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he term “error catastrophe,” origi-

nally introduced in the theory of mo-
lecular evolution (1), has become fashion-
able among virologists. In a recent paper
in PNAS (2), it was suggested, on the basis
of quantitative sequence studies, that riba-
virin, a common antiviral drug, by its
mutagenic action drives poliovirus into an
error catastrophe of replication, thereby
turning a productive infection into an
abortive one. Previous studies by Loeb
and his group (3, 4) on the AIDS virus
(HIV) and by Domingo, Holland, and
coworkers (5, 6) on foot-and-mouth dis-
ease virus (FMDV) have led to similar
conclusions, suggesting a paradigm shift in
antiviral strategies (7). A recent issue of
PNAS presents a paper by Grande-Pérez
et al. (8), which deals with the “molecular
indetermination in the transition to error
catastrophe,” shedding light on the com-
plexity of the mechanisms involved in
virus infection and stressing the need for
a careful molecular analysis of the detail,
which may differ greatly from one virus to
another. Because of its practical relevance
for developing potent antiviral drugs and,
beyond that, its general importance for an
understanding of molecular evolution, this
commentary will highlight the theoretical
basis and point out the kind of conclusions
that can be drawn in discussing experi-
mental results.

The term error catastrophe is of a de-
scriptive nature and lacks a clear-cut def-
inition. A catastrophe is usually triggered
if certain tolerances are exceeded. For
replication, there is indeed such a limiting
value of error or mutation rate that must
not be surpassed if the wild type is to be
kept stable. We call this limit the “error
threshold.” Why is it a sharply defined
limit? Why does the efficiency of replica-
tion not vary monotonically with the error
rate? The information stored in the
genomic sequence melts like ice at 0°C.
This comparison is indeed a very apt one.
The information melts away in a process
that has all the physical characteristics of
a first-order phase transition requiring
cooperative behavior with unlimited co-
herence lengths, as we encounter in the
melting of a solid or the evaporation of a
liquid at its boiling point. The error
threshold is caused by the inherent auto-
catalytic nature of replication, which rep-
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resents not only the transfer of informa-
tion from one generation to the next, as
would be the case for a message sent
through a transmission channel. Rather,
replication provides an exponential pro-
liferation of the information contained in
the sequence as a whole. In the population
formed, this results in competition among
the various slightly differing sequences,
which behave as cooperative units. Natu-
ral selection is a direct consequence of this
competitive replication. It presupposes
differences in efficiency of replication
without excluding neutral mutants. Neu-
tral copies, all belonging to the group of
best-adapted ones, are selected against the
rest, but because of their inherently repro-
ductive behavior, they continue to com-
pete with one another in a stochastic
manner. Kimura and Ohta (9) called this
nondeterministic fluctuating selection
“non-Darwinian,” although Darwin him-
self anticipated it. Kimura and Ohta’s
stochastically fluctuating selection re-
minds us of “critical phase transitions,” as
found in ferro- or antiferromagnetism or
liquid-gas transformation near the critical
point where, in analogy to neutrality
among replicative units, the densities of
the liquid and gaseous phases become
equal, with the consequence of density
fluctuations on all scales of spatial dimen-
sions manifesting themselves in the phe-
nomenon of “critical opalescence.”
However, note that these phase transi-
tions associated with natural selection do
not take place in the space—time coordi-
nates of our physical space. They refer
rather to an abstract “information space”
and are therefore not easy to visualize,
because they may appear scattered in
physical space and over extended periods
of time. Information space is a discrete
point space with a metric named after
Richard Hamming (10). Each of the pos-
sible 4V sequences of length N is assigned
to one and only one point, with all neigh-
borhoods among sequences correctly or-
dered according to their kinship distances.
This “spatial” order requires a 22N-
dimensional Hamming space. The dynam-
ical equations of the rise and fall of pop-
ulations can be written in a fairly general
phenomenological form, yielding the qua-
sispecies model (11, 12). A quasispecies is
a population structure in information

| no.21

space and is the “condensed” mutant dis-
tribution that results from the phase tran-
sition representing natural selection. It
has been termed “quasispecies” because
the whole distribution behaves “quasi” as
a single species, because it is determined
by one (namely the largest) eigenvalue of
its system of dynamical equations. The
eigenvalues, being invariants of the equa-
tions, are determined as soon as the mu-
tant spectrum is defined, regardless of
whether the final stationary population
structure is achieved. Rather than elabo-
rating on further details of theory, I shall
now discuss the important parameters that
determine selection and hence also the
behavior of virus populations, as ex-
pressed in the work this commentary re-
fers to.

Fig. 1 shows a computer simulation of a
model case that is representative of the
phenomenon of error catastrophe. Such
simulations were first performed by
Schuster and Swetina (13). The present
example was computed by Tarazona (14).
It shows the stationary structure of a
population consisting of binary sequences
of length N = 20, in which all sequences
have equal values of all their replication
rates except for one sequence, which
shows a 10-fold higher rate. The error rate
(1 = g), i.e., the relative number of mis-
incorporations per site, has been assumed
to be uniform for all sequences in the
distribution. Fig. 1 shows a plot of the
relative population number of the steady-
state population against the error rate
(1 — q), the numbers 0, 1, 2, etc., referring
to 0 errors (= master sequence) and the
sums of all of the 1, 2, 3, error sequences,
respectively. The error threshold is seen
clearly at 1 — g =~ 0.11. Although the
individual curves vary quite markedly with
the error rate, the order of the quasispe-
cies, represented by the consensus se-
quence, is clearly conserved up to the
“melting point,” i.e., the error threshold.
Above the error threshold, each of the
~10° (i.e., 2V) possible individual se-
quences occurs with the same probability
of ~107%. Because the distribution was
centered around the master sequence (0

See companion article on page 12938 inissue 20 of volume 99.
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Fig. 1. Relative population numbers of binary
sequences S (ordinate) as functions of single-digit
error rate (1 — q) (abscissa). The length of all binary
sequences is N = 20. All 2V ~ 10° sequences are
degenerate in their reproductivity except for one
“master’’ sequence Sy, which reproduces 10 times
more efficiently than the rest. The resulting quasi-
species distribution is centered at the master se-
quence (0" errors). The numbers 1, 2, . . . 20 refer
tothesumofall 1-,2-,. . .20-errormutants. The red
curve refers to the consensus sequence, which
shows a sharp first-order phase transition at the
error threshold.

errors), the sum of all k-error sequences is
given by the binomial coefficient (}),
which has its maximum at k = N/2. That
is why the sum curve for 10 errors shows
the most frequent representation (corre-
sponding to about 17.6% of the ~10°
sequences). Above the threshold, no
memory of the former wild type remains.

The model simulated in Fig. 1 suffices to
show the clear analogy to a first-order
phase transition (14) applying to the in-
formation content of the quasispecies as a
whole. The transition would be even
sharper for (more realistic) longer se-
quences, reaching a slope of » for N — oo,
whereas smaller selective advantages of
the wild type would just cause a shift of the
transition point along the abscissa to lower
error rates without much changing the
overall shapes of the curves. What is es-
sential is that the population of the master
and of individual mutant types already
changes quite conspicuously below the
error threshold but is “all or none” above
the threshold. However, the model chosen
is entirely unrealistic if we want to apply it
to our discussion of virus quasispecies. Let
me discuss the parameters that determine
the shape of the curves, and we shall see
more clearly what to expect in situations
closer to those of real viruses.

(i) The Most Obvious Parameter Is the
Error Rate

First, a uniform fidelity g for all positions,
and hence a uniform error rate 1 — ¢, is
absolutely fictitious. Grand-Pérez et al. (8)
emphasize that different regions of the
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virus sequences must have different error
rates, and it has long been known that it is
not only the kind of base and its nearest
neighbors that make individual positions
more or less variable, ranging from ex-
ceedingly conservative positions to “hot
spots.” This is the more so if mutations are
enhanced by using drugs that resemble
base analogues. Because the probability of
mutants is sequence-specific, we must in-
troduce two indices: one for the particular
sequence S and another one for the po-
sitions “7 7 within each sequence Sy.
Hence the fidelity of a position thus char-
acterized is g and its corresponding error
rate (1 — gwx). The overall fidelity of
reproducing any given sequence Sy is then
the product qixqax gnk Or
TN g = G, where @y is the geometric
mean of all g; of sequence k, whereas Ny
is its length expressed as the number of
nucleotides. The geometric mean differs
from the arithmetic by weighting more
sensitively individual elements. Although
some elements can reach zero without
much changing the value of the arithmetic
mean, they must not do so for the geo-
metric mean, where the product becomes
zero if one of its elements is zero. This
property of the geometric mean has im-
portant consequences for the possible rel-
evance of certain singular mutations. The
theory, on the other hand, does not
change its formal structure by the intro-
duction of averages. Instead of a uniform
fidelity g or error rate (1 — g) (abscissa in
Fig. 1), we now use the averages g, and call
the sequence-specific overall fidelity gz *
= (. Because ¢ for any realistic se-
quence is very close to one, meaning a
small average error rate (1 — §x), as found
between 1073 and 107> for RNA viruses,
a fairly precise approximation to Qy is
given by e N(17@&), The exponent is the
average number of errors per sequence
and can yield Q values appreciably
smaller than one. The conclusion of this
paragraph is that the probability distribu-
tion of mutants in a quasispecies is not at
all uniform; single mutants may reproduc-
ibly appear orders of magnitude more
frequently than others, of which some may
have only a sporadic existence. This all
happens below the error threshold and
may produce quite nonuniform mutant
distributions close to the error threshold,
although the all-or-none nature of the
error threshold is first realized after it is
crossed.

(ii) The Error Threshold Is Not Solely
Determined by the Average Error Rate
Of equal importance is the fitness land-
scape within the quasispecies distribution.
Let us take the example represented by
Fig. 1, in which one of the 10° different
sequences, called S,, is clearly distin-
guished by a (massive) selective advan-
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tage. At the critical error rate (1 — §,,), the
master sequence S, has a fidelity Q,, =
e~ Nn(1=a») with a value well below 1, which
then requires a corresponding selective
advantage of the master sequence, relative
to the average of its mutant distribution.
Any mutation occurring in the master
sequence reduces its frequency of occur-
rence, whereas any mutation occurring in
the rest of the quasispecies (including the
mutations that come about in the master
sequence) produces some other member
of this mutant distribution. In other words,
mutations in the rest of the distribution do
not lower their total number. The master
sequence must therefore be at least oy,
times more efficient in its reproduction to
make up for the loss caused by its muta-
tion rate, such that ¢,,Q,, > 1. In the
above example, g, can be easily calcu-
lated. For realistic nonuniform distribu-
tions, which, in addition, may contain sev-
eral neutral master copies, the o functions,
although clearly definable by the eigen-
values and eigenvectors of the exact solu-
tions, would be calculable only if the de-
tails of the fitness landscapes are known.
Experimental data, such as those pre-
sented in the papers under consideration,
are therefore most important.

We now see that it is not only the
irregularity in the mutant distribution but
also the contribution of each mutant to
the reproductivity of the quasispecies that
is rated by natural selection. A particular
mutation that appears to occur very fre-
quently may be either neutral or, if it
involves a “strategic” position, deleteri-
ous, or under certain environmental
changes, such as those produced by the
immune response of the host, it may be
advantageous for the virus. These situa-
tions cause quite dramatic differences for
different viruses, as is known for polio
virus and HIV (15). The equivalent im-
portance of o;, and Q,,, is obvious from the
symmetric condition 0,0, > 1. It is
somewhat obscured in the standard
expression defining the error threshold:
(1 = gm) > In 0,,,/N,, which follows from
omQm if one substitutes for Q,, the expo-
nential e NV»(1=dn), The logarithmic depen-
dence on o, in the error threshold relation
seems to belittle its influence, because the
logarithm of numbers clearly larger than
one does not depart far from one. How-
ever, o values may be very close to one,
i.e.,equalto 1 + &, where ¢ << 1. Then the
logarithm is a very small number: In (1 +
g) ~ ¢ for ¢ << 1. In irregular fitness
landscapes and irregular mutant distribu-
tions, a,, is a complicated function of the
variables concealed in the averages o,,, and
Q. As in the case of fidelity Q,,, much of
the detail appearing in the precise form of
eigenvalues and eigenvectors gets lost in
the averaging procedures leading to oy,
values. Selectivity is different for different
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fitness classes of mutants, the extremes
being neutrals (o — 1) and nonreproduc-
ible deleterious mutants (o — ). In ad-
dition, there might be large fluctuations
even for a given virus in the same envi-
ronment, when very rare (but important)
mutations occur stochastically in different
temporal sequences.

(i) Virus Infection Involves More
Complex Operations than Just the
Replication of RNA or DNA

The genomes of even the smallest viruses
encode several functions, of which rep-
lication is only one, albeit a very impor-
tant one. Yet what is finally weighted for
selection is the virus, overall perfor-
mance in the infection process. We have
studied the kinetics of infection with the
example of the bacteriophage Qg [Eigen
et al. (16)]. The experiments carried out
by M. Gebinoga (17) involved pulse-like
infection. Samples of host cells were
incubated with virus for defined lengths
of time, i.e., quenching the infection
after 1, 2, 3, etc., minutes up to the total
time interval between infection and lysis
of the host cells. The quenched samples
were carefully treated with toluene to
remove the outer (lipid) membrane of
the host cells. The remaining murein
sacculus, which is not penetrable for
larger molecules such as proteins and
nucleic acids or for organelles, was per-
fused with radioactively labeled nucleo-
side triphosphates and amino acids. The
kinetics of both RNA and protein syn-
thesis then were recorded. The rates,
extrapolated to the starting point, which
reflects the profile of the process in vivo,
are plotted as a function of time in Fig.
2. As seen, at the moment of infection
the rate of RNA formation is zero, be-
cause specific replicase is not yet avail-
able, but protein synthesis (using the
translation machinery of the host) is
active right from the start. After about 10
min, enough replicase has been formed
so that both replication and translation
can now compete, leading to a sharp (i.e.,
hyperbolic rather than exponential) in-
crease of both protein and RNA concen-
tration, as expected for a nonlinear “hy-
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Fig.2. Kinetic profile for the infection of E. coli by

phage Qg. The total infection cycle lasts about 40
min. The ordinate refers to the rates (i.e., the num-
ber of particles formed per minute and per host
cell) that are plotted as functions of time. Red lines
represent proteins (coat protein and replicase);
blue lines, RNA (plus and minus strands); and the
green line, complete virus particles.

percyclic” (18) mechanism. At the same
time, replicase formation is down-
regulated by the binding of coat protein
(which acts as regulator) to the replicase
gene. The burst of synthesis comes to an
abrupt halt when the amount of RNA
present has increased sufficiently to
block all available binding sites provided
by the host ribosome population as well
as those of the (ultimately constant)
replicase concentration—very much as
in an “end-point titration.” From now
on, both RNA and coat protein produc-
tion proceeds at a constant rate until the
host cell lyses, about 40 min after infec-
tion. This is a highly regulated mecha-
nism, which yields about 10,000-20,000
complete virus particles (each consisting
of one plus strand of RNA and 180 coat
proteins that form its icosahedral shell).
Because of error accumulation, only less
than 10% of the viruses produced are
viable. Nevertheless, this is more than
sufficient to maintain the autocatalytic
growth nature of the overall process,
described by the phenomenological rate
equations.

What I wanted to show is the complex
nature of the overall process of virus
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infection, which differs from one type to
another but in no case is just simple rep-
lication. Coming back now to the objective
of this commentary, I would like to em-
phasize three points:

(i) Very close to the error threshold, the
mutant spectrum, as Fig. 1 demonstrates,
becomes quite diverse. Before the phase
transition occurs, master sequence and
low-error mutants become a minority
even in the unrealistic model case of uni-
form error rates. The wild type keeps its
distance from this point of transition to
maintain robust stability. The application
of mutagens may change this situation in
an uncontrolled way.

(@) The resulting error spectrum in-
volves neutral, deleterious, and also—
under the new conditions—advantageous
mutants. In which manner they are effec-
tive, before the total information “melts
away” completely, depends on the partic-
ular type of virus.

(i) The mutant spectrum expresses it-
self in a spectrum of phenotypic functions
that include all processes involved in the
complex infection mechanism. Hence, er-
ror catastrophe is intimately linked to all
functions involved, because it depends on
both (realistically quite complex) param-
eters Q and o.

The paper of Grande-Pérez et al. (8)
shows what is to be done to cope with this
situation. Theory cannot remove com-
plexity, but it shows what kind of “reg-
ular” behavior can be expected and what
experiments have to be done to get a
grasp on the irregularities. This is more
true in biology than in any other field of
the physical sciences. The work on the
error threshold opens a new paradigm
for how to fight viruses, namely not by
inhibiting their replication but rather by
favoring it with an increased rate of
mutation. At first this procedure seems
to challenge the virus to escape immune
protection, but at the same time, it may
cause the virus to lose all its pathogenic
information. The paper quoted makes it
plain that a lot of experimental work has
to be done for each particular type of
virus, presenting what is certainly one of
the great challenges of the 21st century.
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