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Abstract: Particulate processes like industrial crystallisation or granulation are often described
by population balances. This leads to mathematical models containing partial integro differential
equations. In many cases, the flow conditions of the fluid phase have a strong impact on the
particle formation. To describe this properly, Navier Stokes equations have to be solved in
addition. The resulting model equation system is too complicated to apply them to typical
process control tasks. Reduced models are desirable. In this contribution, the use of proper
orthogonal decomposition is suggested as a powerful reduction method. The usefulness of
the approach is illustrated by two application examples: a granulation process with particle
aggregation and a crystallisation process with particle growth and complex fluid dynamics.
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1. INTRODUCTION

Particulate processes play an important role in chemical
and pharmaceutical industry. The majority of products in
these areas are in the form of particles. Crystallisation,
granulation or polymerisation are prominent examples for
particulate processes.

Particulate processes typically consist of a fluid phase and
a particle phase. The fluid phase is described accurately
by the Navier Stokes equations in up to three space di-
mensions. To describe the particle phase, population bal-
ance equations have been widely accepted as an adequate
tool (Ramkrishna, 2000). Population balances typically are
partial differential equations, whose independent variables
are the time and one or several characteristic particle prop-
erties like the characteristic particle size or the particle
composition. An important difference between population
balance systems and spatially distributed systems is that
the interaction between two points in space usually de-
creases with their distance, whereas in population balances
strong interactions may occur between remote points on
the property coordinate. Examples are breakage phenom-
ena, where a larger particle breaks into several smaller
ones, or agglomeration phenomena, where two small par-
ticles merge to a larger one. Agglomeration and breakage
cause integral terms in the population balances and turn
the population balances into partial integro-differential
equations.

The numerical treatment of coupled systems of Navier
Stokes equations and population balances is challenging
(John et al., 2009). Further, the complicated structure of

the equations makes it hard to apply them to the solution
of process control problems as it limits the number of
applicable controller design techniques. Therefore, process
control tasks require reduced model formulations.

External coordinates often reduced by simplifying assump-
tions like perfect mixing or compartment models. The
weakness of such heuristic approaches is that they may
give quite poor results when the flow conditions or the
process geometry change. The method of moments and
its extensions are frequently used to reduce population
balance equations to low order model systems (Marchisio
et al., 2003). Although well developed, it may be seen
as a certain drawback of the method that the resulting
reduced model only describes the moments of a particle
distribution, but not the distribution itself. To obtain
reduced models of industrial particulate processes, a more
systematic method is desirable that reduces both external
and internal coordinates. The use of proper orthogonal
decomposition (POD) seems to be a promising approach.
The key idea is to approximate the property distributions
by a linear combination of problem specific basis functions,
which are computed from solutions of the detailed refer-
ence model. The method requires test simulations with the
detailed model to generate the basis functions and further
coefficients of the reduced model. This preparation step
may be computationally quite expensive, but as a reward
one obtains a nonlinear reduced model of low order that
can be solved quite easily.

In this contribution, two examples are used to illustrate
the reduction method. The first example is a model of
a granulation process. The main challenge is to treat the



integral term in the population balance, which results from
particle aggregation. The example is also used to outline
the reduction method. The second example is a laboratory
scale crystalliser for the production of urea crystals. The
process is growth dominated and the influence of the
fluid flow is taken into account. This leads to a system
with two external and one internal coordinate. For the
model reduction by POD, a special difficulty arises from
the nonlinearity of the growth term. This nonlinearity
complicates the solution of integrals appearing when ap-
plying Galerkin’s method of weighted residuals. Best point
interpolation (Nguyen et al., 2008) is found to be a good
solution for this problem.

2. MODEL REDUCTION FOR A DRUM
GRANULATOR

Granulation is a technique used to enlarge particles by
mixing them with a liquid, the binder, that agglomerates
smaller particles to larger units. Granulation is often done
in rotating drums containing the solid. In batch operation,
a powder of fine particles is filled into the drum at the
beginning of the process. During the process, liquid binder
is added at a certain defined spray rate. How to change the
binder spray rate over time in order to get particles with
desired properties is a major design problem for this type
of process.

2.1 Reference model

The following work is based on a dynamic model of a
drum granulator published by Wang et al. (2006). In the
variant used here, the model assumes perfect mixing inside
the drum, i.e. it is space independent. The particle mass
density distributions are described as a function of the
time and a characteristic particle size. The main physical
phenomena accounted for are particle growth and particle
agglomeration. The model consists of a population balance
for the solid particle, a balance for the powder mass, and
a balance for the liquid content of the drum. The balance
equations are listed in the following.

e The population balance for the particle mass density
distribution m(L,t), where L is the characteristic
particle size, reads:
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The first term on the right hand side of (1) describes
particle growth with a growth rate G, which is size
independent and a function of the powder mass and
the liquid content. The second and the third term
describe changes in the particle mass distribution due
to agglomeration; 3 is the coalescence kernel given by
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For the precise definition of G and 3y see (Wang et al.,
2006).

e The particle growth causes a mass transfer from the

fine powder to the particle phase. The balance for the

fine powder mass Mpoyder reads
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e A differential equation for the liquid content wx,,

follows from the liquid mass balance:
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In (4) Miptar = f " m(L, t)dL + Mpowder is the

total solid mass, and Rw is the binder spray rate.

To solve the reference equations numerically, the mass con-
serving discretisation scheme by Litster et al. (1995) with
imaz = 20 size intervals and ¢ = 4 internal discretisations
per size interval is used.

2.2 Model Reduction

The technique of proper orthogonal decomposition (POD)
(Sirovich, 1987; Park and Cho, 1996; Kunisch and Volk-
wein, 2003) is applied to obtain a reduced model. As a first
step, the particle mass density function is expressed by the
series approach
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The space dependent basis functions v;(L) are computed
from test simulations with the reference model. Differen-
tial equations for the time dependent functions p;(t) are
obtained from Galerkin’s method of weighted residuals.
Both steps are explained in the following.

Generation of basis functions Proper orthogonal decom-
position uses problem specific basis functions. A set of
orthonormal basis functions is generated from test sim-
ulations with the reference model, so-called snapshots. In
the drum granulator example, the snapshots are dynamic
solutions of the particle mass density distribution m(L,t)
at Ny time points #1, ..., tn.. The basis functions are cho-
sen in such a way that they approximate the average of the
snapshots in a best possible way. This can be formulated
as the optimisation problem for a basis function ;(L):
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The term (m(L,ts),; = p15(ts) is the projection of
the snapshot m L, ts) ?L The optlmlbamon problem
(6) is constrained by the scahng condition
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When expressing the basis functions by

N
(L) = 3 m(L, 1) v (9)

with still unknown coefficients v,;, it can be shown that
the optimisation problem (6, 8) may be transformed into
the eigenvalue problem
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where M;; is the abbreviation for the scalar product of two
snapshots:

M;j = (m(L,t;), m(L,t;)) (11)

As M is symmetric, the eigenvectors v; are orthogonal.
It is easy to show that therefore the basis functions are
orthogonal, as well, i.e.

(45 (L), ¥i(L))g = 0 for j # k (12)

The eigenvalues A\; may be interpreted as a measure for
how relevant the basis function v; is for the reproduction
of the snapshots (Holmes et al., 1998). A small value of
A; means that the corresponding basis function does not
contribute significantly to the approximation of the snap-
shots and may be neglected. In this sense the eigenvalues
of M help to choose an appropriate number N of basis
functions in the series approximation (5) for m(L,t).

In summary, the computation of basis functions requires
(i) the generation of Ny snapshots, (ii) the generation
of the Ny x Ng matrix M and (iii) the solution of
the eigenvalue problem (10). Especially the first step
may computationally expensive if the reference model is
complex. However, one should note that the computation
time needed to generate the basis functions does not
increase the computation time for the solution of the
reduced model, as the basis functions are generated before
solving the reduced model.

For illustration, Figure 1 shows the first three basis func-
tions of the drum granulator problem.

Derivation of reduced model equations In order to obtain
differential equations for the time dependent functions
;(t) in the series expression (5), the method of weighted
residuals is applied. It is requested that, when inserting the
approximation (5) for m(L,t) into the population balance
(1), the projection of the residual on the basis functions
should vanish, i.e.
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Fig. 1. First three basis functions of the reduced drum
granulator model
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Inserting the approximation (5) for m(L,t) into the pow-
der mass balance (3) gives
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The coefficients Aj;, By, B, and C; have to be com-
puted by numerical quadrature, which may be quite ex-
pensive. However, as the integrals depend only on the basis
functions, the quadratures can be done offline, before the
runtime of the reduced model. Therefore, their computa-
tion does not slow down the solution of the reduced model.
For the reduced model, Aj;, B).,;, BY,, and C; are just

Jki» Jki
constant parameters.

Solution of the reduced model During runtime of the
reduced model, the following set of ordinary differential
equations has to be solved (j =1,...,N):
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One can see that the reduced model system has a nice
and simple structure with a sum of quadratic terms that
replaces the integrals appearing in the original population
balance (1). It is found that N = 6 basis functions approx-
imate the particle mass density distribution sufficiently
well, so the reduced model consists of eight differential
equations.

A test simulation compares the reduced model and the
reference. In the test, binder is added for the first 33 s.
Figure 2 shows the resulting size distributions. One can
see that there is a good agreement between the reduced
model and the reference solution.
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Fig. 2. Mass density distributions resulting when binder is
added at the beginning of the batch process only.

In literature, it has been seen as a drawback of spectral
methods like the POD method applied here that these
methods are not mass conservative (Biick et al., 2011).
In principle, this is true. However, in contrast to non-
mass-conservative discretisation schemes, the variation of
the total mass in this case is not a numerical inaccuracy,
but lies in the nature of the projection method. This is
illustrated by Figure 3, which shows the total mass of
the particles when projected on the subspace defined by
the basis functions. Although the total mass is constant
in the reference simulation due to the mass conservative
discretization scheme, the projected total mass in the ref-
erence simulation varies with time. This variation is re-
produced by the reduced model with quite good accuracy.

In conclusion, the reduced model seems to describe the
drum granulation process with sufficient accuracy to be
applicable to control problems.

3. MODEL REDUCTION FOR A UREA
CRYSTALLISER

Crystallisation is widely used in chemical industry, not
only to produce crystalline substances, but also to separate
mixtures or purify products. A a urea crystalliser is taken
as an example for this process class. Urea is an organic
chemical with many applications, like in fertilisers, in
cosmetics, or for the selective catalytic reduction of NOy
in exhaust gases from diesel engines.
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Fig. 3. Total mass of the particle distribution, when
projected on the basis functions.

3.1 Reference model

A crystalliser consisting of a tube with a rectangular cross
section is considered (see Figure 4). A reference model
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Fig. 4. Geometry of a laboratory urea crystalliser

for this process was developed in previous publications
(Krasnyk et al., 2011a,b) and is briefly presented here.
As the dynamics of the fluid flow reach the steady state
much faster than those of the energy balance and the pop-
ulation balance for the considered data, a stationary fluid
flow is assumed. Further, the fluid phase is modelled as
incompressible, and the inlet velocity is a fully developed
laminar flow. With these assumptions, the fluid flow in the
crystalliser is described by the incompressible stationary
Navier-Stokes equations:

V-u=0 p(u-Vi)u+ Vp = ppAu in Q, (22)

where u = {u, v} is the fluid velocity, p is the pressure,
pe and p are the viscosity and the density of the fluid,
respectively.

The energy balance leads to a differential equation for the
temperature T that reads
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where ¢, and Ag are the heat capacity and the thermal
conductivity of ethanol, and AHys is the heat of solu-
tion.
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A component mass balance for the solute gives the fol-
lowing convection-diffusion equation for the solute partial
density p.:

Ipe
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where D, is the diffusion coefficient. The term hg, stands
for the mass transfer between fluid phase and particle
phase due to crystal growth. It can be written as
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where pg is the density of the crystals, G is the growth

rate of crystals, and f is the number density function of

the crystal population.

The dispersed particle phase is modelled by a population
balance for the particle size distribution that accounts
for crystal growth and convective transport of crystals in
space:

of
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here Dy is an artlﬁmal diffusion coeflicient of particles in
the solute which describes a movement of the particles
relative to the fluid flow. It is mainly introduced to increase
numerical robustness. The particle size distribution f
depends not only on time and space, and in addition it
also depends on the particle size coordinate L.
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A power function is used for the growth rate:
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where o is the super-saturation defined as
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with an empirical expression for the saturation density
pc,sat(T)-

3.2 Model reduction

The development of a reduced model for the urea crys-
talliser model has been described before (Krasnyk et al.,
2011b) and is not repeated here in detail. Most of the
reduction steps are analogous to the drum granulator
example. However, additional difficulties arise due to the
nonlinear particle growth rate. This nonlinearity causes
the weighted residuals of the model equations to contain
integrals that depend on the states of the reduced model in
a nonlinear way. An analytical solution of these integrals
is not possible. A solution by numerical quadrature is not
satisfactory either, as it would increase the computation
time of the reduced model considerably. There is a need
for an efficient approximation method that generates low
computational costs during the runtime of the reduced
model. Such an approximation may be the best point
interpolation by Nguyen et al. (2008).

The idea us to approximate the growth rate G(T, p.) by
a series expression, analogous to the approximation of the
system states:

G(T, pc) Z vi(t
where x are the space coordmates. The basis functions
¥ (x) are constructed from snapshots in the same way as
the basis functions for the system states. The coefficients
v; follow from equating the series approximation with the
nonlinearity at certain interpolation points x,,:
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m=1,...



The interpolation points x,, are chosen such that the
approximation error is minimised in some sense. The
choice is made in an offline optimisation step that precedes
the solution of the reduced model. During run time of the
reduced model, the interpolation points are not changed.

The big advantage of the best point interpolation is that
when inserting the approximation (29) into the integrals
in the weighted residuals, one obtains integral terms that
depend on the basis functions only and that may be eval-
uated offline, during the generation of the reduced model.
At run time of the reduced model, no more numerical
quadrature is required. Instead, one only has to evaluate
the nonlinear function G at N points and one has to solve
Ng linear equations (30).

Figure 5 shows a test simulation with the reduced model.
The wall temperature as the main manipulating variable
in this process is varied. The figure shows the conditions
at the crystalliser outlet, as these determine the product
quality. One can see that there is a nearly perfect match
between the temperatures of the reduced model and the
reference model, and that there is a good agreement
between the crystal size distributions.
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