security Level Required

All operations require authentication. Further levels such as encryption could be introduced.

Operation Security required
Connecting to site Authentication
Loading experiment definitions (own and others) Authentication
Submitting experiments Authentication
Monitoring experiments Authentication
Controlling experiment runs Authentication
Access results Authentication
Accessing archived experiments Authentication

Table 10: Security level of operations

 42

I.4.1.7 On-line User Documentation and Help System

Functionality

The USER INTERFACE should provide an online documentation and help system.

An extensive help system is required for the functions of the user interface and for the individual
components of the coupled system and their respective parameters. This may include the
presentation of source code of individual components and/or a scientific description thereof to
authorized users.

The help system should provide help on different levels of experience ranging from a complete
novice up to an experienced user.

I.4.1.8 Support for model component development

Functionality

It is desirable that the UI provides support for development of individual model components or the
coupler. This may include source code management, compilation and linking, merging of
modifications to default libraries, etc..

I.4.2 Operational Requirements

Operational requirements with respect to maintenance of access control, users and versions, site
specific defaults and implementation of changes to any specifications in experiments, definitions,
protocols etc. needs to be defined. A key element of the PRISM system is to allow for system
management of models and scripts remotely, i.e. while not being logged in to the site where the
model runs. This requirement can be met in the same way as modelers configure models, through
the same user interface where the administrators can change system- behavior and versions. The
administrator specifies the sources for the model code and its scripts and submits a build job to the
PRISM sites, which will then run a generic model build suite using these sources.

 43

II - Design Options for the PRISM Architecture

II.1 PRISM System General Architecture

The purpose of the PRISM system is to enable users to perform numerical experiments,
coupling interchangeable model components, e.g. atmosphere, ocean, biosphere, chemistry etc.,
using standardized interfaces as outlined in REDOC I.2. The general architecture provides the
infrastructure to configure, submit, monitor and subsequently post process, archive and diagnose
the results of these coupled model experiments. There is an emphasis on choosing an
architectural design that allows these activities to be done remotely, e.g.. without the user
physically being in the place where the numerical computations take place. The required features
of the PRISM system are analysed with respect to the processes involved, the actions they take
and where they happen. The general architecture influences the security models that can be
applied. It defines the possible operations of a user from a remote site. An architectural design is
presented that satisfies the security and configurability demands required by all processes.
Existing technologies are investigated to assess the constraining implications of their use. It is
expected that the cost and capacity of future computing and network technologies are changing.
Therefore, it is important to design an adaptable and scalable architecture.

II.1.1 Terminology and Concepts

Experiment

An experiment is an ensemble of tasks running on a supercomputer, defined by a configuration
process. Three levels of communication exist within such a coupled experiment:

• Macro-dependencies and triggers between different tasks (e.g.. handled by a scheduler
like SMS)

• Dependencies and triggers between different component models and the coupler (e.g..
handled by OASIS, PALM)

• Inter process communication within each model component (e.g.. MPI, OpenMP, etc.)

The first level of communication is under the control of a scheduler. The function of the scheduler
is to co-ordinate the execution of these tasks while preserving any dependencies between them.

Task

A task is an individual job step of an experiment that needs to be executed. The Figure 1 is a
hierarchical view of an experiment with the tool Xcdp showing a collection of tasks. The different
boxes represent different tasks and the colour code shows the status of the task. Note, that the
coupled model, i.e. coupler and component models, represents a single task of an experiment.

 44

Coupler

One major objective of the PRISM project is to develop a standard interface for the models
constituting the global climate system. The models will exchange information with a universal
coupler or directly with the other model components. The coupler is the program responsible for
controlling the coupled model formed by the different component models, and controlling the
exchanges and transformations of physical data between them. This is detailed further in REDOC
II.2.

Configuration

Three basic phases of configuration can be identified:

• Definition of all entities of a coupled experiment

• Composition into a specific coupled experiment

• Deployment of the coupled experiment onto a set of computing resources

Figure 1: Xcdp graphical view of an experiment, the status of tasks indicated by different colours
gives an overview of an experiment.

The definition phase comprises the definition of all component models to be coupled (model
interfaces and meta-data - PMIOD), transformation entities, I/O options, post processing options,
diagnostic options, statistic options, ... etc. In the PRISM system this is provided by the PRISM
model administrator and presented to the PRISM user through the user interface.

 45

During the composition phase the PRISM user sets up a specific coupled experiment through the
user interface by

• Selection of individual model,

• Configuring the constitution of each individual model component (SMIOC),

• Composition of the coupling configuration (SCC),

• Selection of other pre/post processing options,

• Selection of the site and computing resources to use.

During the deployment phase an abstract compact description of an experiment is generated.
This is defined as a configuration instance. A configuration instance details how to run the coupled
experiment on a computer in a format that can be understood by the computer's operating system.
Further, it contains information on the coupling communication between models and the internal
communication of each model component on the chosen platform. This is further detailed in
REDOC II.2. Consistency checking before deployment ensures a correct configuration for each
task.

User interface

The system should allow the domain activities by remote access, i.e. the users do not have to be
physically in the same place as where the model is executed or data is located. The interaction
between the users and the system takes place through a user interface. This interface establishes
the identity of the user and allows for access to the systems functionality. The functionality is
provided by a number of specialized servers accessed by the client user interface (UI) detailed in
REDOC II.4.

Administration

Each institution will name an administrator, maintaining and developing a particular model
component of the coupled PRISM system. The administrator has several tasks:

• Build of new versions of individual model components on all or selected PRISM sites.

• Provision of build mechanisms for model components.

• Provision of the definition of all entities available for a coupled experiment.

• Provision and maintenance of a local repository.

• General maintenance and support.

This is accomplished through an administration user interface. Since there is a need for varying
expertise to accomplish all administration tasks, the administration may be performed by several
persons. Due to the likely distribution of expertise for the different model components,
administrators will be physically located at different sites, which further emphasizes the need for a
distributed system.

Results

The experiment results in the output of data fields, statistics and diagnostics. This output needs to
be archived, catalogued and made accessible to the modeller, who needs to visualize the diagnos-

 46

tics and data to understand the results. It is the task of the archiving and data management system
to accomplish this and the details are explained in the REDOC II.3 documents.

Client and Server Processes

The partitioning of functionality allowing a client to perform operations outside its own capability
with the help of a more powerful server is called client/server computing. The client and the server
may reside on physically different computers and they communicate by accessing computer
networks.

II.1.2 System model

System actors and their activities

Three actors on the PRISM system can be identified: Users, developers and administrators.

It is important to distinguish between the behaviour of these actors:

Figure 2: PRISM user interactions

• Users: Will run experiments by adding or replacing parts of a given model code or
configuration. Their requirements are ease of use, to be shielded from implementation
details, traceability of experiments, collaboration with other modellers in a standard way,
help systems available, template setups, error checking, ease of deployment.

• Model developers: Will develop and test new models and configurations. Their
requirements are full control of the system including sources, versioning of sources,
minimal overhead when testing new features, no restrictions or dependencies on other
users.

 47

• Administrators: Will provide the link between developers and users. Their requirements
are to start administration tasks on local or remote sites infrequently, ease of use, and
automatic model management.

Table 11: PRISM actors and main activities

The groups represent diverse and contradicting demands on the system and one system cannot
satisfy all of the demands. We therefore suggest that the system will be developed in two phases
and into two different products, which are configured from the same software base:

• Developer system: Will consist of mainly the User Interface decoupled from the web
services infrastructure and its resources. Represented by Architecture C, Figure 5 on
page 50.

• User/Administrator system: Will consist of the UI connected to the web services
infrastructure and enabling support from its services such as templates, documentation,
remote submission etc. Represented by Architecture A, Figure 3 on page 49.

• Users system: Will work in isolation and allow the developers to carry out their work
locally with full control over the resources.

The exact differences will be outlined in the ARCDI part of the specification.

Process View

The actors realize their activities by means of a user interface and the following processes can be
identified from the activities above:

1. Client configuration processes

2. Configuration provider processes

3. Execution processes

A more detailed list of activities from above, grouped by the processes 1, 2 and 3, is given in

Table 12 on page 48. Each process is either distributed over the participating PRISM sites or local,
noting that initially different model components are not to be distributed in the system.

PRISM-Actor Main activity and interaction with sys-
tem

Acts on

Administrator Executes administration tasks Definitions of administration entities
Administrator Provides definitions of all entities Model component interfaces and meta-data
User Composes coupled experiments Selection of all entities
User Visualizes, queries and manages Model results
Developer Develops model components Model components

 48

Table of client configuration processes (1)
Location of activity Activity type
User interface Configuration
 Visualization
 Authentication
 Archive query
 Documentation
 Configuration instance
 Monitoring

Table of configuration provider processes (2)
Configuration server Configuration
Configuration server Configuration instances
Documentation server Documentation
Authentication server Authentication
Administration server Model build configuration
Administration server Model build configuration instance
Experiment database server Configuration instances for the experiments
Visualization server Visualization
Monitoring server Start/stop/state information

Table of execution processes (3)
Scheduling server Configuration instances
Execution server Coupled model (coupler + component models)
Execution server Data pre/post processing
Archiving server Archiving

Table 12: Table of different processes

Proposed architecture

The client configuration process is accessed through the Internet. The configuration provider
processes are accessed through a central site but the services can be distributed to other sites
without functional difference. The execution process is local to the model provider. This is
described as directory centric, web enabled and distributed from local PRISM sites.

Variations of the architecture are shown below on page 49 and 50 in three figures. They show a
Central PRISM site and a Local PRISM site. The local site is where the execution, scheduling and
archiving server is located and the central site is one of the participating PRISM sites where the
configuration provider processes listed in

Table 12(3) are located and used by all client processes.

The component boxes in the figures represent the following:

Administration Interface - Access point to Administration Server

• Administration Server - Serves build configurations to Administration interface.

• Central Repository - Collection of data or programs such as configurations, land and sea
mask etc. used by all clients.

• User Server - Contains configuration provider processes accessed by the client.

 49

• Model execution - Processing of the coupled experiment at the PRISM local site.

• Local repository - Collection of common data or programs such as configurations, land
and sea mask specific for the local site and the deployment environment for experiments
set up by users to run on the site.

• Controlling instance - Scheduling of an experiment.

The figures show the architecture when components are moved from the central PRISM site to the
local Data view.

The data in the system consists of:

• Configurations

• Configuration Instances

• Model input

• Model results.

The architecture has to provide for the movement of this data. A data access policy and a security
policy determines who can move what data and where it can be moved. This requires interaction
with many subsystems such as archiving processes and network providers.

Figure 3: Central Site Architecture, directory centric

 50

Figure 4: Common Data Architecture, model provider centric

Figure 5: Full replication architecture, no central repository

II.1.3 Software life cycle

Inter operating components in collaborative and distributed environments are deployed and main-
tained by multiple administrators and thus upgrades and maintenance is likely to be un-
coordinated. With no central authority to plan and execute upgrades some clients will always be
out of synchronization. This applies to the scientific models as well as the computing model, i.e. the

 51

infrastructure components such as application servers. For the computing model a practice of al-
lowing the different software (component model) providers all to act as administrators enabling
them to start distributions of upgrades to all sites should solve this problem.

For the computing model infrastructure software such as service providers, the problem is
complicated by the fact that services can call each other. A service should:

• Detect incompatibility with calls

• Find service providers

• Authorize and authenticate with provider

• Transport and install new versions

• Register and announce new versions

• Release old versions and clean up.

Figure 6 represents a possible architecture where services are deploying themselves through a
central service provider. Authentication and security mechanisms must allow the service provider
to provide the new versions of software for automatic deployment. Failure of supplying the
semiautomatic life cycle management will lead to service failures and increased administration
costs.

Figure 6: PRISM software deployment model

II.1.4 Security

Overview

System security is made up of the following components:

• Authentication - Proof of identity

• Authorization- The user can only see information he is allowed to

 52

• Confidentiality - Information transmitted is not read by third parties

• Non-disputable - The sender cannot deny that the message was sent

• Integrity - Data transmitted is not tampered with

Authentication can be made by:

• Intellectual property, something you know such as a password

• Physical property, something you have such as a certificate

• Biological property, something unique to you such as a fingerprint

The strength of security is normally determined by the factors involved: i.e. password is one factor,
certificate is a second. Combining the two raises the strength by magnitudes.

Authentication normally means that two computers can verify the identity of each other, not that the
operators are who they claim to be. The combination of biometrics (fingerprints for example)
together with physical property is a very strong authentication and could solve this problem. A
different form of authentication is when you need to authenticate between two computers without
any operator intervention. This situation arises frequently in a services oriented system when two
services are dependent on each other or when new operations are instigated by a service requiring
further authentication.

There are in principle the following security solutions in operation today:

Password based - These solutions require an operator to supply the password. Various levels of
sophistication involving rotation, time of validity and reuse of passwords can be found. One
example is s/key system (http://www.freesoft.org/CIE/RFC/Orig/rfc1760.txt).

Physical token based - These solutions require you to hold a certificate, smart card or similar.
Various commercial and free offerings available building on X509
(http://www.openssl.org/docs/apps/x509.html) certificates or proprietary smart cards.

Public key/Private key solutions. These solutions build on the public and private keys being able to
encrypt and decrypt messages thus verifying each other. Can be combined with password or
physical tokens. Offers encryption of communication. Systems building on these are Secure Shell
(SSH, http://www.openssh.com/) and Kerberos (http://web.mit.edu/kerberos/www/).

Requirements

There should be an access model enforced in the system to ensure proper authorization. The level
of control is to be set to be practical in terms of administration and confidentiality and to be
determined by the PRISM partners.

The levels of integrity in system transmissions is to be high but the confidentiality is not so
important as messages will mainly consist of configuration information which is less useful if you
have no access to the software being configured.

The service-to-service authentication needs to be solved in a scalable manner consistent with the
administration resources available.

 53

II.1.5 Specific Design Choices and Constraints

Design Choices

• Highly modularized system where parts can be removed or duplicated as conditions
change.

• Allow component exchangeability and portability.

• Service based concept enabling new services to be discovered and old replaced.

• The use of sufficient security and access control level.

• Minimum maintenance solutions.

• Allow for distributed execution if possible.

• Use standardized protocols and existing software.

• Align with other projects.

• Common look and feel for all components.

Constraints

• High security might give poor usability.

• Security may implicate increased maintenance.

• Security limitations on different sites.

• Access control may be difficult due to using distributed components with different
capabilities.

• Low maintenance costs and available administration staff.

• Short time frame does not allow much development and coding time and "off the shelf"
components should be used bearing in mind that this limits control over standards and
look and feel.

• Look and feel of software may be less important if the software is far superior.

II.1.6 Software Packages Investigated

PALM : http://www.cerfacs.fr/globc/PALM_WEB/index.html

The PALM project aims to provide a general structure for a modular implementation of a data
assimilation system. In this system, a data assimilation algorithm is split up into elementary "units"
such as the observation operator, the computation of the correlation matrix of observational errors,
the forecast model, etc. PALM ensures the synchronization of the units and drives the
communication of the fields exchanged by the units and performs elementary algebra if required.
This goal has to be achieved without a significant loss of performances if compared to a standard
implementation. It is therefore necessary to design the PALM software in view of the following
objectives and constraints:

 54

Modularity: PALM provides a mechanism for synchronization of pre-defined functional units that
can be executed in sequence, in concurrence, or in a mix of these two modes. One key aspect of
PALM is also that dynamic or conditional executions of these units are allowed. PALM also
performs the required exchange of information between these units. The user through a
sophisticated Graphical User Interface defines the configuration of a Palm run.

Portability: PALM aims to run on all the existing high-performance platforms and, if possible, on
the next generation supercomputer. This effort of "clairvoyance" can be accomplished only through
the adoption of standard.

Performances: PALM will be used in two modes: research and operational. The research mode
will be used for the design of new algorithms and will prioritize the flexibility; on the contrary, the
operational mode will work with a fixed configuration of the algorithm and will prioritize the
performances optimization and the monitoring of the process.

Palm should be considered as a coupler designed for dynamic coupled simulation. The Palm GUI
(Pre-Palm) is a sophisticated GUI required to describe a dynamic simulation and the complex
relations that can occur between the different dynamic units in the task. For static runs this level of
sophistication is probably not required and can incur performance penalties.

UNICORE: (http://www.unicore.de)

UNICORE is meta-computing framework based on an Abstract Job Definition that can be
submitted to different sites from Java (http://www.sun.java) clients. Gateways receive the jobs and
translate and schedule the definition for execution on the available hosts. Security is based on
certificates. The client is downloaded once together with definitions. Requires programming skills
to develop new job definition interfaces (plug-ins) and takes considerable effort. Unicore mostly
lacks comprehensive scheduling and monitoring mechanisms and is not used in a production
environment yet.

GLOBUS: http://www.globus.org/

The Globus Project is a multi-institutional research and development effort creating fundamental
technologies for computational grids. Grids are persistent environments that enable software
applications to integrate instruments, displays, computational and information resources that are
managed by diverse organizations in widespread locations. A primary product of the Globus
Project is the open source Globus Toolkit, which is being used in numerous large Grid deployment
and application projects in the United States, Europe, and around the world.

Parts of the Globus project software relates to the tasks at hand in PRISM, such as security
mechanisms (certificates), resource lookup, scheduling and Message Passing (MP) technology.
Benefits are that many important institutions and commercial interests are supporting the Globus
initiative.

PrepIFS/SMS

PrepIFS is an interactive meteorological application to prepare research experiments using the
integrated forecasting system (IFS) at ECMWF. Both researchers at ECMWF and scientists in in-
stitutions anywhere in Europe (subject to prior permission) can access the complex computer envi-

 55

ronment at ECMWF via the Java application PrepIFS or via the INTERNET using the Java-Applet
PrepIFS and any standard WWW-browser. Forecast/Analysis Experiments can be prepared and
submitted remotely.

The system uses a combination of web servers and application brokers/directories/providers to
communicate with the preparation client application, which contains functionality to validate the
prepared experiment before it is submitted for processing.

Supervisor Monitor Scheduler (SMS) is an application that enables users to run a large number of
programs which may have dependencies on one another, and in time, in a controlled environment
with reasonable tolerance of both hardware and software failures, combined with good restart
capabilities. SMS submits tasks and receives acknowledgements from the tasks when they change
status and when they send events. SMS knows the relationships between tasks, and is able to
submit dependent tasks when a given task changes its status, for example when it finishes. An
associate application Xcdp allows you to monitor and change jobs in the scheduler in a GUI. The
scheduling application is currently only used within local area networks.

SSH

SSH, Secure Shell is an authenticating protocol used for remote host access and is very secure. It
works with public and private key authentication and encrypts transferred data. It has commands
for ftp and login and may be a useful tool for administration.

Technology trends

It has been suggested [Foster 2002, page 191] that the rate of technology change, i.e. the rate at
which capacity doubles or price halves, are around 9, 12 and 18 months for networks, storage and
computing power. If network performance doubles relative to computing power every 18 months it
will become essentially free. From this point of view it is important to select an architecture that can
exploit this advantage.

II.1.7 Discussion on the architectural choices

The best designs in order to achieve remote access, modularity and extensibility are the directory
centric (A) and the model provider centric (B) architectures as outlined in section Proposed
architecture.

The directory centric (A) architecture benefits from that it minimizes the duplication of static or semi
static resources (i.e. land and sea mask). It also allows central content to grow but local content
can still be chosen if appropriate. For deployment, PRISM sites do not need full web and
application servers that makes management easier. Future co-operative techniques can be used
from the central site, such as client visualization displaying on many clients.

The drawback of the directory centric (A) architecture is that the complexity increases as resources
needs to be advertised and discovered by clients. Some concentration of processing power may
be required to serve all clients.

The final architecture will show that combinations of local and central resources are possible, as
they will not compromise the system.

 56

The administration effort required for the central site architecture is likely to be less as the
duplication of data and software is not necessary and thus fewer physical copies needs to be
accessed.
It is important to understand that most of the system service communication is made over the
Internet, a network over which we have not full control. As a result response times will vary
considerably for messages and the actions invoked through the user interface. Recoverability is
limited as it is often difficult to diagnose where errors occur. If a certain level of performance is
deemed essential a virtual private network should be set up with a service level agreement.

II.1.8 Cooperating systems

Technology

The technology that realizes the proposed architecture is known as "Web Services". This includes
the use of web servers, application servers, resource directories and discovery mechanisms and
message services and the use of Java clients and servers. For security mechanisms certificates
and Secure Socket Layers (SSL, http://www.openssl.org/) as well as encryption can be used. Web
services as a technology are service centric, allowing clients dynamic service discovery over
networks such as the Internet. It is usually deployed as a three tier system involving a front end
presentation layer such as a browser or java client communicating with a remote domain
application (service) through a web server. The web services infrastructure will see benefits
coming from application integration of diverse software made possible by standardization and
directory technologies to enable service providers to publish their services irrespective of
implementation technology.

Standards

The issue of standardization of interfaces in complex and configurable systems becomes very
important in deploying distributed architectures for scalability, extensibility and future success. A
key factor making the inter operability between software possible is the development of XML, the
eXtensible Mark-up Language (http://www.w3.org/XML/1999/XML-in-10-points). This language
allows for standardization of messages between systems enabling clients and servers to inter
operate over networks. The development of XML promises to standardize several other important
technologies such as:

• Remote Procedure Calls - Making it possible for one program to call other programs
running on remote hosts and using different programming languages through protocols
like SOAP (Simple Object Access Protocol, http://www.w3.org/TR/SOAP).

• Resource descriptions - The Web Services Description Language (WSDL,
http://www.w3.org/TR/wsdl) makes it possible to describe resources such as documents
or procedures with XML and to allow this information to be incorporated in directories.

• Resource lookup - UDDI, the Universal Description, Discovery and Integration protocol
(http://www.uddi.org/) defines ways to publish and discover information about web
services.

In the future this standardization will make it possible for systems to share and exchange
information in a structured way. PRISM will be one of the projects ready for the future by the use of
these technologies.

 57

PRISM Infrastructure Software Implementation

It would be possible to implement all server components in any suitable language such as Perl or
C++. Currently there is no client software that can be used with browsers that does not build on
Java technology. From a system maintenance point of view using one technology, Java, is the
preferred way as this simplifies the task of adhering to multiple standards. The best choice is
therefore to implement all software in the infrastructure in Java but not to restrict it if there is a case
for using other technologies. Java supports all the mechanisms needed for implementing web
services using available standards. Other technologies are Microsoft's DotNet and HTML. Today
DotNet technology is very new and is also proprietary in nature. The use of a HTML client severely
limits the intelligence that can be built into the client and is therefore seen as less useful.

Other projects such as Globus have published similar ideas (Open grid services architecture)
building on the web services concept. There is no doubt that the web services concept will be the
dominant paradigm over the next 5 years and together with standardization of technologies,
increased network speed and co-operative efforts, the systems that are ready for the interaction,
will have an advantage.

II.1.9 Risks

Risk Risk Magnitude Description Impact
Security demands incom-
patible on some sites.

Severe Multiple security
solutions may be
necessary.

If sites cannot agree on one security
solution it may introduce costly
separate solution affecting the client
experience.

Lack of infrastructure
resources.

Severe Hardware and
software must be
available for web
services
implementation.

Slow or non-existent services.

Table 13: Risks

 58

 59

II.2 PRISM Coupler, Including Coupler Review

After introducing some general coupling concepts, a list of possible requirements and
design options for the PRISM coupler is given. These requirements will clearly not be all fulfilled
and these options will clearly not be all implemented in the future PRISM coupler. This exhaustive
list of possible requirements and options will help the coupler developers to identify the relevant
functionalities for the future PRISM coupler and to establish a list of priorities for the next 3 year
developments. A review of existing couplers and coupling applications is presented in the last
section.

II.2.1 Introduction - Definitions

This section introduces some general coupling concepts. The nature of a coupled simulation is first
discussed; it can be static, dynamic, or interactive. The possible coupling relations between two
component models is then analysed.

Static, dynamic, or interactive coupled simulation

An important concept relates to the possibility given, or not, to the coupling parameters to evolve
during the coupled simulation. The coupling parameters include:

• The component models

• The characteristics of the coupling exchanges (fields, frequencies, transformations, etc.)

• The characteristics of the coupling-fields themselves (units, grid, partitioning, etc.).

Different options can be defined: a coupled simulation can be static, dynamic or interactive (with
respect to the process management, or with respect to the coupling exchange characteristics, or
with respect to the coupling field characteristics).

Static:

All coupling parameters are fixed initially and do not change during the whole simulation. All
information given by the models (coupling field units, grid, partitioning, etc.) or prescribed by the
user (components, coupling fields, coupling frequencies, etc.) is defined only once initially. The
component model processes and their corresponding rank and location (processor, node) are fixed
from the beginning to the end of the simulation.

Dynamic:

o With respect to the process management (PM dynamic): Component models and/or
additional coupling processes can be launched during the simulation. An example is a
coupled simulation that starts with a reduced number of component models, these
components first reaching some kind of equilibrium before other components are
started. One could also think of a regional coupled simulation starting only with an at-

 60

mosphere and an ocean component models, and in which a sea ice model is activated
only if the sea surface reaches freezing conditions.

o With respect to the coupling exchange characteristics (CE dynamic): The characteris-
tics of the coupling exchanges (fields, frequencies, transformations, etc.) are allowed
to change during the simulation. One example is a coupled simulation in which a par-
ticular coupling field is exchanged only if a particular scientific condition is met.

o With respect to the coupling field characteristics (CF dynamic): The characteristics of
the coupling fields themselves (units, grid, partitioning, etc.) are allowed to change
during the simulation. Transfer of information between the model and the rest of the
coupled system must be possible at any point during the simulation. One example is a
coupled simulation in which one or more components are subject to dynamic grid re-
finement.

Interactive:

The user can modify the coupling parameters at run-time: an interactive coupling is necessarily
dynamic. All implications of a dynamic coupling are also valid for an interactive coupling, with the
added implication that the information prescribed by the user must be transferable to the coupled
system at run-time.

As a dynamic coupled simulation, a simulation can be interactive

• With respect to the process management (PM interactive)

• With respect to the coupling exchange characteristics (CE interactive)

• With respect to the coupling field characteristics (CF interactive)

Possible coupling relations between two components

The coupler co-ordinates the execution of several major climate component models. It is firstly im-
portant to analyse the coupling relations that can
exist between any two of these components.

Two components can be sequential by nature or
concurrent by nature. It is also possible to force two
components sequential by nature to run concur-
rently, or two components concurrent by nature to
run sequentially; we will refer to two components
having one of these relations respectively as concur-
rent by construction, or sequential by construction.
The differences are demonstrated on the next pages
in Figure 7 to Figure 10.

Figure 7: two models are sequential by nature if the first model necessarily waits while the
second model is running, and vice versa. The sequence is imposed by the exchange of coupling
fields.

 61

Figure 8: Two models are concurrent by nature if coupling data produced by one model depend
on other coupling data produced previously by the other model during the same time step, and vice
versa

Figure 9: Two models are concurrent by construction if they are sequential by nature but forced
to run concurrently. This requires, at a given time step, that coupling data produced at the
preceding time step are used as input

 62

Figure 10: Two models are sequential by construction if they are concurrent by nature but forced
to run sequentially. This requires, at a given time step, that coupling data produced at the
preceding time step are used as input.

II.2.2 Possible Requirements and Design Options for the PRISM Coupler

The main constituents of the coupler are: the Driver, the Transformer, and the PRISM System
Model Interface Library (PSMILe), which interfaces the model with the rest of the coupled system,
and therefore includes the Data Exchange Library (DEL).

General Requirements

• The overhead associated to the global system modularity and flexibility is acceptable.

• The whole system is portable and efficient on the different hardware architectures used for
climate modeling, on dedicated or shared hardware resources. Standard and portable
solutions should be preferred. However, for critical issues for which a portable solution
does not exist or would lead to very low efficiency, machine dependent options could be
offered.

 63

• The design and implementation lead to code easy to maintain and which can be easily
modified to support future model or coupling functionalities.

• Design reflects a clear separation of responsibilities for the different parts of the coupler.

• The PRISM System infrastructure can be used to technically assemble a coupled system
based on any component models, even if these models do not conform to the PRISM
physical interfaces, given that they include the well-defined PRISM System Model
Interface Library.

• The PRISM System infrastructure can be used to couple an arbitrary number of
component models; any component can be one-way or two-way coupled with any other
component.

Driver Requirements and Design Options

The Driver manages the whole coupled application. It may launch the component models, monitor
their execution and termination, orchestrate the exchanges of coupling data, centralize and
distribute simulation parameters which require a consistent definition among all component
models, and centralize and distribute information on the component model status during the
simulation.
A design option is to decentralize the coupling functionalities as much as possible in the Data
Exchange library included in the different model interface libraries and in the Transformer, and
therefore to reduce as much as possible the role of the Driver. This option is probably applicable
only for static coupled simulations and allows an easier evolution toward heterogeneous coupling
(different component models running on different machines).

Model Execution and Control:

• The Driver can control model execution concurrently, in a regular sequence (one after the
other), or in some pre-defined combination of these two modes.

• The Driver manages static simulations; this is the minimal option and the simplest one to
implement.

• The Driver can control dynamic model execution. As presented above, this functionality
will be required for scientific reasons if it is decided that the PRISM System should
support dynamic coupled simulations. A discussion on the technical advantages and
disadvantages of a dynamic Driver (with respect to the process management) is
presented in the Appendix REDOC II.2 .

• The Driver can control conditional model execution (one model is started during the
simulation only if a particular condition is met).

• The Driver can control interactive coupled simulations.

• The Driver can control a global coupled system flexible in terms of executables (extremes
are: each component is a separate executable, or all components run in parallel or in
sequence within only one executable.

• The Driver can take advantage of extra hardware resources as they come available,
within a static envelope.

• The Driver can give some statistic on the load balancing of the run.

• The Driver includes a timing that allows it to sample with identical absolute time for all
component models the duration of events.

 64

• The Driver warns the user if he tries to assemble an invalid combination of component
models.

• The Driver warns the user if the coupling and I/O frequencies are not synchronized.

Information Management:

• The Driver centralizes the universal parameters, i.e. the parameters that need to be
consistently defined in the coupled system (initial date, length of integration, calendar,
earth radius, solar constant, restart saving frequency, etc.). This information can be
defined by the user or by one master model (the atmosphere). The Driver transfers this
information to all component models.
(In a decentralized approach, the universal parameters would be read in directly by each
model PSMILe.)

• The Driver centralizes all model information (grid definition, distribution, etc.). For CF
dynamic simulation, this information may evolve at run-time. The Driver transfers this
information to the rest of the coupled system, when and where required.
(In a decentralized approach, each model PSMILe would be responsible for transferring
the appropriate information to the appropriate processes.)

• The Driver centralizes information on the state of all component models in the simulation
and transfers this information to a higher level-controlling layer or to the user.
(In a decentralized approach, each model PSMILe would be responsible for transferring
its status information to a higher level-controlling layer or to the user.)

Coupling Exchange Management:

• The Driver performs the matching between output coupling data produced from one model
and input coupling data requested by another model. In case of static simulations, the
matching can be performed initially; for dynamic simulations, the matching will be
performed at run-time. At run-time, the Driver manages the exchanges of coupling data
based on this matching.

(In a decentralized approach, the matching could be performed initially and the exchange
could be managed at run-time by each model Data Exchange library included in its
PSMILe. This option is probably applicable only for static simulations.)

The matching and choice of coupling parameters (e.g. coupling frequency) could be
performed:

o Automatically, when there is only one matching possibility between output and input
coupling data;

o Based on user's choices indicated in a coupling configuration file.

Termination and Restart:

• The Driver ensures that the whole simulation shuts down cleanly (regular and unforeseen
termination) in an intelligent way (e.g. after restart is saved) and reports error if one
component aborts.

• The Driver constantly updates, by writing in a restart log file or by any other equivalent
mean, the last date for which all model restarts were saved. In case the coupled system is
re-started after an unforeseen termination (i.e. machine breakdown), the Driver
automatically finds in the restart log file the appropriate date of restart; it restarts the
component models and transfers this restart date to all of them.

 65

• The Driver is able to shutdown the simulation cleanly if a specific scientific condition is met
(e.g. average SST exceeds some predefined value).

Transformer Requirements and Design Options

The Transformer performs on the coupling data all transformations required between two
component models.

List of possible transformations and other requirements

The transfomer may provide the following transformations (words in brackets refer to the OASIS
key words):

• Time operations:

o Averaging or sum

o Interpolation

o Minimum or maximum over a certain range

o Variance

• 2D spatial interpolation:

o Nearest neighbour (Ex: NNEIBOR)

o Nearest neighbour Gaussian weighted (Ex: GAUSSIAN)

o Bilinear (Ex: BILINEAR)

o Bi-cubic (Ex: BICUBIC)

o 1st order conservative remapping (Ex: SURFMESH)

o 2nd order conservative remapping

o Higher order conservative remapping

o Remapping using user defined remapping info (e.g. runoff remapping) (Ex: MOZAIC)

• 3D spatial interpolation:

o Nearest neighbour

o Nearest neighbour Gaussian weighted

o Bilinear

o Bi-cubic

o 1st order conservative remapping

o 2nd order conservative remapping

o Higher order conservative remapping

o Remapping using user defined remapping info

• 1D spatial interpolation:

o Nearest neighbour

o Nearest neighbour Gaussian weighted

 66

o Bilinear

o Bi-cubic

o 1st order conservative remapping

o 2nd order conservative remapping

o Higher order conservative remapping

o Remapping using user defined remapping info

• Other transformations:

o Conservation: Ensure global energy conservation between source and target grid (Ex:
CONSERV)

o Combination: Of different parts of different coupling fields or of other predefined
external data (Ex: FILLING)

o Algebraic operations: With possibly different coupling fields or predefined external data
and numbers as operands (+, -, X, SQRT, ^2...) (Ex: BLASOLD, BLASNEW,
SUBGRID, CORRECT)

o Spatial maximum or minimum, possibly relative to a threshold (MAX (var, 0): Maximum
of positive values).

o Specific algebraic transformations

• Celsius <-> Kelvin

• Degree <-> Radian

o Indexing operations:

• Mask: Only the points listed in index have meaningful data and the others are
changed to missing (Ex: MASK)

• Scatter: Scatters the model data onto the points listed in index

• Gather: Gathers from the input data all the points listed in index

o Spatial "collapse" operations collapse of any dimension or combination of dimensions
by various -possibly weighted statistical operations (mean, max, min, etc.)

o Subspace: Extraction of subspaces or hyper slabs in any combination of spatio-
temporal or other dimension

o Others

The Transformer may support the following grid types:

• Horizontally:

o Cartesian, i.e. the location of each grid point is given as a 2D array (i, j)

o Regular or irregular or stretched in longitude and in latitude

o Regular in longitude for each parallel, but unstructured in latitude (e.g. "Reduced"
atmospheric grid)

o Unstructured in longitude and in latitude

o Staggered

• Vertically:

 67

o V1 - Reproduction of the same horizontal grid at different levels
The same horizontal grid is reproduced at different vertical levels. Each level has its
particular mask. The vertical levels can be:

• V1-1: Given at regular or irregular depth or height levels (z coordinate).

• V1-2G hybrid: First level follows the topography (atmosphere models) or the
bathymetry (ocean models), last level follows an isobar (atmosphere) or the
surface (ocean), transition in between.

• V1-3: Given at regular or irregular isopycnal (density) levels (r coordinate).

o V2 - Different horizontal grids at different levels
The horizontal grid is not reproduced at different vertical levels. The horizontal grid can
be rotated, translated, or totally unstructured.

• Other grid characteristics:

o Grid may have masked grid points.

o Grid may have "holes" (i.e. they do not cover the whole sphere).

o Grid may be global or regional.

o Grid may have overlapping grid points.

Other requirements for the Transformer may be:

• To support scalar coupling data.

• To support vector coupling data in the standard spherical geographical coordinate system.

• To support vector coupling data in any set of local co-ordinate system.

• To support fields with undefined variables.

• To support source and target coupling domains that totally or partially overlap (e.g. global
atmosphere with a regional ocean, regional model nested into global model, etc.)

• For basic remapping (1st order conservative), to be able to calculate automatically the
remapping info -address and weights.

• To be able to give some statistics and diagnostics on the coupling fields (mean, max, min,
etc.) (Ex: CHECKIN, CHECKOUT in Oasis).

• To support coupling fields which characteristics may change over time as simulation
develops (grid, resolution, distribution...).

• To be able to save, at a user defined frequency, its restart data (e.g. time accumulated
data).

• To understand some standard conventions of meta-data.

• Based on meta-data description, to perform compatibility checks between data produced
by source component and data required by target component.

• Based on meta-data description, to recognize type of coupling data (flux, vector, scalar)
and verify that the user's transformation choice is appropriate.

• Based on meta-data description, to perform automatically some basic transformations
(units -e.g. Celsius to Kelvin, order of dimensions -e.g. source (x,y,z) -> target (z,y,x),
etc.), even if not prescribed by the user.

 68

Design Options for the Transformer Location

The transformations can be divided into 3 types:

• Point-wise transformation: An operation that can be completed on each grid point without
any external information, neither from the neighbouring grid points, neither from another
model. Thus they can be done locally without geographical knowledge and with any
domain decomposition, such as time averaging.

• Local transformation: An operation that can be completed in a model without any
information from another model, such as finding the maximum value of a field.

• Non-local transformation: An operation that requires information from another model, such
as interpolation.

To perform these transformations, the Transformer needs information coming from the models
(e.g. field units, grid, partitioning, etc.), and information prescribed by the user (e.g. the nature of
the transformations). In a static coupled simulation, the information may be transferred only once
initially; in a dynamic or interactive coupled simulation, these transfers must be possible at any
point during the simulation.

The minimal option is that all transformations are necessarily performed in a Transformer entity
distinct from the component model processes, as it is the case for the OASIS coupler today.

A desirable option is that at least point-wise transformations are performed locally on the
component model processes by transformation routines included in the PSMILe, before any
external exchange. This should be reasonably easy to achieve as it does not require any
parallelization of the transformation routines, and is recommended in some cases to avoid extra
communication. All other transformations are performed in a separate Transformer entity.

Another option is that point-wise and local transformations are performed locally in the component
model PSMILe before any sending or after receiving the coupling fields. All non-local
transformations are performed in a separate Transformer entity.

Design Options for the Transformer Parallelization

In the case the option of performing point-wise and local transformations directly in the PSMILe is
chosen, the full parallelization of the local transformation routines is required, as the PSMILe will in
some cases be linked to fully parallel component models.

For the separate Transformer entity performing non-local transformations, the following
parallelization options are possible:

Pseudo parallelization:

Options for distributing the work of the separate Transformer entity, simpler than its full
parallelization, could be followed as a first step. These options are however not scalable. In
particular, they can lead to a waste of resources if the different data exchanges between any two
models occur not simultaneously.

• Two-component-per-two-component approach

One separate sequential Transformer process is used for each pair of coupled components:

 69

Figure 11: Two per two approach

This option is simple to implement, but presents the following disadvantages:

- The load balancing of the different separate Transformer processes cannot be ensured;

- Each model information has to be duplicated in the different Transformer processes.

• Field-per-field bi-directional approach:

Between any two models, there are more than one separate sequential Transformer processes,
each one treating an equal number of fields exchanged in both directions between any two models.
This approach may ensure a better load balance but implies that each process has to calculate
and store the information required for the transformation, e.g. the interpolation matrix of weights
and addresses, in both directions. Furthermore, it also implies that each model- information has to
be duplicated in the different related Transformer processes.

• Field-per-field unidirectional approach:

Between any two models, there are two separate sequential Transformer processes, each one
treating the coupling fields exchanged in one direction. With this approach, each process calcu-
lates and stores only the information to do the transformation in one direction; this advantage is
less significant if the transformation information in one direction can be automatically deduced from
the one in the other direction. The main disadvantage is that the load balance between the sepa-
rate Transformer processes can no longer be ensured.

• One executable full parallelization:

The full parallelization of the separate Transformer entity is mandatory if one separate Transformer
executable performs all non-local transformations required between all components; the computing

load of this separate Transformer execu-
table will be important and it is therefore
important that it is parallel and scalable.
(Of course, direct communication be-
tween any two components for which no
transformations are required, with or with-
out repartitioning, should still be possible.)

One advantage of this option is that the
information about each model, for exam-
ple the grid, is duplicated only once,
namely in this separate parallel Trans-Figure 12: One executable full parallelization

 70

former executable memory. Another advantage is that it ensures an efficient use of these Trans-
former processes, especially if the different data exchanges between any two models occur not
simultaneously. Furthermore, if the different coupling fields are available at the same time in the
models, they can be packed into one message; this would present the advantage of reducing the
number of messages exchanged and increasing their individual size.

One disadvantage is that the partitioning of this additional parallel executable can match the
partitioning of only one model; repartitioning is therefore required for the other model components.

Many executables full parallelization

If the repartitioning required for the above option proves to be too expensive, the option of using
one additional parallel Transformer executable between any two component models could be
envisaged; the partitioning of each additional parallel Transformer executable could match the
partitioning of one of the two models.

The PRISM System Model Interface and Data-Exchange Library:
Requirements and Design Options

The PRISM System Model Interface Library (PSMILe) is the set of routines implemented in the
model code to interface it with the rest of the PRISM System (other component models or
additional coupling processes).

PSMILe general requirements

The possible requirements specific to the PSMILe are the following:

• The modifications to implement in the model code are as reduced as possible.

• The PSMILe is layered, and complexity is hidden from the component code.

• The PSMILe includes the Data Exchange library as the most external layer.

• The PSMILe may include transformation routines if transformations are required locally
before the exchange with the rest of the PRISM System.

• The component models are able to run in a stand-alone model without modifications, with
or without an external Driver.

• The model information (e.g. length of a time step) is given by the model through the
PSMILe and not duplicated externally by the user; this information may change during the
simulation.

• The description of the data, i.e. the meta-data (e.g. units, grid coordinates, mask, length of
a time step, distribution, ...), is given by the model through the PSMILe and not duplicated
externally by the user; this information may change during the simulation.

• A good trade-off is chosen between (I) a concise list of parameters for each subroutine
call (more subroutines provided with a shorter list of parameters) and (II) a small number
of subroutines, each one having a longer and more complex parameter list. The
complexity arises from the need to transfer not only the coupling data but also the meta-
data. • Interface routines once defined and implemented are not subject to modifications between
the different versions of the PRISM coupler. However, new routines may be added.

 71

• The PSMILe is extendable to new types of coupling data (e.g. data given on arbitrary
grids).

Data Exchange Library requirements

The Data Exchange library (DEL) performs the exchanges of coupling data between the compo-
nent models, or between the component models and the separate Transformer entity. The DEL
must therefore be included as the most external layer in the PSMILe.

The possible characteristics of the coupling data exchanges are:

• "End-point" data exchange: When producing coupling data, the source model does not
know what other model will consume it; when asking for coupling data a target model
does not know what other model produces it.

• The coupling data can be of different types: Integer, real, character, 1D-2D-3D-xD arrays,
structures, operators, functions, ...).

• The coupling data are exchanged but also possibly on their meta-data, i.e. the description
of the data (e.g. units, grid coordinates, mask, distribution, ...).

• The coupling fields characteristics, and therefore the associated meta-data, may change
over time as the simulation develops (grid, resolution, ...)

• Coupling data produced by a source model can be consumed by more than one target
model.

• Coupling data produced by one model may be only partially consumed by the target
model; extraction of subspaces, hyper slabs or indexed grid points may be required before
the exchange.

• Different coupling data produced by one model may have to be combined before the ex-
change.

• Algebraic operations may have to be performed on the coupling data before the ex-
change.

• The target model can consume the coupling data, produced by a source model, at differ-
ent frequencies (i.e. one "put" will not necessarily match one "get" –time, integration / in-
terpolation will be required).

• The occurrence of the exchange can be different for the different coupling fields.

• Occurrence of exchange is flexible (exchange can occur at a fixed frequency, fixed time
intervals at different pre-defined time-steps, on given dates of a physical calendar -Julian,
Gregorian, ...-, etc.).

• Coupling data produced from one model at a particular time may be required as input
coupling data for another model at another time.

• The user does not necessarily define the Occurrence of the exchange initially; it can de-
pend on parameters dynamically calculated during the simulation (conditional occur-
rence).

• Exchange points can be placed anywhere in the source and target code and possibly at
different location for the different coupling fields.

• The exchange can occur directly between two component models without going through
additional coupling processes.

 72

• When the component models are parallel and have different data partitioning, repartition-
ing associated to direct communication is required; all type of distributions usually used in
model component codes are supported. In a static coupled simulation, the characteristics
of the repartitioning required between any two component-models are fixed, while in a PM
or CF dynamic coupled simulation, they may change during the simulation.

Other specific requirements are:

• Data exchange implementation:
The DEL offers efficient data exchange implementations for coupling models assembled
into the same executable as well as for those assembled into different ones.

• I/O and access to data files:
In some cases, input coupling data will not be provided by another model but should be
read into a file indicated by the user in the coupling configuration file. This should be
transparent for the component model and managed automatically.
The format of these data files could be a standard PRISM fixed format. At a later stage,
different formats could be supported for these data files; this would imply that the instance
reading the file can interpret their content.
For parallel component models, the I/O library will have to address the parallel I/O issue.
One option is simply to avoid parallel I/O by doing regional selection for input data and by
doing post processing operation after a simulation to recombine multiple output files pro-
vided by the parallel execution. MPI-IO is another option. Finally a third option is to set up
a dummy application or I/O demon, which just acts as data source by reading the file and
behaves like a regular model with respect to the coupled system. This last option is par-
ticularly interesting when the data present in the file need transformation, interpolation or
repartitioning before being used by the model, and therefore is particularly interesting for
parallel models. It is also interesting from the performance point of view if the I/O demon
can perform the access to disk concurrently with the model calculations. However, it sup-
poses that a Driver and an external I/O demon are active even for a component model
running in a totally uncoupled mode.

• Matching of output and input coupling data from different component models:
As discussed above, the DEL could perform, for static simulations, the matching between
output coupling data produced by one model and input coupling data requested by an-
other model. The matching may be based on the user's choices indicated in the configura-
tion file, or may be done automatically when there is only one matching possibility. For
dynamic simulations, information coming from the Driver is required.

An Important Design Option: A Common Model Interface Library for I/O and Coupling Data

I/O and coupling data present many common characteristics and should therefore, in principle,
share a common Model Interface Library. It should be evaluated further if this ideal concept can in
fact be implemented without too many constraints.

The following list of characteristics shared by both I/O and coupling data was established:

• Data requested or made available by a model. Some data may be I/O and coupling data
at the same time.

• Effectively, the model will not deliver all necessary data. For each particular simulation,
the user has to activate some of them externally through a configuration file created with a
GUI or any other means.

 73

• Data, for which the "end-point data exchange" principle is applicable: The model itself
does not know where the data come from or where they go. The user defines for each
particular simulation the source/target models (for coupling data) or the source/target files
(for I/O data) externally.

• Data, for which transformations may be required: The user prescribes these transforma-
tions externally.

• Some data required from another model in the coupled mode may in fact be forcing data
read directly from files. In that case, the coupling library is faced with the same parallel I/O
and meta-data interpretation difficulties.

The following list of differences was established:

• The number of coupling fields is generally smaller than the number of diagnostic output
fields.

• One PRISM objective is to define a standard physical coupling interface between any two
components, i.e. the nature of the coupling fields exchanged; standardization of the nature
of the diagnostic output will be much more limited.

• Some local transformations required for I/O may not be required for coupling, and vice
versa.

• I/O may require more or different meta-data to be transferred from the model.

• I/O data needs some mechanism to translate meta-data given by the model into CF-style
description. This is required for coupling data only if the coupler is asked to generate its
own coupling diagnostics files.

II.2.3 Coupler review

This section surveys existing couplers or coupling applications, targeted or not to climate:

• OASIS from CERFACS

• Palm from CERFACS

• MpCCI from FhG-SCAI

• Calcium from EDF

• CCSM Coupler 6 from NCAR

• Distributed Data Broker from UCLA

• Flexible Modeling System from GFDL

• Coumehy from LTHE and IDRIS

For additional information on projects targeting or involving coupling aspects, on potential
underpinning technologies, and on model developments related to coupling, the reader is invited to
consult the document entitled "Met Office FLUME project - Model Coupling Review"
(http://www.metoffice.com/research/interproj/flume/1_d3_r8.pdf), written by R. W. Ford and G. D.
Riley from the University of Manchester.

 74

OASIS (http://www.cerfacs.fr/globc/software/oasis/oasis.html)

OASIS is the coupler developed at CERFACS, which will be the base of the PRISM coupler
developments. It is primarily designed for coupling climate models.

The initial work on OASIS began in 1991 when the “Climate Modeling and Global Change'' team at
CERFACS was commissioned to build up a French Coupled Model from existing General
Circulation Models (GCMs) developed independently by several laboratories (LODYC, CNRM,
LMD). Quite clearly, the only way to answer these specifications was to create a very modular and
flexible tool.

OASIS is a complete, self-consistent and portable set of Fortran 77, Fortran 90 and C routines. It
can run on any usual target for scientific computing (IBM RS6000 and SPs, SPARCs, SGIs, CRAY
series, Fujitsu VPP series, NEC SX series, COMPAQ, etc.). OASIS can couple any number of
models and exchange an arbitrary number of fields between these models at possibly different
coupling frequencies. The user defines in an input file 'namcouple' all the coupling parameters of
the simulation for OASIS (models, coupling fields, coupling frequencies, etc.), namcouple is read at
run-time by OASIS. Each component model of the coupled system remains a separate, possibly
parallel, executable and is unchanged with respect to its own main options (like I/O or multitasking)
compared to the uncoupled mode. OASIS handles only static simulations, in the sense that all
component models are started from the beginning and run for the entire simulation. The models
need to include few low-level coupling routines to deal with the export and import of coupling fields
to/from OASIS.

The main tasks of OASIS are:

• Communication between the models:
To exchange the coupling fields between the models and the coupler in a synchronized
way, four different types of communication are included in OASIS. In the PIPE technique,
named CRAY pipes are used for synchronization of the models and the coupling fields are
written and read in simple binary files. In the CLIM technique, the synchronization and the
transfer of the coupling message passing based on PVM 3.3 or MPI2 does data. In
particular, this technique allows heterogeneous coupling. In the SIPC technique, using
UNIX System V Inter Process Communication possibilities, the synchronization is ensured
by semaphores and shared memory segments are used to exchange the coupling fields.
The GMEM technique works similarly as the SIPC one but is based on the NEC global
memory concept.

• Transformation and interpolation of the coupling fields:
The fields given by one model to OASIS have to be processed and transformed so that
they can be read and used directly by the receiving model. These transformations, or
analyses, can be different for the different fields. First a pre-processing takes place which
deals with rearranging the arrays according to OASIS convention, treating possible sea-
land mismatch, and correcting the fields with external data if required. Then follows the
interpolation of the fields required to go from one model grid to the other model grid. Many
interpolation schemes are available: nearest neighbour, bilinear, bicubic, mesh averaging,
Gaussian. Additional transformations ensuring for example field conservation occur
afterwards if required. Finally, the post processing puts the fields into the receiving model
format.

 75

Palm (http://www.cerfacs.fr/globc/PALM_WEB/)

The PALM project, currently underway at CERFACS, aims to provide a coupler allowing a modular
implementation of a data assimilation system. In this system, a data assimilation algorithm is split
up into elementary "units" such as the observation operator, the computation of the correlation
matrix of observational errors, the forecast model, etc. PALM ensures the synchronization of the
units and drives the communication of the fields exchanged by the units and performs elementary
algebra if required.

This goal has to be achieved without a significant loss of performances if compared to a standard
data assimilation implementation. It is therefore necessary to design the PALM software in view of
the following objectives and constraints:

• Modularity: PALM provides a mechanism for synchronization of pre-defined functional
units that can be executed in sequence, in concurrence, or in a mix of these two modes.
One key aspect of PALM is also that dynamic execution of the units (i.e. units can be
launched and stopped at any point during the simulation) or conditional executions of the
units are allowed. PALM also performs the required exchange of information between
these units.

• Portability: PALM aims to run on all the existing high-performance platforms and, if
possible, on the next generation super-computers. This effort of "clairvoyance" can be
accomplished only through the adoption of standard.

• Performance: PALM will be used in two modes: research and operational. The research
mode will be used for the design of new algorithms and will prioritize the flexibility; on the
contrary, the operational mode will work with a fixed configuration of the algorithm and will
prioritize the performance optimization and the monitoring of the process.

PALM is a very flexible and efficient, but somewhat complex tool. For PRISM, it remains to be
evaluated if this flexibility, and associated complexity, is required for coupled climate modeling.

MpCCI (http://www.mpcci.org/)

The Mesh based parallel Code Coupling Interface (MpCCI) is a coupler written for multidisciplinary
applications by the Fraunhofer Gesellschaft Institute for Algorithms and Scientific Computing (FhG
SCAI). MpCCI enables different industrial users and code owners to combine different simulation
tools. MpCCI can be used for a variety of coupled applications like fluid-structure, fluid-fluid,
structure-thermo, fluid-acoustics-vibration, but was not explicitly designed for geophysical
applications.
MpCCI is based on COCOLIB developed during the CISPAR project, funded by European
Commission, and on GRISSLi-CI developed during the GRISSLi project, funded by the German
Federal Ministry for Education and Research. MpCCI is not an open source product, but the
compiled library offering basic functionality can be downloaded for free from the web site; special
agreements apply for additional features like e.g. more sophisticated interpolation schemes.

MpCCI is written in C++ and is based on MPI1. MpCCI is mainly a parallel model interface library
that provides the usual coupling functionality: 1- the interpolation of the coupling fields (including
the neighbourhood search and calculation of weights and addresses), and 2- the exchange of
coupling data between the codes (including data repartitioning when required). MpCCI also
consists of a separate control process, which performs only a simple monitoring of the different
codes, as MpCCI handles only static couplings.

 76

Placing MPI like sending and receiving instructions in the coupled codes performs the coupling.
MpCCI does not fully adhere to the principles of "end-point data exchanges" as each model has to
know the target/source of its sending/receiving instructions. However, each code simply works with
its own local mesh and needs no specific knowledge of the other code characteristics.

As MpCCI is based on MPI1, heterogeneous computing is supported as long as the MPI1
implementations of the different platform implied in the coupling allows it.

Calcium (http://www.irisa.fr/orap/Publications/Forum8/berthou.pdf)

Calcium is a coupler of codes developed by Electricite De France (EDF), and written, as MpCCI,
for multidisciplinary applications. Calcium ensures the exchanges of coupling data between the
codes in a synchronized way. The exchanges are based on PVM and heterogeneous coupling is
allowed. Furthermore, Calcium automatically performs the temporal interpolation of the coupling
data when the sending frequency of the source code does not match the receiving frequency of the
target code. Calcium is used by about 10 different research or industrial groups mainly in France
and is implemented in about 20 codes.

CCSM Coupler 6 (http://www.ccsm.ucar.edu/models/cpl6)

The Next Generation Coupler (NGC) - also called cpl6 - is the coupler being currently developed at
NCAR, for the next version of the Community Climate System Model (CCSM), in the framework of
the Accelerated Climate Prediction Initiative (ACPI) Avant Garde Project. They have performed the
requirement capture, have described a design and are presently in the development phase.

The main characteristics of the NGCc are:

• The coupler is written in F90 and explicitly designed to couple four models: atmosphere,
land, ocean, and sea ice. No flexibility concerning the number of models or their nature is
included. Due to the nature of these components, exchange of 2D fields only is supported.
These four models can run concurrently, sequentially or in a mix of these two strategies.
Each component and the coupler are separate executables.

• The coupler can run in parallel decomposed into an arbitrary number of processors, and
supports the following type of parallelism: pure shared-memory, pure message-passing,
and hybrid parallelism incorporating threading on multiprocessor nodes and message
passing between the nodes.

• The transformations performed by the coupler include interpolation (conservative
remapping using the SCRIP library), merging of coupling data originating from multiple
source grids, time accumulation and time averaging, diagnostic computing, and writing of
history data sets, and also computing of certain interfacial fluxes between components.
This choice was made as the fluxes need to be calculated at the higher resolution AND at
the higher required frequency, which may be characteristics belonging to different models.

• All coupling data exchanges are performed with MPI. Parallel exchange of coupling fields
and repartitioning is possible. However, all coupling field exchanged between any two
components have to go through the coupler where the transformations are performed;
direct component to component exchanges are not allowed.

One can note here that the goal of achieving efficient vector processing performance was not
identified as a mandatory requirement for the NGC.

 77

UCLA Distributed Data Broker (http://www.atmos.ucla.edu/~drummond/DDB/)

The Distributed Data Broker (DDB) is a software tool designed to handle distributed data
exchanges between the UCLA Earth System Model (ESM) components. These components are:
Atmosphere General Circulation Model, Atmospheric Chemistry Model, Ocean General Circulation
Model, Ocean Chemistry Model, and are run as separate executables. The DDB is composed of
the Registration Broker (RB) and of three libraries linked to the component models: the Model
Communication Library (MCL), the Communication Library (CL), and the Data Translation Library
(DTL).

The Registration Broker is a process that collects model information from the models initially. The
RB is only active at the beginning of the coupled run; thus, any model process implied in the
coupling can take this role and later resume with normal model operation. The DDB follows the
"end-point data exchange" principle, which they call the producer-consumer paradigm. In the
registration phase, the different models register their "production" and "consumption" of coupling
data and RB performs the appropriate matching which will be effective at run-time.

The MCL contains a set of callable routines that are used by the different component models to
register at the beginning of a run, and perform the exchanges of data at run-time.

The CL is a set of routines used by the DDB to manage data exchanges based on the
communication libraries available on the computer platforms. At run-time, the model producing the
data sends the data directly to the consuming model at a given time interval; the consuming model
will later receive the data at a rate dictated by its internal computations. Heterogeneous coupling is
allowed as long as the communication libraries available on the computer platforms support it.

The DTL transforms data in a given grid domain to the domain of the requesting model. This library
will include routines ranging from simple linear interpolation to high order data translation routines.

GFDL Flexible Modeling System (FMS) (http://www.gfdl.noaa.gov/~fms/)

The design of the FMS is geared toward coupled climate models running as a single executable.
The component models that can be included into the FMS are atmosphere, land, ocean and ice
models. In the FMS, the coupler is the main program, which drives the components models. To
interact, these components communicate only with the coupler. They may be on different grids and
have different data decompositions and the coupler manages the transformations required
between them. Recently, some parallelization concepts were experimented on the component
models themselves, using abstract parallel dynamical kernels: the parallelism is in fact built into
basic operators invoked in the model, including arithmetic operators as well as differential
operators such as curl, div, grad and laplacian.

COUMEHY (contact: C. Messenger, messager@hmg.inpg.fr)

COUMEHY is an ongoing French coupling project, involving the "Laboratoire des Transferts en
Hydrologie et Environnement", "Hydrosciences Montpellier", the MEVHySA team from the "Institut
de Recherche pour le Developpement" from Montpellier, and the "Institut du Developpement et des
Ressources en Informatique Scientifique". The objective of this scientific and technical project is to
couple one atmospheric model to different hydrological models running on different platforms, in
order to evaluate the importance of coupling processes between atmospheric and continental hy-
drological cycles, in the climate global change perspective. The inter-operability of different codes

 78

running on different machines was in that case a strong requirement: the choice was therefore
made to base the communication on CORBA (Common Object Request Broker Architecture)

 79

II.3 Data Management, Analysis, Visualization and Archiving

This part of the PRISM System Specification details the High Level component structure of
the data management system, which integrates the data management, analysis and visualization
with overlapping functionality (coupling in particular).

II.3.1 Processing Library

PRISM aims to provide software that will do both processing in bulk (e.g. for post-processing of
model output files) and computations on smaller amounts of data for analysis and visualization.
When developing the processing library we will share code with the I/O library and the coupler.

II.3.2 Visualisation
Name Description
OpenDX OpenDX is a uniquely powerful, full featured software package for the visualization

of scientific, engineering and analytical data: Its open system design is built on a
standard interface environment. And its sophisticated data model provides users
with great flexibility in creating visualization. Is Open Source.

Vis5D+ A free OpenGL-based volumetric Visualization program for scientific datasets in 3+
dimensions.

Vis5AD VisAD is a Java component library for interactive and collaborative visualization and
analysis of numerical data

Ferret Ferret is an interactive computer visualization and analysis environment designed to
meet the needs of oceanographers and meteorologists analysing large and complex
gridded datasets. Interactive command-line and scripting language.

GrADS (Grid
Analysis and
Display System)

Interactive desktop tool that is used for access, manipulation and visualization of
earth science data.

NCAR Graphics A time-tested UNIX package, consisting mainly of over two dozen Fortran/C utilities
for drawing contours, maps, vectors, streamlines, weather maps, surfaces,
histograms, X/Y plots, annotations, and more.

GMT (General
Mapping Tools)

GMT is a collection of public-domain Unix tools that allows you to manipulate x,y
and x,y,z data sets (filtering, trend fitting, gridding, projecting, etc.) and produce
PostScript illustrations ranging from simple x-y plots, via contour maps, to artificially
illuminated surfaces and 3-d perspective views in black/white or 24bit colour.

COCO library A Python library with C/C++ underneath, using some modules from CDMS, to
implement objects in memory containing data and CF-based meta-data. I/O to
netCDF or PP. A more systematic specification for the high-level operations than
the UKMO PV-WAVE library.

CDAT (Climate
Data Analysis Tool)

Includes Climate Data Management System (CDMS). Object-Oriented data
management and analysis system, whose user interface is in Python. Open source.
Extensible by contributing Python modules. Interface to VCS (visualization).

IDL (Interactive
Data Language)

Commercial Software for data analysis, visualization, and cross-platform application
development

AVS (Advanced
Visual Systems)

Commercial Software.

Table 14: Graphics packages considered for PRISM

 80

The Table 14 lists existing freely available packages, with the exception of the commercial
software IDL and AVS, which are in use for climate data analysis and hence should be considered
for use in PRISM. Each of the packages will be evaluated; the results of which will be presented in
ARCDI.

II.3.3 High Level Architecture

The following diagram depicts the components comprising the Archive, Data Processing and
Visualization system and illustrates how they fit together. The Job Flow and Run Shell show the
coupled model system running forward in time. Some data processing, such as time-step
averaging and area selection, can take place within the run shell. Data is then output from the
model to files via the I/O layer. These are then picked up and sent to the Run Shell Data
Processing component, which will post process the data further, performing tasks such as climate
meaning etc. From here, the data is sent to the Data Repository (an active archive) through a
common Archive Interface that will be defined within PRISM. Located under this interface are site-
specific procedures to prepare and send the data to the archive.

Figure 13: Diagram of the archive, Data Processing and Visualisation System

 81

All these components are glued together by software in the Job Flow and Run Shell (an SMS like
system to perform job control) and initiated through a user interface. The current design enables all
this to run at one site, with the possibility for the user interface client and server to be run remotely.

Figure 14: Internal Data Management structure for the Job Flow an Run Shell

A user interface will be provided to access data at a given (potentially remote) site. Once again, the
archive interface will act as a common gateway for all PRISM software with site specific code
layered beneath this. Data is filtered and either processed remotely (low-end visualization) or
locally (high-end visualization) before being presented for display.

Where possible, software will be shared between components. Such piece of software is the
Shared Processing library, which needs to be available on all platforms.

The diagram on the left illustrates the Internal Data Management structure for the Job Flow and
Run Shell.

 82

 83

II.4 PRISM user interface

Design options and constraints of the user interface (UI) are described. The UI interfaces
the system to the user. The user should be able to use the UI to access resources remotely, i.e.
the users do not have to be physically in the same place as where the model is executed or data is
located. To achieve this remote access, a web-based system is recommended, since it allows
access to any resources via the HTTP protocol. This is currently the only recommended protocol
on the Internet, which is accepted almost everywhere. While there is a benefit to have a command
line interface for low speed connections, complex configuration tasks are best accomplished with a
graphical user interface (GUI) providing visual support and guidance. The detailed functionality of
the UI is specified.

II.4.1 Design Options and Constraints

Constraints

A graphical user interface (GUI) should implement a high level of visual guidance. An integrated
documentation environment and online help should be provided.

The GUI should allow the users to use both keyboard and mouse navigation.

Each function of the GUI should be defined such, that it can be implemented as a separate module
by a responsible subgroup. However, this may result in the use of different tools for different
aspects of the UI. All functions managing the overall experiment structure or each individual model
(coupler) component or task must specify the integration level with the GUI.

The GUI should allow to import/export setups from/to other users.

The GUI should let users configure the layout of the system, such as colours and fonts used.

The GUI should run even when the PRISM remote application server is unavailable and allow the
user to create setups for later submission.

Options

It is important to specify the integration level of the different functions and the interaction style
(design of the behaviour and the look-and-feel of the UI). The use of existing products and their
design constraints have to be reviewed in this context.

Client software is often described as "thin" or "fat", referring to the functionality available in the cli-
ent without the need for calling on the help of the server. The fat client allows for a high degree of
programmable support and sophistication as well as making good use of the clients computing
facilities. The latter can be an advantage or disadvantage depending on the device/computer in
question. The larger size of the client application for a web application means longer initial start-up
time. A thin client will make use of the server often and will run in some hosting application such as
a web browser. The possibility of providing sophisticated applications is limited and dependent on

 84

the capabilities of the hosting application. Thin clients are fast to start and can be run on many de-
vices but are dependent on available network speed and the power of the cooperating server.

The use of a Java client is the best choice as it enables the client to provide more built in support,
recover from server failures, execute in a standard environment and be less sensitive to browser
differences. A desirable option is to be able to configure the functionality of the client to make it
more light-weight .

Elaborate authentication procedures are annoying to users. Special consideration should be taken
to allow the security mechanisms of the GUI to be shared by added software components.
Therefore, it is important to present a single authentication/login interface to the user.

II.4.2 Commercial Components

Any licensing or usage restrictions for any tool specified in the requirements needs to be
evaluated.

II.4.3 Hardware/Platform Interfaces

The GUI should be implemented as platform independent as possible. Java represents the only
candidate available that can be deployed over multiple platforms as an application or incorporated
into a mainstream Internet browser. For reasons mentioned earlier the use of a thin client (HTML)
limits the scope of intelligence in the tool.

II.4.4 Software Interfaces

This should describe the relationship between the different functions of the GUI, i.e. visualization,
configuration, archiving and monitoring. A programmatic API must be specified to allow new
functions to be integrated into the GUI. This API specifies functions to allow new applications to be
called and to extract information from the GUI regarding experiments. The remote communication
capabilities of the GUI should be available for software that integrates with the GUI.

II.4.5 Communication Interfaces

As this is a web oriented UI all communication is expected to be in the HTTP protocol to allow it to
pass through the firewall of different sites.

II.4.6 Performance

The performance of a GUI felt by the user will vary considerably depending on the characteristics
of the users hardware but will also vary between different software implementations from different
manufacturers. The factors relating to the performance are mainly:

• Network speed - The slower the network link the longer it will take to transfer the program
to your local workstation and to execute command that communicate with the remote
server. The network speed over Internet is expected to improve as technology advances.

 85

• Memory - The available memory on the client will influence how much user data (experi-
ments or their results) can be worked on at any one time. It will also limit the functionality
that can be implemented in the client.

• CPU performance - Once the GUI application has started it will depend on the CPU-
power of your local hardware.

As most of the factors outlined above are out of the developers control there needs to be a
specification of a minimum requirement with respect to the client hardware to make sure all clients
can use the GUI. This includes the size of the display. The performance factors may exclude doing
visualizations or other performance stressing tasks in the GUI application.

II.4.7 Extensibility

The UI should be extendable by users. The level of extensibility and customization needs to be
defined. Envisaged future extensions need to be considered.

 86

 87

III - PRISM System Constraints

III.1 Review of Component Models

A technical review of existing component models is given. The list of models gives the state
of the model review up to June 2002, it is not closed but can be extended in the future.

III.1.1 List of Models

Atmosphere

• ARPEGE-Climate - Action de Recherche Petite Echelle Grande Echelle

• ECHAM5 - Max Planck Institute for Meteorology Climate Model

• GME - German Weather Service Climate Model

• HIRHAM - Regional Model for the atmosphere

• LMDZ - LMD/IPSL Atmospheric general circulation model

• RACMO - Regional Atmospheric Climate Model

• RCA - Rossby Centre Atmosphere Model

• UMA - Unified Model - Atmosphere Component

Atmospheric Chemistry

• INCA - INteractions with Chemistry and Aerosols

• KNMI_TM - Atmospheric Chemistry Transport Model

• MOZART - Model of ozone and related tracers

Land-Surface Schemes

• ISBA - Interaction between Soil, Biosphere and Atmosphere

• MOSES – UK

• Met Office Land surface model

• ORCHIDEE - ORganizing Carbon and Hydrology In Dynamic EcosystEms

• RCA-soil - Rossby Centre Land-surface scheme

Ocean

• C-HOPE - Hamburg Ocean Primitive Equation Model

• OPA - Océan Paralléllisé

 88

• MICOM - MIami Isopycnal Coordinate Ocean Model

• MOM - Modular Ocean Model

• HYCOM - HYbrid Coordinate Ocean Model

• RCO - Rossby Centre Ocean Model

• UMO - Unified Model - Ocean Component

Sea-Ice

• LIM - Louvain-la-Neuve Sea-Ice Model

• NERSC Sea-Ice Model

• RCI - Rossby Centre Sea-Ice Model

• UMI - Unified Model - Sea-Ice Component

Ocean-Bio-Geochemistry

• HADOCC - Hadley Center Ocean Carbon Cycle

• PISCES

• HAMOCC - HAMburg Ocean Carbon Cycle

III.1.2 Technical Aspects

Global models

Coupling

All component models listed above have already been used in coupled configurations, using
different coupling approaches. For Ocean-Atmosphere coupling the data exchange is handled in
most cases by the coupling software OASIS. Examples are the coupling between OPA and
ARPEGE or C-HOPE and ECHAM5. Ocean and sea ice models belong in most cases to the same
executable. Coupling data are passed as arguments of Fortran subroutines or belong to COMMON
data blocks. The OASIS coupler is used mainly for data exchange with the atmosphere
components (ARPEGE and LMDZ). In all cases, the biogeochemistry is a package of the calling
ocean model, since biogeochemical tracers are calculated on the same grid as the ocean
prognostic variables. In all current implementations, the land surface scheme is a package of the
atmosphere model. Some of the land surface schemes are closely adapted to the atmospheric
components like in SPA - ARPEGE - Climate or in RCA - RCA - soil. Some components (e.g. the
Unified Model) exchange data through COMMON data blocks or the data are written to an output
file. The method chosen depends on the user's choice and on memory constraints.

Input/Output

Currently models handle their output in many ways. Nevertheless a majority already supports the
NetCDF output (ECHAM5, GME, LMDZ, HAMOCC, OPA, MOM, LIM, ORCHIDEE, PISCES, and

 89

INCA), some of them through the IOIPSL library (LMDZ, OPA, LIM, ORCHIDEE, and INCA). For
atmosphere models, GRIB is another common format. The Unified Model components output is
written as binary data using Met Office pp-format, comprising a header plus the binary field itself.

Further technical remarks

Most of the reviewed models are programmed either in Fortran 77 and/or Fortran 90 with small
parts written in C. Only ECHAM5 requires Fortran 95. All model components that are able to run in
parallel using 1-dim or 2-dim domain partitioning handle the data exchange between processes
using the MPI1 standard.

Regional Models

Regional climate model systems are investigated in a separate work package. The reviewed
models are all used in regional climate studies, both in present-day and in scenario mode, in
national projects and European ones. These systems have different backgrounds, represent
different philosophies in how to construct a regional climate model, and have different links, due to
historical and practical reasons, to particular global models. The SMHI/Rossby Centre model
(RCA) is based on the HIRLAM operational limited area model, but with physical parameterizations
modified/replaced with high-resolution climate applications in mind. The DMI (HIRHAM) model is
based on HIRHAM dynamics, but its physical parameterizations are based on those of the
ECHAM5 AGCM. The Hadley Centre regional models, being part of the UKMO Unified Model
system, share in principle the parameterizations of the respective global models.

Coupling

Similarly to the components used for global simulations described above, each of the three
regional model systems have an atmospheric module which calls a (land) surface scheme as a
subroutine. One of the systems includes sulphur chemistry. One of the regional model systems
comes with a regional ocean - sea-ice module. In contrast, the atmosphere - land-surface module
plus routing and the ocean - sea-ice modules can be run independently. So far the regional ocean
model system has been applied to the Baltic Sea, but adaptation to the Arctic is being considered.
The regional atmosphere-ocean coupling uses OASIS.

All aspects of the coupling algorithms are difficult to determine, because parts of the models are
integrated within all-in-one codes. In principle, it should be possible to run most components in a
"concurrent by nature" mode.

Input/Output

All reviewed models (various atmosphere/land-surface models, and the ocean/ice models) have
their own restart mechanism. Restart files have various formats. All components need parameter
input from external data files. A restart can be done from a combination of input from a global
model and climatological data, or from "true" restart fields generated during a previous integration.

The input required is generally in the form of 3D (for some variables, 2D) data in geographically
limited domains, e.g. through lateral boundary relaxation zones, 4-10 grid points wide, at all sides
of the regional domain, or the 2-D sea surface state when no regional ocean model is included.
Typical source of input is global model data. Within PRISM, global data should be provided by a
GCM (AGCM, OGCM or AOGCM) through the PRISM coupler in a standardized way. In addition, a

 90

regional model component might require input from other regional components. The minimum cou-
pling frequency for the global-regional coupling is at present O(6 h). However, this is expected to
increase in the future, up to the limit given by the two time-steps of a global and the regional
model.

The most frequently used data format is GRIB.

Note that, regarding coupling regional models (such as atmosphere-ocean), problems and options
are in principal the same as in global model systems.

Diagnostic output is controlled by different methods, ranging from modifying the code to using
name-list input.

Further technical remarks

So far, the various models have been applied to Europe, USA, Eastern Pacific, Africa, India and
the Arctic. All models use staggered grids together with a variety of vertical coordinates: hybrid
(sigma-geopotential) and geopotential coordinates. The PRISM system should ideally allow
automatic configuring of a regional model anywhere on the globe.

The parallelization strategy is usually based on horizontal partitioning.

Overall, the regional models encompass a number of model components very different in detail,
but with common requirements regarding the global-regional coupling. Requirements regarding
internal coupling between the components in a regional model system are in principle the same as
in global model systems.

 91

III.2 Review of Existing and Future Target Computer Platforms

The state, the trends, and the future of High Performance Computing (HPC) in relation to
the development of PRISM components are assessed. This investigation is motivated by the need
to early identify the best suited programming languages and paradigms as well as parallelization
strategies targeting the reduction of porting and maintenance efforts of the software product over
different platforms, as well a good performance and scalability on leading edge HPC facilities over
the years to come.

The present assessment of HPC technology trends does not aim to cover all aspects that
one might associate with HPC. Rather, it is tuned to some of the specific needs of the PRISM
Project, and its climate community. The following quotes from the influential "PITAC report" [Joy,
Kennedy 1999] would like to underline the visions and challenges of this document: "Drive high-
end computing research by trying to attain a sustained petaops/petaflops on real applications by
2010.." and, we would like to add, in particular for the different PRISM components.

III.2.1 Evolution of the HPC Market

Figure 15: TOP 500-Architecture evolution over years.

 92

A decade ago, the scenario looked a little bit different, chip technology was mainly dominated by
proprietary developments, while today the trend is clearly driven by the main idea 're-using' the
same technology from desktop workstations trough servers up to high-end systems. This trend can
be further extrapolated by predicting a convergence of chip technology into 3-4 main chip
providers, often as a result of company mergers or high level commercial collaborations.
Concerning the architectures, a decade ago high-end single processor, and single nodes SMPs
were quite common, today the high sustained performance can only be reached via combination of
both high single CPU performance and high degree of parallelization.

The real technical change over the past decade has happened around systems built on commodity
building blocks (commodity in a broad sense, in this context an entire SMP server can be
considered a 'basic building block' unit).

It is important to underline the central role played by the integrated HPC-solutions and the broad
and complex spectrum of corresponding HPC-know-how, which mark the real distinction between
different solutions (OS-related functionality and performance features for handling huge amounts of
data, single system image related features, compilers, tools, libraries etc.). The many quality-
related "HPC details" very often make the real difference between the available "clusters of
clusters". The real value of such diverse integrated solutions can only be assessed on the basis of
real-life benchmarks based on end-user applications and full cost considerations. Experience
shows that permanent and pro-active benchmarking of a set of kernels representing present and
future concrete needs of the user community against emerging HPC-solutions may provide the
best basis for the preparation of a particular HPC-procurement. In this sense the effort of the WP2b
is proposed to the PRISM community as a permanent service monitoring HPC-technology trends.

Figure 15, detailing the world's top 500 number crunching systems, documents the rise of
massively parallel systems (MPP) and the start of the growth of network of workstations (NOW).

III.2.2 HPC Architectures: State-of-the-Art and Trends

By extrapolating the trends of the past decades into the near future, with particular respect to base
technologies and market trends, it appears safe to draw two conclusions. First, basic concepts
underlying HPC, such as architectural features and trade-offs, are well-understood and ars
unlikely to change. Second, in terms of parameters such as speed, memory size, transfer rates,
and cost, the only certainty is permanent improvement, but at different rates for different system
components. Thus, systems design favours different balances at different times among various
components such as processors, memories or communications. As a consequence, the products
that dominate the market keep changing with time.

This section reviews some of the main arguments in support of the thesis that the HPC scene is
changing:

A trend that seems to emerge is that most new systems look as minor variations on the same
theme: clusters of RISC-based Symmetric Multi-Processing (SMP) nodes, which in turn are
connected by a fast network. Culler et. al. in [Culler 1998] consider this as a natural architectural
evolution. However, it may also be argued that the requirements formulated in the ASCI program,
as well as pure market volume of HPC systems in general, has steered these systems in this
direction.

This trend is amply documented in the literature, e.g. in the "Top 500"-list. Although this list, com-
piled every 6 months by the researchers Jack Dongarra at the University of Tennessee, Hans
Meuer at the University of Mannheim and Erich Strohmaier at NERSC, is only one measure of per-

 93

formance, it is the best known and most widely accepted one, simply because no other comparison
of such a large number of powerful computers exists anywhere.

The Top 500 list is based on the Linpack Benchmark, solving a system of linear equations,
perhaps the single mathematical operation typical of the broadest range of numerical computation.
It measures computing power close to peak capacity, and thus is not necessarily representative of
computations with irregular data access patterns. Other measures also have their limitations.
Efficiency (sustained performance divided by peak performance), e.g., under-values machines,
which are inefficient by this measure but cheap. While acknowledging the limitations of the Top
500 list and the Linpack Benchmark, the fact remains that no other published comparison comes
close to defining the world of supercomputing as well as "Top 500". Although we are strongly
against the idea to rank a system only based on this single benchmark, we have the feeling that
this list is anyway representative of the HPC market, identifying at least the leading edge HPC
systems and HPC manufacturer.

A word about the "bird's eye view" approach presented in this section: A detailed justification of the
summary statements made could easily fill volumes. There are hundreds of scientific papers, in
addition to trade journals and commercial documents, which assess various aspects of the current
HPC scene, and attempt to extrapolate them into the future. The reference section lists some
sources as entry points to the vast literature.

Architecture: Driving forces

We identified at least three different forces that directly influence supercomputer technology trends.

• Technology Progress in General
Most experts agree that the exponential increase in processing speed and
memory/storage density will continue for yet another decade (well beyond the planning
horizon of this report). As a consequence, every supercomputer loses its competitive edge
after two to three years of use. The much longer lifespan of application software makes
software compatibility and portability a central issue in purchase decisions.

• Market
"The computer business has become a commodity business - with all that that implies.
Thus, it will be driven by economic factors rather than technology..." [Preston 1998].

The number of supercomputers sold each year is on the order of a few thousand. In
contrast, hundreds of millions of microprocessors for PCs, cellular phones and game
stations are produced; millions of PCs and workstations based on these commodity items
are produced. These numbers lead to large economies of scale, as design and non-
recurring manufacturing costs are spread over a large number of chips, boards, and
finished products. In contrast, for highly specialized high-end CPU (like vector CPUs),
which only sells few hundred systems, for which only a few thousand processors are built,
design costs easily dominate the overall cost.

Also the vector CPU has passed a very dynamic evolution since it has been successfully
moved to the CMOS technology and can be realized today on a single chip. Thus the
CPU architecture design can continuously evolve leaving room to real competitive
advantages to the engineering "details" (like packaging, cooling and number of pins, etc.).

Moreover the appealing idea to reuse the same CPU technology from PC or workstations
to high-end systems start becoming a reality for most HPC vendors.

• National and Industry policies
Since several decades, the US and Japanese governments are effectively subsidizing the

 94

development of supercomputers by commissioning and buying ever more powerful sys-
tems. The most impressive examples are the US ASCI program and the Japanese Earth
Simulator project, which are de facto HPCS technology driving forces [Various sources,
2002].

This new machine is five times as fast as the best of the top six supercomputers in the
world (which all were in US) and is being used by a large number of research institutes in
the field of earth sciences. A German supercomputer expert says it is likely to remain the
world's fastest supercomputer for at least two years. Hans Werner Meuer, founder of the
top 500 list of world supercomputers, says he expects the Earth Simulator to outperform
all of its nearest 19 rivals put together.

The previous "Top 500" record holder, 'ASCI White' at the Lawrence Livermore Laboratory
in the US, was built by IBM and is used to simulate nuclear weapons explosions. ASCI
White has 8,192 processors, while the Earth Simulator has only 5,104.

This development strongly challenges the ASCI road-map by introducing new quality in
reaching the highest sustained performance for real-life applications being the
combination of the high level parallelization and the powerful and efficient (both from the
sustained performance and energy/heat considerations point of view) CMOS based vector
CPUs.

Architecture: Many Weak versus a Few Powerful Components

All current supercomputers are parallel machines, with a dozen to ten thousand processors (the
Top 500 list of November 2001 lists only few systems with fewer than 64 processors).

Although today's microprocessors are an order of magnitude slower than vector processors, they
are much cheaper, and companies invest much more resources in their future development.

Several systems consisting of a few hundreds of commodity microprocessors have entered the
"Top 500" list over the last decade. Interconnection technologies vary widely and will play a key
role in the future of high-performance computing due to the general trend to build systems on
higher and higher number of CPU's.

Still the main question is whether a computer consisting of a large number of cheap commodity
components can deliver, for a given application, the same sustained performance than computer
consisting of a small number of expensive, tailor-made components: what can be stated is that the
equation is not as simple as it might be thought at first.

For a relatively small amount of CPUs, solutions based on cheap commodity components can be
orders of magnitude cheaper than tailor-made components. But several other aspects start playing
an important role when assembling systems made out of several thousand of CPUs targeting
sustained performance in the order of TFlops sustained...

One of them is the well-known Amdahl's Law, defining how much parallelism a given application
can usefully exploit. This issue can become a real nightmare for large MPP systems when also
considering an additional aspect that dramatically increase as soon as the number of CPU become
large: load imbalance. This consideration could be in favour of future systems with efficient
specialized CPUs, where the targeted sustained performance can be achieved with a relatively
small number of CPUs.

Other aspects are related to system stability (fault tolerance) system scalability (hardware as well
as operating system), inter-node communication (latency, bandwidth) and I/O performance.

 95

Finally it will always be the precise requirement of a given scientific problem to define on the basis
of an application benchmark and the full costs considerations the optimal investment balance
between the power of a single CPU and the number of CPUs.

Architecture: Taxonomy

Since many years the taxonomy of [Flynn 1972] has proven to be useful for the classification of
high-performance computers

• SIMD (Single Instruction Multiple Data)
Vector computers are an important subclass of these systems. They use the fastest
processors currently available. Popularized by Cray in the seventies and eighties, they
lost most of their market share in the nineties because the low production volume (partially
due also to US trade embargo) led to high cost. The NEC SX-6 is a typical representative
of this kind of computer.

• MIMD (Multiple Instructions Multiple Data)
These machines execute several instruction streams in parallel on different data. A further
important subclass taxonomy of this kind of systems is related to memory accessibility.

o Shared memory systems: Shared memory systems have multiple CPUs all of which
share the same address space.

o Distributed memory systems: In this case each CPU has its own associated memory.
The CPUs are connected by some network and may exchange data between their
respective memories when required. A few years ago, massively parallel processors
(MPP) constructed of tightly coupled microprocessors were fashionable. Today, one
trend goes toward systems based on a larger number of more loosely coupled PCs or
workstations that require little development effort [Baker 2000].

o Hybrid systems, clusters of SMP: In this case a mixture of the previous two
technologies is used. The idea is clustering together a large number of SMP nodes
connected by specialized and dedicated fast network interconnection.

Further architectural issues include:

• Memory
On most of the current architectures memory is physically shared by only a small number
of processors. In some cases it can be shared by even up to a several hundred
processors, however, a coarse distinction has to be made by looking onto the memory
hierarchy in order to achieve certain scalability. On symmetrical multiprocessor systems
(SMP) any memory location can be reached ideally with the same latency and the same
bandwidth from any CPU. Scaling this architecture in hardware up to high processors
counts is a very expensive engineering effort. The Cray T90 with up to 32 CPUs on a flat
memory was one of these representatives.

In order to scale the shared memory approach up to several hundred of processors the
approach of a distributed shared memory (DSM) was implemented by several HPC
architectures. DSM allows shared memory programming with a transparent memory
coherent protocol. The memory coherent protocol might be implemented in hardware or
software. DSM computers a characterized by a fast memory access within smaller units of
a few CPUs and a slower one between these units. This scenario is often called non-
uniform memory access (NUMA). Software development might be harder on DSM
systems since the memory hierarchy has to be taken into account although tools are
available to assist developers during software development on this kind of systems.

 96

• Interconnection
A set of workstations can be connected to form a supercomputer either by using standard
network technology (e.g. Fast Ethernet), or by custom-made high-performance
interconnects. It seems that Fast Ethernet is adequate only for connecting a small number
of nodes or for applications with little communication between processes.

An extensive, detailed and complete architecture description of most of the current HPC
systems can be found in [van der Steen 2001].

Software

Typically, neither end-users nor "experts" can readily figure out what the main structural features of
a given program are. The choice of data structures, data layout and access pattern can affect
performance by orders of magnitude. Yet software manuals rarely describe such important design
and optimisation aspects, at least not in a legible and formal manner. Efficient software design for
complex architectures is likely to remain one of the most difficult aspects of HPC.

A quote from [Cipra 1999]: " ... advances in computer capabilities, which have tempted researchers
to develop more complex programs and tackle larger problems, have made speed trickier than
ever to achieve. Programs tailored to run fast on a particular machine may not work at all on
others, while "portable" codes often run inefficiently on all platforms. Programmers expend a lot of
effort fitting software to hardware - and the target keeps moving".

Writing software for supercomputers is a tedious task. To get high performance, the programmer
has to take into account details of his particular hardware architecture. As a consequence,
software for supercomputers is rarely portable. When the hardware changes, parts of the software
need to be re-tuned or even re-written, a process that can take months. Because software is a big
investment, users must plan their software development wisely, and decision-makers must protect
the user's investment.

Among general software trends, let us comment on the following:

• Optimizing (tuning and parallelizing):
Compilers tend to produce efficient code. They are useful particularly if they receive good
hints from the programmer, but in general they cannot compete with hand-tuned libraries.
In particular for the parallelization, the goal toward a compiler that parallelizes sequential
code in a completely automatic fashion, without any manual assistance, has made big
progress but we are still far from the dream to completely hide this process to the
programmer.

• Parallel programming languages:
Although many experimental parallel programming languages have been designed and
implemented, these are not generally available to the public, in particular not for a large
variety of platforms.

Users are therefore bound to the usage of parallelization paradigms based on
standardized parallelization directives as OpenMP, or standardized parallelization libraries
as the Message Passing Interface (MPI) supported by most hardware vendor.

• Program libraries:
Computer science researchers and hardware vendors have put much effort into the de-
velopment and tuning of software libraries. Well-known libraries are available on different
systems and run efficiently on a wide range of architectures, and their importance will
keep growing. The extensive use of program libraries is the most effective way to program

 97

scientific computations. One reason for this is that algorithm experts write library pro-
grams, and often an improved algorithm can achieve much larger gains in execution
speed than just buying a faster computer.

• Self tuning software:
Today's high-performance software, tuned to a particular machine, is typically hardly
portable. In future, "self-tuning software" [Cipra, 1999] may partly overcome this handicap.
Self-tuning software probes the hardware to determine various machine parameters and
then generates code that takes advantage of what it finds. Experiments with well-
understood algorithms such as matrix multiplication and Fast Fourier Transform look
promising. This idea will likely be extended to many other standard algorithms.

Supercomputers in a supercomputing environment

It is not quite obvious to clearly define what a "supercomputer" is, since lots of different metrics and
opinions exist. The "Top 500" list defines a supercomputer on the basis of a single value (i.e. the
achieved performance on the famous Linpack benchmark) and it has become a relatively
"standard" classification method. However one could argue that one number only is not sufficient to
describe and also classify extremely expensive computers. Why not measure the performances
achieved on a large number of computing- and scientific- relevant applications? Or why not classify
computers according to price/performance, heat consumption/performance or
footprint/performance ratio? All these possible classifications are only focused on a "single entity"
that might be part of a much more complex system: the supercomputing environment.

It is not trivial at all to evaluate whether, given a certain metric, one of those entities that might be
classified as a supercomputer could well fit into a much more complex environment. Typically,
supercomputing centres have quite significant requirements in terms of overall reliability, system
integration (high speed networks, LAN and WAN) and large data handling (disks and archive
systems). Are all supercomputers good candidates for such an environment?

Pure hardware components, it does not matter whether cheap or expensive, are not sufficient to
guarantee the success of a supercomputer within a complex environment: the OS is most probably
one of the major components. For instance, single image features on large tera-scale systems that
allow unique management operations, resource view, efficient job management and scheduling are
also highly important, as well as global and parallel file system functionalities.

Not less relevant are also compilers capabilities, which together with the OS can add a quite
significant value to a given supercomputer. The efforts put from many vendors in all those fields
cannot usually be found together with off-the-shelf made (super)computers. Furthermore all these
components are typically supposed to be effective within a "heavy" multi-user/multi-application
environment. This consideration is most probably the key issue to be addressed when speaking
about supercomputers in general and can be a significant killing factor for all those
supercomputers that are - at least on paper - very attractive.

III.2.3 Conclusion and Recommendations

The main HPC facilities available now and most probably in the next years to come are based on
clusters of SMP (most of them microprocessor-based, shared-memory inside nodes, distributed-
memory between nodes, complemented with fast node interconnect) built either out of RISC or
vector CMOS CPUs. Such platforms might have complex memory-hierarchies, often memory

 98

bandwidth and latency issues dominate performance. For the PRISM system the first priority must
be placed on making the PRISM components run efficiently on these platforms.

Targeting portability on several HPC facilities the PRISM system is likely to be run on both vector
and RISC-based CPUs. Ideally, the code would have the flexibility to run efficiently on both. In
practice, this can be sometimes difficult to achieve since the choice of optimal data structures, loop
ordering, and other significant design decisions may differ depending on whether code is intended
for vector or RISC CPUs.

 99

‘

III.3 Software Engineering Process, Coding Rules and Quality
Standard

It is recommended that PRISM should follow industrial software development strategies.
Pro’s and Con’s of this approach are discussed.

The software/system engineering processes should follow industrial specified standards. A basic
flow of the engineering process is on a purely technical base:

• System requirement analysis

• System partitioning

• System level requirements for software verification and validation

• Integration of software

Software operations with frequently performed validations

Major aim of this process is to provide functional, stable, and appropriate usable software. A
definition and description of the whole software engineering process is specified by the European
Cooperation for Space Standardization in ECSS-E-40A (13 April 1999) - Space Engineering
Software - published by:

ESA Publications Division

ESTEC, P.O. Box 299

NL-2200 AG Noordwijk

The Netherlands

or accessible via http://www.ecss.nl/.

This publication contains all required justification for proper software development.

Design options

Optimal design of the PRISM system would be that all components are following industrial
specified engineering processes and quality assurance schemes.

Another option would be to leave existing components on the current level of development, and
apply the proposed engineering process and quality assurance scheme on newly written software
only.

The last option would be to follow the scientific community 'business as usual' concept without
following engineering process and quality assurance schemes.

 100

Constraints

Several structural problems are limiting the potential of building proper standards following
software. These problems are coming on one side from the ignorance of funding agencies on one
hand and the basic funding institutions on the other side regarding highly complex software
development. Expecting that students, PhD students, or scientist are capable software engineers
for such difficult tasks is not appropriate. They are trained and educated for very different tasks.
Unfortunately this is still a very common expectation and praxis.

Architecture Choices,
Detailed Design and
Implementation

ARCDI

 102

 103

ARCDI

I - Basic Choices
The components of the PRISM system and their general relations are defined. Basic

scientific principles and global parameters that need to be consistently defined in all components
are discussed.

I.1.1 PRISM Components

PRISM aims to bring models of subsystems of the Earth system into a common framework. For the
time being, the following components will be included in PRISM: atmospheric general circulation
models (AGCM), atmospheric chemistry models (AC), ocean general circulation models (OGCM),
models of the ocean biogeochemistry (OC), land surface (LS) and sea ice (SI) models. All of these
components can be either global or regional models. PRISM is an open, modular system. It is
envisaged that additional components can be included at a later stage. This may e.g. include
ocean waves, continental ice sheets or models of volcanic or solar activity.

I.1.2 Conservation Principles

It is essential that the PRISM Earth system model components obey all known conservation laws.
When coupling models, it is important that there are no non-physical sources or sinks. All
conservation laws have to be satisfied point by point up to the accuracy of the algorithms used.
Consistency of fluxes across interfaces is essential, and the exchange of quantities between
component models must not only obey the respective conservations laws, but also go along with
the change of associated quantities in the source model(s). This also ensures global conservation.
These prerequisites are essential to allow the PRISM system to run stably for long time periods.

I.1.3 Universal parameters

Parameters common to more than one PRISM component need to be consistently defined. These
include:

(Please turn)

 104

Table 15: Examples of universal parameters

The choice of the model calendar and time control is particularly important. While the proleptic
Gregorian calendar (365/366 days) is preferable, it is essential that other options are not excluded
in the PRISM specifications. Tools for the conversion of different calendar options need to be
defined. The same calendar must be used by each component in a coupled simulation.

Further recommendations

It is desirable that one component of PRISM can be coupled to simplified versions of other
components (e.g. soil water and energy sub-component, simplified chemistry, mixed-layer ocean
or thermodynamic sea ice coupled to the atmosphere). The PRISM system should be able to
preserve fast communication with these simplified components.

Sea ice and the upper ocean are to be regarded as a unity, irrespective of whether they are split
into modules or contained in the same piece of code.

Astronomical Earth radius
Calendar used (this determines length of day and year and the Earth's angular velocity)

Physical Gravity acceleration
Solar constant and its variability
Latent heat of fusion/evaporation for ice/water
Density of pure/sea water
Specific heat of pure/sea water
Reference density of sea water
Stefan-Boltzmann constant
Full equation of state for sea water (density as a function of temperature, salinity and
pressure)

Model
parameters

Initial and stop date of experiment/run
Length of integration
Frequency of saving restart/analysis files

 105

II - A proposal for standard Atmosphere/Ocean/Sea
ice interfaces

This document describes a first proposal for standard Atmosphere/Ocean/Sea ice
interfaces. The introduction of new independent modules significantly simplifies the exchanges and
helps to ensure they are ``process-based''. Several issues are discussed and comments from the
modeler's community are now invited.

II.1 Introduction

For historical and practical reasons present-day physical interfaces very often are results of an ad-
hoc approach. As integrated earth system models are increasingly used for climate studies and
prediction, the need for physically based standard interfaces between their components becomes
critical. Hence, the research community is faced with both a challenge (to design and agree on
standard interfaces) and an opportunity (the awareness of the community and the availability of
funding). We here present the result of a yearlong exchange between a number of modelers of the
atmosphere, the ocean, the sea-ice and the land surface. The coupling between the first 3
components is so intricate that the corresponding interfaces need to be design together. An
atmosphere/land surface interface has already been proposed by the PILPS project (Polcher et al.
1998). Other documents will focus on the interfaces with the atmospheric chemistry and the ocean
biochemistry. The design of a physical interface design clearly does not have a single optimal
solution. Every proposition is a compromise between many physical, numerical and practical
constraints. Besides making such a proposition, the present document aims at identifying and
establishing a hierarchy of these constraints.

The document is organized as follows: after identifying a number of design constraints, we propose
a first version of these interfaces, introduce new modules and raise several issues. An appendix to
ARCDI II on page 229 provides the details of all the fields exchanged.

II.2 Interface design constraints

II.2.1 General constraints

Following the PRISM system specifications, the two main scientific principles concerning the
present interfaces are:

• Local and physically based conservation of fluxes across coupling interfaces

• Consistent global conservation of energy, water and ocean salt

Accordingly and based on the PILPS experience, we chose the following criterion for standard
interface design:

• Identify physically based interfaces across which the conservation of energy, mass and
momentum can be ensured.

 106

• Identify which process needs to be computed by which component/module and ensure
that there is no duplication or inconsistency in these computations.

• Identify numerical constraints.

• Stability: Neumann vs. Dirichlet boundary conditions, impact of different time steps
(components, coupling).

• Interpolation: sub-grid scale heterogeneity issues, local conservation,.. all also depending
on the ratio of atmosphere to ocean grid resolution (a working assumption is that ocean
and sea-ice share the same grid, see below).

• Identify historical and practical constraints not likely to evolve in the next five years.

II.2.2 Model components constraints

The following model component constraints are identified. They can be physical, numerical or
practical.

II.2.2.1 Atmosphere

Stand alone integrations of the atmospheric model forced with observed or simulated ocean/sea-
ice fields should be possible.

Coupled simulations with a slab ocean/sea-ice on the atmospheric model grid should be possible.

Atmospheric model grid may be defined independently than the ocean/sea-ice models since it may
depend on numerical or physical constraints (conformal grid, increased resolution over a specific
region...).

For stability of numerical schemes, the treatment of atmospheric turbulence, coupled with the
calculation of surface fluxes may be implicit.

The dependence of latent heat with temperature or specific heat with water content should be
consistent within the atmosphere and at the surface.

II.2.2.2 Sea ice

The sea-ice and ocean models grids should be the same. This is important to ensure conservation
of heat, salt, freshwater, and momentum locally as well as globally. It is also crucial for
appropriately resolving the sea-ice front and the horizontal fluxes of freshwater at the interior of the
ice packs.

The sea-ice and ocean model grids currently differ from those of atmospheric models.

All the existing sea-ice models include a parameterization of leads, so that these models need to
know the surface fluxes of heat over both sea ice and ocean.

During a time step, the ice concentration is modified by ice dynamics, which is usually called first
for both physical and numerical reasons, and then by ice thermodynamics.

 107

In the near future, sea-ice models will include several ice types and/or ice-thickness categories
within a grid cell.

II.2.2.3 Ocean

To ensure both local and global conservation of fluxes, the ocean surface of both ocean and
atmosphere grids need to be the same and is provided by the ocean component. This requires a
tiling scheme in the atmosphere component.

Volume conservation of the ocean requires that the thickness of the first ocean level be variable
and function of the mass of floating sea ice.

The coastline, the bathymetry and the extension of polar caps are considered as fixed during any
coupled integration.

II.3 The Proposal

From these constraints, we propose the interfaces described in Figure 16. One main difference
with present day interfaces is the introduction of new modules (detailed below). This added
modularity simplifies the exchanges, ensures they are “process-based” and helps distinguish fast
and

Figure 16: A proposal for standard interfaces

 108

slow processes. The only exchanges considered here are represented by groups of fields attached
to solid arrows in colour and numbered from 1 to 8. Grey dotted arrows suggest how other
components (like the land surface schemes) could fit in. In the remainder of the text each field is
identified with a code it I.J where I in the exchange number and J the field number. For example
field 2.2 is the evaporation and field 7.4 is the surface ocean current. The Appendix on page 229
provides the complete list of these fields, including their precise definition and units.

II.3.1 Introducing new modules

The need for new modules came early in the discussion. Indeed they allow to 1) clearly identify,
where the computation of some physical processes happens and 2) easily control unstable
computations by distinguishing where fast and slow processes are computed. Increasing the
modularity is a long-term goal for most components but we restricted ourselves to two key modules
for practical reasons.

II.3.1.1 The Surface Layer Turbulence module

The Surface Layer Turbulence module (SLT module) contains the description of the turbulence
inducing diffusion in the surface layer of the atmosphere (above the ocean + sea ice system). It
computes the surface layer turbulent coefficients (4.1, 4.2 and 4.3) from the surface boundary
conditions (exchange 5 provided by the ocean-surface module, see below) and the atmosphere
prognostic variables at lowest level (exchange 3). It also provides the atmospheric variables of
exchange 3 to the ocean-surface module, which needs them for some computations (see next
section). As it is non-physical to interpolate the turbulent exchange coefficients, they need to be
computed on the finer grid (ocean + sea-ice). As atmosphere models also need this module for
classic stand alone forced integrations, we propose two coupling options (Figure 16): A, which
avoids interpolation of turbulent coefficients and B, which allows atmosphere-only simulations,
ensuring the historical coherence with previous integrations. Note that:

- The bulk formulas used to compute the surface turbulence might differ in the two options.

- The SLT module has to produce the atmospheric boundary layer diagnostics (fields at 2m for
instance).

II.3.1.2 The Ocean-Surface module

This module is introduced to help separate the fast ocean+sea ice surface processes, involving
heat, water and momentum exchanges with the atmosphere and the sea ice from the slower,
deeper processes. It acts as a homogeneous filter between the atmosphere (directly or via the
surface layer turbulence module) and the ocean+sea ice system. It computes a number of surface
fields (wind stress, sensible heat flux...) using bulk formulas. It receives fields from and produces
field to: the atmosphere (exchanges 1 and 2), the surface layer turbulence module (exchanges 4 +
3 and 5) and the ocean (exchanges 6 and 7). In a first stage, this module will in practice be the
sea-ice model (with of course no modifications of fluxes over open ocean). In a second stage, a
wave model will be included to provide sea surface roughness (field 5.2) to the SLT module.

 109

II.3.2 Physical interfaces

II.3.2.1 Energy fluxes computations

Between ocean-surface module and ocean component:

The ocean-surface module, via the sea-ice model, provides the ocean model with the net solar
radiation (6.2) and non-solar heat flux (6.1) entering the ocean surface. In return, the ocean model
provides the ocean-surface module with a) the temperature at the sea-ice base, b) the sea-surface
temperature, c) the sea-surface radiative temperature, and d) the fraction of solar radiation
absorbed with the first oceanic layer. The sea-ice model uses first of these fields (7.1) to compute
the oceanic heat flux at the ice-ocean interface. Note that in current models (even in those that
account for the depression of ice below the water level), this temperature is taken as the sea-
surface temperature. The second (7.2) and third (7.3) fields are required for the calculation of the
atmospheric turbulent heat fluxes and long-wave radiation over leads, respectively. Finally, the last
field (7.7) is needed for the computation of the energy budget of leads by the sea-ice model.

Between ocean-surface module, SLT module and atmosphere component:

The atmosphere component provides the ocean surface module with the incoming solar radiation
(1.3), possibly for different spectral intervals, the solar zenith angle (1.4) (or its cosine), the fraction
of diffuse solar radiation (1.5) and the downward infrared radiation (1.6), for a complete calculation
of the radiation budget either over free ocean or over sea-ice. It also provides the ocean surface
module with the sensitivity of atmosphere temperature and humidity to surface fluxes (1.7) to allow
an implicit calculation of surface fluxes. In order to evaluate the exchange coefficients and then the
turbulent fluxes, the atmosphere component provides the surface layer turbulence module and the
ocean surface module with surface pressure (3.1), air temperature (3.2), specific humidity (3.3),
wind components (3.4) and mean scalar wind speed (3.5), and the height of the level where all
these parameters are calculated (3.6). The mean scalar wind speed will possibly include gustiness
effects due to free convection in boundary layer or due to deep convection. The ocean surface
module provides the atmosphere model with the turbulent energy (sensible and latent) fluxes (2.1
and 2.2). The emissivity (2.3), the albedo for direct and diffuse radiation (2.4 and 2.5), possibly for
different spectral intervals consistently with the partitioning of incoming solar radiation, and the
surface radiative temperature (2.6), all calculated by the ocean surface module to solve the surface
radiation budget, are also transferred to the atmosphere component. The surface radiative
temperature may be different from the surface temperature communicated by the ocean surface
module to the surface layer turbulence module for the calculation of exchange coefficients. This
last temperature, for free ocean areas, may be indeed representative of the upper mixed layer
(depth of a few meters) as this is the case when evaluating and calibrating the parameterizations of
the exchange coefficients.

II.3.2.2 Mass fluxes computations

The atmospheric model provides the ocean-surface module with rainfall (1.1) and snowfall (1.2), as
the sea-ice model needs both fields to run. In return, the ocean-surface module provides the at-
mospheric model with the evaporation/sublimation averaged over the oceanic grid cell (2.7). This
field is needed for the calculation of the hydrological cycle in the atmosphere, since it cannot al-
ways be inferred from the latent heat flux (2.2) (due to a possible combination of ocean and ice
within one grid mesh, and due to a possible dependence of the specific latent heat with tempera-
ture). The ocean-surface module transfers to the ocean model the net fresh water flux (6.3), the net
salt flux (6.4) and the total mass of snow and ice (6.7). The net freshwater flux (6.3) results, on one

 110

hand, from the net atmospheric water flux over open ocean (Rainfall+Snowfall-Evaporation) and,
on the other hand, from snow melting on top of sea ice, ice growth/melting, snow-ice formation,
runoff of rainfall through sea ice into the ocean, snowfall and rainfall over leads, and evaporation
over leads. The net salt flux (6.4) is provided by the sea-ice component and results from ice
growth/melting and snow-ice formation. The total mass of snow and ice (6.7) is provided to the
ocean model to compute the depression of ice below the water level. In return, the oceanic model
provides the ocean-surface module with the sea-surface salinity (7.5), which is used by the sea-ice
model to compute the freezing point of seawater and, in the future, the salinity of newly formed sea
ice and snow ice. The land-surface model provides the continental run-off to the ocean (8.1).

II.3.2.3 Momentum fluxes computations

The ocean-surface module computes the surface turbulent wind stress. The computation uses the
turbulent exchange coefficient (4.1) provided by the SLT module, the wind at the lowest level (3.4),
its module (3.5) and its height (3.6) provided by the atmosphere via the SLT module, and the
surface ocean currents (7.4) provided by the ocean. The ocean-surface module then transfers the
wind stress to the atmosphere (2.8) and to the ocean (6.5). The ocean-surface module also
computes the “wind work” U3 (6.6) and provides it to the ocean.

II.3.3 Discussion

II.3.3.1 Scientific issues

Standard vs. coherent: some models do not provide all the necessary fields or provide them at
different levels (2m vs. lowest level). The SLT module solves this problem for the computation of
turbulent fluxes. Accordingly, it requires the height of the lowest level (field 3.6).

Frequency of exchanges: each process needs to be computed at the relevant physical time scale.
This requires isolating some processes so that each GCM can run at its optimal time step. Namely
the frequency of exchanges 1, 2, 3, 4 and 5 can follow the atmosphere time step while exchanges
6 and 7 only need to be done at ocean time step frequency (which should be a multiple of the
atmosphere frequency).

The temperature of the fresh water flux (E-P+R) should (and can) be taken into account in the
ocean. Can the atmosphere and land surface components provide it while ensuring a coherent
energy balance?

The formulation of latent heat as a function of temperature or thermal capacity as a function of
water contents should be consistent in all components and modules.

II.3.3.2 Practical, technical and other issues

Adaptation of models towards a standard interface: a scientific priority for all groups?

Computer cost issues: in practice the implementation of such interfaces most likely involves a trade
off between physically based processes and fast computation. Many of today's ad-hoc interfaces
are efficient and moving to the interface we propose here would probably degrade the
performances. Nevertheless, 1) we assume a net increase of power in the year to come and 2) the
design forward-looking earth system models should only rely on sound physical and numerical
bases to avoid jeopardizing future developments.

 111

III - System Architecture
This document is primarily about the infrastructure necessary to enable a distributed

configuration, submission and monitoring system for PRISM experiments. A local system will be
delivered to enable model developers to run the configuration tool without the web service
infrastructure to test out their models. The local system is based on the same software to ensure a
transparent transition between the local and the Web Services infrastructure system. The
requirements and constraints from the REDOC document are translated into a specific design in
the document. The architecture is detailed into software components and the choice of these
components is discussed. A run-time and deployment architecture is discussed and finally an
implementation model detailing the order and importance of implementation tasks is presented.

III.1 Introduction

The purpose of the PRISM system is to enable users to perform numerical experiments, coupling
interchangeable model components using standardized interfaces.

The general architecture provides the infrastructure for this. There is an emphasis on choosing an
architectural design that allows these activities to be done remotely, e.g. without the user physically
being in the place where the numerical computations take place.

Within the PRISM system three different types of actors exist:

Users: someone who uses the PRISM System to assemble and run a coupled model.

Model developer: someone who makes changes to a PRISM model code that will be introduced
to the default model version.

Figure 17: PRISM user interacting with the central and local PRISM sites in a Web based scenario

 112

Administrator: the person who provides the link between developers and users.

These different actors represent different demands on the system. The best design in order to fulfil
the PRISM requirements (remote access, modularity, extensibility) is a centralized architecture that
minimizes the administration and duplication of resources at the expense of some added complex-
ity (see Figure 17).

It is proposed to gradually refine the system in two phases and into two different products config-
ured from the same software base:

Local system: used by developers to develop models without affecting operations.

Web based system: used by administrators and users to administrate model changes and run
coupled experiments remotely.

III.2 Terminology and Concepts

Software component: software that is a part of a larger system, or an object that is part of a larger
object, delivering a specific functionality.

Deployment: describes the physical distribution of the system being built, in terms of how func-
tionality, i.e. software components, is distributed among a set of run-time processing nodes (com-
puters). The term is also used in a more limited scope in other documents referring to the deploy-

ment of an experiment to
computing resources
(REDOC II.2).

Configuration: The ar-
rangement of a computer
system or component as
defined by the number,
nature, and interconnec-
tions of its constituent
parts. Also used in relation
to experiments where it
defines the collection of
programs, documents and
data that an experiment
consists of. Figure 18
shows different aspects of
the configuration process
between the PRISM user
and the PRISM site.

Figure 18: Configuration process in PRISM: Different views of the configuration process that are
detailed in the document relating to the User and the Prism site.

 113

III.3 The Local System, a Basis for Development

A large amount of effort in the PRISM project will go into modularization of models and
standardization of scientific input and output. Likewise, the task of deployment of models on the
web infrastructure and also the task of making it a painless exercise for a user or developer to
download a model locally and make it work needs to be given the same attention and priority.

To succeed in the deployment of models we have to standardize procedures, i.e. the
standardization of model builds, model runs and model configuration is critical in view of long term
maintenance and usability of the system.

A file structure must be specified that enables a locally configured model to be put into an archive
file and transported to a deployment site and deployed there automatically.

Such a structure needs to be proposed by the model developers but could look like this:

/pr ism

 /models /modelX/src

 / l ib

 /doc

 /conf ig

 / runscr ip t

 /b in

 / tmp

A version of the GUI (Graphical User Interface) that runs without the web infrastructure will be
developed initially. This version can be started from the command line on the users linux
workstation and will not need any network support. Support for other platforms is optional. All input
and output will be read/written to the current directory according to the standard structure
described above. The user will have to download the latest versions from a central source code
repository.
The purpose of the local version is:

• To allow individual developers to adapt, test and run their models locally.

• To enable testing of build and deployment scripts locally.

• To prepare a version for deployment in the web infrastructure.

Once a model works properly it can be made available for users through the Web Services
infrastructure, which is described in the following section.

III.4 Architecture of the Generalized Web Services Concept

A Web Services (WS) system makes the services it provides abstract, shielding the client from the
particularities of the implementation. A client, be it another service or a user interface, requests a
specific service. This is located with the help of a WS registry using UDDI, the Universal Descrip-

 114

tion, Discovery and Integration protocol, which contains information on where the service is located
and how to use it as shown in Figure 19.

Figure 19: Service lookup in WS: Client request of a service from a server by looking up the
service provider in a directory.

A WS provider uses the UDDI protocol to publish the service it provides encoded in WSDL, the
Web Services Description Language to a UDDI directory.

The client requests a service from that directory. The directory information returned tells the client
how to find and use the service. It is the intention to use this system to allow users to find local
PRISM sites.

Subsystem topology

A wide area network (WAN) is a geographically dispersed telecommunications network. The term
distinguishes a broader telecommunication structure from a local area network (LAN). A WAN may
be privately owned or rented, but the term usually indicates the inclusion of public (shared user)
networks.

A LAN is a group of computers and associated devices that share a common communications line
and typically share the resources of a single processor or server within a small geographic area
(for example, within an office building). A LAN may serve as few as two or three users (for
example, in a home network) or many as thousands of users.

The client is typically running in his LAN requesting a service from applications running in another
LAN using a WAN such as the Internet and the related protocols to forward the request.

The WS universe consists of a number of zones or locations derived from its networking status as
LAN or WAN .

 115

The importance of the zones lies in that as messages travel from a LAN to a WAN the authentica-
tion and validity of the message is lost because the public network potentially allows tampering
with the message. Measures need to be taken to detect and prevent such tampering.

Subsystem layers in WS

Given here are the software components in the architecture of the subsystems infrastructure for a
generalized WS system. The application layer describes the software component(s) in the subsys-
tem and its function. The middle-ware layer details the actual implementation of the subsystem as
shown in Figure 20.

Figure 20: WS subsystem composition: Layers that make up the subsystems in a WS architecture.

Table 16: Software components in the system.

The implementation choice is decided on deployment of the system, if the particular implementa-
tion does not restrict the functionality of the subsystem. A discussion of the choices listed can be
found in the deployment section.

Application Layer Application Function Middle-ware Layer Communi-
cations
Protocol

User Interface Interface task Java Applet HTTP
Web server Serves pages, Listens for requests Apache HTTP
Application server Interface application Tomcat AJP12
Domain Applications Deliver domain function such as

configurations
Any Any

Authentication server Authenticate clients S/key, Kerberos HTTP/HTTP
S

ORB (Object Request Broker) interface to application server Java HTTP
Event service Deliver events to applications Java HTTP
Directory server Publish and access information on

services
UDDI server Java WSDL

PRISM administrator Executes administration tasks Definitions of
administration entities

SSH

 116

III.5 From Analysis to Design:
The Process-to-Component-Translation of the PRISM System

The processes described in the REDOC II - document on page 43 will be translated into software
that enables the desired activities.

Process-to-Component View

The processes listed in REDOC, Table 12: Table of different processes (1), (2) and (3), referred to
as RDT1, RDT2 and RDT3, describe what activities take place and which process is handling it.
For each process the software components that handle the related activity is described.

The physical location of the software component also determines the choice of component, but the
mapping of components to the architecture will be more closely examined in the deployment sec-
tion .

The design of the PRISM system processes falls into three categories mirrored by the Tables
RDT1/2/3 as shown in Figure 21

Controller processes: User (client) activities from Table RDT1

Controlling processes: Provider (server) from Table RDT2

Controlled processes: Execution of model from Table RDT3

Figure 21 :System processes in PRISM: System processes categorized into controller, controlling
and controlled

The Table RDT1 processes naturally fall into the application layer of the GUI in this document as
shown in Figure 21.

 117

The Table RDT2 processes are domain service applications that are delivered by application serv-
ers directly to the client GUI, Figure 21, middle boxes.

The Table RDT3 processes are the domain applications controlled by the Table RDT2 processes
and not served by any application server and, as such, not part of the WS infrastructure, in Figure
21.

Subsystem communication

The subsystems communicate by sending messages to each other. The messages are usually of
the form request - reply, but can also be in the form of publishing information, e.g. event
notifications. In this case no reply is expected. The term reply should be understood as receiving a
useful object back, not a protocol confirmation of the transmission status.

Figure 25 details the messages and protocols in a WS system. The MX numbers in Figure 25
relate to the description of the messages in Table 17.

Message Protocol Function
M1 HTTP/S Load GUI from central web server
M2 HTTP/S Authenticate from GUI to web server
M3 AJP12/13 All traffic to tomcat
M4 RMI Reading/writing experiment configurations, submit
M5 FORK Send job to SMS scheduler
M6 QSUB Queue job to supercomputer
M7 FCGI Monitoring requests to SMS on job status
M8 RPC Cgi server requesting information from SMS
M9 AJP/RMI M3/M7 traffic if PRISM site has no WEB SERVER
M10 RMI, SOAP, RPC M4 traffic if PRISM site has no WEB SERVER OR TOMCAT
M11 FTP Ftp of new model code to build. Requested by Prism site

Table 17: PRISM system messages

Detailed interaction analysis for the following cases, i.e. typical scenarios is made in form of a
diagram and a table detailing the resources needed for every message:

• CASE 1: User downloads GUI and directory information. Messages M1, 2, 3, 4

• CASE 2: User submits build job. Messages M1, 2, 3, 4, 5, 6

• CASE 3: Monitoring of job. Messages M1, M2, M3, M7, M8

The three cases are illustrated on the next pages.

 118

Figure 22: Case 1, User downloads GUI and directory info: Swimlane diagram of the initialization of
the users home folders showing the transition between software components.

Message Function Files or information needed
M1 Load GUI from central web server Java classes
M2 Authenticate from GUI to web server Password information
M3 Request application Directory information on applications available
M4 Reading users home directory Directory listing from file system

Table 18: Case 1, this highlights the administration and maintenance advantages of having all
users running the same software versions of a program and that all configuration information for
compositions is coming from the same domain server and is saved there

 119

Figure 23: Case 2: User submits experiment; Swimlane diagram of the submission of an experi-
ment to the remote site showing the transition between software components.

Mes-
sage

Function Files or information needed

M1,2 Submit composition to central web
server

Values of all changed variables

M3 Request application server on specific
site

Directory information on applic’s on all PRISM sites
available

M4 Generate parameterised standard
deployment scripts and SMS control
scripts.

Standard scripts and all variables in composition.

M5 Submit standard deployment scripts
and SMS control scripts to SMS

Standard scripts and all variables in composition.

M6 Deliver standard deployment scripts to
supercomputer queue

Standard scripts and all variables in composition.

Table 19 Case 2, this table highlights the configurability of the system where the M3 step could
lead to a submission of the experiment on different sites depending on the availability of computing
hosts in the service directory (UDDI).

 120

Figure 24: Case 3, User monitors experiment - Swimlane diagram of a request for monitoring and
control information showing the transition between software components.

Table 20: Case 3, monitoring and control of an experiment through the use of a mediator program
running at the execution host. The role of the program is to make sms functionality available re-
motely through a web browser.

Message Function Files or information needed
M1, M2 Request job information from central web server Job Id
M7 Direct request to application Directory information on applications available

M8 Request information about jobs Job and user id

 121

Figure 25: A central site and a PRISM site with all components in place. The system as shown
above will be configurable to allow for some components not to be duplicated, see Figure 26 on
page 123 and Table 22 on page 128, which lists the placement of the software components in the
system. Each process has now been classified into its subsystem software component and the
communication between these components has been described.

 122

Overview of the Software Components

The use of existing components is necessary to achieve the system as described in REDOC in the
time frame of the project.

Id Application Application layer Implemen-

tation
State

1 Experiment configuration User interface PrepIFS Exists/to be refined
2 Experiment visualization ?? ?? As described by REDOC

II.3
3 Authentication ** ?? To be developed
4 Archive query ?? ?? As described by REDOC

II.3
5 Documentation User interface PrepIFS Exists/To be refined
6 Experiment monitoring User interface Xcdp Exists/To be refined
7 Experiment configuration server Application Java RMI Exists/To be refined
8 Documentation server Web Server Apache Exists/To be refined
9 Administration server Application Java to be developed
10 Archive meta-data browser and

server
?? ?? As described by REDOC

II.3
11 Visualization server Application ?? As described b REDOC

II.3
12 Monitoring server Application SMS To be refined/developed
13 Scheduling server Application SMS Existing
14 Execution server Application Coupler,

Model
Existing, to be
refined/developed

15 Archiving server Application ?? As described by REDOC
II.3

16 Authentication server Application ** To be decided
17 ORB Application PrepIFS To be refined
18 Request Listener Application Java To be developed
19 Event service Application Java Jini To be developed
20 Directory server Application Java UDDI To be developed
21 Experiment configuration Definitions Input data PrepIFS To be developed
22 Administration scripts Application Any To be developed
23 Semiautomatic deployment of

java components
Application Java To be developed

Table 21: Software components and implementations. Legend: [Exists] Can be without
modification. [To be refined] : The component exists with the correct functionality but will need
some modification. [To be developed] : The component does not exist. [**] : To be decided. See
Security implementation . [??] : Has yet to be published.

 123

Choice of Existing Components: Experiment Configuration

PrepIFS as an experiment configuration application consists of several components: GUI, ORB
and configuration server. The GUI allows access to experiment configurations, SMIOC and SCC
as described in ARCDI IV.1 on page 135, stored on the configuration server and also contains
logic to validate the configuration. Experiment configurations are sent to the configuration server,
which generates the correct job control scripts for the experiments and deploys these through
SMS, which schedules the experiment for execution.

Figure 26: The PrepIFS system and its software components.

The system is built on Web Services and so fits well into the proposed architecture.

Choice of Existing Components: WEB Server

The choice of Apache is based on the fact that it is free and used by a majority of the world's web
servers as well as being reliable, mature, maintained, and having high performance.

Choice of Existing Components: Application Server

The Tomcat application server is closely linked to the Apache Web server and follows the choice of
Apache and Java as implementation language of preference (see REDOC II.1 on page 43) For
sites that do not provide a web server or application server, the overhead to install these compo-
nents is too large. Therefore a service component should be developed that does not require the
web server and application server. This service component (we refer to it as a Request Listener
(RL)) listens for HTTP requests from the Internet and converts them into calls to the provider ser-

 124

vices listed in Table RDT2. Great care needs to be taken to prove that the RL can only forward
authenticated requests and that only the intended services can be reached.

Choice of Existing Components: Monitoring and Scheduling

The choice of SMS/Xcdp as scheduling/monitoring tool is based on our evaluation of its reliability,
functionality, performance and suitability for working with very large numbers of tasks and their
dependencies. Figure 27 shows how information is exchanged between the components.

Figure 27: Monitoring and scheduling of experiments; the figure shows how the user can monitor
experiments using the Xcdp and SMS tools.

III.6 Proposed Architecture

Combining the PrepIFS system with the SMS/Xcdp tools results in a configurable and flexible WS
system (Figure 21) with much of the required functionality in place as described in REDOC II.1 on
page 43.

Additions and Changes to Components in Table 21

The requirements for components listed in Table 21 to be refined or to be developed are examined
further.

Experiment configuration , task id# 1:

Addition of keyboard navigation.

 125

Creation of an experiment configuration definition interface, which allows modellers the remote
development of model configurations (optional).

Changes to allow a more flexible experiment hierarchy. Standardization of interfaces.

Experiment visualization, task id# 2:

It is assumed that this task will only involve implementation of an interface to start the visualization
tools. If there are no requirements the user interface will spawn a browser with a configurable URL.

Authentication, task id# 3:

This task contains the development of an authentication system as well as exporting the
authentication as an interface to other services if needed.

Archive query, task id# 4:

It is assumed that this task will only involve implementation of an interface to start the archive tools.
If there are no requirements the user interface will spawn a browser with a configurable URL.

Documentation, task id# 5:

PrepIFS has an integrated help/documentation system available. It is desirable that this is
extended to allow modellers to add/change documentation remotely in a safe way.

Experiment monitoring, task id# 6:

The current monitoring system (see Figure 1) is designed for LAN access and is to be extended to
WAN access over the Internet. It is desirable that it retains its graphical view if possible. It should
provide the functionality as described in chapter II.4, if this can be achieved without security
concerns.

Experiment configuration server, task id# 7:

Creation of a deployment environment and the scripts needed to deploy the composed model
automatically.

Documentation server, task id# 8:

Automatic generation of documentation from all available meta-data and addition of developer
descriptions.

Administration server, task id# 9:

An interface for administration of the WS system and domain software should be developed.
Initially this will be handled manually but some automatic system is desirable. This is further
developed in section Software life cycle management.

Archive meta-data browser and server, task id# 10:

It is assumed that this task will only involve implementation of an interface to start the archive tools.
If there are no requirements the user interface will spawn a browser with a configurable URL.

Visualization server, task id# 11:

 126

It is assumed that this task will only involve implementation of an interface to start the archive tools.
If there are no requirements the user interface will spawn a browser with a configurable URL.

Monitoring server, task id# 12:

Some refinements needed to allow for web based monitoring.

Scheduling server, task id# 13:

No changes anticipated.

Execution server, task id# 14:

This is the task of the modellers.

Archiving server, task id# 15:

It is assumed that this task will only involve implementation of an interface to start the archive tools.
Due to the lack of a central archiving system archiving will be made at the site where the
experiment runs using the local facilities available. This is detailed in REDOC II.3. If there are no
requirements the user interface will spawn a browser with a configurable URL.

Authentication server, task id# 16:

This will be implemented as recommended in collaboration with Fujitsu. It should allow for
Message Authentication (MAC) between services and for client authentication between users and
services.

ORB, task id# 17:

The existing ORB has a protocol manager for Java RMI services. This will be extended to allow
other protocols such as Java RPC. A typical system is shown in

Figure 28.:

 127

Figure 28: PRISM subsystem software components for communication Software components
necessary to interface a client with a server using a specific protocol

Request Listener, task id# 18:

This service component, the Request Listener (RL), listens for HTTP requests from the Internet
and converts them into calls to the provider services. It allows for deployment of models from the
central site to the PRISM sites. There are considerable security implications for this component
and by delaying the development of this component to a later stage software to help with this task
should have become available.

Event service, task id# 19:

An event service should be developed to allow for notification between applications and to clients.
A Java application programming interface JINI exists and this will be implemented.

Directory server, task id# 20:

The PrepIFS directory server, the interface repository, is a proprietary technology and this should
be migrated to a UDDI compliant server.

Administration scripts, task id# 21:

The administration model proposed requires considerable standardization and automation. The
process is described in section Software life cycle management.

Experiment configuration, task id#22:

The use of XML in definitions of meta-data requires the configuration server to be able to read its
input data in this format. It might be needed to create special configurations files for this purpose.

Semiautomatic deployment of Java components, task id# 23:

An interface for administration of the WS system and domain software should be developed.
Initially this will be handled manually but some automatic system is desirable. This is further
developed in section Software life cycle management.

Setup of PRISM Central Site

The configuration of all system components on a central site on dedicated hardware and with
security measures in place.

III.7 Specifications, Definitions and Standardized Interfaces
Needed for the Implementation of the System

1. Format of experiment configurations (definitions and compositions) for instances and inherited
values.

 128

2. Format of experiment names and id's for archived data to facilitate unique names.

3. API for experiment configuration widgets in the GUI to allow new visual representations.

4. API for getting context and authentication information from the GUI.

5. API for service extensions and additions.

6. Format of naming conventions used to specify services.

7. Format for calling services from clients, message standard.

8. Development of standards for achieving remote build capacity for each model component. This
includes build scripts capable of determining compiler versions and switches, libraries and
operating systems.

III.8 From Design to Implementation: The Component-to-
Deployment Translation

The web services concept is a very flexible architecture and well suited for deployment over
multiple computers. The proposed architecture involves the partitioning of functionality into a
central system for storing experiment configurations and local PRISM sites for executing the
models. The components will be located as indicated in Table 22.

Component Central

site
PRISM site

Experiment configuration ser-
ver

1 0

Documentation server 1 0
Administration server 1 0
Meta-data server 1 0
Visualization server 0 1
Monitoring server 0 1
Scheduling server 0 1
Execution server 0 1
Archiving server 0 1
Authentication server 1 0
ORB 1 0
Event service 1 1
Directory server 1 0

Table 22: Software components and their location

Some replication of functionality is possible, see Figure 26. It is desirable to store the experiment
configurations centrally to minimize administration unless the system is run locally.

 129

Detecting, handling and reporting faults strategy

Large parts of the communication will take place over public networks (Internet) of which we have
no control. It must be understood that communications over the Internet is on a best effort basis.
An organization (emails etc.) for reporting faults in web services together with problem report
standards must be set up. A monitoring system for the web services together with some diagnostic
tools would be desirable.

Integration with other Work Packages, Published Interfaces

This is connected to the requirements of the subsystems and what context related information of
the main GUI they need, for example "current experiment".

Close cooperation is needed with WP3i (Assembling the PRISM System). WP3i will be required to
make sure all configuration information can be accessed from the GUI and to provide for the
scripts used to run the models. These scripts typically deals with the:

• Creation of executables.

• Hardware specification (model resolution, number of processes used....)

• Input/Output.

• Initialisation of physical parameters and physical constants.

• Distribution of the different type of files into the tree architecture.

Software life cycle management

Initially manual administration will have to be considered. Typically an administrator has to log into
the site. Tools such as Secure Shell should make this possible. Semiautomatic administration
should be developed allowing for administrators to install new versions of models and for
infrastructure components to be updated efficiently.

Component models should be updated through the administration interface. This interface is the
composition GUI used for experiments but will now enable the administrator to enter locations for
files, change compilation options and the like. These responsible components are number 1, 9 and
22 in Table 21. A typical administration scenario is described:

• Administrator starts GUI.

• Loads configuration of site X component model M1.

• Enters the location of the sources as ftp address.

• Changes other settings and gives new version number.

• Presses submit.

• A build job is created at site X with the configuration and queued for execution.

The outline above suggests that this procedure can only succeed by using a high standardization
of build scripts, makefiles, versions and source layout. This standard needs to be described,
defined and followed by the model developers to allow us to create an automated procedure.

 130

For infrastructure components such as the Request Listener (RL) and the administration server, a
semiautomatic system should be developed. Components consisting of archive files with java
classes and associated configuration data can be triggered for automatic installation on a site. The
viability of this solution depends on the security model implemented. The component responsible
for this is no 23 in Table 21.

Access Control

The area of access control has not been addressed by any other document and as such is
undefined for archiving, visualization, monitoring and running experiments.

This question is related to the security implementation.

It is expected that unix permissions related to user ids will be implemented and that only pre
registered per user access to PRISM sites will be allowed.

III.9 Implementation Plan, Deliverables and Desirables

In general the implementation should be feature based, i.e. we first deliver a very basic but useful
functionality. Subsequent development is concerned with developing new functionality as
"features" with each new feature requiring a new release. The implementation is to be made as a
local system and a WS system.

Description of Local System

The local system will run the server and client parts as one component on a local computer. The
software will be made available from a repository at http://prism.enes.org/. The software will deliver
a GUI run from the command line that reads all configuration files from the current working
directory. The user will be in full control of all configuration files and can edit them at will. This
system is aimed primarily at model developers (local system).

Description of WS System

The WS system involves splitting the local system into its separate software components and
moving the configuration files developed with the local system to the server. This requires the
security mechanisms to be in place.

Security Implementation

The security requirements have been described in detail in the REDOC II.1 part of the document
(page 43). Some implementation aspects are:

• The modularity of the solution.

• The time scale of implementation.

• The use of existing software independent products.

• Discovery and implementation of new schemes in the computing community.

 131

One of the reasons that the security implementation is difficult is that there are currently no ideal
security implementations available that are scalable, cheap, secure and convenient. New
technologies are being held back because of this and there is a lot of activity in the field to
overcome this situation. Standardization and reference implementations can be expected within
the progress of the PRISM project. Further, there are a variety of solutions in place at different
PRISM sites and a survey is made to gather information on their preferences.

The security solution involves authentication and security between computers and of humans
communicating with computers.

From the implementation plan we can see that a security implementation will not be required until
month 24. It will be a further year until a fully service based system is in operation and advanced
service to service authentication needs to be in place. Therefore the final security solution is kept
open to allow for the use of new emerging standards and initially concentrate on modular solutions
with low maintenance requirements.

Proposed solution

For authentication between humans and computers we should use a software independent simple
password related system such as s/key. This system can be implemented with HTML and Java
based solutions and is well known to system administrators who already maintain password files.
Implementations are freely available. Communication can be secured by signatures but should not
be encrypted.

For authentication between computers standardization is currently under way by the Sun Web
Messages Security API (http://jcp.org/jsr/detail/183.jsp) and also by World Wide Web Consortium
Encryption WG (http://www.w3c.org/Encryption/2001/) and other related XML technologies such as
SAML (http://www.oasis-open.org/committees/security/).

The basic of these technologies is to use signatures to secure the messages from being tampered
with and public key encryption to allow for authentication. An implementation building on the
password files as a shared secret key is possible and could be implemented if no standards have
emerged.

Plan

The implementation plan builds on creating the necessary infrastructure for the WS system on the
central site. Parallel to this the local system is used by developers to work on their models so that
they can be made available to the central system.

Once the quality and operation of the system is satisfactory the remote servers on other sites will
be developed and deployed letting users submit experiments on other sites.

This has the advantage of not spending administration efforts on inferior quality software and time
on remote debugging sessions.

 132

Phases

The implementation plan consists of 4 different phases: Foundations, prototype, network and inte-
gration, documentation and features. The plan tries to move the features not necessary for basic
operation to the later phases.

It is important to determine the critical path in the development and the functionality that can stop
the progress of the project.

Critical Path

It is essential to determine the critical path for the implementation of components. Dependencies
are given for each phase.

Month 6 to 12: Foundations, Local System

• Administration scripts

• Build administration interface

• Adapt existing GUI

• Tasks: 1, 7, 21, 22 of Table 21

Deliverable: Delivery of local system to modellers.

Dependencies: Deployment scripts defined and available, deployment structure agreed on, XML
formats known and defined with examples, standard build scripts defined and created.

Month 12 - 18 Prototype of Web-based System

• Develop monitoring server

• Develop administration server

• Tasks: 12, 9, 6 of Table 21

• Additional work is required to set up a central site.

Deliverable: Prototype of web based system.

Dependencies: Standardized configurations made available by modellers, monitoring tool
available.

Month 18 - 24 Testing, Security and Feature Development

• Develop/Test security

• Development of network related infrastructure

• ORB, Directory server.

• Tasks: 3,16,17,20 of Table 21

 133

Deliverable: Deliver system with components installed in multiple locations.

Dependencies: Security and access model defined, test systems available, archiving of data must
be working and accessible or results will have to be deleted.

Month 24 - 36 Network and Integration of Visualization and Diagnostics Tool

• Event service

• Integration of visualization and diagnostics.

• Semiautomatic software distribution system.

• Documentation

• Tasks: 8,18,19,23 of Table 21

Deliverable: Deliver fully tested and documented system.

Dependencies: Security implemented, interfaces to visualization and diagnostics tools
implemented and available for integration.

III.10 Integration with other Projects

The fact that other projects with similar goals (Globus etc.) are emerging and being developed
raises the question of integration and also cooperation. If a high degree of inter operability is
required we should test their systems and also make contact to discuss how we can both benefit
from each other’s development. Advantages could be reuse of software but the time it takes to
identify these areas is at stake.

 134

III.11 Risks

Table 23: Risks

Type Magnitude Description Impact
Security demands incompatible on
some sites.

Severe Multiple security
solutions may be
necessary.

If sites cannot agree on one
security solution it may introduce
costly separate solution affecting
the client experience.

Deployment and administration cycles
made difficult due to security.

Severe Increased manual
intervention
necessary at
higher cost.

Synchronization of software is
delayed.

Hardware resources unavailable for
testing and implementing the
infrastructure.

Fatal System cannot be
built and tested.

No system.

Standardization of build-scripts not
achieved.

Severe Models not
conforming to
standards.

Manual intervention required.

Creation of configuration information for
GUI incomplete.

Severe Necessary
information
missing for
configuration or
deployment

GUI will not work properly and
automation benefits lost.

Deployment standards not achieved. Severe Difficult to achieve
standards if
validation and
editing tools not
available.

Deployment will fail.

 135

IV - System Components

IV.1 PRISM Coupler and I/O Library

The coupler drives the whole coupled model, ensuring the synchronization of the different
component models and the exchange of the coupling fields directly between the components or via
additional coupling processes. When needed, the coupler performs transformations on the
coupling fields. Another important part of the coupler is the model interface library linked to each
component model, which interfaces it to the rest of the coupled model. As I/O and coupling data
share many characteristics, it was decided to develop one common model library for both
purposes.

The different constituents of the PRISM coupler and I/O library are therefore the Driver, the
Transformer, and the PRISM System Model Interface Library (PSMILe). The PSMILe includes the
Data Exchange Library, which performs the exchanges of coupling data, the I/O library, and some
coherence check and local transformation routines.

In the first section the PRISM coupled model high-level architecture is first presented. The
functionalities of each constituent and their priority of development are detailed in the second
section.

IV.1.1 Coupled Model High Level Architecture

The elements of a coupled model are the following:

• The Driver, which monitors the whole coupled model.

• The Transformer separate entity T, which performs transformations on the data.

• The component models Mi, Mj, or Mk, interfaced to the rest of the coupled model through
the PRISM System Model Interface Library (dark and light blue squares).

• The Potential Model Input and Output Description (PMIOD): a container describing the
relations the model is able to establish with the rest of the coupled model through inputs
and outputs.

• The Specific Model Input and Output configuration (SMIOC): a container describing the
relations the model will establish with the rest of the coupled model through inputs and
outputs for a specific experiment.

• The Specific Coupling Configuration (SCC): a container describing all activated coupling
fields for a specific experiment.

• The files, containing data.

An overview of a coupled model is presented in Figure 29.

 136

Figure 29: Details of the different parts of the coupled PRISM model

As detailed in the REDOC II.2, page 59, I/O data, i.e. data coming from or going to disk, and
coupling data, i.e. data coming from or going to another model, share many characteristics, and it
was therefore decided to develop one common model library for both purposes. Both types of data
are concerned by the present high-level architecture.

The different elements of a coupled model are detailed hereafter by describing the three basic
phases of its construction and execution:

• Definition of the entities to be coupled (component models, coupler elements, files...)

• Composition of these entities in a coupled system

• Deployment of the coupled system onto a set of computing resources

A - Definition phase

In the definition phase, the different elements of the coupled system are prepared:

• The component models (Mi, Mj, or Mk), including the PSMILe:

Each component model has to include specific PSMILe instructions that will allow the
component model to interact with the rest of the PRISM System at run-time. The PSMILe,
represented here by the dark and light blue squares, includes the Data Exchange Library,
which performs the exchanges of coupling data directly between the component models

 137

or between the component models and other coupling processes, the I/O library, and
some coherence check and local transformation routines.

• The Potential Model Input and Output Description (PMIOD):

For each model, the Potential Model Input and Output Description (PMIOD) describes the
relations the model is able to establish with its external environment. The PMIOD contains
a short description of the model, its grids, and the list of all data requested or produced by
that particular component model and their description (the meta-data). The input and out-
put data can be divided into 3 categories.

o Transient input and output variables: data evolving during the run, received or pro-
vided at run-time by the model at an a priori unknown frequency, from or to an external
entity (another model or a disk file). For example, coupling data and diagnostics be-
long to this category.

o Restart variables: data requested initially by the model to (re-) start the simulation
and provided previously by the model itself (not by an external entity). These data are
saved to disk at regular intervals during each run. It remains to be clarified if restart
variables should be treated differently from transient input and output variables.

o Persistent input parameters: data requested initially by the model to define the
physical configuration of the experiment. These parameters may have default values
but may be adapted by the user. For coupled models, the "universal parameters" are
parameters that require a consistent definition among all the model components.

The model administrator makes each model and its respective PMIOD available to potential
PRISM users.

• The input files:

All input files containing data required for the run have to be generated.

• The coupler Driver and Transformer separate entity:

The Driver, which monitors the whole coupled simulation, and the Transformer separate
entity, which performs required transformation on the data, have to be available.

 138

B - Composition phase

In the composition phase, a particular user assembles a particular coupled model.

• Selection of component models:
The user first chooses the component models he wants to couple for one particular
experiment.

• Input file selections:
The user selects the input files containing information that will be used during the
simulation, such as forcing fields.

• Driver and Transformer separate entity selection:
The user selects the PRISM Driver and Transformer separate entity.

• Constitution of each model Specific Model Input and Output Configuration (SMIOC):

Based on each model PMIOD, the user generates for each model an SMIOC. The SMIOC
describes the relations the model will effectively have with its external environment
through inputs and outputs for a specific experiment.

For transient input and output variables, the user may decide that a particular data will
1- have no role in the simulation, 2- be read from a file or written to a file (I/O data), or 3 -
be exchanged between to component models (coupling data). For I/O data, the user
indicates in the SMIOC, the name(s) of the respective file(s), the input or output
frequency, and possibly the local and non-local transformations required on the data. For
coupling data, the user just refers to the Specific Coupling Configuration (SCC).

For restart variables, the user is only allowed to indicate the name of the restart file and,
possibly, the restart saving frequency. However, this last parameter should have the same
value for all component models and should therefore be treated as a universal
parameter in the SCC.

The values of persistent input parameters are read at run-time in the SMIOC. The user
may be allowed to change the default value therein. For persistent input parameters that
are also universal parameters, the value taken into consideration is the one indicated in
the SCC.

• Constitution of the Specific Coupling Configuration (SCC):

 139

The user constitutes only one Specific Coupling Configuration (SCC) for each particular
coupled model simulation. The SCC centralizes the description of all activated coupling
fields and all related coupling parameters chosen by the user (source and target models,
coupling frequencies, local and non-local transformations, etc.) for one particular
experiment. The SCC also contains the universal parameters prescribed by the user.

It is proposed that the PMIOD, SMIOC, and the SCC containers be implemented as XLM
files.

C - Deployment phase

At run-time, the different parts of the system will play different roles. A more detailed description of
the functionalities of each constituent is presented in section IV.1.2

• The Driver: launches the component models, monitors their execution and termination.

• The Transformer separate entity T: performs required transformations on the I/O and
coupling data.

• The PRISM System Model Interface Library (PSMILe):
The PSMILe includes the Data Exchange Library, which performs the exchanges of
coupling data directly between the component models or between the component models
and the separate Transformer entity, the I/O library, and some coherence check and local
transformation routines. At run-time, specific PSMILe instructions will perform the
following actions:

Initialization:

o Declaration of PSMILe internal data structure.

o Message passing initialization.

o I/O initialization.

o Initialization of persistent input parameters, read directly in the SMIOC.

o Initialization of universal parameters either received from the Driver or read directly
in the SCC.

Meta-data declaration and initialization:

o Definition of the meta-data describing input or output data (for example the grid
coordinates, mesh areas, mask, partitioning), and definition of associated identifiers.

Declaration of transient and restart variables:

o Association to the relevant meta-data identifiers (see below).

o Access to user-defined data information: for each data declaration, the PSMILe
consults the SMIOC and identifies the user's choice for that particular experiment
(coupling or I/O data, input or output frequency, source and target models, source or
target file, transformations, etc.)

 140

Sending and receiving data

o The actions performed by the PSMILe below each sending or receiving instruction de-
pend on the user's choices read in the declaration phase in the SMIOC and in the
SCC: the library may simply return, or perform local transformations, and/or perform
the exchanges between the models, and/or perform the reading or writing into files,
etc.

Coupling termination

o All actions related to finalizing the run.

IV.1.2 Detailed Functionalities for the PRISM Coupler and I/O Library

As detailed above, the different constituents of the PRISM coupler are: the Driver, the Transformer,
and the PSMILe, linked to the component models and which interfaces the component model with
the rest of the coupled model. The PSMILe includes the Data Exchange Library, the I/O library,
and some coherence check and local transformation routines.

For each of these constituents, the list of possible requirements established in the REDOC II.2 was
revised and choices of functionalities that should be implemented in the different versions of the
PRISM coupler were made, considering the answers to the template summarized in REDOC I.3.
These choices are detailed below.

For each functionality, a priority of implementation is given: "1" means that the functionality should
be provided for the PRISM coupler first version (D3a1, month 12), "2" for PRISM coupler second
version to be used in the demonstration runs (D3a2, month 24), and "3" means that the
functionality may be provided for the PRISM coupler final version (D3a3, month 36).

IV.1.2.1 General Requirements
• The overhead associated to the global system modularity and flexibility is acceptable.

(2,3)

• The whole system is portable and efficient on the different hardware architectures used for
climate modelling, on dedicated or shared hardware resources. Standard and portable
solutions should be preferred. However, for critical issues for which a portable solution
would not exist or would lead to very low efficiency, machine dependent options could be
offered. (3)

• The design and implementation lead to code easy to maintain and can be easily modified
to support future model or coupling functionalities. (2,3)

• Design reflects a clear separation of responsibilities for the different parts of the coupler.
(2, 3)

• The PRISM System infrastructure can be used to technically assemble a coupled system
based on any component models, even if these models do not conform to the PRISM
physical interfaces given that they include the PRISM System Model Interface Library. (1,
2, 3)

• The PRISM System infrastructure can be used to couple an arbitrary number of
component models; any component can be one-way or two-way coupled with any other
component. (1, 2, 3)

 141

IV.1.2.2 Driver functionalities

The Driver manages the whole coupled application. It launches the component models, monitors
their execution and termination, centralizes and distributes universal parameters, which require a
consistent definition among all component models, and centralizes and distributes information on
the component model status during the simulation.

The driver could keep a central role during the whole simulation and manage also the exchanges
of coupling data. The preferred design option here is to decentralize the coupling functionalities as
much as possible in the Data Exchange Library and in the Transformer, and therefore to reduce as
much as possible the role of the Driver. This option is probably applicable only for static coupled
simulations and allows an easier evolution toward heterogeneous coupling (different component
models running on different machines).

As detailed below, the choice of a static Driver was also made. The workload of a static driver is
likely to be small, even more if the decentralizing option is followed. The Driver could be one
separate process used only for it, but could also sit in one separate coupling process used also for
the separate Transformer entity, or even could be part of the PSMILe master process of a master
model started by the user initially. The first two options are still open regarding the Driver
implementation.

Model Execution and Control:

• The Driver manages static simulations (with respect to the process management): all
component models are launched initially and run for the entire length of simulation.
Launching of the executables by the Driver (with MPI2) and initial starting of all
components (with MPI1) are supported. (1, 2, 3)
The Driver will not manage dynamic model execution (one or more models starting and
ending during the simulation), neither conditional model execution (one model is started
during the simulation only if a particular scientific condition is met). WP3h considered the
dynamic model execution functionality as essential to run time-slice experiments. Other
groups considering this functionality as desirable mentioned that it could be useful to run
alternatively different coupling configurations (e.g. for asynchronous coupling). We
consider here that chaining different static simulations can fulfil these requirements.
Technically, the argumentation presented in REDOC was reviewed and it was evaluated
that the disadvantages linked to a dynamic configuration were more important than its
advantages. Therefore, the choice was made to design a static, less sophisticated, but
more efficient Driver.

• The Driver can start a global coupled system flexible in terms of executables (extreme
are: each component is a separate executable, or all components run in parallel or in
sequence within only one executable). If the latter mode is chosen for two or more
components, the developer will be responsible assembling the components into one
executable. (2, 3)

• The driver can give some statistic on the load balancing of the run. (3)

• The driver includes a timing functionality that can sample with identical absolute time the
duration of events for all component models. (3)

Information Management:

• The universal model input parameters are parameters that need to be consistently defined
in the coupled system (initial date, length of integration, calendar, earth radius, restart sav-

 142

ing frequency, etc.). The user defines this information in the SCC. The driver gets these
parameters in the SCC and, on a PSMILe request, transfers this information to each com-
ponent model. (For a stand-alone model, the model PSMILe should read directly the in-
formation in the SMIOC.) (1, 2, 3)

• The driver does not centralize all model information (grid definition, distribution, etc.).
Each model PSMILe is be responsible for transferring the appropriate information to the
appropriate processes. (2, 3)

• Depending on a log level chosen by the user in the coupled model configuration file,
internal PSMILe log functions or log functions implemented by the developer in the code
are activated. The log function transfers information on the state of the model to the driver,
which centralizes this information and may then transfer this information to a higher-level
controlling layer or to the user. (3)

Coupling Exchange Management:

• In a decentralized and static approach, the matching between output coupling data
produced from one model and input-coupling data requested by another model could be
performed initially and the Data Exchange Library included in each model PSMILe should
manage the exchange at run-time.
The other option is that the driver performs the matching and, at run-time, manages the
exchanges of coupling data based on this matching. The decentralized option is the
preferred one but the two options are still open now. The matching is based on user's
choices indicated in the SCC; the way the matching and the exchanges are managed are,
in any case, transparent for the developer and for the user.

Termination and Restart:

• If one component aborts, the whole simulation must shut down cleanly. (1, 2, 3)
The coupled model will most probably be a MPI1 or MPI2 application. In that case, if one
component model aborts, the whole MPI job terminates automatically and the Driver can
have no control on the termination. However, in the case of PSMILe exceptions (the error
code returned by one PSMILe routine indicates an error), the model developer may
decide to make the model to abort; the routine called in that case first interacts with the
Driver which then performs appropriate actions (such as saving the most recent cached
information), sends a message to the model which then aborts, and terminates the
coupled application. (3)

• The driver constantly updates, by writing in a restart log file or by any other equivalent
mean, the last date for which all model restarts were saved. This information is sent to the
driver by each model PSMILe. (2, 3)

• Neither the driver nor any external controlling instance automatically restarts a coupled
system after an unforeseen termination (machine breakdown...). This is not desirable
because the diversity of faults is large and in many cases, human intervention is
mandatory before the simulation should be restarted (ex: the disk on which the
diagnostics are saved is full).

• The driver will not be able to shutdown the simulation cleanly if a specific scientific
condition is met (e.g. average SST exceeds some predefined value). This functionality will
be fulfilled by a conditional PRISM_Abort implemented in the code by the model
developer or by a conditional PRISM_Abort managed automatically by the PSMILe (see
below).

 143

IV.1.2.3 Transformer functionalities and parallelization

This paragraph first gives some definitions. In the second section, the preferred design options for
the PRISM coupler Transformer location and parallelization are presented. In the third section, an
exhaustive list of transformations and grids on which these transformations should be performed is
presented, together with other specific requirements, and associated priority and calendar.

Definitions

• Point-wise transformation: an operation that can be completed on each grid point
without any external information, neither from the model neighbouring grid points, nor from
another model, such as time averaging or addition of coupling fields given on the same
grid

• Local transformation: an operation that can be completed in a model without any
information from another model, such as finding the maximum value of a field.

• Non-local transformation: an operation that requires information from another model,
such as interpolation.

Preferred Design Options for Transformer Location and Parallelization

Location for the different types of transformations

The preferred design option is the one in which non-local transformations are performed in
the separate Transformer entity (T), as they require information coming from different
models. Point-wise and local transformations will be workable in the PSMILe linked to the
model before sending or after receiving the data. However, point-wise and local
transformations will also be available in the separate Transformer entity T, for example, to
combine coupling fields coming from different source models after their interpolation on
the target grid.

The same rules apply for two component models assembled into one executable: all
point-wise and local transformations will be performed directly in the PSMILe, while the
data will have to be treated by the separate Transformer entity T if non-local
transformations are required. This last case however is not likely to happen, as two
components assembled into one executable will in most cases share the same grid and
same partitioning.

Ideally, the coupler should decide the choice of whether the transformation is performed
by the PSMILe or in the separate Transformer entity T automatically and this should be
transparent for the user (3).

Transformer parallelization

As detailed above, the transformation routines included in the PSMILe will perform local
transformations, and not only point-wise transformations; their full parallelization is
therefore required when the PSMILe is linked to a fully parallel component model (3).

Non-local transformations will be performed in the separate Transformer entity T. Different
options of parallelization are possible. The "one-executable full parallelization" option
presented in REDOC on page 69 is the preferred one (3). A fall back solution would be a
simpler parallelization of the separate Transformer entity T as one executable with
openMP.

 144

List of transformations, grids, and associated priority and calendar

List of transformations

A list of relevant transformations is given hereafter. For each transformation, it is specified whether
the transformation is "point-wise", "local" or "non-local".

• 1D, 2D, and 3D spatial interpolations

All these transformations are non-local.

o S1 - Nearest-neighbour interpolation function:
For each target grid point, the n nearest neighbours on the source grid, weighted or
not by their distance, are averaged.

o S2 - Nearest-neighbour Gaussian weighted interpolation function:
For each target grid point, the n nearest neighbours on the source grid, weighted by
the value of a Gaussian function at their distance from the target point are averaged.

o S3 - 1st order interpolation function:
Standard 1st order linear interpolation.

o S4 - 2nd order interpolation function:
Standard 2nd order cubic interpolation.

o S5 - First order conservative remapping:
This scheme will guarantee that the line (1D)-/area (2D)-/ volume (3D)-integrated field
(e.g. water or heat flux) is conserved between the source and the target grid.

o S6 - Second order conservative remapping:
This scheme will also guarantee that the line (1D)-/area (2D)-/ volume (3D)-integrated
field (e.g. water or heat flux) is conserved between the source and the target grid.

o S7 - Remapping using user-defined remapping info (ex: MOZAIC)

• Other 1D, 2D, and 3D spatial transformations

o S8- Conservation:
This non-local operation ensures global energy conservation between source and tar-
get grids (ex: CONSERV).

o S9- Combination or merge:
This local and point-wise operation combines different parts of different coupling fields
or of other predefined external data given on the same grid (ex: FILLING). This opera-
tion may involve the smoothing of the fields near the different domain borders; in that
case, the operation is still local but not point-wise.

o S10- Masking:
With this local and point-wise operation, only the points listed in index have meaningful
data and the others are changed to a missing value (ex: MASK).

o S11- Scattering:
This local operation scatters the model data onto the points listed in an index.

o S12- Gathering:
This local operation gathers from the input data all the points listed in an index.

o S13- Collapse:
This local operation results in the collapse of any dimension or combination of dimen-
sions by various, possibly weighted, statistical operations, such as mean, max, min,

 145

etc. (possibly relative to a threshold, e.g. maximum of positive values). (Ex: CHECKIN,
CHECKOUT)

o S14- Subspace:
This local operation results in the extraction of subspaces or hyperslabs in any combi-
nation of spatial dimension.

o S15- Algebraic operations:
Local and point-wise operations, such as addition, subtraction, multiplication, etc., with
possibly different coupling fields or predefined external data (given on the same grid)
and numbers as operands (+, -, X, SQRT, ^2, SIN, LOG...) (Ex: BLASOLD, BLAS-
NEW, SUBGRID, CORRECT)

o S16a - 1st order extrapolation function

o S16b - 2nd order extrapolation function:
This transformation is required to address the specific problem of the wind curl along
the coast.

• Time operations

o T1- Time integration, average, variance, extrema, linear interpolation
Local and point-wise operations.

List of grids

The following grids should be supported for the above scheme. These grids have the following
common characteristics:

• The grids may have masked grid points.

• The grids may have "holes" (i.e. they do not cover the whole sphere, e.g. regional grids).

• The grids may be global or regional (except H3 reduced grid which is always global).

• The grids may have overlapping grid points (except H3).

2D grids

o H1 - lat-lon grids:
The grid is given by the intersection of meridians and parallels. Each (i,j) grid point can
be described by the value for the indices i and j of two 1-D arrays, latitude(j) and longi-
tude(i).

• The latitudinal mesh sizes can be regular or irregular, i.e. latitude(j) is or is not
constant.

• The longitudinal mesh size can be regular or irregular, i.e. longitude(i) is or is not
constant.

• The grid may overlap in longitude with N overlapping grid points.

• The grid may have grid points at the pole and/or at the equator.

• The border of the cells should be given with the grid.

o H2 - Cartesian and stretched and/or rotated grids (logically rectangular):
Each (i,j) grid point can be described by the value for the indices i and j of two 2-D ar-
rays, latitude(i,j) and longitude(i,j).

• The grid may overlap itself in the i and/or j direction.

 146

• The exact location of the mesh borders should be given with the grid.

o H3 - Reduced grids:
The grid is composed of a certain number of latitude circles, each one being divided
into a varying number of longitudinal segments. The grid can be described by the
number of latitude circles, N_lat, the latitudinal position of each circle npos(N_lat) and
by an 1-D array giving the number of longitudinal segments for each latitude,
n_seg(N_lat). The total number of grid points, N_tot, is the sum of all n_seg. The grid
can also be described by two 1-D arrays, latitude(N_tot) and longitude(N_tot). This
grid may be considered as one particular case of unstructured grids

• There is no overlap of the grid.

• There is no grid point at the equator nor at the poles.

• There are grid points on the Greenwich meridian.

• The exact location of the border meshes should be given with the grid.

o H4 - Unstructured grids:
The grid, with N_tot number of grid points, has no logical structure. The grid must be
described by two 1-D arrays, latitude(N_tot) and longitude(N_tot)

• The grid may overlap itself for some grid points.

• There may be a grid point at the equator or at the poles.

• There may be grid points on the Greenwich meridian.

• The mesh can have an arbitrary number of sides. The exact location of the bor-
der meshes should be given with the grid.

3D grids

o V1 - Reproduction of the same horizontal grid at different levels:
The same horizontal grid is reproduced at different vertical levels. Each level has its
particular mask.
The vertical levels can be:

• V1-1 : given at regular or irregular depth or height levels (z co-ordinate)

• V1-2: hybrid: first level follows the orography (atmosphere models) or the
bathymetry (ocean models), last level follows an isobar (atmosphere) or the sur-
face (ocean), progressive transition in between.

• V1-3 : given at regular or irregular isopycnal (density) levels (r co-ordinate)

o V2 - Different horizontal grids at different levels:
The horizontal grid is not reproduced at different vertical levels. The horizontal grid can
be rotated, translated, or totally unstructured.

Other specific requirements

• To support scalar coupling data. (For priority see below).

• To support vector coupling data in the standard spherical geographical coordinate system.
(For priority see below).

• To support vector coupling data in any set of local coordinate system. (For priority see be-
low).

 147

• To support fields with undefined variables. (2, 3)

• To support coupling fields whose characteristics may change over time as the simulation
develops , e.g. grid, resolution or distribution (CF dynamic simulation). (3)

• To be able to save, at a user-defined frequency, its restart data (e.g. time accumulated
data). (2,3)

• To support source and target coupling domains that totally or partially overlap (e.g. global
atmosphere with a regional ocean, regional model nested into global model, etc.). (1, 2, 3)

Priority and Calendar

The following paragraph gives the priority of development. The meaning of the numbers 1, 2, or 3
is given above for the different transformations on the different grids listed there. When two num-
bers are given, parts of the functionality will be provided for the respective coupler versions.

Transformations on 2D Vector Coupling Fields

 H1 - lat-lon H2 - log. rect. H3 - reduced H4 - unstructured
S1 - near.neigh 1 1 1 1
S2 - Gaussian 1 1 1 1

S3 - 1st O interp. 1 1 3 -
S4 - 2nd O interp. 1 1 3 -

S5 - 1st O cons rem 1 1 1 1
S6 - 2nd O cons rem 3 3 3 3
S7 - user remapping 1 1 1 1

S8 - conservation 1 1 1 1
S9 - combination 1 2 2-3 2-3
S10 - masking 1 1 1 1

S11 - scattering 2 2 2 2
S12 - gathering 2 2 2 2
S13 - collapse 2 2 2-3 2-3

S14 - subspace 2 2 3 3
S15 - algebra 1-2 1-2 1-2 1-2

S16a - 1st O extrap. 1 1 1 -
S16b - 2nd O extrap. 2 2 3 -
T1 - time operation 2-3 2-3 2-3 2-3

Table 24: Transformations on 2D scalar coupling fields

• Transformations on 2D vector coupling fields given in the standard spherical coordinate
system.
Transformations S1, S2, S3, S4, S6, S7, S9, S10, S11, S12, S13, S14, S15, S16a, S16b,
T1 are given the same priority than for 2D scalar fields. Transformations S5, S8 are of
priority 3.

• Transformations on 2D vector coupling fields given in any set of local coordinate system:
Transformations S1, S2, S3, S4 for H1 and H2, S7, S10, S11, S12, S15, S16a, S16b for
H1 and H2 are of priority 2. Transformations S4 for H3, S5, S6, S8, S9, S13, and S14,
S16b for H3 are of priority 3.

Transformations on 3D Coupling Fields

• Interpolations for V1-1 and V1-2 grids
For V1-1 and V1-2 grids, the treatment of 3D coupling fields will be addressed for the
second PRISM coupler version. The idea is to proceed with a multiple 2D interpolation
(i.e. 2D interpolation on many horizontal or hybrid levels) plus a simple linear interpolation
vertically (priority 2). The priority given to the multiple 2D interpolations or extrapolations
(S1, S2, S3, S4, S5, S6, S7, S16a and S16b) for scalar or vector fields for the different
horizontal grids is 2, or more if a lowest priority is given above for the equivalent (single)
2D interpolation scheme.

• Other transformations for V1-1 and V1-2
For V1-1 and V1-2 grids, the local and point-wise transformations S10, S15, and T1 are
given priority 2. For V1-1 and V1-2 grids, transformations S8, S9, S11, S12, S13, S14 are
given priority 3.

• Interpolations and other transformations for V1-3 and V2 grids

 149

These transformations will not be addressed within PRISM 3-year project.

Transformations on 1D Coupling Fields

All transformations are given priority 3

IV.1.2.4 PSMILe Functionalities

The PSMILe is the set of routines implemented in a component model code to interface it with the
rest of the coupled model. The classes of PSMILe instructions that will be invoked in the
component model code at run-time are described in the section on the “Deployment phase” on
page 139. Here, the functionalities of the different PSMILe constituents (i.e. the Data Exchange
Library, the I/O library, and the coherence check and local transformation routines) are presented
in mode details.

PSMILe General Characteristics

• The modifications to implement in the model code are as reduced as possible. (1, 2, 3)

• The PSMILe is layered, and complexity is hidden from the component code. (1, 2, 3)

• Interface routines once defined and implemented are not (or as little as possible) subject
to modifications between the different versions of the PRISM coupler. However new
routines may be added. (1, 2, 3)

• A good trade-off is chosen between (I) a concise list of parameters for each subroutine
call (more subroutines provided with a shorter list of parameters) and (II) a small number
of subroutines, each one having a longer and more complex parameter list. The
complexity arises from the need to transfer not only the coupling data but also the meta-
data. (1, 2, 3)

• The component models are able to run in a stand-alone model without modifications, with
or without an external driver. (2, 3)

• The description of the data, i.e. the meta-data (e.g. units, grid coordinates, mask,
distribution, ...), and the model information (e.g. length of a time-step) is given by the
model through the PSMILe and not duplicated externally by the user (2, 3). This
information may change during the simulation. (3)

• The PSMILe is extendable to new types of coupling data (e.g. data given on arbitrary
grids). (1, 2, 3)

• The PSMILe includes the Data Exchange Library and the I/O library as the most external
layers. The PSMILe therefore automatically manages the cases for which input coupling
data are not provided by another model but have to be read into a file; this is transparent
for the component model. The format of these data files could be a standard PRISM fixed
format (2). At a later stage, different formats could be supported for these data files,
implying that the I/O instance can interpret their content. (3)

• The PSMILe includes some local transformation routines and performs the transformation
required locally before the exchange with the rest of the PRISM System. (2, 3)

• The PSMILe performs some checks of coherence on coupling and I/O data, according to
a coherence check level defined by the user in the coupled model configuration file. (3)

 150

Data Exchange Library (DEL) Functionalities

The Data Exchange Library (DEL) performs the exchanges of coupling data between the
component models, or between the component models and the separate transformation entity. The
DEL must therefore be included as the most external layer in the PSMILe.

Data transfer between separate processes will be implemented using the message-passing
interface MPI, which is a widely used and portable standard. MPI implementations completely
supporting the MPI standard are available for every architecture used by the climate modelling
community either as open source public domain code or as proprietary software optimized and
installed on high performance computer system. Furthermore MPI is best suited for the close
coupling between separate processes, as in climate system modelling, since individual MPI
implementations are designed to use the most efficient network on a specific architecture.

Since all parallel climate model codes support communication via MPI the introduction of
alternative approaches like CORBA requires additional software like Fortran ORBs. Another
possibility is wrapping the Fortran codes using a C++ ORB, which can require major changes to
the involved Fortran codes as well. (For experiences gained with wrapping Fortran code see
http://accl.grc.nasa.gov/IPG/CORBA/wrap_fortran.html).

In addition, alternative approaches such as CORBA handle data transfer via TCP/IP, which is not
well suited for a fast and efficient parallel data transfer. MPI processes may communicate
simultaneously without interfering the communication of other processes, while the same kind of
communication will cause conflicts on a TCP/IP connection. Transfer rates between two processes
can differ by a factor 10^5 to 10^6 when comparing CORBA with MPI. Furthermore a complete
CORBA standard is not available for every architecture.

The DEL detailed functionalities are:

• The exchange can occur directly between two component models without going through
additional transformation processes. When the component models are parallel and have
different data partitioning, repartitioning associated to direct communication is required; all
type of distributions usually used in model component codes are be supported. (2 for
static simulations, 3 for CF dynamic simulations)

• "End-point" data exchange: when producing coupling data, the source model does not
know what other model will consume it; when asking for coupling data a target model
does not know what other model produces it. (1, 2, 3)

• Coupling data produced by a source model can be consumed by more than one target
model. (2, 3)

• Occurrence of the exchange can be different for the different coupling fields. (1, 2, 3)

• For each coupling field, the exchange occurs at a fixed frequency for the whole simulation.
(1, 2, 3)

• For each coupling field, the exchange may occur at different fixed frequencies for different
periods. (2, 3)

• Coupling data produced from one model at a particular time may be required as input
coupling data for another model at another time. The DEL can take into account a time lag
defined by the user in the coupled model configuration file. (2, 3)

• Conditional occurrence of an exchange, depending on parameters dynamically calculated
during the simulation, will not be supported within PRISM 3 years.

 151

• The coupling data can be of different types: integer and real, complex (32, 64, 128 bits)
appearing as multidimensional arrays, but without time dimension (2,3). For structures,
operators and functions, other PSMILe primitives will be defined when required, but not
within PRISM 3 years.

• The coupling data characteristics, and therefore the associated meta-data, may change
over time as the simulation develops e.g. the grid or the resolution (CF dynamic
simulations). (3)

• Coupling data produced by one model may be only partially consumed by the target
model; extraction of subspaces, hyperslabs or indexed grid points may be required before
the exchange. (2,3)

• Sending and receiving instructions can be placed anywhere in the source and target code
and possibly at different location for the different coupling fields. (1, 2, 3)

• The DEL insures that component models can be executed concurrently, in a regular
sequence (one after the other), or in some pre-defined combination of these two modes.
(1, 2, 3)

• The DEL offers efficient data exchange implementations for loose and strong coupling.
Loose coupling is the configuration in which the two component models are run
sequentially or concurrently as two separate executables. Strong coupling is the
configuration in which the two component models are run within the same executable. (2,
3) • The DEL could perform the matching between output coupling data produced by one
model and input coupling data requested by another model (see related discussion above
in the Driver section) (1, 2, 3)

I/O Library

The I/O library performs the exchanges with files stored on disk. The user selects activated
variables, regions, temporal and geographical transformations and file names are chosen in the
SMIOC (see Section “Composition phase” on page 138). Meta-data and run time information are
provided at run-time by the component model through the PSMILe. The data and the associated
meta-data will be read or written to the disk files.

For data access, calls to the NetCDF (http://www.unidata.ucar.edu/packages/netcdf/) library will be
implemented. Support of formats other than NetCDF will not be implemented, but entry points for
reading and writing other file formats will be provided.

Execution on parallel machines will have to work efficiently. MPI-IO is the standard solution and will
be evaluated. In a first step, we will avoid parallel I/O by doing regional selection for input data and
by doing post-processing operation after a simulation to combine multiple outputs files provided by
a parallel execution.

Coherence check routines

The PSMILe will perform some checks of coherence on coupling and I/O data, according to a
coherence check level defined by the user in the Specific Coupling Configuration (SCC) file. The
coherence check instance will:

• Understand some standard conventions of meta-data. (3)

 152

• Based on the meta-data, perform compatibility checks between data produced by a
source component and its description established by the model developer in the PMIOD.
(3)

• Based on meta-data description, perform compatibility checks between data produced by
a source component and data required by a target component. (3)

• Based on meta-data description, recognize type of coupling data (flux, vector, scalar) and
verify that the user's transformation choice is appropriate. (3)

• Warn the user if the coupling and I/O frequencies are not synchronized. (3)

• Automatically check an abort condition defined by the user in the SCC or in the SMIOC on
the value of the input and output data, and perform the abort if the condition is met. (3)

Local Transformation Routines

The PSMILe will perform the following transformations locally. The priority for including these local
transformations in the PSMILe is given here:

• Combination of different data produced by one model (S9) (2).

• Masking (S10) (2).

• Scattering (S11) (3).

• Gathering (S12) (3).

• Collapsing (S13) (3).

• Subspace (S14) (3).

• Algebraic operations (S15) (2).

• 1st and 2nd order extrapolation (S16a, S16b) (3).

• Time integration, average, variance, extremes and linear interpolation (T1) (2).

 153

IV.2 Diagnostics and Visualization

The Archive, Data Processing and Visualization architectural design choice is specified.
The meta-data standard chosen for the output of PRISM model data and for data exchange is the
CF convention. NetCDF will be the supported file format for both model output and data exchange.
An initial prioritized list of functionalities required for the processing library and visualization system
has been constructed, with input from the PRISM community. A review of existing graphics
packages is currently underway.

IV.2.1 Introduction

Within PRISM a flexible library of tools will be built to facilitate processing and analysis of data in
the common PRISM data format and to promote sharing of data and analysis programs. High-End
and Low-End graphical interfaces will be developed to display the data. This document details the
architectural design choices made for the Data Processing library, visualization and archiving,
including views from the PRISM community.

IV.2.2 Meta-Data and File Format Definitions for Model Output and Data
Exchange

Meta-Data Convention

Meta-data allows us to fully describe geophysical data. This is valid for data, which is available to
the user in files as well as for data that is exchanged between models or different software
packages. It is important to note that up until now models or software libraries did not exchange
this type of information and that it was up to the user to make sure that the correct variables were
passed. With a proper meta-data convention we can ensure that the models verify the data they
receive. This is an essential step for PRISM, which aims at coupling models from different origins
and by people who have not necessarily been involved in the development of these models.

The CF convention (http://www.cgd.ucar.edu/cms/eaton/netcdf/CF-20010808.htm) is proposed as
the meta-data standard for PRISM.

• CF is an extension of the existing standard COARDS. (For information on COARDS see
http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html)

• CF meets the meta-data requirements of PRISM

o The CF convention provides meta-data to describe source, history, institution, etc. It
should, consequently, be possible to have variables with different source, institution,
history, etc. in the same file.

o CF Meta-data is intended to describe physical data at points or in cells. PRISM files
may contain other kinds of information, which would need different kinds of meta-data
to describe them. For example, it may be required that a formula used to calculate
temperature at a certain level in the atmosphere model may need to be passed to the
ocean model. The PRISM meta-data definition needs to be extendable beyond the CF

 154

convention to cater for this type of data transfer. Multiple files may be required to cater
for data belonging to different conventions, but should be treated as a single logical
file.

o PRISM will need to agree lists of standard names for data fields and co-ordinates. CF
includes a standard name table; the requirements of PRISM can be incorporated into
this.

o CF was designed from the ground up with Climate Prediction needs in mind and was
developed by international collaboration (Eaton, Gregory, Drach, Taylor and Hankin).
It was developed over a long period with input from many people.

A couple of extensions to the CF convention will be made in order for CF to fully meet our
requirements:

1. The meta-data needs to record extra information for a full description of the extent and shape
of cells in non-rectilinear grids, for instance cell area. A general method is being added to CF in
order to support this.

2. The meta-data should be able to support non-spherical grids e.g. for data on a Cartesian plane.
No specific support is offered in CF for this, but nor is it disallowed.

3. For its use in the exchange of data between models the CF convention will need to be
extended with attributes related to the numerical properties of the variables. This will ensure
that the various models manipulate the data with the right operators and in the right sequence.

It is proposed that there should be a common interface between the model and the coupling and
diagnostic systems. This will be simplified by using a common meta-data definition for both
purposes.

File format

NetCDF (http://www.cgd.ucar.edu/cms/eaton/netcdf/CF-20010808.htm) will be the file format
supported for model output and data exchange because it

• Is used by COARDS

• Is used by AMIP

• Is freely available and portable

• Supports the CF convention

• Allows alignment of development effort with internal software development at the Met
Office (The COCO project)

While netCDF will be the supported file format it will, of course, be possible to interface to other
output file formats. It will then be the responsibility of the institution to provide conversion tools to
convert into the common data exchange format.

IV.2.3 High-level Architecture

The architecture diagram laid out in REDOC II.3 is confirmed, noting that the archive interface will
be an extension to the I/O library. Having it as an extension to the I/O library will be more efficient.

 155

Institutions will then plug in their functions to allow data to be output in their format or onto their
system.

Figure 30: Diagram of the Archive, Data Processing, and Visualization system

Site Boundaries

• Job Flow and Run Shell, User Interface and Active Archive will all be located on the local
site.

• The Data Processing Toolkit and Graphics Package will be located on the remote site.

• The Shared Processing library will be located on both sites to cater for both Low-End and
High-End graphics.

IV.2.4 Processing Library

Requirements for the processing library have been circulated within the PRISM community for
acceptance and comments and will be incorporated in this document as soon as available.

 156

PRISM will aim to provide software that will do both processing in bulk (e.g. for post-processing of
model output files) and computations on smaller amounts of data for analysis and visualization.
The processing library will share code with the I/O library and the coupler.

Utilities Required to Support CF

The Climate Data Management System (CDMS) is specialized for organizing multi-dimensional,
gridded data used in climate analysis and simulation. It can read in netCDF conforming files
amongst others. Some of the utilities required to support CF are already supported by CDMS.
CDMS will be the basis for the PRISM processing library. The utilities already supported are:

• An extension to udunits to handle non-real-world calendars (i.e. conversion between
formatted time, elapsed-since-reference time, and time in components)

• Identify long/lat/vertical/time axes from their attributes.

• Determine the topology of an axis (i.e. does it wrap round).

• Pack/unpack by scale and offset.

Others utilities required are:

• Compress/expand by gathering/scattering.

• Read in standard_name table. Is it useful to include equivalencies between
standard_names and other kinds of common identification e.g. GRIB codes?

• Find a standard_name in the table by regexp or pattern matching.

• Look up the unit for a standard_name.

• Compute dimensional vertical coordinates using the formula_terms attribute.

• Construct the climatology attribute for a climatological time axis.

• Reconstruct the original times from climatological time axes.

• Parse the cell_methods attribute.

• Check conformance of a file to the CF standard.

Processing library functionalities

The following is a preliminary prioritized list of the functionalities, which should be available in the
processing library. The list of "General Functionalities" was compiled from those in the UKMO PV-
WAVE and MPI PINGO libraries. The prioritization is based on input received from the PRISM
community.

Further general required/desired features and utilities:

• I/O only when needed (i.e. data not read in until it needs to be operated on, data not
written until it needs to be saved).

• Input from a collection of separate files regarded as one logical file, with variables
distributed across several files.

• Methods to obtain coordinate information conveniently.

 157

• Change units of data variables.

• Change calendar of time dimension.

• Carry meta-data and data around together when manipulating data variables. Meta-data
updated to reflect operations.

• Enquire and modify attributes of data variables and files.

• Insensitivity of operations to ordering of dimensions or sense of coordinates.

• Operator overloading for mathematical operations (so you can write, for example, a=b+c,
where a b c are objects comprising data and meta-data).

General functionality: Results:
 Essential Important Optional
Averaging 9
Arithmetic Operations 8 1
Information 8 1
Conversion to new grid 7 2
Statistical Operations 7 1 1
Extraction of Region and slices 7 1 1
Sampling 6 3
Gather 6 2 1
Masking 5 3 1
Tests and Confidence Intervals 3 4 2
Vector Operations 3 4 2
Integration and Differentiation 2 5 2
Regression 2 4 3
Mathematical Functions 2 4 3
Filtering and Smoothing 1 6 2
EOF's 2 3 4
Scatter 2 2 5
Classes 1 4 4
Manipulation 1 2 6
Binning Data 1 8

Table 25: Input from Hadley Centre, WP3f-3h, CERFACS, ECMWF, KNMI, MPI, Météo France

IV.2.5 Visualization

Low-end and high-end graphical display systems will be
developed. The border between low-end and high-end
graphics is defined below.

Definition of low-end Graphics:

'Low-end graphics refers to the generation of standard
plots and animations for quality control, comparison of dif-
ferent runs or models, but they should also be reasonably
acceptable for use in presentations and publications.

Figure 31: Low-end graphics

 158

The plan is to provide a system that automatically generates low-end plots on a remote server and
allows just the image to be transferred to the local server. A potential solution would be to provide
a web interface that allows the user to select the data, assign algorithms and operations, and to
choose plot style. The plot is generated on a remote server and the result is displayed in the web
browser using a Java applet.

Definition of high-end Graphics

Figure 32: High-end graphics

'High-end graphics provides facilities to explore the data as well as to generate high quality images
for presentations. It includes additional functions such as the ability to have greater flexibility in
generating animations, to manipulate 3D images, to rapidly apply new processing operations, and
to have close control over all aspects of the displayed images such as the styles, scales and fonts.'

The need for high performance suggests the need for direct interaction with the data. Therefore the
plan is to transfer the data to the local client and carry out any processing and generation of plots
here.

In principle each end user should have the choice between several graphic packages depending
on local hardware and possibly financial constraints.

All the graphics packages listed in REDOC II.3 have been reviewed using the graphics package
questionnaire, drawn up at the 1st visualization meeting in Hamburg, January 2002. The results of
this questionnaire can be viewed at
http://prism.enes.org/WPs/WP4a/Graphics/GraphicPackagesReview-collectionb.html.
Further investigation regarding the potential of the existing graphics packages is being carried out
with focus on those packages that seem to satisfy most of the requirements.

The PRISM community rated the functionalities required in the visualization package, represented
by High and Low respectively in the table.

 159

Feature: Essential Important Optional
Ease of Use High / Low
Extensibility High / Low
Interactive Performance High / Low
File Formats:
NetCDF High / Low
HDF High / Low
Connectivity:
Remote Low High
Web Enabled Low High
Scripting High / Low
Graphical User interface High Low
User Interface Builder High / Low
Platforms:
Windows High Low
Sun Solaris High Low
SGI High Low
IBM AIX High Low
HP-UX High Low
DEC Alpha High / Low
Linux High Low
Limitations:
Is there a file size limitation? High / Low
Multiple File support? High / Low
Open source High / Low
One kind of scripting language High / Low
Types of Grids:
Regular High / Low
Rectilinear High / Low
Curvilinear High / Low
Unstructured/irregular High / Low
Time dependent High / Low
Plot Types (General):
1D (lines) High / Low
2D (contour) High / Low
3D (Surfaces...) High Low
3D interactive High Low
Animations High / Low
Vector Plots High / Low
Plots: Methods and Functionalities
Streamline High / Low
Isosurface High Low
Trajectories High Low
Particle Trace High Low
Volume Rendering High Low
Multiple Datasets High / Low
Overlays of different grids High Low
Calculating differences between multiple grids High / Low
Slices, Subsets High / Low
Output File Generations / View mode:
Video High / Low
Images High / Low
Vector Plot Quality (PS, SVG) Low High
Stereoscopic High Low
Cave support High / Low

Table 26: Required Functionality for the PRISM graphics package

 160

IV.2.6 Archiving

PRISM will propose an interface for archiving operations and the local PRISM site administrator
will be required to customize it with site specific functions to enable interfacing with their archiving
system. Connection with and the way in which operations are performed on the file server are site
dependent. This could be, for example through direct access to files through the NFS facility,
indirect access to files through ftp, scp or other transfer tool, indirect access through a firewall, ...

A file is considered unique if its full file name contains the computer name. E.g.
computer.domain:/directory tree/final_file_name

A file can be a family of files if special characters are used. For example in the UNIX shell;
Year_200[0-9] for Year_2000, to Year_2009

For PRISM we have these requirements:

First Priority:

• Put - to put a file from the supercomputer onto the file server.

• Get - to get a file from a file server and transfer it to a supercomputer.

Second Priority:

• Get - to get a file from a file server remotely and transfer to a local disk.

• Dir - to get a list of files included in a directory on a file server from the file server,
supercomputer or local PC.

• Query - to determine if a file exists on a file server from the file server,
supercomputer or local PC.

Third Priority:

• Delete - to delete a file on a file server.

• Since there will not be a common PRISM archive (CLIMSTER now not going
ahead), it is proposed that each site will be responsible for setting up their own
policy for data management.

IV.2.7 Statement of licensing

Any software developed will be classified as 'Open Source'.

 161

IV.3 User Interfaces

The user interface will consist of the PrepIFS GUI, SMS/Xcdp and tools for archiving,
visualization and access to experiment results. The PrepIFS GUI will be developed in two versions,
as a local system being a basis for development, and as a part of a Web Services infrastructure.
No command line interface with remote access capabilities will be provided. Planned new features
and adaptations to the PrepIFS Graphical User Interface and the SMS/Xcdp tool for the PRISM
project are described.

IV.3.1 Introduction

The user interface will consist of the PrepIFS GUI, SMS/Xcdp and tools provided by WP4a for
archiving, visualization and access to results of the experiment. We refer to these as the UI
components in the document.

The use of an existing software and the limitations of time and manpower means that the
implementation will concentrate on additional features, adaptations and re-factoring rather than
new designs or rewrites.

The user interface will have the functionality as outlined in REDOC II.4 covering the following
areas:

• Setup / configuration of an experiment

• Submission and control of execution of an experiment

• Monitoring of an experiment

• Provision of results of an experiment

• Visualization of experiment results

• Access control and security

• On-line Documentation and Help System

• Optional support for model component development

The PrepIFS GUI will be developed in two versions as described in ARCDI III.3 on page 113, "The
local system, a basis for development" and as part of a Web Services infrastructure. No attempt
will be made to provide a command line interface with remote access capabilities.

This part of the document describes the planned new features and adaptations necessary to the
PrepIFS Graphical User Interface and the SMS/Xcdp tool for the PRISM project. One such
adaptation is the Administration Interface described in the section with the same name.

IV.3.2 General Implementation

The user interface components should be able to access resources remotely, i.e. the users do not
have to be physically in the same place as where the model is executed or data is located. To
achieve this remote access, a web-based system will be implemented, since it allows access to

 162

any resources via the HTTP protocol. It is important that all UI components have this capability or
the user will still have to have login access to the remote site in the traditional way, defying the
objectives of the project.

IV.3.3 Administration Interface

The task of the administration interface is to enable the flow of information between the model
developers who know the specific knowledge necessary to run the model, and the site
administrator who has the local knowledge necessary to make the model run at their site. An
administrator from each PRISM institution will be responsible for the maintenance and the
development of a particular model component of the coupled PRISM system. Furthermore a local
administrator at each site will initiate the building of new or updated versions of any PRISM
component. This local knowledge will be standardized so that it is accessible by the GUI and will
include information such as: • The path of the local compiler.

• The path of the local linker.

• The path of the local libraries necessary for the PRISM component to run at the local site.

• The path where to build the PRISM components

A service will be developed allowing support for model administration. This functionality will build
on the same user interface (PrepIFS) but will configure model builds. Using this interface, new
versions of models can be built on remote sites.

IV.3.4 Adaptations

Input/Output

The current PrepIFS tool uses a proprietary format for defining the input configuration variables.

Example:

TYPE=STRING,NAME=FILEFORMAT,FILEOUT="conf ig .h" ,FORMAT="She l lFormat" ,
DEFAULT=genera l , HTML="/prepi fs /an" ,LABEL="Resolut ion, genera l
setup" ,PRIORITY=true,VIS=fa lse, COMMENT="Most o f the resolu t ion parameters
can be def ined here" ,W RITE=fa lse; / / Resolut ion
TYPE=INTEGER,NAME=RESOL,DEFAULT=319, LABEL="Hor izonta l reso lut ion
(spect ra l t runcat ion) . \n Change th is i tem in the popup menu on the t ree" ,
COMMENT="Change the resolut ion on the t ree. . . " ,READONLY=true;
TYPE=SELECTSTRING,NAME=GTYPE,DEFAULT=" l_2" ,RANGE=" l_2/_2/_fu l l " ,
RANGELABEL="Linear reduced gauss ian gr id /quadrat ic reduced gauss ian gr id / fu l l
gauss ian gr id" , LABEL="Gr id type" ;
TYPE=BOOLEANTF,NAME=FPOSINC,DEFAULT=true,LABEL="Use Ful l -Pos to
in terpo late to resolut ion of s impl i f ied model" ,
F ILEOUT="conf ig .h /sms_def" ,FORMAT="Shel lFormat /SMSFormat" ;
TYPE=INTEGER,NAME=LEVELS,DEFAULT=60, LABEL="Vert ica l reso lu t ion
(number of leve ls)" ;
TYPE=BOOLEANTF,NAME=LESUITE,DEFAULT="fa lse" ,LABEL="Swi tch for esui te
b i t reproducib i l i t y check" , FILEOUT="conf ig .h" ,FORMAT="Shel lFormat" ;
TYPE=STRING,NAME=EPSTYPE,DEFAULT="an" ,LABEL="EPS conf igurat ion
par t " ,VIS=fa lse; TYPE=STRING,NAME=EPSMEMBER,DEFAULT="0" ,LABEL="EPS
Member number" ,VIS=fa lse;

 163

This specification format needs to be standardized by the use of XML as a specification language.
In the PRISM project the information present in the existing file format might be split up on multiple
files requiring several input operations and a following merge operation.

Experiment hierarchy

The current PrepIFS tool expects a hierarchy of configurations in the following format:

Exper iment

!

! - - - Exper imentType X (forecast , analys is e tc)

!

! - - - Exper imentType Y

!

! - - - Exper imentType Z

!

!

! - - -NameLis t A (Archiv ing, post -process ing etc)

!

! - - -NameLis t B
!

! - - -NameLis t C

!

!

! - - -Conf igurable var iab le I (Arch ivename, days2run, e tc .)

!

! - - -Conf igurable var iab le J

!

! - - -Conf igurable var iab le K

!

! - - -Conf igurable var iab le L

This might be unsuitable for the PRISM project and an attempt to decouple the functionality from
the levels will be made in order to make it re-assignable to other levels.

Authentication module

A new authentication method will be implemented using password authentication with s/key or
other similar scheme. Support for access control will be rudimentary and connected to the user-ID.

 164

IV.3.5 New features

Keyboard Navigation

The current tool has to support for keyboard navigation through the configuration window. Support
for this will be added.

Support for New Execution Platforms

A generalized method will be implemented to describe changes to a configuration, which are
necessary to switch between different hardware platforms.

Support for remote monitoring

The Xcdp monitoring tool will be extended to allow monitoring of experiments and execution
control.

Support for on-line help

A system that will allow model developers to supply context sensitive help and documentation will
be provided.

Support for spawning new applications

The PrepIFS GUI will be extended to allow menu-bar configuration for access to tools for spawning
new applications to allow access to results. The applications will be made available by WP 4a.

Support for model component development

A service will be developed allowing model developers to upload software components to the
central site and have them compiled and executed with the model (Optional).

 165

V - Software Engineering Process, Coding Rules, and
Quality Standards

By adopting quality assurance techniques during the development process of PRISM
components, the generated code will be of greater quality, implying that development and
integration times, as well as maintenance effort, can be substantially lowered. We are fully
conscious that "The later in the software life cycle an error is detected the higher is the cost of
correcting it".
Several mechanisms have been proposed targeting quality assurance for the development of
PRISM components. Formal coding rules and conventions have been defined in order to improve
code portability, code readability and code maintenance in general. Consistent and always up-to-
date source code documentation will be ensured by tools like 'ProTex' and 'Doxygen'. All PRISM
components, including validation test suites, will be managed by a centralized Code Revision
Control mechanism. Test and validation suites will be part of the software development process
and will ensure a rapid and early discovery of software problems. Additionally, source code will be
peer reviewed.

V.1 Introduction

This chapter is about issues related to process, conventions, and standards in the design,
implementation, and documentation of software that will be developed in the frame of the PRISM
project under the consideration of portability, sustained performance and ease of use.

This is an evolving document, part of this document is based on the work done by the European
Cooperation for Space Standardization extensively covering the whole process of the software
development and software life cycle, and on the "Community Climate System Model, Software
Developer's Guide"
(http://www.ccsm.ucar.edu/csm/working_groups/Software/dev_guide/dev_guide/).

The given rules are supposed to provide a guideline for newly written software. Exceptions to all
rules are possible, but have to be justified. As a matter of fact software not following the software
engineering specification is more likely introducing instability in the system and hence will produce
a high amount of technical debugging work. Keep this in mind when arguing that following these
rules is too expensive.

Target Architecture for the Development of the PRISM System

The goal of this section is to attempt to propose the most likely target architecture on which the
various PRISM components can be integrated into a PRISM system in a first instance. This
recommendation is a summary of the conclusions of the document "PRISM REDOC III.2: Review
of Current and Future HPC Architectures" (Mangili 2002).

The main HPC facilities available now and most probably to come in the next years are based on
clusters of SMP (most of them microprocessor-based, shared-memory inside nodes, distributed-
memory between nodes, complemented with fast node interconnects) built either out of RISC or
vector CMOS CPUs. Such platforms might have complex memory hierarchies, and often memory
bandwidth and latency issues dominate performance. For the PRISM system the first priority must
be placed on making the PRISM components run efficiently on these platforms.

 166

Targeting portability on several HPC facilities the PRISM system is likely to be run on both vector
and RISC-based CPUs. Ideally, the code would have the flexibility to run efficiently on both. In
practice, this can be difficult to achieve, since the choice of optimal data structures, loop ordering,
and other significant design decisions may differ depending on whether code is intended for vector
or RISC CPUs. This is however extremely important seen that the highest sustained performance
for earth science applications will be most probably reached by combining both the powerful
CMOS CPUs and the high level application parallelization, as it has been recently successfully
demonstrated be the Japanese Earth Simulator. Ideally the PRISM software should run both on the
Earth Simulator and ASCI roadmap similar machines.

It is a priority to write flexible code and, whenever possible, to use data structures that are likely to
achieve acceptable performance on either architecture. For excellent performance on a given
architecture, this can add considerable complexity; the most practical solution for some portions of
the model may be the development of two code versions, one scalar and one vector (even if this is
discouraged by obvious maintenance problems). In this frame a validation test suite, running
regularly on ideally all of the target platforms, testing the different PRISM components and the
whole PRISM system is essential.

V.2 General Software Development Guidelines

In this section we would like to give a general overview of the different steps involved in the
software development process. The software life cycle is the sequence in which a project specifies,
prototypes, designs, implements, tests, and maintains a piece of software. Explicit recognition of a
life cycle encourages development teams to address development issues at the appropriate time;
for example, to establish basic software requirements before design or coding begins. We
recommend that developers roughly follow the staged delivery model (below) when designing
significantly new versions of the full PRISM system and when developing large PRISM
components and libraries.

The staged delivery model

The staged delivery model involves the following steps (McConnell 1996):

1. Software concept: Collect and itemize the high-level requirements of the system and identify
the basic functions that the system must perform.

2. Software requirements analysis: Write and review a requirements document, a detailed
statement of the scientific and computational requirements for the software. Both scientists and
the code development team should review and approve the requirements document.

3. Software architectural design: Define a high-level software architecture that outlines the
functions, relationships, and interfaces for major components. Write and review an architecture
document.

4. Stage 1, 2... n: Repeat the following steps creating a potentially releasable product at the end
of each stage. Each stage produces a more robust, complete version of the software.

• Detailed design: Create a detailed design document and API specification.
Writing code headers instrumented for ProTeX (as described below) can achieve
this. Incorporate the interface specification into a detailed design document and
review the design.

 167

• Code construction and unit testing: Implement the interface, debug and unit
test.

• System testing: Assemble the complete system; verify that the code satisfies all
requirements.

• Release: Create a potentially releasable product, including User's Guide and
User's Reference Manual. Frequently code produced at intermediate stages
software will be used internally.

5. Code distribution and maintenance: Official public release of the software, beginning of
maintenance phase.

Small, simple pieces of software may not require reviews and separate documents at each stage,
but it is still a good idea to prepare at least a design document and review it before implementation.

V.3 Coding Conventions for the Development of PRISM
Components

It is recommended that all new PRISM components follow a coding convention. The goal is to
create code with a consistent look and feel so that it is easier to read, understand, port and
maintain.

Fortran Coding Standard

This section defines a set of Fortran specifications, rules, and recommendations for the coding of
PRISM components. The purpose is to provide a framework that enables users to easily
understand or modify code, or to port it to new computational environments. In addition, it is hoped
that adherence to these guidelines will facilitate the exchange and incorporation of new packages
and parameterizations into PRISM components. Other work that influenced the development of this
standard are "Community Climate System Model, Software Developer's Guide",
(http://www.ccsm.ucar.edu/csm/working_groups/Software/dev_guide/dev_guide/), "Report on
Column Physics Standards" (http://nsipp.gsfc.nasa.gov/infra/) and "European Standards For
Writing and Documenting Exchangeable Fortran 90 Code"
(http://nsipp.gsfc.nasa.gov/infra/eurorules.html).
Restriction to the language

• Fortran 95 standard The PRISM coupling software will adhere to the Fortran 95
language standard and not rely on any specific language or vendor extension. The
purpose is to enhance portability, and to allow use of the many desirable new features of
the language. If a situation arises in which there is good reason to violate this rule and
include Fortran code that is not compliant with the f95 standard, an alternate set of f95-
compliant code must be provided (tested and validated...). This is normally done through
use of a C-pre-processor #ifdef-#else-#endif construct.

• English language Owing to the international user community, all naming of variables,
modules, functions, and subroutines as well as all comments are to be written in English.
In case you encounter a situation which you cannot solve in Fortran 95 (e.g. you need to
include a library written in C), please make sure the non Fortran code only uses ANSI C
with POSIX extensions as described below. This type of code should go into a support
library or other specialized libraries.

 168

• Features to be avoided
In terms of keeping code up to date and easier to maintain the code should always follow
the current standards of Fortran and ANSI C. We would like to restrict the languages use
to the elements, which are not obsolete and deleted -- even if they are still available with
almost all compilers. Examples for Fortran 95 are:

o COMMON blocks - use the declaration part of MODULEs instead.

o EQUIVALENCE - use POINTERs or derived data types instead to form data
structures.

o Assigned and computed GOTOs - use the CASE construct instead.

o Arithmetic IF statements - use the block IF, ELSE, ELSE IF, END IF or SELECT
CASE construct instead.

o Labeled DO constructs - use unlabeled END DO instead. Due to the structure of the
physics routines and the large amount of scientists working on them, we recommend
for the ease of communication labeled do constructs of the DO- labeled END DO
construct.

o I/O routines END and ERR - use IOSTAT instead (the use is somehow restricted
due compiler implementation dependent error numbering).

o FORMAT statements: use character parameters or explicit format- specifiers inside
the READ or WRITE statement instead.

o Avoid any unused statement like a labeled CONTINUE not being jumped to.

o The only sensible use of GOTO is to jump to the error handling section at the end of a
routine on detection of an error. The target label should be a CONTINUE statement
the label should be 999. However, it is recommended to avoid this practice and use
IF, CASE, DO WHILE, EXIT or CYCLE statements or a contained
SUBROUTINE instead. If you feel you cannot avoid a GOTO, then add a clear
comment to explain what is going on and why you need to use GOTO. Also add a
comment to the labeled CONTINUE statement.

o PAUSE

o ENTRY statements: a subprogram may only have one entry point.

o Fixed source form

o Avoid functions with side effects. Although this is common practice in C, there are
good reasons to avoid this. First, the code is easier to understand, if you can rely on
the rule that functions don't change their arguments, second, some compilers
generate more efficient code for PURE (in Fortran 95 there are the attributes PURE
and ELEMENTAL) functions, because they can store the arguments in different
places. This is especially important on massive parallel and as well on vector
machines.

o Try to avoid using DATA and BLOCK DATA. Initialisers in Fortran 95 give this
functionality.

Style Rules

• Pre-processor Where the use of a language pre-processor is required, it will be the C
pre-processor (cpp). Cpp is available on any UNIX platform, and many Fortran compilers
have the ability to run cpp automatically as part of the compilation process.

 169

• Free form source Free-form source will be used. The f95 standard allows up to 132
characters, but a self-imposed limit of 80 should enhance readability and make life easier
for those with bad eyesight, who wish to make overheads of source code, or print source
files with two columns per page. The world will not come to an end if someone extends a
line of code to column 81, but multi-line comments that extend to column 100 for example
would be unacceptable.

• Fortran keywords Fortran keywords should be written in upper case, the remaining code
in lower case.

• Variables names and declaration

o Use meaningful English variable and constant names.

o Usage of the DIMENSION statement or attribute is not necessary. Declare the
shape and size of arrays inside parentheses after the variable name on the declaration
statement.

o The “::” notation is quite useful to show that this program unit declaration part is written
in standard Fortran syntax, even if there are no attributes to clarify the declaration
section.

o Declare the length of a character variable using the CHARACTER (len=xxx) syntax -
- the len specifier is important because it is possible to have several kinds for
characters (e.g. Unicode using two bytes per character, or there might be a different
kind for Japanese e.g.. NEC).

o Never use a Fortran keyword as a routine or variable name.

• Parameter declaration: Variables used as constants should be declared with attribute
PARAMETER and used always without copying to local variables. This prevents from using
different values for the same constant or changing them accidentally.

• Program units: Always name program units and always use the corresponding END
PROGRAM; END SUBROUTINE; END INTERFACE; END MODULE; etc. construct, again
specifying the name of the program unit. This helps finding the end of the current program
entity. RETURN is obsolete and so not necessary at the end of program units.

• Loops: Loops should be structured with the DO-END DO construct as opposed to
numbered loops.

• Argument comments: Input arguments and local variables will be declared 1 per line,
with a comment field expressed with a "!" character followed by the comment text all on
the same line as the declaration. Multiple comment lines describing a single variable are
acceptable when necessary. Variables of a like function may be grouped together on a
single line. For example:

INTEGER : : i , j ,k ! Spat ia l ind ices

• Continuation lines: Continuation lines are acceptable on multi-dimensional array
declarations that take up many columns. For example:

REAL(r8), DIMENSION(plond,p lev), INTENT(in) : : &

array1, &! array1 is b lah blah b lah

array2 ! array2 is b lah b lah b lah

Note that the ISO/IEC 1539-1:1997 Fortran 95 standard defines a limit of 39 continuation
lines.

 170

Code lines, which are continuation lines of assignment statements, must begin to the right
of the column of the assignment operator. Similarly, continuation lines of subroutine calls
and dummy argument lists of subroutine declarations must have the arguments aligned to
the right of the "(" character. Examples of each of these constructs are:

a = b + c*d + . . . + &

h*g + e*f

CALL sub76 (x, y, z, w, a, &

b, c, d, e)

SUBROUTINE sub76 (x, y, z, w, a, &

b, c, d, e)

• Indentation Code within loops and if-blocks will be indented 3 characters for readability.

• Spacing conventions

o Use blank space, in the horizontal and vertical, to improve readability. In particular try
to align related code into columns. For example, instead of:

! In i t ia l ize Var iab les

x=1

meaningfu lname=3.0_wp

Si l lyName=2.0_wp

write:

! In i t ia l ize var iab les

x = 1

meaningfu lname = 3.0_wp

s i l ly_name = 2.0_wp

o In general use a blank space after a comma (i.e. "a, b, c")

o Do not use tab characters (an extension!) in your code: this will ensure that the code
looks as intended when ported.

• Formatted I/O: Avoid separating the information to be output from the formatting
information on how to output it on I/O statements.

• Argument list format: Routines with large argument lists will contain 5 variables per line.
This applies both to the calling routine and the dummy argument list in the routine being
called. The purpose is to simplify matching up the arguments between caller and callee. In
rare instances in which 5 variables will not fit on a single line, a number smaller than 5
may be used. But the per-line number must remain consistent between caller and callee.
An example is:

CALL l inemsbc (u3(i1 ,1,1, j ,n3m1), v3(i1 ,1,1, j ,n3m1), &

 t3(i1 ,1,1, j ,n3m1), q3(i1 ,1,1, j ,n3m1) , &

 q fcst (i1 ,1 ,m, j) , xxx)

SUBROUTINE l inemsbc (u , v, &

 t , q , &

 171

 q fcs t , xxx)

• Array arguments: Do not implicitly change the shape of an array when passing it into a
subroutine. Although actually forbidden in the FORTRAN77 standard it was very common
practice to pass n dimensional arrays into a subroutine where they would, say, be treated
as a one dimensional array. Though officially banned in Fortran 95, this practice is still
possible with external routines for which no interface block is supplied. The danger of this
method is that it makes certain assumptions about how the data is stored.

• Commenting style: Short comments may be included on the same line as executable
code using the "!" character followed by the description. More in-depth comments should
be written in the form:

!

! Descr ibe what is go ing on

!

Key features of this style are 1) it starts with a "! " in column 1; 2) The text starts in column
3; and 3) the text is offset above and below by a blank comment line. The blank
comments could just as well be completely blank lines (i.e. no "!") if the developer prefers.

• Operators: Use of the operators <, >, <=, >=, ==, /= is recommended instead of their
deprecated counterparts, l t . , .g t . , . le . , .ge. , .eq. , and .ne. The motivation is readability. In
general use the notation: <Blank><Operato r><Blank>

• File format: Embedding multiple routines within a single file and/or module is allowed,
encouraged in fact, if any of three conditions hold. First, if routine A and only routine A is
routine B, then the two routines may be included in the same file. This construct has the
advantage that inlining B into A is often much easier for compilers if both A and B are in
the same file. Practical experience with many compilers has shown that inlining when A
and B are in different files often is too complicated for most people to consider worthwhile
investigating.
The second condition in which it is desirable to put multiple routines in a single file is when
they are "CONTAIN"ed in a module for the purpose of providing an implicit interface block.
This type of construct is strongly encouraged, as it allows the compiler to perform
argument consistency checking across routine boundaries. An example is:

f i le 1 :

SUBROUTINE dr ive r

USE mod1

REAL : : X, Y

. . .

CALL sub1(X,Y)

CALL sub2(Y)

. . .

END SUBROUTINE dr i ve r

f i le 2 :

MODULE mod1

PRIVATE

 172

PUBLIC sub1, sub2

CONTAINS

SUBROUTINE sub1(A,B)

. . .

END SUBROUTINE sub1

SUBROUTINE sub2(A)

. . .

END SUBROUTINE sub2

END MODULE mod1

The compiler automatically checks the number, type, and dimensions of the arguments
passed to sub1 and sub2.

The final reason to store multiple routines and their data in a single module is that the
scope of the data defined in the module can be limited to only the routines which are also
in the module. This is accomplished with the "pr ivate" clause.

If none of the above conditions hold, it is not acceptable to simply glue together a bunch of
functions or subroutines in a single file.

• Module names: Modules MUST be named the same as the file in which they reside. The
reason to enforce this as a hard rule has to do with the fact that dependency rules used by
"make" programs are based on file names. For example, if routine A "USE"s module B,
then "make" must be told of the dependency relation which requires B to be compiled
before A. If one can assume that module B resides in file B.o, building a tool to generate
this dependency rule (e.g. A.o: B.o) is quite simple. Put another way, it is difficult (to say
nothing of CPU-intensive) to search an entire source tree to find the file in which module B
resides for each routine or module which "USE"s B.
Note that by implication multiple modules are not allowed in a single file.
The use of common blocks is deprecated in Fortran 95 and their continued use in the
PRISM component is strongly discouraged. Modules are a better way to declare static
data. Among the advantages of modules is the ability to freely mix data of various types,
and to limit access to contained variables through use of the ONLY and PRIVATE clauses.

• Array syntax: Array notation should be used whenever possible. This should help
optimization regardless what machine architecture is used (at least in theory) and will
reduce the number of lines of code required. To improve readability the array shape
should be shown in brackets, e.g.:

onedarraya(:) = onedarrayb(:) + onedarrayc (:)

twodarray(: , :) = scalar * ano ther twodar ray(: , :)

When accessing sections of arrays, for example in finite difference equations, do so by
using the triplet notation on the full array, e.g.:

twodarray(: ,2 : len2) = sca lar &
 * (another twodarray(: ,1 : len2-1) &
 - another twodar ray(: ,2 : len2))

 173

Note: In order to improve readability of long, complicated loops, explicitly indexed loops
should be preferred. In general when using this syntax, the order of the loops indices
should reflect the following scheme: (best usage of data locality).

DO k = 1, nk
 DO j = 1, n j
 DO i = 1, n i
 f (i , j , k) = . . .
 END DO
 END DO

END DO

Content rules

• Implicit None: All subroutines and functions will include an "impl ic i t none" statement.
Thus all variables must be explicitly typed. It also allows the compiler to detect
typographical errors in variable names. For MODULEs, one IMPLICIT NONE statement in
the modules definition section is sufficient.

• Prologues: Each function, subroutine, or module will include a prologue instrumented for
use with the ProTeX auto-documentation script (http://dao.gsfc.nasa.gov/software/protex).
The purpose is to describe what the code does, possibly referring to external
documentation. The prologue formats for functions and subroutines, modules, and header
files are shown. In addition to the keywords in these templates, ProTeX also recognizes
the following:

!BUGS:

!SEE ALSO:

!SYSTEM ROUTINES:

!FILES USED:

!REMARKS:

!TO DO:

!CALLING SEQUENCE:

!CALLED FROM:

!LOCAL VARIABLES:

These keywords may be used at the developer's discretion. We would like to recommend
to use the REMARKS part to add an responsible author, who can be contacted in case of
problems.

Prologue for functions and subroutines

If the function or subroutine is included in a module, the keyword ! IROUTINE should be used
instead of !ROUTINE

! -

! BOP

!

! !ROUTINE: <Funct ion name> (! IROUTINE i f the funct ion is in a module)

!

! ! INTERFACE:

 funct ion <name> (<arguments>)

 174

! !USES:

 use <module>

! !RETURN VALUE:

 impl ic i t none

 < type> : : <name> ! <Return va lue descr ip t ion>

! !PARAMETERS:

 < type, in tent> : : <parameter> ! <Parameter descr ip t ion>

! !DESCRIPTION:

! <Descr ibe the funct ion o f the rout ine and a lgor i thm(s) used in

! the rout ine. Inc lude any appl icable exte rnal re fe rences.>

!

! !REVISION HISTORY:

! YY.MM.DD <Name> <Descr ip t ion of act i v i t y>

!

! EOP

! -

! $ Id : code_conv_cam.tex,v 1 .3 2001/06/19 21:44:14 kauf f Exp $

! $Author : kauf f $

! -

Prologue for a module

! -

! BOP

!

! !MODULE: <Module name>

!

! !USES:

 use <module>

! !PUBLIC TYPES:

 impl ic i t none

 [save]

 < type dec la rat ion>

! !PUBLIC MEMBER FUNCTIONS:

! < funct ion> ! Descr ip t ion

!

! !PUBLIC DATA MEMBERS:

 < type> : : <var iab le> ! Var iab le descr ip t ion

! !DESCRIPTION:

! <Descr ibe the funct ion o f the module.>

 175

!

! !REVISION HISTORY:

! YY.MM.DD <Name> <Descr ip t ion of act i v i t y>

!

! EOP

! -

! $ Id : code_conv_cam.tex,v 1 .3 2001/06/19 21:44:14 kauf f Exp $

! $Author : kauf f $

! -

Prologue for a header file

! -

! BOP

!

! ! INCLUDE: <Header f i le name>

!

! !DEFINED PARAMETERS:

 < type> : : <parameter> ! Parameter descr ip t ion

! !DESCRIPTION:

! <Descr ibe the conten ts of the header f i le .>

!

! !REVISION HISTORY:

! YY.MM.DD <Name> <Descr ip t ion of act i v i t y>

!

! EOP

! -

! $ Id : code_conv_cam.tex,v 1 .3 2001/06/19 21:44:14 kauf f Exp $

! $Author : kauf f $

! -

• I/O error conditions: I/O statements which need to check an error condition will use the
" iostat=<integer va r iab le>" construct instead of the outmoded end= and err=. Note that a
0 value means success, a positive value means an error has occurred, and a negative
value means the end of record or end of file was encountered.

• Intent: All dummy arguments must include the INTENT clause in their declaration. This is
extremely valuable to someone reading the code, and can be checked by compilers. An
example is:

 SUBROUTINE sub1 (x, y , z)

 IMPLICIT NONE

 REAL(r8) , INTENT(in) : : x

 REAL(r8) , INTENT(out) : : y

 REAL(r8) , INTENT(inout) : : z

 176

 y = x

 z = z + x

 END SUBROUTINE sub1

Package coding rules

The term "package" in the following rules refers to a routine or group of routines, which takes a
well-defined set of input and produces a well-defined set of output. A package can be large, such
as a dynamics package, which computes large-scale advection for a single time-step. It can also
be relatively small, such as a parameterization to compute the effects of gravity wave drag.

• Self-containment: A package should refer only to its own modules and subprograms and
to those intrinsic functions included in the Fortran95 standard. This is crucial to attaining
plug-compatibility. An exception to the rule might occur when a given computation needs
to be done in a consistent manner throughout the model. Thus for example a package,
which requires saturation vapour pressure, would be allowed to call a generic routine used
elsewhere in the main model code to compute this quantity. When exceptions to the
above rule apply, (i.e. routines are required by a package which are not f95 intrinsics or
part of the package itself) the required routines that violate the rule must be specified
within the package.

• Single entry point: A package shall provide separate setup and running procedures,
each with a single entry point. All initialization of time invariant data must be done in the
setup procedure and these data must not be altered by the running procedure. This
distinction is important when the code is being run in a multitasked environment. For
example, constructs of the following form will not work when they are multitasked:

 SUBROUTINE sub

 LOGICAL f i rs t / . t rue. /

 IF (f i rs t) THEN

 f i rs t = . fa lse.

 <set t ime- invar iant va lues>

 END IF

• Interface blocks: Explicit interface blocks are required between routines if optional or
keyword arguments are to be used. They also allow the compiler to check that the type,
shape and number of arguments specified in the CALL are the same as those specified in
the subprogram itself. Fortran 95 compilers can automatically provide explicit interface
blocks for routines contained in a module.

• Communication: All communication with the package will be through the argument list or
namelist input. The point behind this rule is that packages should not have to know details
of the surrounding model data structures, or the names of variables outside of the
package. A notable exception to this rule is model resolution parameters. The reason for
the exception is to allow compile-time array sizing inside the package. This is often
important for efficiency.

• Package attribute: Modules variables and routines should be encapsulated by using the
PRIVATE attribute. What shall be used outside the module can be declared PUBLIC
instead. Use USE with the ONLY attribute to specify which of the variables, type definitions
etc. defined in a module are to be made available to the using routine. Of course you don't
need to add the ONLY attribute if you include the complete module or almost all of its
public declarations.

 177

• Precision: Parameterizations should not rely on vendor-supplied flags to supply a default
floating point precision or integer size. The f95 KIND feature should be used instead.

In order to improve portability between 32 and 64 bit platforms, it is necessary to make
use of kinds by providing a specific module declaring the "kind definitions" to obtain the
required numerical precision and range as well as size of INTEGER. It should be noted
that constants need to have attached a _k indvalue to have the according size.

Example, with dp as a real kind with 12 significant digits (usually double precision, 8 byte),
and wp a working precision:

USE my_kind, ONLY: dp , wp

IMPLICIT NONE

! Declarat ion of a constant

REAL(dp) , PARAMETER : : p i = 3.14159265358979323846_dp

! Declarat ion of a 3d f ie ld

REAL(wp) , POINTER : : geopotent ia l (: , : , :)

! Dec larat ion of a loca l var iab le

REAL(wp) : : a

 . . .

a = 4.0_wp

. . .

Possible kinds in a proposed my_kind:

Note:

The bit sizes given are not mandatory. The kind value is se-
lected regarding a given precision, which results on current sys-
tems in this bit sizes. This may change in future.

A portable way to build a module providing several kinds is
given in the following example:

MODULE my_kind
 IMPLICIT NONE

 ! Number model f rom which the
 ! SELECTED_*_KIND are requested:

 !

 ! 4 byte REAL 8 byte REAL

 ! CRAY: - prec is ion = 13

 ! exponent = 2465

 ! IEEE: prec is ion =6 prec is ion = 15

 ! exponent= 37 exponent = 307

 !

 ! Most l ike ly th is are the on ly poss ib le models .

Kind
variable

Assumed number
of bits

real variables
sp 32
dp 64
integer variables
i4 32
i8 64
Integer to contain a C pointer
cp bit size of a C pointer

 178

 ! F loat ing-point sect ion

INTEGER, PARAMETER : : sp = SELECTED_REAL_KIND(6,37)

INTEGER, PARAMETER : : dp = SELECTED_REAL_KIND(12,307)

INTEGER, PARAMETER : : wp = dp ! work ing p rec is ion

! In teger sect ion

INTEGER, PARAMETER : : i4 = SELECTED_INT_KIND(9)

INTEGER, PARAMETER : : i8 = SELECTED_INT_KIND(14)

! Pointer sect ion, the cp type should p rovide an in teger

! wi th a s i ze fo r t ranspor t ing a C pointe r through For t ran

i fdef CP4

 INTEGER, PARAMETER : : cp = i4

#e lse

 INTEGER, PARAMETER : : cp = i8

#endi f

END MODULE my_kind

Thus, any variable declared real (dp) will be of sufficient size to maintain 12 decimal digits
in their mantissa. Likewise, integer variables declared in teger(i8) will be able to represent
an integer of at least 13 decimal digits.

• Bounds checking: All PRISM software and PRISM components must be able to run
when a compile-time and/or run-time array bounds checking option is enabled. Thus,
constructs of the following form are disallowed:

REAL(r8) : : ar r (1)

where "arr" is an input argument into which the user wishes to index beyond 1. Use of the
(*) construct in array dimensioning to circumvent this problem is forbidden because it
effectively disables array bounds checking.

• Error conditions: When an error condition occurs inside a package, a message
describing what went wrong will be printed. The name of the routine in which the error
occurred must be included. It is acceptable to terminate execution within a package, but
the developer may instead wish to return an error flag through the argument list. If the
user wishes to terminate execution within the package, a generic PRISM Coupling
Software termination routine "endrun" should be called instead of issuing a Fortran "stop".
Otherwise a message-passing version of the model could hang. Note that this is an
exception to the package-coding rule that "A package should refer only to its own modules
and subprograms and to those intrinsic functions included in the Fortran 95 standard".

• Inter-procedural code analysis: Use of a tool to diagnose problems such as array size
mismatches, type mismatches, variables which are defined but not used, etc. is strongly
encouraged. Flint is one such tool that has proved valuable in this regard. It is not a strict
rule that all PRISM codes and packages must be "flint-free", but the developer must be
able to provide adequate explanation for why a given coding construct should be retained

 179

even though it elicits a complaint from flint. If too many complaints are issued, the diag-
nostic value of the tool diminishes toward zero.

• Memory management: The use of dynamic memory allocation is not discouraged
because we realize that there are many situations in which run-time array sizing is
desirable. However, this type of memory allocation can cause performance problems on
some machines, and some debuggers get confused when trying to diagnose the contents
of such variables. Therefore, dynamic memory allocation is allowed only "when
necessary". The ability to run a code at a different spatial resolution without recompiling is
not considered to be an adequate reason to use dynamically allocated arrays.

The preferable mechanism for dynamic memory allocation is automatic arrays, as
opposed to ALLOCATABLE or POINTER arrays for which memory must be explicitly
allocated and de-allocated. An example of an automatic array is:

SUBROUTINE sub(n)

REAL : : a(n)

. . .

END SUBROUTINE sub

The same routine using an allocatable array would look like:

SUBROUTINE sub(n)

REAL, ALLOCATABLE : : a(:)

ALLOCATE(a(n))

. . .

DEALLOCATE(a)

. . .

END SUBROUTINE sub

• Constants and magic numbers: Magic numbers should be avoided. Physical constants
(e.g. pi, gas constants) must NEVER be hardwired into the executable portion of a code.
Instead, a mnemonically named variable or parameter should be set to the appropriate
value, probably in the setup routine for the package. We realize than many
parameterizations rely on empirically derived constants or fudge factors, which are not
easy to name. In these cases it is not forbidden to leave such factors coded as magic
numbers buried in executable code, but comments should be included referring to the
source of the empirical formula.

Hard-coded numbers should never be passed through argument lists. One good reason
for this rule is that a compiler flag, which defines a default precision for constants, cannot
be guaranteed. Fortran95 allows specification of the precision of constants through the "_"
compile-time operator (e.g. 3.14_dp or 365_i8). So if you insist on passing a constant
through an argument list, you must also include a precision specification in the calling
routine. If this is not done, a called routine that declares the resulting dummy argument as,
say, real(dp) or 8 bytes, will produce erroneous results if the default floating point
precision is 4 byte.

The PRISM software will distribute some physical variables/constants, which are shared
between several PRISM model components.

 180

Interface to other languages

• Fortran / C Interface: Interfaces between Fortran and C (C routines called by FORTRAN)
should be based on the cfortran package
(http://wwwinfo.cern.ch/asd/cernlib/cfortran.html).

FORTRAN code parallelization issues

• Parallelization paradigms: Parallelization should be done with well-documented and
commonly accepted paradigms like MPI, OpenMP and Pthreads.

• Thread-safe: The coupling software and other modules callable by any component of the
PRISM system should be thread-safe to allow for a flexible usage of hierarchical
programming models.

• Scalability: Each module of the coupling software and the components to be coupled
should follow coding strategies for parallelization, which allow for runs on high processor
counts. Parallelized model components should be programmed flexible with regard to the
number of processors, which can be used for parallel runs. If necessary hierarchical
programming techniques should be used to achieve that goal.

• Data locality: Regarding to parallelization the coding techniques should be concerned
about memory hierarchies of modern computer architectures. A key to parallel efficiency is
the locality of the memory references. On a SMP-like architecture one should constrain
memory references within a compute node as much as possible rather than excessively
accessing remote memory location since networks between compute nodes of these
SMP-like architectures are slower than intra-node memory paths in general.
A similar point of view is valid for intra-node memory hierarchies like caches.

• Data and process placement: The environment of a parallel run (scripts, configuration
files, etc.) and the parallelized components of a PRISM coupled system should allow for a
flexible placement or mapping of the various tasks of a coupled simulation onto the
computer resources like compute nodes, file systems, etc.

C Coding standard

This section defines a set of C specifications, rules, and recommendations for the coding of PRISM
components. The purpose is to provide a framework that enables users to easily understand or
modify the code, or to port it to new computational environments. In addition, it is hoped that
adherence to these guidelines will facilitate the exchange and incorporation of new packages and
parameterizations into the model. We would like to adhere to the "GNU Coding Standard" Chap. 5
"Making the Best Use of C",

(http://www.gnu.org/prep/standards_toc.html).

Some of the obvious rules already given in the section before and an extension to the GNU Coding
Standard will be repeated here.

Restriction to the language

• C ANSI standard The PRISM coupling software will adhere to the ANSI C language
standard with POSIX extensions (ISO/IEC 9899:1990 compliant) and not rely on any spe-
cific language or vendor extension. The purpose is to enhance portability across different

 181

platforms. If a situation arises in which there is good reason to violate this rule and include
C code that is not compliant with the ANSI C standard, an alternate set of ANSI C compli-
ant code must be provided (tested and validated...). This can be achieved by use of the C-
pre-processor.

• English language Owing to the international user community, all naming of variables,
modules, functions, and subroutines as well as all comments are to be written in English.

Content rules

C code should include comment blocks detailing code behaviour according to the rules of the
open-source auto-documentation system doxygen (http://www.doxygen.org/) whose user manual is
available online at http://www.stack.nl/~dimitri/doxygen/manual.html.

Before each function or class declaration, a comment block should be added exactly detailing the
calling interface and the optional return values. The purpose is to exactly describe what the code
does, possibly referring to external documentation.

Doxygen comment blocks for C source are in the following format:

/ * ! \ fn test

 . . . text . . .

 \param c1 an in teger

 \param f2 a f loa t

 \ re turn a character po in ter

 * /

char * test (in t c1; f loa t f2) {

. . .

}

and must precede the declaration, rather than the definition of the code unit to be documented.

Special commands are used to indicate the type of program unit that is being documented, they
are:

• \c lass to document a C++ class

• \s t ruct to document a C-struct

• \un ion to document a union

• \enum to document an enumeration type

• \ fn to document a function

• \var to document a variable or typedef or enum value

• \def to document a #define

• \ f i le to document a file

• \namespace to document a namespace

Many more special commands are used for text formatting. See the doxygen manual for a
description of those and many detailed examples.

 182

Interface to other languages

• Fortran / C Interface Interfaces between Fortran and C (Fortran routines called by C)
should be based on the cfortran package
(http://wwwinfo.cern.ch/asd/cernlib/cfortran.html).

C Code parallelization issues

Please refer to "FORTRAN Code Parallelization Issues" above.

V.4 Component and Unit Testing

Quite complex and interdependent software such as PRISM components requires extensive
testing in order to prevent system defects and to provide stable, reliable, and solid software to work
with.

Layered testing has shown to be the most effective in catching software defects. Layered testing
refers to testing on different levels, both testing individual subroutines as well as more complex
systems. There may be several layers of simple to more complex systems tested as well. Testing
the individual component models stand-alone is an example of a system less complex than the
entire PRISM system.

Unit testing is the first layer, meaning testing individual subroutines or modules. Unit testing alone
will not catch defects that are dependent on relationships between different modules, but testing
the entire system sometimes will not catch errors within an individual module. That is why using
both extremes is useful in catching model defects. Section V.5 covers testing for the entire PRISM
system, this section goes over testing of individual model components and unit testing of
subroutines and modules within those components.

Since the PRISM system and PRISM components take substantial computer resources to run,
catching errors early can also cut computing costs significantly. In addition to that as pointed out by
McConnell (1993) development time decreases dramatically when formal quality assurance
methods including code reviews are implemented as described in section 7.

Designing Good Component Tests

Each PRISM component needs to develop and maintain its own suite of testing for that given
component. Each component development team should provide a written analysis of the testing
procedure and testing plan required by the components they are developing. An automated
procedure has to be provided to run a suite of standard tests, the result of this procedure is either a
'PASSED' or 'FAILED' result, this will be useful to ensure the models work and continue to work as
needed. This is especially useful for making sure PRISM components continue to work on multiple
platforms.

In order to design a comprehensive testing plan we want to take advantage of the following types
of tests:

• Unit tests: Testing done on a single subroutine or module.

• Functionalities: Testing for a given functional group of subroutines or modules, for
example, testing model dynamics alone without the model physics.

 183

• Component tests: Testing done on the whole component.

Unit tests

Unit tests are a good way to flush out certain types of defects. Since unit tests only run on one
subroutine they are easier to use, faster to build and run, allow more comprehensive testing on a
wider range of input data, help document how to use and check for valid answers, and allows
faster testing of individual pieces. By building and maintaining unit tests the same tests can be run
and used by other developers as part of a more comprehensive testing package. Without
maintaining unit tests developers often do less testing than required (since component tests are so
much harder to do) or they have to ”hack” together their own unit tests for each change. By
maintaining unit tests we allow others to leverage off previous work and provide a format to quickly
do extensive checking.

Good unit tests will do the following:

1. Applicable requirements are checked.

2. Exercise every line of code.

3. Check that the full range of possible input data works. (i.e. if Temperature is input check that
values near both the minimum and maximum possible values work)

4. Boundary analysis. Logical statements that refer to threshold states are checked to ensure they
are correct.

5. Check for bad input data.

6. Test for scientific validity.

By analysing the code to be tested different test cases can be designed to ensure that all logical
statements are exercised in the unites. Similarly input can be designed to test logical threshold
states (boundary analysis). Testing scientific validity is of course the most difficult. But, sometimes
testing states where the answer is known analytically can be useful. And ensuring (or measuring)
the degree to which energy, heat, or mass is conserved for conservative processes can also often
be done. These types of tests may also be applied for more complex functional and component
tests as well.

Functionalities

Functional tests take a given sub-set of the component and test this set for a particular
functionality. Scientific functional tests are common. Important functional tests should be
maintained in the source code revision system as separate modules that include the directories
maintained for the main component and be distributed with the PRISM component.

Component tests

Component tests need to ensure that the given PRISM component compiles, builds, and runs and
that it passes important model requirements. For example, restart capabilities.

 184

PRISM testing requirements and implementation details

Unit and Functional tests should meet the following minimum requirements:

1. Maintained in CVS either with the rest of the models source code or as a separate module that
can be used. Module and/or directory name should be easily identifiable such as unit test.

2. Have documentation on how to use it.

3. Have a Makefile associated with it. It may be useful to leverage off the main Makefile so that
the compiler options are the same and so that platform dependencies don't have to be
maintained twice.

4. Check error conditions so that an error will print out problems.

5. Interactive tests should be avoided, unless a completely automatic test can be set-up using the
same mechanism (i.e. redirecting the input).

6. In general unit tests should be run with as many compiler debug options on as possible
(bounds checking, signal trapping etc.) as well as using optimized options, making sure the
results are comparable.

Component tests should meet the following minimum requirements:

1. Ensure that the given model will compile, build and run on at least one production platform.

2. Ensure that the given model will work with the PRISM system on at least one production
platform.

V.5 System Testing and Validation

Regular system testing and validation of the whole PRISM system is required to ensure that
components quality and integrity is maintained throughout the development process. This section
establishes the system testing standards and the procedures that will be used to verify the
standards have been met. It is assumed that PRISM component development teams have 'unit-
tested' their component prior to making it available for system testing. See section V.4 for more
information on testing of individual components and unit testing of individual subroutine and
modules within components.

There are two general categories of model evaluations: frequent short test runs and less frequent
long validation integrations.

Model testing refers to short (few days to one month) model runs designed to verify that the
underlying mechanics and performance of the coupled models continues to meet specifications.
This includes verifying that the model actually starts up and runs, benchmarking model
performance and relative speed/cost of each model component as well as checking features like
restarting capabilities. These tests are done on each of the target platforms. Model testing does not
address whether the model answer is correct, it merely verifies that it mechanically operates as
specified.
Model validation involves longer (at least 1 year) integrations to ensure that the model results are
in acceptable agreement with both previous model climate statistics and observed characteristics
of the real climate system. Model validation occurs with each minor PRISM system version (i.e.

 185

PRISM_2.1, PRISM_2.2) or on request (PRISM scientists or working groups). Once requested,
model validation is only carried out after PRISM scientists have been consulted and the 'Model
testing' phase has been successfully completed. The model validation results are documented on
the prism web pages http://prism.enes.org.

Port validation is defined as verification that the differences between two otherwise identical
configuration simulations obtained on different machines or using different environments are
caused by machine round-off errors only.

Testing procedures for the PRISM system

Formal testing of the PRISM system is required for each tagged version of the coupling software
and the component models. The PRISM quality assurance leader is responsible for ensuring that
these tests are run, either by personally doing it or having them run by a qualified person. If a
model component is identified as having a problem, the component development team is expected
to make resolving that problem their highest priority. The results of the testing and benchmarking
will be included in the tagged model to document the run characteristics of the model. The actual
testing and analysis scripts will be part of the PRISM software code repository to encourage use by
outside users.

Development testing steps

1. Successful build: PRISM coupling software and the component models shall compile on each
of the target platforms with no changes to the scripts, codes or datasets.

2. Successful startup: PRISM will start from an initial state and run for a specified period
depending on the component models and experiment setup.

3. Performance benchmarking: The total CPU time, memory usage, output volume, disk space
use and wall clock time for a run with the specified length will be recorded. The relative cost of
each component will also be recorded.

4. Test report: The results of all steps above are to be documented in a test report with emphasis
on results, comparisons to the previous test and recommendations for improvements. Any
faults or defects observed shall be noted and must be brought to the attention of the
responsible for that component and the software engineering manager.

Model validation procedures for the PRISM system

Model validation occurs with a new model version or at the request of the PRISM scientists and
working groups. Before starting a validation run, the PRISM Quality Assurance Leader will consult
with the PRISM scientists to design the validation experiment.

Pre-validation steps:

1. Tests run successfully The validation will successfully complete the testing steps outlined
above.

 186

2. Scientist sign-on The PRISM scientists must agree to make themselves available to informally
analyse the results of the run during the run and formally review the results within one week of
the completion of the run.

Validation steps:

1. Comparison with previous model runs the signed-on scientist accepts Results.

2. Comparison with observed climate Result agrees with observed climate

Port validation of the PRISM system

Port validation is defined as verification that the differences between two otherwise identical model
simulations obtained on different machines or using different environments are caused by machine
round-off errors only. Round-off errors can be caused by using two machines with different internal
floating point representation, or by using a different number of processing elements on the same
machine which may cause a known re-ordering of some calculations, or by using different compiler
versions or options (on a single machine or different machines) which parse internal computations
differently.

As established in Rosinski and Williamson (1997), three conditions of model solution behaviour
must be fulfilled to successfully validate a port of atmospheric general circulation models:>

1. During the first few time-steps, differences between the original and ported solutions should be
within one to two orders of magnitude of machine rounding;

2. During the first few days, growth of the difference between the original and ported solutions
should not exceed the growth of an initial perturbation introduced into the lowest-order bits of
the original solution;

The statistics of a long simulation must be representative of the climate of the model as produced
by the original code.

The extent to which these conditions apply to models other than an atmospheric model has not yet
been established. Also, note that the third condition is not the focus of this section.

V.6 Code Maintenance Issues

This section summarizes code maintenance issues and challenges related to the PRISM project
and gives an brief overview on how this problem will be addressed. The software maintenance
process is a tedious and often costly activity, it is a fundamental part of the software engineering
process that cannot be just avoided or simply ignored. The software engineering literature is plenty
of examples of died projects simply because the maintenance costs just exploded. Still several
actions and measures can be undertaken in order to minimize the effort of the maintenance
process. In the PRISM project we tried to find out the right compromise of software engineering
rules and conventions being conscious and considering that most of the PRISM components are
software packages already developed with their own software life cycle and consequently their own
software maintenance process already in place since years.

 187

It is recommended that all PRISM components follow some general guidelines for basic code
maintenance as a code revision control and a code configuration, building. The goal is to provide a
single code repository with a consistent and unique revision control scheme, as well as to provide
an easier port, installation, building and validation on different architectures.

Software revision control

It is recommended that all PRISM development teams develop code with the help of a robust
software configuration management (SCM) tool. The goal is to establish, document, control, and
track the evolution of source code and related documentation throughout the software life cycle.

As part of the PRISM system this software configuration management tool is CVS.

What is CVS?

CVS stands for Concurrent Versions System and is a version control system. Using it, one can
record the history of his source files.

For example, bugs sometimes creep in when software is modified and one might not detect the
bug until a long time after the modification was made. With CVS, one can easily retrieve old
versions to see exactly which change caused the bug. This can sometimes be a big help.

CVS stores all the versions of a file in a single file in a clever way that only stores the differences
between versions.

CVS also helps developers when they are part of a group of people working on the same project. It
is all too easy to overwrite each other’s changes unless one is extremely careful. Some editors, like
GNU Emacs, try to make sure that two people never modify the same file at the same time.
Unfortunately, if someone is using another editor, that safeguard will not work. CVS solves this
problem by insulating the different developers from one another. Every developer works in his own
directory and CVS merges the work when each developer is done.

What is CVS not?

• CVS is not a build system. Though the structure of a repository and modules file interact
with a build system (e.g. `Makefile's), they are essentially independent. CVS does not
dictate in any way in which anything is built. It merely stores files for retrieval in a
previously planned tree structure.

• CVS is not a substitute for management. For instance, the dates of schedules, release
dates or branch points are up to people working on a certain project. If certain milestones
are not kept, CVS can't help.

• CVS is not a substitute for communication. A bug fix of a source module has to be
reviewed before releasing it or checking it into the official source tree.

• CVS does not have change control Change control refers to a number of things. First of
all it can mean bug tracking, that is being able to keep a database of reported bugs and
the status of each one (is it fixed? in what release? has the bug submitter agreed that it is
fixed?). For interfacing CVS to an external bug tracking system, see the `rcsinfo' and `veri-
fymsg' files (see section C. Reference manual for Administrative files). Another aspect of
change control is keeping track of the fact that changes to several files were in fact
changed together as one logical change. If one has checked in several files in a single

 188

CVS commit operation, CVS then forgets that those files were checked in together, and
the fact that they have the same log message is the only thing tying them together. Keep-
ing a GNU style `ChangeLog' can help somewhat. Yet another aspect of change control,
in some systems, is the ability to keep track of the status of each change. Some changes
have been written by a developer, others have been reviewed by a second developer, and
so on. Generally, the way to do this with CVS is to generate a diff (using CVS diff or diff)
and email it to someone who can then apply it using the patch utility. This is very flexible,
but depends on mechanisms outside CVS to make sure nothing falls through the cracks.

• CVS is not an automated testing program It should be possible to enforce mandatory
use of a test suite.

CVS Features

As mentioned CVS stores the changes of a source in a repository in a compact way. That
repository can be located on a remote server. The access to the remote server is controlled by
login id, password, and file permissions and by the so-called CVS tags. For remote login it is even
possible to define the remote shell. This can be even the secure shell which gives the administrator
of the repository even more access control (Is the accessing host trusted? Did the user provide a
public key? etc.).

CVS allows to define branches of a source tree and individual access rights for that branches.
Complete individual branches can be accessed via tags that allow to check out sources, which
were logically built as one single unit, according to the changes that have been applied. Different
branches can be merged.

CVS allows to check in and check out sources with automatic provision of a release number and
history of changes applied.

One can compare releases of individual source files or complete branches.

CVS has a mechanism to ask the developer for comments concerning the changes applied before
checking in. These comments are kept alongside with the changes.

CVS has a locking mechanism, which prevents race conditions during a source check in into the
same branch. A developer can query the status of file and get information about who else has
checked out a file for editing.

Last but not least CVS provides keyword substitution, i.e.. the keyword '$Header$' is substituted by
the full path name of the RCS file, the revision number, the date (UTC), the author, the state, and
the locker (if locked).

For more information we suggest to refer to the reference manual. Moreover, we would like to
mention that a GUI clients exist:

Tk based: tkCVS (http://www.twobarleycorns.net/tkcvs.html)

Java based: jCVS (http://www.jcvs.org/)

CVS Repository access

The PRISM CVS Repository will be installed and accessible under http://prism.enes.org/.

 189

Recommendations for code developers

We strongly recommend the use of the keyword '$Header$'. CVS keywords are often only used
within source code comments, we encourage developers to additionally define a static string
variable storing the expanded keyword information. The advantage consists in the possibility of
tracking module revisions within the binary, by using tools like 'whatis' or 'rcsinfo'. This greatly
helps with bug analysis:

After checking out a code for editing the developer may therefore insert these lines in its program.
In either C:

s tat ic char PRISM_CVSID[]="$Header$"

or Fortran 95:

CHARACTER(len=80) , PARAMETER:: PRISM_CVSID= '$Header$ '

Code Maintenance Process

The maintenance process is related to activities and tasks of the software maintainer(s). This
process is activated when the software product undergoes modifications to code and associated
documentation due to a problem or the requirement for improvement or adaptation. The objective
is to modify an existing software product while preserving its integrity.

This process briefly consists of the following activities (see also: [Europ.Coop. for Space
Standardisation (1996)])

• Problem and modification reporting procedure: We shall establish procedures for
receiving, recording and tracking problem reports and modification requests from the
PRISM users. Whenever problems are encountered, they shall be recorded, documented
and made 'public' in order to be aware of the 'potential' problem related to a specific
PRISM version. For the tracking mechanism we propose the use of the free software RT
(Request Tracker). "RT is an industrial-grade ticketing system. It lets a group of people
intelligently and efficiently manage requests submitted by a community of users. RT is
used by systems administrators, customer support staffs, NOCs, developers and even
marketing departments at over a thousand sites around the world." For more information
please see:
(http://www.fsck.com/projects/rt/) or (http://freshmeat.net/projects/requesttracker/). • Problem and modification analysis: The maintainer shall analyse the problem report or
modification requests for its impact on the organization, the existing system, and the
interfacing systems for the following:

o type (e.g. corrective, improvement, preventive, or adaptive to new environment);

o scope (e.g. size of modification, cost involved, time to modify);

o criticality (e.g. impact on performance; scientific results).

The maintainer shall be able to reproduce or verify the problem. Based upon the analysis,
the maintainer shall develop options for implementing the modification. The maintainer
shall document the problem/modification request, the analysis results and implementation
options.

• Implementation of the modifications: The maintainer shall conduct analysis and deter-
mine which documentation, software units, and versions there of shall be modified. The
maintainer shall implement the modifications. The requirements of the development proc-

 190

ess shall be supplemented as follows: Test and evaluation criteria for testing and validat-
ing the modified as well as the unmodified parts (basic software units, components, ...) of
the system shall be defined and documented.
The complete and correct implementation of the new and modified requirements shall be
ensured following the usual PRISM Components and System Validation Conventions (as
described in section V.4, and V.5).

• Maintenance review/acceptance: The maintainer shall conduct a joint Peer Review(s) to
determine the integrity of the modified component(s) and system. Upon successful
completion of the reviews, a baseline for the change shall be established, defining the
importance and impact of the new revision on the entire PRISM system (minor or major
revision, main line or branches, etc...).

Code Reviews

Formal reviews of the code where the code is gone through line-by-line in groups or in pairs has
shown to be one of the most effective way to catch errors McConnell (1993). As such it is
recommended that component model development teams create a strategy for regularly reviewing
the code.

Possible implementation of Code Reviews

Code reviews can be implemented in many different fashions, but in general they involve having at
least one person besides the author go through the written code and examine the implementation
both for design and errors. Jones (1986) states that "the average defect-detection rate is only 25 %
for unit testing, 35 % for function testing, and 45 % for integration testing. In contrast, the average
effectiveness of design and code inspections are 55 % and 60 %. McConnel (1993)] also notes
that as well as being more effective in catching errors, code reviews also catch different types of
errors than testing does. In addition when developers realize their code will be reviewed they tend
to be more careful themselves when programming.

Code reviews can be implemented in different ways:

• Code validator Before code is checked into CVS it goes through a “validator” who not
only is responsible for testing, and validation of the changes, but also reviews it for design
and conformance to code standards.

• Peer reviews Before code is checked into CVS a peer developer reviews the changes.

• Pair programming All code is developed with two people looking at the same screen
(one of the practices of Extreme Programming (Beck (2000)).

• Formal group walk-through Code is presented and gone through by an entire group.

• Formal individual walk-through Different individuals are assigned and take
responsibility to review different subroutines.

Recommendation

It is recommended that development teams provide both a mechanism to review incremental
changes, and also have formal walk-through of important pieces of code as a group. This serves
two purposes: the design is communicated to a larger group, and the entire group also reviews the
design and implementation. The frequency of the review has to be defined in advance and should
in particular consider the criticality of the code in respect to the entire PRISM system.

 191

References

Mark Baker (ed.),
Cluster Computing White Paper,
University of Portsmouth, UK, December 2000
http://www.dcs.port.ac.uk/mab/tfcc/WhitePaper

Kent Beck,
Extreme Programming Explained; Embrace Change,
Boston, Mass.: Addison-Wesley, 2000

Barry Cipra,
Self-tuning' software adapts to its environment,
Science, 286 p.35, October 1999

David E. Culler et al.,
Parallel Computer Architecture: A Hardware/Software Approach,
Morgan Kaufmann Publishers Inc., August 1998

European Cooperation for Space Standardization,
Space Engineering: Software,
Technical Report ECCS-Q-40A, ECSS, Requirements and Standard Division, April 1999

European Cooperation for Space Standardization,
Space Product Assurance: Software Product Assurance,
Technical Report ECCS-Q-80A, ECSS, Requirements and Standard Division, April 1996

Michael J. Flynn,
Some computer organizations and their effectiveness,
IEEE Transactions on Computing, C-21:948-960, 1972

Rupert W. Ford and Graham D. Riley,
The Met Office FLUME Project - Model Coupling Requirements,
Manchester Informatics Ltd., The University of Manchester, January 2002

Ian Foster,
The Grid: A New Infrastructure for 21st Century Science,
Physics Today, Feb 2002, pp.42 ff

IEEE Standard Glossary of Software Engineering Terminology,
Technical Report IEEE Std 610.12-1990, Institute of Electrical and Electronic Engineers, December 1990

Capers Jones,
Programming Productivity,
New York, New York: McGraw-Hill, 1986

Bill Joy, Ken Kennedy et al.,
Report to the President: Information technology research: Investing in our future,
Technical Report, PITAC, President's Information Technology Advisory Committee, Feb. 1999
http://www.hpcc.gov/ac/report/

Angelo Mangili et al.,
PRISM REDOC III.2: Review of Current and Future HPC Architectures,
Technical Report , PRISM, June 2002

Steve McConnell,

 192

Code Complete,
Redmond, Wash.: Microsoft Press, 1993

Steve McConnell,
Rapid Development,
Redmond, Wash.: Microsoft Press, 1996

Polcher, J., K. Laval, L. Dumenil, J. Lean and P. R. Rowntree (1996)
Comparing three land surface schemes used in general circulation models,
Journal of Hydrolology, 180,373-394,.

Polcher et al. (1998)
A proposal for a general interface between land-surface schemes and general circulation models.
Global and Planetary Change, 19: 263-278

Frank S. Preston,
A peta ops era computing analysis,
Technical Report CR-1998-207652, March 1998
http://techreports.larc.nasa.gov/ltrs/

James M. Rosinski, David L. Williamson,
The Accumulation of Rounding Errors and Port Validation for Global Atmospheric Models,
SIAM Journal on Scientific Computation, Vol. 18, No. 2, March 1997, pp.552-564

Aad J. van der Steen et al.,
Overview of Recent Supercomputers, 2001
http://www.top500.org/ORSC/2001/

Various sources,
Science (Mar. 2), Nature (Apr. 11), New York Times (Apr. 20), BBC (Apr. 26) HPC Wire (May 3), 2002

 193

Glossary

Latest Change August 9 2002

AGCM [Atmosphere General Circulation Model]

algorithmic coupling interface : order and exchange frequency of coupling fields between
component models (flow chart of exchange)

AOGCM [Atmosphere - Ocean coupled General Circulation Model]

API [Application Programming Interface] : interface (calling conventions) by which an
application program accesses operating system and other services. An API is defined at source
code level and provides a level of abstraction between the application and the kernel (or other
privileged utilities) to ensure the portability of the code. An API can also provide an interface
between a high level language and lower level utilities and services that were written without
consideration for the calling conventions supported by compiled languages. In this case, the API's
main task may be the translation of parameter lists from one format to another and the
interpretation of call-by-value and call-by-reference arguments in one or both directions.

ARCDI [ARchitecture Choices, detailed Design and Implementation] : part 2 of the PRISM system
specification document

(FhG) ASCI [Fraunhofer Gesellschaft, Institute for Algorithms and Scientific Computing]

ASCII : basis of character sets used in almost all present-day computers. US-ASCII uses only the
lower seven bits (character points 0 to 127) to convey some control codes, space, numbers, most
basic punctuation, and unaccented letters a-z and A-Z. More modern coded character sets (e.g.,
Latin-1, Unicode) define extensions to ASCII for values above 127 for conveying special Latin
characters (like accented characters, or German ess-tsett), characters from non-Latin writing
systems (e.g. Cyrillic, or Han characters), and such desirable glyphs as distinct open- and close-
quotation marks.

CCM [Coupled Climate Model]

CDMS [Climate Data Management System]

CE dynamic/interactive : dynamic/ interactive with respect to coupling exchange characteristics

central repository : place where information on where things reside can be found; the content is
unique

CF interactive/dynamic : interactive/dynamic with respect to coupling field characteristics

CMOS [Complementary Metal Oxide Semiconductor] : semiconductor fabrication technology
using a combination of n- and p-doped semiconductor material to achieve low power dissipation.
Any path through a gate through which current can flow includes both n and p type transistors.
Only one type is turned on in any stable state so there is no static power dissipation and current
only flows when a gate switches in order to charge the parasitic capacitance.

component model: numerical model describing a subsystem of the earths climate which can be
(or has been) run as a standalone (forced) simulation model

 194

(computer) configuration: arrangement of a (computer) system or component defined by the
number, nature, and interconnections of its constituents

concurrent by construction:
(http://www.cerfacs.fr/PRISM/COUPLING/sequential_concurrent.html)
Two models are concurrent by construction if they are sequential by nature but forced to run
concurrently. This requires, at a given coupling time-step, that only coupling-data produced at the
preceding time-step are used as input

concurrent by nature :
(http://www.cerfacs.fr/PRISM/COUPLING/sequential_concurrent.html)
Two models are concurrent by nature if, during the same coupling time-step, data produced by one
model depend only on coupling data, which are produced previously by the other model and vice
versa.

(experiment) configuration instance : abstract compact description of an experiment

(PRISM system) constraints : what confines/restricts/limits the design choices of the PRISM
system (e.g. computer resources, speed of data transfer, existing model designs,...)

correctness : (software engineering)
- the degree to which a system or component is free from faults in its specification, design, and
implementation
- the degree to which software, documentation, or other items meet specified requirements
- the degree to which software, documentation, or other items meet user needs and expectations,
whether specified or not

coupling configuration : set of component models and their -> algorithmic coupling interface

coupling constellation : -> coupling configuration

coupler : software that couples different component models to form a coupled model. The different
constituents of the PRISM coupler are: the -> Driver, the -> Transformer, and the -> PRISM
System Model Interface Library (PSMILe).

coupling implementation: technical way a certain -> coupling configuration of a model is realized
(number of executables, parallelism, etc.)

coupling field/data : data generated by one component model but used by another one

data repartitioning : action of transferring and rearranging coupling data between two models of
which data distributions in parallel processes do not match

debug : (software engineering) to detect, locate, and correct faults in a computer program

DEL [Data Exchange Library)] : part of the coupling software PSMILe. The DEL performs data
exchanges with appropriate data repartitioning if needed.

(model/experiment) deployment : -> (software) deployment

(software) deployment : physical distribution of the system being built, in terms of how
functionality (i.e. software components) are distributed among a set of run-time processing
nodes/computers.

 195

design options : several possibilities to realize the PRISM system responding to the requirements

driver : part of the coupling software that controls a coupled model, e.g. launches the models,
monitors their execution, etc.

dynamic analysis : (software engineering) process of evaluating a system or component based
on its behaviour during execution

dynamic parameters : parameters which may change during a run (-> global parameter /
universal parameter)

dynamic simulation : -> PM dynamic, -> CE dynamic, -> CF dynamic

end-point data exchange : exchange between a source model and a target model in which the
source model produces the data but does not know the target to which it is delivered, and in which
the target model requests the data but does not know the source that produces it; the matching is
performed by an external entity (e.g. a coupler).

error : (software engineering) difference between a computed, observed, or measured value or
condition and the true, specified, or theoretically correct value or condition

ESM [Earth System Model]

experiment : collection of tasks running on a supercomputer, defined by the -> component models
(model name, release, resolution, options different from default version), the -> algorithmic
coupling interface between the component models, the initial state of the models, initial date and
length of the simulation, the -> coupling implementation, the target machine, model raw output (if
different from default); an experiment can be made up of a series of consecutive (restarted) -> runs

failure : (software engineering) inability of a system or component to perform its required functions
within specified performance requirements. It is manifested as a fault.

fault : (software engineering) incorrect step, process, or data definition in a computer program

forced simulation/model : model simulation where input data are specified without interactive
feedback to other models. A simulation can be forced with respect to some data and interactive
with respect to others

(G)UI ((Graphical) User Interface) : use of pictures rather than words to represent the input and
output of a program. A program with a GUI runs under some windowing system (e.g. The X
Window System, Microsoft Windows). The program displays certain icons, buttons, dialogue
boxes, etc. in its windows on the screen and the user controls it mainly by moving a pointer on the
screen (typically controlled by a mouse) and selecting certain objects by pressing buttons on the
mouse while the pointer is pointing at them. This contrasts with a command line interface where
communication is by exchange of strings of text.

high-level design : design of a system without regard to implementation issues

HPC [High Performance Computing]

HTTP [Hyper Text Transmission Protocol]

I/O type 1 -> integrated data processing

 196

I/O type 2 -> run shell data processing

I/O type 3 -> post processing

interactive simulation : -> PM interactive, -> CE interactive, -> CF interactive

integrated data processing : real time data processing performed in the coupled model
executables

Java : programming language invented by Sun which runs on any platform and supports web
services

JINI : an open Java architecture network technology that enables developers to create network-
centric services that are highly adaptive to change

Kerberos : Network security system developed by MIT

LAN [Local Area Network]

local repository : copy of a central/main repository with overwrites of local system parameters and
addition of user specific parameters

local transformation : operation that can be completed in a model without any information from
another model, such as finding the maximum value of a field

low/high - end visualization :
http://prism.enes.org/WPs/WP4a/Meetings/graphic_lowhigh.gif

'low-end' visualization means to select a data set on the remote server, to filter the data, assign
the algorithms, operations, plot style and plot format etc. within a web interface to generate the
desired output plot file. The plot file could be displayed online using a Java applet or will be
transferred to the local client to be displayed offline using a graphic browser. 'low-end' graphics
would be used within PRISM to allow for easy generation of standard plots' for (quasi online)
quality control, comparison of different runs or models and also to a limited extend for presentation
and publication.

'high-end' graphics means also to select a data set on the remote server, but to transfer the data
file directly to the local client. The user should be able to use the whole data set to assign the
algorithms, operations and plot style offline using a -> (G)UI. The GUI should be able to create
animations, 3D graphic, video sequences and high performance graphic for presentations (slides
etc.). 'high-end' would be used to explore the data rather then just presenting it.

LS(S) [Land Surface (Scheme)]

MAC [Message Authentication]

main repository : -> central repository

middleware : connectivity software consisting of a set of enabling services that allow multiple
processes running on one or more machines to interact across a network. Middleware is essential
for migrating mainframe applications to client/server applications and for providing for communica-
tion across heterogeneous platforms. This technology has evolved during the 1990s to provide for
interoperability in support of the move to client/server architectures. The most widely publicized

 197

middleware initiatives are the Open Software Foundation's Distributed Computing Environment
(DCE) , the Object Management Group's Common Object Request Broker Architecture (CORBA),
and Microsoft's COM/DCOM.

model output diagnostics : processing algorithms for raw data

model raw (output) data : data produced by a component model at runtime

MPMD [Multiple Program Multiple Data] : program running on multiple processors which perform
different instructions

MPP [Massive Parallel Processors]

NetCDF [Network Common Data Form] : I/O library for binary machine independent data files,
suitable for developing a self describing logical data format

non-local transformation : operation that requires information from another model, such as
interpolation

NOS [Networking Operating System]: operating system, which includes software to
communicate with other computers via a network. This allows resources such as files, application
programs, and printers to be shared between computers. UNIX systems have these capabilities.

OC [Ocean bio-geo-Chemistry model]

OGCM [Ocean General Circulation Model]

ORB [Object Request Broker] : -> middleware technology that manages communication and data
exchange between objects. ORBs promote interoperability of distributed object systems because
they enable users to build systems by piecing together objects- from different vendors- that
communicate with each other via the ORB. The implementation details of the ORB are generally
not important to developers building distributed systems. The developers are only concerned with
the object interface details. This form of information hiding enhances system maintainability since
the object communication details are hidden from the developers and isolated in the ORB.

parallel partitioning : describes which parts of the global data are respectively locally treated by
the different processes of a parallel model

physical coupling interface : physical description of the nature of coupling information
exchanged between component models

PM dynamic / interactive : interactive with respect to process management

PMIOD [Potential Model Input & Output Description] (-> SMIOC)

post processing : off-line processing, typically run on processing servers or workstations using
data typically restored from an archive.

PRISM component model : -> component model of one of the climate components defined by
PRISM, which is accepted by the PRISM community

PRISM (model) administrator : the person who makes the quality control of an update to a
PRISM (model) code and introduces the updates to the default version

 198

PRISM (model) developer : someone who makes changes to a PRISM (model) code that will be
introduced to the default (PRISM model) version

PRISM user : someone who uses the PRISM System to assemble, deploy, run, and supervise a
coupled model

PSMILe [PRISM System Model Interface Library]' : library linked to the component models
interfacing them with the rest of the coupled model. The PSMILe includes the -> Data Exchange
Library, the I/O library, and some coherence check and local transformation routines.

pseudo component model : model which can replace a 'real' component model in a simulation. It
reads forcing data from disk instead of calculating them. It might use bulk formulas for the
transformation of data. When pseudo models are involved in a PRISM coupled model then the
model is (at least partially) -> forced.

point-wise transformation : operation that can be completed on each grid point without any
external information, neither from the model neighbouring grid points, neither from another model;
examples are time averaging or summation of coupling fields given on the same grid

REDOC [REquirements, Design Options and Constraints] : part 1 of the PRISM system
specification document

repository : shared database of project information (as a passive kernel for information
integration), -> central/main repository, -> local repository

RISC : processor whose design is based on the rapid execution of a sequence of simple
instructions rather than on the provision of a large variety of complex instructions (as in a Complex
Instruction Set Computer).

RL [Request Listener]

RT [Request Tracker]

RMI [Remote Method Invocation] : -> SW technique for invoking code on a remote host

run : ensemble of tasks defined by a configuration process. The tasks are under the control of a
scheduler coordinating the execution of the -> tasks while preserving any dependencies between
them. An -> experiment can comprise several consecutive (restarted) runs

run shell data processing : data processing done as an afterburner within the coupled system
(e.g. under -> SMS control) and typically performed before data is sent to the archive. This may be
run on the supercomputer or suitable server

SCC [Specific Coupling Configuration]

sequential by nature :
(http://www.cerfacs.fr/PRISM/COUPLING/sequential_concurrent.html)
Two models are sequential by nature if the first model necessarily waits while the second model is
running, and vice versa. The sequence is imposed by the exchange of coupling fields

sequential by construction :
(http://www.cerfacs.fr/PRISM/COUPLING/sequential_concurrent.html)
Two models are sequential by construction if they are concurrent by nature but forced to run se-

 199

quentially. This requires, at a given time-step, that coupling data produced at the preceding time-
step are used as input.

SI [Sea Ice model]

S/Key [SecureKey] : one-time password system

SMIOC [Specific Model Input and Output Configuration]

SMP [Symmetric Multi-Processing]

SOAP : lightweight protocol for exchange of information in a decentralized, distributed
environment. It is an XML based protocol

sockets : the Berkeley Unix mechanism for creating a virtual connection between processes.
Sockets interface Unix's standard I/O with its network communication facilities. They can be of two
types, stream (bi-directional) or datagram (fixed length destination-addressed messages). The
socket library function socket() creates a communications end-point or socket and returns a file
descriptor with which to access that socket. The socket has associated with it a socket address,
consisting of a port number and the local host's network address.

SPMD [Single Program Multiple Data] : program running on multiple processors performing all
the same instructions

SSH [Secure Shell] : secure remote access protocol pioneered by BSD enabling remote logins

SSL [Secure Socket Layer] : secure communication protocol invented by Netscape

SSW [PRISM System Specification Workgroup]

static parameter : parameters which may not change during a run (-> dynamic parameter)

SW [Soft Ware]

TCP/IP [Transmission Control Protocol over Internet Protocol] : de facto standard Ethernet
protocol incorporated into 4.2 BSD Unix. TCP/IP was developed by DARPA for internetworking and
encompasses both network layer and transport layer protocols. While TCP and IP specify two
protocols at specific protocol layers, TCP/IP is often used to refer to the entire DoD protocol suite
based upon these, including telnet, FTP, UDP and RDP.

Testing: (software engineering) process of analysing a software item to detect the differences
between existing and required conditions (-> bugs) and to evaluate the features of the software
items
Static analysis: (software engineering) process of evaluating a system or component based on its
form, structure, content, or documentation

Task: individual job step of a -> run that needs to be executed; e.g. execution of a component
model, of the coupler (if it is a separate process), model raw output diagnostics, data archiving, etc.

Time horizon for 'future model developments’: order 10 years

Toy component model: simple model containing all PRISM functionalities, but no 'real' physics.
The toy model can be used as implementation guide for the adaptation of existing models
(including -> pseudo models) to the PRISM software and for testing purposes.

 200

Toy PRISM system: coupled model consisting of a toy model for each PRISM component model
coupled to the PRISM coupler. The toy model shall be able to test every function of the PRISM
software, as well as algorithmic and physical interfaces.

Transformer: part of the PRISM coupling software that performs all transformations required on
the coupling fields between two component models

UDDI [Universal Description, Discovery and Integration]: enables dynamic lookup and advertising
of services

Universal parameters: parameters, which do not change during an experiment and must be
consistently defined for all PRISM components

Validation: (software engineering) process of evaluating a system or component during or at the
end of the development process to determine whether it satisfies specified requirements

Verification: (software engineering)
- Process of evaluating a system or component to determine whether the products of a given
development phase satisfy the conditions imposed at the start of that phase
- formal proof of program correctness

WAN [Wide Area Network]

WS [Web Services]

WSDL: XML format for describing network services as a set of endpoints operating on messages
containing either document oriented or procedure oriented information

XML [eXtensible Markup Language}: universal format for structured documents and data on the
Web. It is a human-readable, machine-understandable, general syntax for describing hierarchical
data, applicable to a wide range of applications. Custom tags enable the definition, transmission,
validation, and interpretation of data between applications and between organizations

X509: standard for certificates used by SSL authentication and encryption

 201

Appendices:

PRISM... 1

SYSTEM SPECIFICATION... 1

HANDBOOK .. 1

VERSION 1.0 ... 1

CONTRIBUTORS.. 7

FOREWORD TO THE PRISM SYSTEM SPECIFICATION .. 9

CONTENT .. 11

EXECUTIVE SUMMARY .. 15

REFERENCES ... 191

GLOSSARY .. 193

APPENDICES: ... 201

APPENDICES TO REDOC I.2.:... 202
ATMOSPHERE 202
ATMOSPHERIC CHEMISTRY 206
LAND SURFACES 210
OCEAN 213
SEA-ICE 217
OCEAN BIOGEOCHEMISTRY 219
REGIONAL MODEL INPUTS 222

APPENDIX TO REDOC I.3: .. 226
REQUIREMENTS SUMMARY TABLE 226
ACKNOWLEDGEMENTS 232
COUPLING FIELDS 232

TABLES .. 235

FIGURES .. 237

 202

Appendices to REDOC I.2.:

Atmosphere

Version 1.0 (Mar 11th 2002)
SERGE PLANTON

Purpose: List all inputs required for an atmosphere model component to solve its
prognostic/diagnostic equations. The list of inputs should be model independent and solely based
on the modeled aspects of the physics of the earth system as we know it today, and on those
aspects we anticipate to become important in future modeling studies. See main REDOC I.2 text
for explanations.

 203

Field Process Unit Time
scale

Issues Rating Origin

 Sea Surface
Temperature

Emission of long-wave radiation
and turbulent fluxes (latent,
sensible, momentum,...)

 K 1h E O

Surface albedo Reflection of diffuse solar
radiation

 No 1h (I): albedo for direct
solar radiation may
be calculated in the
atmosphere
component

 E O

Surface albedo Reflection of diffuse solar
radiation

No 1h (i) + (ii): for different
frequency bands

M O

Surface
emissivity

Emission of long-wave radiation No 1h M O

Surface
roughness length

Turbulent fluxes m 1h E O

Surface
temperature

Emission of long-wave radiation
and turbulent fluxes

K Time step
of
Atmosphe
re
compone
nt

(iii): different ice
types may be
distinguished

E SI

Surface albedo Reflection of diffuse solar
radiation

No Time step
of
Atmosphe
re
compone
nt

(i) + (iii) E SI

Surface albedo reflection of diffuse solar
radiation

No time step
of
Atmosphe
re
compone
nt

(i) + (ii) + (iii) M SI

Surface
emissivity

emission of long-wave radiation No time step
of
Atmosphe
re
compone
nt

(iii) M SI

Surface
roughness length

turbulent fluxes m time step
of
Atmosphe
re
compone
nt

(iii) E SI

Ice concentration turbulent fluxes No time step
of
Atmosphe
re
compone
nt

(iii) E SI

Volumic mixing
ratio or mass of
different species
(CO2, CH4, N2O,
O3, ClO, ...)

radiation and chemical-
transport processes

mol/mol
or
Kg

6h (loose
coupling)
to time
step of
Atmosphe
re
compone
nt (tight
coupling)

(iv): to account for
the treatment of
some chemical-
transport processes
by the Atmosphere
component

E AC

Size spectrum
characteristics of

radiation and chemical-
transport processes

Kg/(size
classes

6h (loose
coupling)

(iv) E AC

 204

Field Process Unit Time
scale

Issues Rating Origin

aerosols (sul-
fates, black car-
bon, ...)

or dis-
tribution
modes)

to time
step of
Atmos-
phere
compo-
nent (tight
coupling)

Second-order
moments of
volumic mixing
ratio or mass of
different species
or size spectrum
characteristics of
aerosols

chemical-transport processes mol/mol
or
Kg
or
Kg/(size
classes
or
distributi
on
modes)

6h (loose
coupling)
to time
step of
Atmosphe
re
compone
nt (tight
coupling)

to account for the
treatment of
transport or sub-grid
scale chemical
processes by the
Atmosphere
component

M AC

Land Surface
temperature

emission of long-wave radiation
and turbulent fluxes

 K time step
of
Atmosphe
re
compone
nt

(iv): different surface
conditions may be
considered within
each grid mesh

E LS

Surface albedo reflection of diffuse solar
radiation

No time step
of
Atmosphe
re
compone
nt

(i) + (iv) E LS

Surface albedo reflection of diffuse solar
radiation

No time step
of
Atmosphe
re
compone
nt

(i) + (ii)+ (iv) M LS

Surface
emissivity

emission of long-wave radiation No time step
of
Atmosphe
re
compone
nt

(iv) M LS

Latent and
sensible surface
heat fluxes

turbulence in the atmospheric
boundary layer

W/m2 time step
of
Atmosphe
re
compone
nt

(iv) E LS

Surface
roughness length

turbulent fluxes m time step
of
Atmosphe
re
compone
nt

(iv) E LS

Displacement
height

turbulent fluxes m time step
of
Atmosphe
re
compone
nt

(iv) D LS

Transfer
coefficients for
heat fluxes

turbulent fluxes No time step
of Atmos-
phere
compo-

(iv) E LS

 205

Field Process Unit Time
scale

Issues Rating Origin

nent
Actual over
potential
evaporation

latent heat flux (and
evapotranspiration)

No time step
of
Atmosphe
re
compone
nt

(iv) E LS

Surface humidity bare soil latent heat flux (and
evaporation)

No time step
of
Atmosphe
re
compone
nt

(iv) E LS

CONTRIBUTORS:

Note: This list, classified according to the different atmosphere models, corresponds to the
participants to Work Package 3b of PRISM. Please check it and correct/complete this list if
needed.

1. ARPEGE-CLIMAT (ECMWF + METEO-FRANCE/CNRM)
S. BELAMARI (METEO-FRANCE/CNRM)
A. BRAUN (METEO-FRANCE/CNRM)
M.DEQUE (METEO-FRANCE/CNRM)
M. MILLER (ECMWF)
J.PH. PIEDELIEVRE (METEO-FRANCE/CNRM)
D. SALAS Y MELIA (METEO-FRANCE/CNRM)
2. ECHAM (MPI)
L. KORNBLUEH (MPI/IMET)
S. LEGUTKE (MPI/MAD)
A. NAVARRA (ING)
E. ROECKNER (MPI/IMET)
3. LMDZ (IPSL/LMD)
P. BRACONNOT (IPSL/LSCE)
L. FAIRHEAD (IPSL/LMD)
M.A. FOUJOLS (IPSL)
J.-Y. GRANDPEIX (IPSL/LMD)
F. HOURDIN (IPSL/LMD)
H. LE TREUT (IPSL/LMD)
L.LI (IPSL/LMD)
J. POLCHER (IPSL/LMD)
4. UNIFIED MODEL (UKMO)
M. CARTER (UKMO)
J. GREGORY (UKMO)
D. GRIGGS (UKMO)
T. JOHNS (UKMO)
J. MITCHELL (UKMO)
J. SLINGO (UNIV. READING)

 206

Atmospheric Chemistry

Version 1.0 (March 17th 2002)

Martin Schultz (MPI-M)

Purpose: List all inputs required for an atmosphere chemistry model component to solve its
prognostic/diagnostic equations. The list of inputs should be model independent and solely based
on the modeled aspects of the physics of the earth system as we know it today, and on those
aspects we anticipate to become important in future modeling studies. See main REDOC I.2 text
for explanations.

Notes:
As discussed during the workshop, it is inherently difficult to draw a clear line between atmospheric
chemistry and the physical atmosphere model. Hence, this table includes some quantities, which
are traditionally computed within an atmospheric chemistry model although they are actually
physical parameters. These include AC in the originator field.

Added dimensionality of fields

Origin in parentheses means: future option, currently probably not realised in any model

 207

Field Process Unit Dims Time
scale

Issues Rating Origin

Dry air
temperature

 K 3 min probably uncritical w.r.t.
t+1 or t-1

E A

surface
temperature

deposition/emissions K 2 min E A (LS)

potential
temperature

 K 3 min useful diagnostic D A

virtual pot.
temperature

 K 3 min useful diagnostic D A

full level
pressure

 Pa 3 min probably uncritical w.r.t.
t+1 or t-1

E A

half level
pressure

 Pa 3 min probably uncritical w.r.t.
t+1 or t-1

E A

geopotential
height

 3 min probably uncritical w.r.t.
t+1 or t-1

E A

air density conversion mass<->
mixing ratio

molecules/cm3/s 3 min probably uncritical w.r.t.
t+1 or t-1

E A, AC

specific
humidity

 kg(H2O)/
kg(dry air)

3 min maybe critical (t+1) in
sophisticated scavenging
schemes

E A

relative
humidity

used for photolysis,
emissions, aerosol
dynamics

fraction 3 min alternatively: saturation
humidity

E A

land fraction deposition,
emissions

fraction 2 month maybe shorter timescale
(days) if snowfall is taken
into account explicitly

E A (LS)

land mask deposition,
emissions

flag 2 year simpler alternative for
land fraction

E (D) DS, A

(sea)ice frac-
tion

deposition, emis-
sions

fraction relative
to ocean frac-
tion

2 day currently rather monthly
timescale

E DS, A

 vegetation
fraction

deposition fraction relative
to land fraction

2 month E A, LS
(TB,
DS)

leaf area
index

deposition index 2 day currently rather monthly
timescale

E A (TB,
DS)

convective
precipitation

emissions mm/day 2 min E A

Large-scale
precip.

emissions mm/day 2 min E A

evaporation scavenging ?? 3 min critical w.r.t. to time step E A
condensation scavenging, aerosol

dynamics

?? 3 min critical w.r.t. to time step E A

surface
albedo

photolysis fraction 2 hour potential improvement
using spectrally resolved
albedo

E A, DS

UV albedo photolysis fraction 2 hour D A, DS
zenith angle photolysis angle 2,3 min E A
actinic UV
and visible
flux

photolysis photon-flux 3 min spectrally resolved (7+
bands)

E A, AC

surface net
radiation

deposition,
emissions

W/m2 2 min maybe augmented by
PAR (photosynthetically
active radiation)

E A

 208

Field Process Unit Dims Time
scale

Issues Rating Origin

cloud fraction photolysis fraction 3 min potential improvements:
distinction between
maximum overlap and
random overlap; use of
beta distribution

E A

cloud water photolysis,
scavenging,
(lightning)

kg(H2O) 3 min time critical E A

cloud ice photolysis,
scavenging,
(lightning)

kg(H2O) 3 min time critical E A

potential
vorticity

 ?? 3 min useful diagnostic
(stratosphere-
troposphere exchange)

D A

convective
mass flux

lightning (and
transport diagnostic
if multiplied by tracer
mixing ratio)

?? 3 min not yet implemented in
many models

E A

maximum
updraft
velocity

lightning m/s 2 min E A

max. cloud
top height

lightning m 2 min alternative to wmax E A

depth of
cloud
charging
zone

lightning m 2 min charging zone defined as
mixed phase zone.
Typically diagnosed from
temperature threshold

E AC, A

flash
frequency

lightning flashes/min 2 min E AC, A

wet
deposition
flux

scavenging ?? 3 min D AC, A

neutral drag
coefficient

deposition ?? ?? min E A

Richardson
number

deposition ?? 2 min E A

surface
roughness

deposition ?? 2 min maybe improvement for
anisotropic conditions?

E A

snow cover deposition m 2 hour E A
soil moisture
stress

deposition,
emissions

?? 2 hour E A, LS

10m wind
components

deposition, air-sea-
exchange

m/s 2x2 min E A

temperature
of top soil
layer

emissions K 2 hour E A, LS

field capacity deposition ?? 2 hour E A, LS
overhead
ozone
column

photolysis DU 2 hour depends on altitude
range of model
ensemble

E DS, A

 vegetation
type and fuel

emissions (biomass
burning)

index, t/ha N*2 day currently used in
preprocessing step

D TB, LS

 209

Field Process Unit Dims Time
scale

Issues Rating Origin

load
CONTRIBUTES FROM:
LAURENS GANZEVELD (MPI-C),
ROLF SANDER (MPI-C),
MARTIN SCHULTZ (MPI-M),
PHILIP STIER (MPI-M),
PETER VAN VELTHOVEN (KNMI)

 210

Land Surfaces

Version 1.0 (March 11th 2002)
JAN POLCHER

Purpose: List all inputs required by land-surface model component to solve its
prognostic/diagnostic equations. The list of inputs should be model independent and solely based
on the modeled aspects of the physics of the earth system as we know it today, and on those
aspects we anticipate to become important in future modeling studies. See main REDOC I.2 text
for explanations.

The present list is derived from the document written during the PILPS-4c project (See the PILPS-
4c paper under http://www.lmd.jussieu.fr/~polcher/PILPS4c/main.html)

* It goes beyond what is described there as since then a number of developments have taken
place. Some choices are proposed but they need to be re-discussed:

The atmospheric model should compute the diffusion coefficients for the surface layer. This
assumes that turbulence in the surface layer is entirely treated by the atmospheric components.

The land-surface scheme also deals with the momentum flux. The reason is that it allows taking
advantage of the sub-grid scale variability described in the land-surface scheme. This also means
that the atmosphere will have to take care of the momentum flux induced by the orography.

Radiation input

Field Process Units Time scale Issues Rating Origin
Net short-wave
radiation

Energy input to the
surface energy bal-
ance

W/m2 > hour The variable should be aver-
aged over all spectral bands.

E A

Downward long-
wave radiation

Energy input to the
surface energy
balance

W/m2 > hour The variable should be
averaged over all spectral
bands.

E A

Downward solar
flux

Calculation of albedo W/m2 > hour These variables should have
one dimension, which
discretizes the simulated
spectral bands. It should
contain at least the 2 bands
used today.

D A

Fraction of
diffuse radiation

Calculation of albedo - > hour A fraction for each spectral
band needs to be provided.

D A

Solar Zenith
angle

Calculation of albedo deg > hour - D A

 211

Inputs for the hydrological cycle

Field Process Units Time
scale Issues Rating Origin

Rain fall Closing the water
cycle

kg/m2/s > hour It is essential to separate the
liquid from the snow precipita-
tion.

E A

Snow fall Closing the water
cycle

kg/m2/s > hour - E A

Sub-grid scale
variance of rain fall

Representing
interception and
infiltration
processes

kg/m2/s > hour - D A

Sub-grid scale
variance of snow fall

Representing
interception
processes

kg/m2/s > hour - D A

Inputs for the calculation of turbulent fluxes

Field Process Units Time
scale Issues Rating Origin

Lowest atmospheric
air temperature

Simulation of the turbu-
lent sensible heat flux

K minutes - E A

Lowest atmospheric
air specific humidity

Simulation of the
turbulent latent heat flux

g/g minutes - E A

Lowest atmospheric
CO2 concentration

Simulation of the
turbulent carbon flux

ppm minutes - E A

Surface eddy
diffusivity coefficient
for momentum

Simulation of surface
stress not related to
orography

m/s minutes - E A

Surface eddy
diffusivity coefficient
for the sensible heat
flux

Simulation of the
turbulent sensible heat
flux

m/s minutes - E A

Surface eddy
diffusivity coefficient
for the latent heat
flux

Simulation of the
turbulent latent heat flux

m/s minutes - E A

Surface eddy
diffusivity coefficient
for CO2 flux

Simulation of the
turbulent carbon flux

m/s minutes - E A

Sensitivity of air
temperature to
surface fluxes

Simulation of the
turbulent sensible heat
flux

J/kg minutes This is needed for an implicit
resolution of the surface
energy balance. The theory is
explained in the PILPS-4c
paper* The coefficients A and
B are needed.

E A

Sensitivity of air
specific humidity to
surface fluxes

Simulation of the
turbulent latent heat flux

g/g minutes Explained in PILPS-4c paper*
As above these are two values
we need.

E A

Sensitivity of
atmospheric CO2 to
surface fluxes

Simulation of the
turbulent carbon flux

ppm minutes As above D A

Surface pressure Calculation of saturated
humidity

hPa > hour - E A

 212

Input for computing chemical fluxes

It still needs to be discussed if the processes, which determine the surface fluxes of chemical
species, need to be treated within the land-surface model or if it is sufficient to provide some of the
controlling variables.

Key to this discussion is the strength of the interaction, which exists between physical and
biogeochmical processes represented in land-surface models on the one hand and chemical
processes on the other.

Field Process Units Time
scale Issues Rating Origin

Concentrations of all
chemical species
used in the AC.

Deposition
and emis-
sion

- < 1
hour

None of these fluxes seem to be tightly
enough linked to the turbulence in the sur-
face layer to have to solve them with the
PBL, as is done for water or temperature.

D AC

 213

Ocean

Version 3.1 (May 27th 2002)

Eric Guilyardi

Purpose: List all inputs required by ocean model component to solve its prognostic/diagnostic
equations. The list of inputs should be model independent and solely based on the modeled
aspects of the physics of the earth system as we know it today, and on those aspects we anticipate
to become important in future modeling studies. See main REDOC I.2 text for explanations.

Energy fluxes Process Unit Time
scale Issues Rating Origin

Short wave flux Solar penetration W/m2 1-3h 2D - which frequency band
through leads under sea ice?

E A&SI

Long-wave Heat budget of ocean W/m2 1-3h 2D E A
Latent heat release
due to solid
precipitations

 Heat budget of ocean W/m2 1-3h 2D E A

Latent heat release
due to icebergs
melting

 Heat budget of
ocean

W/m2 1-3h 2D E ? (LS)

Latent heat Heat budget of
ocean

W/m2 1-3h 2D E A

Sensible heat Heat budget of
ocean

W/m2 1-3h 2D E A

Sensible heat due
to precipitations

 Heat budget of
ocean

W/m2 1-3h 2D E A

Sensible heat due
to runoff

 Heat budget of
ocean

W/m2 1-3h 2D D LS

Heat flux at base of
sea ice

 Heat budget of
ocean

W/m2 ocean
time
step

2D - where sea ice is present E SI

Geothermal heat
flux

 Heat budget of
ocean

 W/m2 2D U ?

 214

Mass fluxes Process Unit Time
scale Note/Issues Rating Origin

Liquid precipitation Salinity budget at
surface / sea level

kg/m2/s 3h 2D (associated heat flux) E A

Solid precipitations Salinity budget at
surface / sea level

kg/m2/s 3h 2D (associated heat flux) E A

Evaporation Salinity budget at
surface / sea level

kg/m2/s 3h 2D E A

River outflow Salinity budget at
surface / sea level

m3/s 3h 2D E LS

Iceberg melting Salinity budget at
surface / sea level

kg/m2/s 24h 2D E ?

Melting of sea-ice Salinity budget at
surface / sea level

kg/m2/s 3h 2D - where sea ice is present E SI

Formation of sea-
ice

Salinity budget at
surface / sea level

kg/m2/s 3h 2D - where sea ice is present E SI

Ice shelf melting Salinity budget at
surface / sea level

m3/s 24h or
more

 2D D ?

Snow melt at
surface of sea ice

Salinity budget at
surface / sea level

 kg/m2/s 3h 2D - where sea ice is present E SI

Momentum fluxes Process Unit Time
scale Note/Issues Rating Origin

Wind stress over
open ocean

momemtum balance N/m2 1h 2D - Vector - link to wave model
?

E A

Ocean sea ice
stress

momemtum balance N/m2 ocean
time
step

2D - Vector (where sea ice is
present)

E SI

Wind "power" or
"mixing"

 Vertical mixing (m/s)^3 1h 2D - Input to vertical mixing U3
Issue : how to handle time
averaging and non-linearity ?
See OPYC technique.

E A

 2d Ocean wave
spectrum

 mixing through
wave breaking,
bubble formation

m4 3h wave model currently not part of
PRISM

 M ?

Salinity fluxes Process Unit Time
scale Note/Issues Rating Origin

Salt flux from sea
ice

Salt budget of ocean kg/m2/s ocean
time
step

 2D E SI

Salt flux from
atmosphere

Salt budget of ocean kg/m2/s 3h 2D - from foam (wave model?) D A

Salt flux from
continents

Salt budget of ocean kg/m2/s 2D U LS

 215

Others Process Unit Time
scale Note/Issues Rating Origin

Ocean colour Vertical distribution of
solar flux

? Given by
OB

3D field, or vertical profile of
solar penetration, or optical
properties of seawater or
extinction coefficients?

 E OB

Local gravity Density driven proc-
esses

 m2/s Constant Same as other components E ?

Atmospheric MSL
pressure

BC on horizontal
pressure gradient

hPa 3h 2D D A

Ice thickness Volume of
submerged ice

m Ocean
time step

2D - needed to know volume of
water in upper layer

 E SI

Snow on sea ice Volume of
submerged ice

m Ocean
time step

2D - needed to know volume of
water in upper layer

 E SI

 216

Notes :

1. Tidal energy and mixing will probably remain an internal forcing of the ocean GCM for the next
5-10 years. Data might need to be read from a file but not from another earth system
component.

2. Geothermal heat flux will also probably remain and internal forcing.

Regional or nested coupling (ocean variables only):
Regional or nested
coupling Dimension of field Unit Time scale Note/Issues Rating Origin

Potential temperature strip of data at lateral
boundary or 3D if nested

K or C ? Time step
(1h)

 D OGCM

Salinity strip of data at lateral
boundary or 3D if nested

 PSU Time step D OGCM

Zonal velocity strip of data at lateral
boundary or 3D if nested

 m/s Time step D OGCM

Meridional velocity strip of data at lateral
boundary or 3D if nested

 m/s Time step D OGCM

Sea surface height strip of data at lateral
boundary or 3D if nested

m Time step D OGCM

� CONTRIBUTORS:
AS TENTATIVELY IDENTIFIED FROM LES DIABLERET MEETING (JUNE 2001)
THIERRY FICHEFET AND ERIC GUILYARDI (7/2/2002)
GURVAN MADEC, MIKE BELL, RALF DÖSCHER, RENÉ REDLER, HEIKO JANSEN, JOHANN JUNGCLAUS,
LAURENCE FLEURY, PIERRE-PHILIPPE MATHIEU (11/03/2002)
GERBRAND KOMEN, ADRIAN NEW (27/05/2002)

 217

Sea-Ice

Version 2.0 (Feb 18th 2002)

Helge Drange

Purpose: List all inputs required by sea-ice model component to solve its prognostic/diagnostic
equations. The list of inputs should be model independent and solely based on the modeled
aspects of the physics of the earth system as we know it today, and on those aspects we anticipate
to become important in future modeling studies. See main REDOC I.2 text for explanations.

Energy Fluxes and Related
Quantities Processes Unit Time

scale
Note/Issues
(sim=sea ice model) Rating Origin

Direct solar flux Solar penetration W/m2 which frequency band? E
Diffuse solar flux Solar penetration W/m2 as above, needed by biochemistry E
Surface albedo of ocean Heat budget - Needed for leads E
Incoming long wave radiation Heat budget W/m2 over snow, sea ice and ocean E
Outgoing long wave radiation Heat budget W/m2 -"-, computed by sim? E
Sensible heat flux Heat budget W/m2 Over snow, sea ice and ocean E
Sensible heat flux due to
precipitation

Heat budget W/m2 Over snow, sea ice and ocean E

Latent heat flux Heat budget W/m2 Over snow, sea ice and ocean E
Derivative of the net non-
solar heat flux over sea ice

Heat budget W/m2 E

Latent heat release
associated with ice berg
melting

Heat budget W/m2 D

Sea surface temperature Heat budget K E
Sea surface salinity Heat budget psu For initial ice salinity, and

freezing point of seawater
E

Fresh Water Fluxes Process Unit Time scale Note/Issues Rating Origin
Precipitation, including snow Snow/ice mass kg/m2/s E A
Evaporation Snow/ice mass kg/m2/s E A
River outflow/ice berg Ice mass m3/s D LS,?

Momentum Fluxes Process Unit Time scale Note/Issues Rating Origin
Wind stress over sea ice Momentum balance N/m2 Vector E A
Wind stress over open water Momentum balance N/m2 Vector E A
Ocean stress Momentum balance N/m2 Vector E O

Others Process Unit Time scale Note/Issues Rating Origin
Ice bergs/inland ice Mass and momentum balance

• CONTRIBUTIONS:
AS DISCUSSED AT THE LES DIABLERET MEETING (JUNE 2001), NOTABLY THIERRY FICHEFET AND DAVID
SALAS

 218

 219

Ocean Biogeochemistry

Version 1.1 (Feb 19th 2002)

Corinne Le Quéré

Purpose: List all inputs required by ocean biogeochemistry model component to solve its
prognostic/diagnostic equations. The list of inputs should be model independent and solely based
on the modeled aspects of the physics of the earth system as we know it today, and on those
aspects we anticipate to become important in future modeling studies. See main REDOC I.2 text
for explanations.

Gas and Particle Fluxes Unit Dimension Note/Issues Rating Provider
Wind speed m/s 2D E Atmosphere
Variance of the wind speed m/s 2D For off-line or degraded

simulations only
E Atmosphere

Ice extent Fraction of
grid box

2D E Ice

Surface atmospheric
concentration of gases (i.e.
CO2,

14CO2,
13CO2, N2O,

O2,
18OO, 17OO, DMS)

Variable
(ppm, ppb
or permil
depending
on the
tracer)

2D Not all gases are needed
depending on the experiment

E Atmosphere

Wet deposition of particles g/m2/s 2D Can be computed from the
product of precipitation and
atmospheric concentration of
particles

E Atmosphere,
Atmospheric
chemistry

Dry deposition of particles g/m2/s 2D E Atmospheric
chemistry

Chemical content of
particles (i.e. Fe, Si)

g/g 2D E Atmospheric
chemistry

Concentration of tracers in
ice flow (i.e. Fe, Si)

g/m3 2D D Ice

Concentration of tracers in
river runoff (i.e. DIC, POC)

g/m3 2D D Land?

 220

Dilution/concentration
of tracers Unit Dimension Note/Issues Rating Provider

Change in ocean surface
elevation

m 2D For free surface ocean models E Ocean

Concentration of the
tracers in all water fluxes
contributing to the
change in surface
elevation

mol/m3 2D For free surface ocean models,
includes precipitation, evaporation,
runoff, ice change

E Ocean, Ice,
Land,
Atmosphere

Net water flux m/s or
m3/s

2D For rigid-lid ocean models, includes
precipitation, evaporation, runoff, ice
change

E Ocean, Ice,
Land,
Atmosphere

Marine biology Unit Dimension Note/Issues Rating Provider
Surface short wave
radiation

W/m2 2D Spectrum and diffusive/non-diffusive desira-
ble

E Atmosphere

Mixing depth m 2D Based on criteria of vertical mixing E Ocean
Mixed-layer depth m 2D Based on criteria of density E Ocean
Density g/m3 3D To estimate the buoyancy of marine

organisms
D Ocean

Small scale
turbulence

m2/s 3D To estimate sub-mm chemical flow between
plankton and sea water

D Ocean

Chemical reactions Unit Dimension Note/Issues Rating Provider
Temperature Celsius 3D Also used for marine biology and to compute

the slope of isopycnals in some models
E Ocean

Salinity psu 3D Also used for marine biology and to compute
the slope of isopycnals in some models

E Ocean

Transport of tracers Unit Dimension Note/Issues Rating Provider
Velocity m/s 3D E Ocean
Variance of the velocity m/s 3D For off-line or degraded simulations only E Ocean
Diffusivity m2/s 3D Both vertical and lateral E Ocean
Gent-McWilliams
velocity

m/s 3D E Ocean

Slope of isopycnals no units
(ratio)

3D E Ocean

Convection index fraction 3D Multiple formulations possible E Ocean

Ocean biogeochemistry outputs
Output Unit Dimension Note/Issues Rating User
Gas flux mol/m2/s 2D CO2, DMS, O2, N2,

13CO2,
14CO2,

17OO, 18OO E Atmospheric
chemistry

Light attenuation
by marine
particles

W/m2 or
fraction of
the
surface
radiation

3D Radiation could be split into several wave
bands

E Ocean

 221

�CONTRIBUTIONS:
PRISM WORKING GROUP 3G MEETING IN HAMBURG, JANUARY 31ST 2002 (C. LE QUÉRÉ, E. MAIER-
REIMER, O. AUMONT, S. SPALL, S. LEGUTKE). MINUTES OF THE MEETING AVAILABLE ON
HTTP://WWW.BGC.MPG.DE/~CORINNE.LEQUERE/PRISM/MINUTES_JAN02.HTML

 222

Regional model inputs

�Version 1.0 (March 27th 2002)
 MARKKU RUMMUKAINEN / RALF DOESCHER

Purpose: List all inputs required by ocean model component to solve its prognostic/diagnostic
equations. The list of inputs should be model independent and solely based on the modeled
aspects of the physics of the earth system as we know it today, and on those aspects we anticipate
to become important in future modeling studies. See main REDOC I.2 text for explanations.

Concerning coupled models of atmosphere, ocean, sea ice and chemistry, input required for global
<-> regional coupling is listed here. Input fields need to be provided for 3D boundary zones along
finite lateral boundaries around the regional atmosphere and ocean domains.

The regional component can consist of an atmospheric model only, or an ocean component only.
In such cases, global 2D ocean/sea ice information needs to be passed to a regional atmosphere,
or global 2D atmospheric information to a regional ocean model. When the regional component
consists of a coupled atmosphere-land surface-ocean-sea ice model, some of the regional
atmosphere-surface interface is generated within the regional model system itself. However, it
is likely that a case of unequal domains for the regional atmosphere and ocean (the 'small regional
ocean - big regional atmosphere' case!) applies, so some 2D global ocean/sea ice input is
nevertheless required to the regional atmosphere.

In the framework of maximum modularity (cf. future studies), atmospheric, ocean, land surface and
sea ice components should be considered separately even in regional applications, resulting in a
requirement of specification of 2D input fields at the atmosphere-ocean, atmosphere-land surface,
atmosphere-sea ice, and sea ice-ocean interfaces. As this is in principle analogous to the coupling
between corresponding global model components, we refer to the respective sections in REDOC
I.2, e.g. from the atmospheric, ocean, land surface and sea ice WPs. We also note that regional
chemistry models might be used in the future as a part of the PRISM system and refer to the
relations specified between AGCMs and AC-models.

For the global <-> regional coupling, we expect state variables to be passed (not fluxes) for the
foreseeable future, motivated by the difference in spatial and temporal scales between global
components and regional components. Coupling frequencies for lateral coupling can at best equal
the time-step of the global model/dataset. This would be essential for two-way coupling. Currently,
however, it seems adequate to do one-way coupling and couple with a longer interval (3 to 6
hours) and do time interpolation. This implies a corresponding delay in executing the regional
component compared to the global one.

A future system should be able to deal with both options of (1) high coupling frequency and
concurrent global and regional simulations and (2) lower coupling frequency, time-delayed global
and regional simulations and time interpolation between coupling input.

 223

.REGIONAL ATMOSPHERE MODEL

Field Process Unit Freq. Issues Rating Origin
Temperature Atmosphere dynam-

ics
K Time step of A or

up to 6 hours
3D in boundary zone E A

Humidity Atmosphere dynamics kg/kg Time step of A or
up to 6 hours

3D in boundary zone E A

Zonal velocity Atmosphere dynamics m/s Time step of A or
up to 6 hours

3D in boundary zone E A

Meridional
velocity

Atmosphere dynamics m/s Time step of A or
up to 6 hours

3D in boundary zone E A

Cloud water Cloud/radiation kg/kg Time step of A or
up to 6 hours

3D in boundary zone D A

Cloud ice Cloud/radiation kg/kg Time step of A or
up to 6 hours

3D in boundary zone D A

Cloud cover Cloud/radiation fraction Time step of A or
up to 6 hours

3D in boundary zone D A

Particles
(sulfate cycle
variables etc)

Radiation various
units, cf.
atmospher
e WP

Time step of A or
up to 6 hours

3D in boundary zone D A / AC

Surface
pressure

Atmosphere dynamics Pa Time step of A or
up to 6 hours

2D in boundary zone E A

Land-Sea
mask

Inter/extrapolation in
boundary zone

- Once per run 2D in boundary zone E A

Orography Inter/extrapolation in
boundary zone

m Once per run 2D in boundary zone E A

Sea surface
temperature

Ocean-atmosphere
heat flux in case of
non-identical domains
for ARCM and ORCM
or when there is no
ORCM.

K 1h 2D for complete
regional domain

E O

Sea surface
albedo

Reflection of solar
radiation (possibly for
different frequency
bands) in case of non-
identical domains for
ARCM and ORCM or
when there is no
ORCM.

- 1h 2D for complete
regional domain

M O

Sea surface
emissivity

Long-wave radiation
in case of non-
identical domains for
ARCM and ORCM or
when there is no
ORCM.

- 1h 2D for complete
regional domain

M O

Sea surface
roughness
length

Turbulent fluxes in
case of non-identical
domains for ARCM
and ORCM or when
there is no ORCM.

m 1h 2D for complete
regional domain

M O

Sea ice
fraction

Ocean/ice-
atmosphere heat flux
in case of non-
identical domains for
ARCM and ORCM or

fraction 1h 2D for complete
regional domain

E SI

 224

Field Process Unit Freq. Issues Rating Origin
when there is no
ORCM.

Sea ice
surface
temperature

Ice-atmosphere heat
flux in case of non-
identical domains for
ARCM and ORCM or
when there is no
ORCM.

K 1h 2D for complete
regional domain

E SI

Sea ice albedo Reflection of solar
radiation (possibly for
different frequency
bands) in case of non-
identical domains for
ARCM and ORCM or
when there is no
ORCM.

- 1h 2D for complete
regional domain

E SI

Sea ice
emissivity

Long-wave radiation
in case of non-
identical domains for
ARCM and ORCM or
when there is no
ORCM.

- 1h 2D for complete
regional domain

M SI

Sea ice
surface
roughness

Turbulent fluxes in
case of non-identical
domains for ARCM
and ORCM or when
there is no ORCM.

m 1h 2D for complete
regional domain

M SI

.REGIONAL OCEAN MODEL

Field Process Unit Freq. Issues Rating Origin
Potential temperature ocean dynamics K 1h 3D in ocean boundary zone E O
Salinity Ocean dynamics psu 1h 3D in ocean boundary zone E O
Zonal velocity Ocean dynamics m/s 1h 3D in ocean boundary zone E O
Meridional velocity Ocean dynamics m/s 1h 3D in ocean boundary zone E O
Sea surface height Ocean dynamics m 1h 2D in ocean boundary zone E O

.REGIONAL SEA-ICE MODEL

Field Process Unit Freq. Issues Rating Origin
Sea ice concentration
(frac. ice)

Ice dynamics fraction 1h 2D in ocean
boundary zone

E SI

Sea ice thickness Ice dynamics/thermodynamics m 1h 2D in ocean
boundary zone

E SI

Sea ice velocity Ice dynamics m/s 1h 2D in ocean
boundary zone

E SI

Sea ice/snow surface
temperature

Ice/snow thermodynamics K 1h 3D in ocean
boundary zone

E SI

Thickness of snow on
ice

Ice/snow thermodynamics m 1h 3D in ocean
boundary zone

E SI

Distribution of ice
classes

Ice dynamics - 1h 3D in ocean
boundary zone

M SI

Sea ice temperature Ice thermodynamics K 1h 3D in ocean
boundary zone

M SI

 225

rating = Essential, Desirable, Maybe, Unlikely in the next 5-10 years

 226

Appendix to REDOC I.3:

Requirements Summary Table

The table gives the summary of the responses obtained from the different model work
packages to the questionnaire about the requirements on the coupler functionalities and the kind of
simulation the PRISM system should be able to perform.

General Requirements:

I.4-1: "The same version of a component model should be usable as part of a coupled model in the
PRISM System and outside the PRISM system in stand-alone runs."
I.4-2: "The PRISM coupler allows intrinsic characteristics of the component models (e.g. length of
a time step) to change at run-time".
I.4-3: "The PRISM coupler allows coupling data characteristics of the component models (e.g.
units, grid co-ordinates, mask, parallel decomposition, ...) to change at run-time".

Controller/Driver Requirements :

 General:

I.4-4: "The PRISM System can also be used to assemble and run coupled models based on
component models which do not conform to the PRISM Physical interfaces given that they include
the well defined Model Coupling Technical Interface".
I.4-5: "The PRISM System can be used to assemble and run coupled models based on an
arbitrary number of component models (not only the full coupled model assembling all PRISM
model components). "

 Model execution:

I.4-6: "The PRISM System should be able to run the different component models concurrently, in a
regular sequence (one after the other), or in some pre-defined combination of these two modes."
I.4-7: "The PRISM System should be able to control dynamic model execution i.e. one or more
component models may be launched and/or finish run-time at pre-determined points in the
simulation."
I.4-8: "The PRISM System should be able to control conditional model execution i.e. one or more
component models may be launched run-time during the simulation only if a particular scientific
condition is met."
I.4-9: "The PRISM System should be able to control a global coupled system flexible in terms of
executables (extreme are: each component is a separate executable -MPMD-, or all components
run in parallel or in sequence within only one executable -SPMD)."
I.4-10: "The PRISM System should be able to give some statistic on the load balancing of the run."

 Coupling exchanges management:

I.4-11: "End-point data exchange: when producing coupling data, the source model should not
need to know what other model will consume it; when asking for coupling data a target model
should not need to know what other model produces it."

 227

 Termination and restart:

I.4-12: "The PRISM System ensures that whole simulation shuts down cleanly (regular and
unforeseen termination) in an intelligent way (e.g. after restart is saved) and report error if one
component aborts."
I.4-13: "After a machine breakdown, the PRISM System ensures automatically a proper restart of
the coupled system."

 Other controls:

I.4-14: "The PRISM System warns the user if the coupling and I/O frequencies are not
synchronised (in this case, an optimal load balancing leading to synchronisation of the different
component models without idle time would be impossible to achieve)."

Transformer Requirements:

I.4-15 to I.4-20: "The PRISM coupler should provide the following transformations (OASIS
transformation are given as examples):

I.4-15: Time operations:

a): time averaging

b): time interpolation

c): minimum or maximum over a certain time range

d): other time operations

I.4-16: 2D spatial interpolation:

a): nearest-neighbour (Ex: NNEIBOR)

b): nearest-neighbour gaussian weighted (Ex: GAUSSIAN)

c): bilinear (Ex: BILINEAR)

d): bicubic (Ex: BICUBIC)

e): 1st order conservative remapping (Ex: SURFMESH)

f): 2nd order conservative remapping

g): higher order conservative remapping

h): remapping using user-defined remapping info (e.g. runoff remapping) (Ex: MOZAIC)

i): other

I.4-17: 3D spatial interpolation:

a): nearest-neighbour

b): nearest-neighbour gaussian weighted

 228

c): bilinear

d): bicubic

e): 1st order conservative remapping

f): 2nd order conservative remapping

g): higher order conservative remapping

h): remapping using user-defined remapping info

i): other

I.4-18: 1D spatial interpolation:

a): nearest-neighbour

b): nearest-neighbour gaussian weighted

c): bilinear

d): bicubic

e): 1st order conservative remapping

f): 2nd order conservative remapping

g): higher order conservative remapping

h): remapping using user-defined remapping info

i): other

I.4-19: Other transformations:

a): Conservation: ensure global energy conservation between source and target grid (Ex:
CONSERV)

b): Combination: of different parts of different coupling fields or of other predefined external data
(Ex: FILLING)

c): Algebraic operations: with possibly different coupling fields or predefined external data and
numbers as operands (Ex: BLASOLD, BLASNEW, SUBGRID, CORRECT)

d): Specific algebraic transformations

d1: Celsius <-> Kelvin

d2: Degree <-> Radian

e): Indexing operations:

 229

e1: Mask: Only the points listed in index have meaningful data and the others are changed to miss-
ing (Ex: MASK)

e2: Scatter: scatters the model data onto the points listed in index (1st or 2nd order spatial
extrapolation) (Ex: EXTRAP)

e3: Gather: gathers from the input data all the points listed in index

f): Spatial "collapse" operations: collapse of any dimension or combination of dimensions by
various -possibly weighted- statistical operations (mean, max, min, etc.)

g): Subspace: extraction of subspaces or hyperslabs in any combination of spatiotemporal or other
dimension

h): Merge: replace n dimensions by an index dimension by sampling at n-dimensional points, e.g.
replace a lat-lon-height field with value along a trajectory

I.4-20: Others - please specify.

I.4-21: "The PRISM coupler should be able to give some statistics on the coupling fields (mean,
max, min, etc.)

Ex: CHECKIN, CHECKOUT in OASIS

I.4-22: "The PRISM coupler should support source and target coupling domains that totally or
partially overlap (e.g. global atmosphere with a regional ocean, regional model nested into global
model, etc.)"

I.4-23: "The PRISM coupler should automatically perform some basic transformations (units -e.g.
Celsius to Kelvin, order of dimensions -e.g. source (x,y,z) - target (z,y,x), etc.)"

I.4-24: "The PRISM coupler should recognise type of coupling data (flux, vector, scalar) based on
meta-data description, and automatically provides relevant transformation operations (this choice
of transformation will be validated or invalidated by the user)."

 230

 Atmosphere Atmospheric
chemistry

Land sur-
faces

Ocean Sea-ice Ocean bio-
geochem.

Regional
Models

Lead S. Planton G. Brasseur J. Polcher E. Guilyardi H. Drange C. Le Quéré M. Rummu-
kainen

 E D M U N E D M U N E D M U N E D M U N E D M U N E D M U N E D M U N
I.3-1 X X X X X X
I.3-2 X X

See specific
remarks
below

 X X X X

I.3-3 X X X X X X

I.3-4 X X X X X X

I.3-5 X X X X X X

I.3-6 X X X X X X

I.3-7 X X X X X

I.3-8 X X X X X X

I.3-9 X X X X X X

I.3-10 X X X X X X

I.3-11 X X X X X X

I.3-12 X X X X X X

I.3-13 X X X X X X

I.3-14 X X X X X X

I.3-15a X X X X X X

I.3-15b X X X X X X

I.3-15c X X X X X X

I.3-15d X X X X X

I.3-16a X X X X X X

I.3-16b X X X X X X

I.3-16c X X X X X X

I.3-16d X X X X X X

I.3-16e X X X X X X

I.3-16f X X X X X X

I.3-16g X X X X X X

I.3-16h X X X X X X

I.3-16i X X X X

I.3-17a X X X X X X

I.3-17b X X X X X X

I.3-17c X X X X X X

I.3-17d X X X X X X

I.3-17e X X X X X X

I.3-17f X X X X X X

I.3-17g X X X X X X

I.3-17h X X X X X X

I.3-17i X X X X

I.3-18a X X X X X X

I.3-18b X X X X X X

I.3-18c X X X X X X

I.3-18d X X X X X X

I.3-18e X X X X X X

I.3-18f X X X X X X

I.3-18g X X X X X X

 231

I.3-18h X X X X X X

I.3-18i X X X X

I.3-19a X X X X X X

I.3-19b X X X X X X

I.3-19c X X X X X X

I.3-19d1 X X X X X X

I.3-19d2 X X X X X X

I.3-19e1 X X X X X X

I.3-19e2 X X X X X X

I.3-19e3 X X X X X X

I.3-19f X X X X X X

I.3-19g X X X X X X

I.3-19h X X X X X X

I.3-20 X X X X

I.3-21 X X X X X X

I.3-22 X X X X X X

I.3-23 X X X X X X

I.3-24 X X X X X X
 E D M U N E D M U N E D M U N E D M U N E D M U N E D M U N E D M U N
 Atmosphere Atmospheric

chemistry
Land sur-
faces

Ocean Sea-ice Ocean bio-
geochem.

Regional
Models

 232

.Appendix to ARCDI II

Acknowledgements

We acknowledge the fruitful inputs from Gurvan Madec (IPSL/LODYC, Paris) and Olivier Marti
(IPSL/LSCE, Saclay) at early stages in the discussion.

Coupling Fields

Code Field name Units Definition & Conventions

1: atmosphere to Ocean-surface module exchange

1.1 Rainfall kg/m2/s Mass flux, positive downwards, in-
cludes all liquid precipitation

1.2 Snowfall kg/m2/s Mass flux, positive downwards, in-
cludes all solid precipitation

1.3 Incoming solar radiation W/m2 Energy flux, positive downwards

1.4 Solar zenith angle radians

1.5 Fraction of diffuse solar
radiation

W/m2 Energy flux, positive downwards

1.6 Downward infrared radia-
tion

W/m2 Positive downward

1.7 Sensitivity of atmos. T and
q to surface fluxes

 δT/δQS and δq/δQS

2: ocean-surface module to atmosphere exchange

2.1 Sensible heat flux W/m2 Energy flux, positive upwards

2.2 Latent heat flux W/m2 Energy flux, positive upwards

2.3 Surface emissivity

2.4 Albedo, direct -

2.5 Albedo, diffuse -

 233

2.6 Surface radiative tempera-
ture

K

2.7 Evaporation kg/m2/s Mass flux, positive upwards

2.8 Wind stress N/m2 Momentum flux, vector

3: atmosphere to surface layer turbulence exchange

3.1 Mean sea level surface
pressure

hPa

3.2 Air temperature at lowest
level

K

3.3 Air humidity at lowest level g/g

3.4 Wind at lowest level m/s Vector

3.5 Wind module at lowest level m/s Possibly including gustiness effects

3.6 Lowest level height m

4: surface layer turbulence to ocean-surface module exchange

4.1 ρCd drag coefficient kg/m2/s Surface layer exchange coefficient for
momentum

4.2 ρCe exch. coeff. kg/m2/s Surface layer exchange coefficient for
sensible heat

4.3 ρCh exch. coeff. kg/m2/s Surface layer exchange coefficient for
moisture

5: ocean-surface module to surface layer turbulence exchange

5.1 Surface temperature K

5.2 Surface roughness

5.3 Displacement height

 234

Code Field name Units Definition & Conventions

6: ocean-surface module to ocean exchange

6.1 Non solar heat flux W/m2 Energy flux, positive upwards

6.2 Solar radiation W/m2 Energy flux, positive downwards

6.3 Fresh water flux kg/m2/s Mass flux, positive downwards

6.4 Salt flux kg/m2/s Mass flux, positive downwards

6.5 Wind stress N/m2 Momentum flux, vector

6.6 Wind work (m/s)3 U3

6.7 Mass of snow and ice kg

7: ocean to ocean-surface module exchange

7.1 Temperature at sea-ice
base

C

7.2 Sea surface temperature C

7.3 Surface radiative
temperature

C

7.4 Surface current m/s Vector

7.5 Sea surface salinity PSU

7.6 Sea surface height m

7.7 Absorbed solar radiation in
first oceanic layer

W/m2

8: land surface scheme to ocean exchange

8.1 Continental runoff m3/s Volume flux, positive towards ocean

 235

Tables

Table 1: Examples of Universal Parameters ... 20

Table 2: Links to the input required for the standard physical and algorithmic interface 22

Table 3: Features of the GUI... 35

Table 4: Job Control: Functions and the Graphical User Interface .. 38

Table 5: Feature and Capability Listing... 39

Table 6: Results and the GUI.. 39

Table 7: Access and the GUI .. 40

Table 8: Security – terms and the GUI .. 40

Table 9: Authentication and the GUI ... 40

Table 10: Security level of operations ... 41

Table 11: PRISM actors and main activities.. 47

Table 12: Table of different processes .. 48

Table 13: Risks... 57

Table 14: Graphics packages considered for PRISM.. 79

Table 15: Examples of universal parameters .. 104

Table 16: Software components in the system.. 115

Table 17: PRISM system messages ... 117

Table 18: Case 1, administration and maintenance advantages ... 118

Table 19 Case 2, configurability of the .. 119

Table 20: Case 3, monitoring and control of anexperiment ... 120

Table 21: Software components and implementations.. .. 122

Table 22: Software components and their location.. 128

Table 23: Risks... 134

Table 24: Transformations on 2D scalar coupling fields .. 148

Table 25: Input from Hadley Centre, WP3f-3h, CERFACS, ECMWF, KNMI, MPI, Météo France 157

Table 26: Required Functionality for the PRISM graphics package... 159

 236

 237

Figures

Figure 1: Xcdp graphical view of an experiment, 44

Figure 2: PRISM user interactions 46

Figure 3: Central Site Architecture, directory centric 49

Figure 4: Common Data Architecture, model provider centric 50

Figure 5: Full replication architecture, no central repository 50

Figure 6: PRISM software deployment model 51

Figure 7: two models are sequential by nature 60

Figure 8: Two models are concurrent by 61

Figure 9: Two models are concurrent by 61

Figure 10: Two models are sequential by construction 62

Figure 11: Two per two approach 69

Figure 13: Diagram of the archive, Data Processing and Visualisation System 80

Figure 14: Internal Data Management structure for the Job Flow an Run Shell 81

Figure 15: TOP 500-Architecture evolution over years. 91

Figure 16: A proposal for standard interfaces 107

Figure 17: PRISM user interacting with the central and local PRISM sites 111

Figure 18: Configuration process in PRISM: 112

Figure 19: Service lookup in WS 114

Figure 20: WS subsystem composition 115

Figure 21 :System processes in PRISM 116

Figure 22: Case 1, User downloads GUI and directory info: 118

Figure 23: Case 2: User submits experiment; 119

Figure 24: Case 3, User monitors experiment - 120

Figure 25: A central site and a PRISM site with all components in place. 121

Figure 26: The PrepIFS system and its software components. 123

Figure 27: Monitoring and scheduling of experiments; 124

 238

Figure 28: PRISM subsystem software components 127

Figure 29: Details of the different parts of the coupled PRISM model 136

Figure 30: Diagram of the Archive, Data Processing, and Visualization system 155

Figure 32: High-end graphics 158

 239

Version: Handbook1.0.3.RB

Date: March 7 2003

