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Abstract: In this contribution we present a multiscale modeling approach to systematically
explore the heterogeneity of biopolymer production in multicellular systems. The first step is
a dynamic single cell model which is based on the hybrid cybernetic modeling approach to
include cell internal regulation. The single cell model is used for nonlinear analysis and the
occurrence of multiple steady states is discussed. The single cell model is then reduced by using
the lumped hybrid cybernetic approach and by approximation of enzyme levels. The reduced
single cell model is used to develop a population balance model for predicting heterogeneity in
multicellular production processes. Thus, we have combined the cybernetic modeling approach
with population balance modeling, which consequently includes cell internal regulation.
The multiscale modeling approach is first developed for the microorganism Ralstonia eutropha,
which serves as a model and benchmark organisms. Good agreement between model predictions
and experimental data is shown. An extension to Rhodospirillum rubrum is discussed, which
shows interesting transient bimodal dynamics.
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1. INTRODUCTION

Poly(β-hydroxybutyrate) (PHB) is an organic polymer,
which can be synthesized by many microorganisms and
which serves as internal energy and carbon reserve mate-
rial. PHB provides an attractive source of bioplastics that
are biodegradable, biocompatible and do not depend on
fossil resources. The production of PHB is favored under
limitation of key nutrients such as nitrogen, phosphate
or oxygen and can be degraded if these nutrients are
available.

There are three main processes, namely: growth, PHB
synthesis and PHB degradation, between the organisms
will switch depending on available substrates and internal
metabolite concentration. Switching between these pro-
cesses is controlled by cell internal regulation and can
lead to bi- or even multistability on the single cell level.
Hence, a dynamic model has to include appropriate cell
internal regulation. This regulation is considered by using
the cybernetic modeling approach. In the cybernetic ap-
proach optimal regulation in view of available resources
is assumed. Based on this approach a population balance
model is developed, which considers cell internal regulation

by means of cybernetic control variables. Since bi- and
multistability on the single cell level can translate to bi-
and multimodality on the population level, it is necessary
to include cell internal regulation into population balance
modeling.

Experimental findings for Rhodospirillum rubrum (see
Figure 1) shows interesting bimodal behavior and indicate
bistability on the single cell level. The multiscale modeling
approach can be used to explore the source of bistabil-
ity/bimodality and can therefore help to gain a better
understanding of this nonlinear behavior and to improve
industrial processes for PHB synthesis.

2. MATERIAL AND METHODS

2.1 Ralstonia eutropha

For cultivation conditions and analytical procedures for
Ralstonia eutropha see Franz et al. (2011).
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Fig. 1. Experimental data from flow cytometry with Rho-
dospirillum rubrum. Cells were stained with nile red
and red light intensity corresponds to PHB content.

2.2 Rhodospirillum rubrum

Rhodospirillum rubrum strain S1 (ATCC 11170) was
grown aerobically in 0.5L baffled shake-flasks containing
100mL mineral medium and incubated on a rotary shaker
(Certomat BS1, Sartorius, Goettingen, Germany) at 30◦C
and 100rpm.

The mineral medium used for cultivation contained (per
L): 0.82g CH3COONa, 1.48g K2HPO4, 2.22g KH2PO4,
0.43g NH4Cl, 0.12g NaCl, 2.85mg p-aminobenzoic acid,
0.2g nitrilotriacetic acid, 40mg l-aspartate, 100mg l-
glutamate, 250mg KOH, 589.8mg MgSO4 × 7 H2O, 3mg
FeSO4 × 7 H2O, 1mg nicotinic acid, 0.5mg thiamine hy-
drochloride, 0.02mg biotin, 66mg CaCl2 × 2 H2O, 10mg
EDTA, 4.4mg ZnSO4 × H2O, 2.3mg H3BO3, 1mg MnCl3
× 4 H2O, 0.32mg CoCl2 × 6 H2O, 0.22mg CuSO4 × 5 H2O,
0.22mg 2(NH4)6Mo7O24 × H2O.

Optical density (OD) was determined at 660nm using a
UV-vis spectrophotometer.

2.3 Sample preparation for flow cytometry

Samples were diluted with NaCl (0.98% (w/v)) to OD
0.1. 1ml of diluted samples were centrifuged in 1.5mL
Eppendorf cups at 13000rpm. Supernatant was removed
carefully and the remaining pellets were dissolved in 40µL
PBS and 6µL Nile red (100g/L) was added. Samples were
then incubated in a thermo shaker for 15min at 37◦C and
450rpm. For flow cytometry 2µL of the sample were then
dissolved in 2mL PBS.

3. SINGLE CELL MODEL

In a first step single cell kinetics are described by a state
of the art hybrid cybernetic model (HCM) (see Kim et al.
(2008); Song et al. (2009)). The HCM allows a systematic
derivation of the model equations from elementary mode
analysis (see Stelling et al. (2002)) and has a moderate
complexity, which is useful for nonlinear analysis. The
HCM is based on quasistationarity of internal metabolites,
which are eliminated from the model equations. However
PHB is an internal metabolite. Hence, the HCM approach
was extended to take dynamics of few internal metabolites

explicitly into account, while for most of the internal
metabolites the quasi-steady state approximation is still
applied (see Franz et al. (2011)).

The model equations are given by

d

dt

[
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mPHB =Sm,sZrM − µmPHB (2)

de
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=α + rEMb − diag(β)e − µe (3)

dc

dt
=(µ − D) c (4)

where xFRU and xAMC are the concentration of the cell
external substrates fructose as carbon source and ammo-
nium chloride as nitrogen source, SsZ and Sm,sZ are sto-
ichiometric matrices, which contain the elementary mode
data, mPHB is the specific PHB concentration, c is the
concentration of total biomass (TBM = non-PHB biomass
+ PHB) and e is the vector of relative enzyme levels,
which catalyze the five active elementary modes deter-
mined by metabolic yield analysis (see Song and Ramkr-
ishna (2009)). The fluxes through elementary modes rM
and enzyme synthesis rates rEM are controlled by the
cybernetic control variables u and v respectively

rM =diag(v) diag(e) diag(kr) r
core (5)

rEM =diag(u) diag(ke) r
core (6)

where the core rates are Monod type

rcore

1 =
xFRU

KFRU + xFRU

(7)

rcore

i =
xFRU

KFRU + xFRU

xAMC

KAMC + xAMC

, i = 2, 3, 4 (8)

rcore

5 =
xFRU

KFRU + xFRU

xAMC

KAMC + xAMC

mPHB

KPHB + mPHB

(9)

The cybernetic control laws are given by

u =
p

||p||1
, v =

p

||p||∞
(10)

where p is the return on investment (ROI), which can
be calculated from a metabolic objective function. In this
study it is assumed that the organism maximizes carbon
source uptake and p is therefore defined as:

p = diag(fc) diag(e) diag(kr) r
core (11)

where fc is the vector of uptaken carbon units.

The vector of rate constants kr was estimated by fitting
the model equations to a set of experimental data (see
Figure 2), where all three main processes were stimulated
separately.

Model predictions show very good agreement with addi-
tional independent data sets (data sets II-IV in Figure 3).
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Fig. 2. Hybrid cybernetic model (—) and experimental
data (�,#,▽,△). Data set I was used for parame-
ter identification. Substrates were fructose as carbon
source and ammonium chloride (NH4Cl) as nitrogen
source. Biomass concentration is represented by total
biomass (TBM) and PHB.

Data set II:
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Data set III:
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Data set VI:
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Fig. 3. Independent data sets (�,#,▽,△) show very good
agreement with model prediction (—).

3.1 Nonlinear analysis

The model was then used to investigate the possibility of
bistability on the single cell level. The bistability region for
Ralstonia eutropha predicted by the model is rather small
(see Figure 4) and will vanish for high γ = xin

AMC
/xin

FRU

(data not shown). It is therefore argued that multiple
steady states are unlikely to occur in practice for this
specific system. This is confirmed by flow cytometry exper-
iments which show only unimodal distribution (see Figure
6) compared to experiments with Rhodospirillum rubrum
which show bimodal distributions (see Figure 1).
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Fig. 4. Bifurcation study for Ralstonia eutropha. The
predicted multiplicity region is rather small and it
is argued that multiple steady states are therefore
unlikely to occur in practice for this specific system.

3.2 Reduction of model dimension

The developed HCM consists of nine ODEs: five ODEs
for the key enzymes of elementary modes, two ODEs for
the internal metabolite concentration of non-PHB biomass
and PHB and two ODEs for the cell external substrate
concentrations of fructose and ammonium chloride. The
internal metabolite concentrations and enzyme levels will
translate into internal coordinates in population balance
equation. The resulting PBM will therefore have seven in-
ternal coordinates, which is quite challenging for numerical
solution. Therefore the model has to be reduced.

In a first step a lumped hybrid cybernetic model (L-
HCM) approach (see Song and Ramkrishna (2010, 2011))
is used, where elementary modes are lumped, for instance
according to their ATP requirements. The five elementary
modes in the HCM can be lumped into three lumped
elementary modes, since for each main process at least
one lumped elementary mode is necessary. However, PHB
consumption can also be neglected in a first step. Hence,
the developed L-HCM consists of two lumped elementary
modes and therefore of six state variables, where four
of them (two enzyme level and two internal metabolite
concentration) will translate into internal coordinates of
the PBE.

Since the enzyme level dynamics are very fast in this
specific system, enzyme levels can be assumed to be at
quasi steady state. In this case the enzyme level in equation
(5) can be approximated by e = u (see Baloo and
Ramkrishna (1991) and Young and Ramkrishna (2007)).
The internal coordinates for the enzyme levels in PBE
can then be omitted and the resulting PBE has only two
internal coordinates, namely non-PHB biomass and PHB.



In general, if enzyme level dynamics are fast enough and
can be assumed to be in quasi steady state, these can be
omitted as internal coordinates in PBE. In this case even
a HCM with a huge number of elementary modes can be
reduced significantly, without using L-HCM. In the case,
where enzyme levels can not be assumed to be in quasi
steady state, the number of internal coordinates in PBE
can only be reduced by reducing the number of elementary
modes, e.g. by lumping elementary modes. However, this
is only possible up to a certain degree, since for every main
process at least one lumped elementary mode is necessary.

Figure 5 shows the comparison of the HCM, HCM with ap-
proximated enzyme levels, L-HCM, L-HCM with approx-
imated enzyme levels and experimental data sets III and
IV. All models are in good agreement with experimental
data. Data sets I and II are not used for model comparison,
since these data sets include PHB consumption, which is
neglected in the L-HCM.

Data set III:
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Data set IV:
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Fig. 5. Comparison of HCM (red), HCM with approxi-
mated enzyme levels (green), L-HCM (blue), L-HCM
with approximated enzyme levels (cyan) and experi-
mental data (�,#,▽,△).

Hence, the reduced model can be used for further investi-
gation.

4. POPULATION BALANCE MODEL

Based on the L-HCM with approximated enzyme levels a
2D population balance model (PBM) is developed, which
considers cell internal regulation. The rates, respectively
fluxes through space of internal coordinates are controlled
by cybernetic control variables. Depending on available
substrates and position in space of internal coordinates
the PBM is therefore able to switch between growth and
PHB synthesis.

∂N(xc, t)

∂t
+

∂

∂xBIO

(rBIO N(xc, t))

+
∂

∂xPHB

(rPHB N(xc, t))

= 2

xc,maxx

xc

Γ(x∗

c
,xs) p(xc,x

∗

c
,xs)N(x∗

c
, t) dx∗

c

−Γ(xc,xs)N(xc, t)

(12)

with xs = [xFRU xAMC]T and xc = [xBIO mPHB]T, where
xBIO is the concentration of non-PHB biomass. The fluxes
in direction of non-PHB biomass synthesis rBIO and PHB
synthesis rPHB are regulated by the cybernetic control
variables. For low ammonium chloride concentration and
high fructose concentration synthesis of PHB is favored,
while non-PHB biomass is increasing when there is suffi-
cient ammonium chloride available.

Cell division occurs Gaussian distributed around a certain
amount of non-PHB biomass x̄BIO and is independent of
PHB concentration and it is assumed that cells divide into
two equal daughter cells.

Γ(xc,xs) =
f(xBIO)

1 −
∫

f(xBIO) dxBIO

rBIO(xc,xs) (13)

with

f(xBIO) =
1

σ
√

2π
exp

(

− (xBIO − x̄BIO)2

2σ2

)

(14)

For the numerical solution a finite volume approach is
applied.
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Fig. 6. Unimodal distribution for Ralstonia eutropha. Data
from flow cytometry (dotted, black) and model pre-
diction (solid, blue). Cells were stained with nile red
and red light intensity corresponds to PHB content.

Figure 6 shows, that the model predicts a unimodal
distribution which is in agreement with theoretical analysis
with single cell kinetics in section 3.1 and experimental
data measured by flow cytometry for Ralstonia eutropha.



5. CONCLUSION AND FUTURE WORK

In this study a multiscale modeling approach was pre-
sented. This approach can be used to systematically ex-
plore heterogeneity/homogeneity of biopolymer produc-
tion in multicellular systems.

At first a single cell model was developed, which accounts
for cell internal regulation. The single cell model was used
for nonlinear analysis. Based on the single cell model a
population balance model was developed which also ac-
counts for cell internal regulation. Since state variables of
the single cell model will translate into internal coordinates
of the population balance model, the single cell model was
first reduced by lumping elementary modes and approxi-
mation of enzyme levels.

Application of the multiscale modeling approach to Ral-
stonia eutropha shows a homogeneous distribution which
is in good agreement with experimental data.

Currently the multiscale modeling approach is applied
to Rhodospirillum rubrum, which shows a heterogeneous
distribution (see Figure 1).
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Appendix A. NOMENCLATURE

b fraction of catalytically active parts in biomass
c biomass concentration
D dilution rate
e vector of relative enzyme levels
fc vector of uptaken carbon units
ke vector of enzyme synthesis rate constants
kr vector of rate constants
KAMC saturation constant for ammonium chloride
KFRU saturation constant for fructose
KPHB saturation constant for PHB
mPHB specific concentration of PHB
p partition probability density function
p vector of ROI
rBIO flux in direction of non-PHB biomass synthesis
rPHB flux in direction of PHB synthesis
rEM vector of regulated enzyme synthesis rates of

EMs
rM vector of regulated fluxes through EMs
rM

core vector of core rates
Sm,sZ stoichiometry matrix
SsZ stoichiometry matrix
u vector of cybernetic variables which control

enzyme synthesis
v vector of cybernetic variables which control

enzyme activity
xAMC concentration of ammonium chloride
xFRU concentration of fructose
xin

AMC
concentration of ammonium chloride at inlet

xin
FRU

concentration of fructose at inlet
xc state vector of biomass concentration
xs state vector of substrate concentration
α vector of constitutive enzyme synthesis rates
β vector of enzyme consumption constants
γ feed composition
µ growth rate
Γ division rate

Appendix B. ABBREVIATIONS

HCM Hybrid cybernetic model
L-HCM Lumped hybrid cybernetic model
ROI Return on investment
PBE Population balance equation
PBM Population balance modeling
PHB Poly(β-hydroxybutyrate)
TBM Total biomass (cell dry weight)


