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We acquired molecular-resolution structures of the Golgi within its
native cellular environment. Vitreous Chlamydomonas cells were
thinned by cryo-focused ion beam milling and then visualized by
cryo-electron tomography. These tomograms revealed structures
within the Golgi cisternae that have not been seen before. Narrow
trans-Golgi lumina were spanned by asymmetric membrane-asso-
ciated protein arrays that had ∼6-nm lateral periodicity. Subtomo-
gram averaging showed that the arrays may determine the
narrow central spacing of the trans-Golgi cisternae through zip-
per-like interactions, thereby forcing cargo to the trans-Golgi pe-
riphery. Additionally, we observed dense granular aggregates
within cisternae and intracisternal filament bundles associated
with trans-Golgi buds. These native in situ structures provide
new molecular insights into Golgi architecture and function.

focused ion beam | cryo-electron tomography | Chlamydomonas | Golgi |
glycosyltransferase

Cryo-electron tomography (cryo-ET) provides the unique ability
to visualize macromolecules and supramolecular structures

within frozen hydrated cells (1–4). Biological material is immobi-
lized in vitreous ice, preserving cellular structures in a near-native
state. Compression-free thinning of these frozen samples by cryo-
focused ion beam (cryo-FIB) milling offers unparalleled access to
the cellular interior (5–7). The recent combination of cryo-FIB
with the improved image quality of direct detection cameras has
opened new frontiers for in situ structural biology, enabling the
study of how molecular complexes establish cellular architecture.
The relationship between Golgi structure and function has

been intensely debated since the first electron microscopy ob-
servations of this alluring organelle (8, 9). Over the last two de-
cades, electron tomography of plastic sections has been applied
extensively to characterize Golgi morphology within animals,
plants, and single-celled organisms, including yeast and algae (10–
17). Three-dimensional views of fenestrated, interconnected cis-
terna stacks interacting with a constellation of coated vesicles led
to revised models of how Golgi structure directs cargo sorting
through the organelle (18–20). However, these tomographic
studies were restricted to descriptions of membrane architecture
and, in the best cases, the classification of membrane coats, due
to the resolution limitations imposed by conventional sample
preparation, involving dehydration, plastic embedding, and
staining with heavy-metal contrasting agents. To date, cryo-ET
studies of the Golgi have been extremely limited (2, 21–23).
In this study, we used cryo-FIB of vitreous Chlamydomonas

cells followed by cryo-ET to image the native molecular land-
scape of the Golgi with unprecedented resolution and sample
integrity. Our tomograms revealed new structures within the
Golgi cisternae, including ordered membrane-associated protein
arrays, dark granular aggregates, and bundles of filaments near
the trans-Golgi coated buds.

Results and Discussion
Trans-Golgi Intracisternal Protein Arrays with an Alternating Repeat.
The ChlamydomonasGolgi has a characteristic morphology, with
approximately nine parallel, disk-shaped cisternae (Fig. 1A) (19,

24). The centers of the four to five trans-most cisternae drastically
narrow to a uniform thickness of 18–19 nm (Fig. 1 A and B).
Within these narrow trans-cisternae, we often saw regularly spaced
rows of luminal proteins that had lateral repeats of 5.5–6.8 nm
(Fig. S1A). The longest and best resolved of these protein arrays
(Fig. 1 B–H) was composed of alternating long and short luminal
projections that appeared to be embedded within the membrane
on the cis-side of the cisterna. The long projections spanned the
entire width of the cisterna lumen, whereas the short projections
only extended halfway across the lumen. A Fourier transform of
the array revealed clear power spectrum signals for a 5.9-nm lateral
repeat for all of the projections and an 11.8-nm lateral repeat for
the alternation between short and long projections (Fig. 1C).
Masking the 5.9-nm and 11.8-nm peaks in Fourier space re-
moved the corresponding features from the real-space images.
Threshold-based segmentation of the cisterna volume showed

that the array’s projections formed extended rows in the z di-
mension along the luminal face of the cis-side membrane (Fig. 1
D–F). The long projections made frequent contacts with the
cisterna’s trans-side, whereas the short projections terminated
before reaching the trans-side (Fig. 1 F and G). In addition, the
segmentation revealed rows of density on the cytoplasmic face of
the cis-side membrane that were aligned with the luminal pro-
jections (Fig. 1 D and H). These cytoplasmic densities were likely
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connected to the luminal projections by transmembrane domains
(Fig. 1C, Bottom). The protein arrays were only found within cis-
ternae with uniform narrow lumina. In fact, we observed the for-
mation of arrays exactly at the location where the cisterna
membranes started to come into close apposition (Fig. 2). Thus,
it is likely that the arrays perform bridging interactions between
the cisterna membranes to determine the narrow luminal spacing
of the trans-Golgi.
Subtomogram averaging displayed the structure of this large

protein array in greater detail, revealing additional luminal pro-
jections from the trans-side membrane (Fig. 3 A–E and Movie S1,
EMDB entry number: 3100). From cis to trans, the side view of the
symmetrized average clearly showed 1-nm densities on the cyto-
plasmic face of the cis-side membrane, a 5-nm cis-side bilayer with
embedded proteins, alternating long 5.5-nm and short 3.5-nm lu-
minal projections from the cis-side bilayer, 2.5-nm luminal pro-
jections from the trans-side bilayer that interact with the long
luminal cis-side projections, and a 5.5-nm trans-side bilayer with
embedded proteins. The total cisterna width of the average, in-
cluding the 1-nm cytoplasmic densities, was 19.5 nm. Template
matching confirmed that the protein arrays were restricted to the
narrow cisternae of the trans-Golgi, occupying 37% of the narrow
cisterna surface area in the examined tomogram (Fig. 3F).
The most striking feature of the subtomogram average is the

asymmetry of the structures linking the cisterna membranes (Fig.
S1 C and D). While straight rows of alternating long and short
proteins project from the cis-side bilayer (Fig. 3C), the projections
from the trans-side bilayer are all of the same height and form an
interlocking meshwork of short rows that are tilted by 10°–15°
relative to the cis-side projections (Fig. 3D). The lateral periodicity
of the trans-side matches that of the cis-side, as the alternating long
cis-side projections contact every other junction in the network of
trans-side projections (Fig. 3 B–D). Together, these cis- and trans-
side projections form y-shaped structures that bridge the cisterna

membranes (Fig. 3E). The y-shaped structures repeat laterally ev-
ery 11.8 nm and also repeat every 10.3 nm along the rows of
projections. Thus, the protein arrays appear to form asymmetric
zipper-like interactions that propagate in two dimensions to link
the cisterna membranes together. Although several symmetri-
cal zippers are known to hold membranes together, including
connexin-mediated gap junctions (25), myelin (26, 27), and aqua-
porin-0 (28), this is one of the first reported examples of an
asymmetric membrane zipper. Other known asymmetric mem-
brane adhesion interactions, such as neuronal and immunological
synapses (29, 30), are likely less ordered than the arrays described
in our study. While the specialization of different cisternae has
been well characterized, the assembly of asymmetric intracisternal
arrays indicates that the two membranes of each cisterna also have
distinct compositions. It will be important to understand how this
asymmetry is established and maintained.
Intercisternal linkers have been seen in a variety of cell types,

including the alga Scherffelia dubia (19), the roots of maize (31–
33), and rat liver (34). In contrast, to the best of our knowledge,
intracisternal linkers have only been previously described in
chemically-fixed plastic sections of Clivia and Lilium pollen tubes
(35). However, these structures are difficult to discern and have
received scrutiny due to the lack of supporting studies reporting
similar structures and artifacts that can arise from traditional
sample preparation methods. It has been proposed that intra-
cisternal linkers may not be necessary for maintaining closely
apposed cisterna membranes, as acidification of the trans-Golgi
could provide an osmotic mechanism for compressing the cis-
ternae (36).
The array structure identified in our study provides compelling

evidence that intracisternal linkers are indeed present within the
narrow trans-Golgi cisternae of Chlamydomonas. The array’s longer
cis-side projections span the entire luminal space (Fig. 1) and make
zipper-like contacts with the trans-side projections, linking the

Fig. 1. Intracisternal membrane-associated protein
arrays in the trans-Golgi. (A) Overview and (B) close-up
tomogram slices showing a Golgi with an intracisternal
protein array within the third cisterna from the left. B
is enlarged from the box in A. tsm, trans-side mem-
brane; csm, cis-side membrane. (C) Fourier analysis of
the protein array. For each row, the frequency image
(power spectrum) is on the Left, and the correspond-
ing real-space image is on the Right. (Top row) Origi-
nal image, rotated from B. (Second row) Masking the
11.8-nm peak in the power spectrum removes the al-
ternation between long and short proteins projecting
into the lumen. (Third row) Masking both the 11.8-nm
and 5.9-nm peaks removes the protein array alto-
gether. (Bottom row) Masking the central peak
removes the cisterna’s lipid bilayers, but densities re-
main within the cis-side bilayer region that may be
the array’s transmembrane domains. (D–H) Threshold-
based segmentation of the cisterna containing the
protein array. (D) Segmentation in the same orienta-
tion as B, separated into the cisterna’s trans-side (yel-
low) and cis-side (dark orange). (E) Segmentation with
the trans-side removed, revealing ordered rows of lu-
minal projections. (F) Orthogonal view of the cis-side’s
luminal face. (G) Side view showing alternating rows
of small projections that do not contact the trans-side
and long projections with multiple contact sites (yel-
low). (H) View of the array’s cytoplasmic face, with
ridges that correspond to the positions of the luminal
projections. (Scale bars, 200 nm in A; 50 nm in B.)
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membranes together (Fig. 3). We propose that whereas osmotic
forces may indeed compress the central regions of the trans-cister-
nae, once the membranes come into close apposition, the arrays
link the membranes to maintain the narrow luminal spacing (Fig.
2). There may be positive feedback where the arrays help bring
the membranes together, while the closely apposed membranes
enable the arrays to form.
One interpretation of the trans-Golgi arrays is that they might be

composed of glycosyltransferases, which add sugars to the
hydroxyproline-rich glycoproteins that are trafficked to the cell wall
(37). The structures of these enzymes are reasonably compatible
with the array structure (Fig. S1B). Glycosyltransferases are type II

transmembrane proteins consisting of a small cytoplasmic domain, a
single transmembrane domain, a stem region, and a large catalytic
domain in the Golgi lumen. These enzymes may become arrayed
either by lateral interactions or by binding the same long glycopro-
tein substrates. Given the highly ordered array structure, the former
hypothesis seems more plausible. Indeed, many Golgi-resident gly-
cosyltransferases form homo-oligomeric and hetero-oligomeric
complexes via interactions between their luminal domains (38–42).
The hetero-oligomerization of two mammalian glycosyltransferases,
EXT1 and EXT2, was shown to be required for both the Golgi lo-
calization and increased activity of the enzymes (38). Interestingly,
our array structure also appears to be a hetero-oligomer.

Fig. 2. Protein arrays likely maintain the trans-Golgi’s narrow luminal spacing. (A) Overview and (B and C) two sequential slices through a tomogram
showing a protein array (arrows) that is exclusively located where the trans-most cisterna’s membranes are closely apposed. B and C correspond to the box in
A. (D–F) Three sequential slices through another tomogram showing a protein array that is only found where the trans-most cisterna’s membranes are closely
apposed. tsm, trans-side membrane, csm, cis-side membrane. (Scale bars, 200 nm in A; 50 nm in B–F.)

Fig. 3. Subtomogram average and localization of
the intracisternal protein arrays. (A–E) Symmetrized
subtomogram average calculated from the array in
Fig. 1. (A) Sequential side view slices every 3.4 nm
through the average, showing the array’s periodicity
and asymmetric structure. Mass is shown in white.
(B) Segmentation of the average into the following
regions: cis-side bilayer and embedded proteins
(cyan), trans-side bilayer and embedded proteins
(yellow), long 5.5-nm and short 3.5-nm luminal
projections from the cis-side bilayer (blue and green,
respectively), and 2.5-nm luminal projections from
the trans-side bilayer (magenta and orange).
(C) View of the cis-side’s luminal surface, rotated 90°
from B, showing alternating rows of short and long
projections. (D) View of the trans-side’s luminal
surface, rotated 90° from B, showing an interlocking
network of projections. Asterisks in C and D: contact
sites between the cis-side and trans-side projections.
The periodicity of contacts along the rows of pro-
jections is 10.3 nm. (E) Side views showing how the
rows of long cis-side projections form y-shaped zipper-
like interactions with the rows of trans-side pro-
jections. (F) Heat map displaying the density of pro-
tein arrays (gradient of gray to red, determined by
template matching) within the Golgi from Fig. 1
(black outlines). (Scale bars, 10 nm in A; 50 nm in F.)
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If the arrays are indeed composed of glycosyltransferases, the
interaction with the opposite cisterna membrane revealed in our
tomograms must be explained. By oligomerizing into arrays, the
glycosyltransferases may accomplish two synergistic functions. Link-
ing the cisterna membranes to maintain a narrow lumen could
increase the local substrate concentration and thus accelerate the
kinetics of the glycosyltransferase reactions. Simultaneously, nar-
row lumina occupied by arrays would exclude larger complexes,
forcing mature cargo, including the glycoproteins assembled by
the glycosyltransferase arrays, to the cisterna periphery for Golgi
exit. Ultimately, definitive answers will require molecular identi-
fication of the protein array components and subsequent deletion
and complementation experiments to monitor changes in Golgi
architecture and function.

Intracisternal Filaments Associated with trans-Golgi Buds. We fre-
quently observed fine filaments (2–3 nm diameter) bundled within
the cisternae of the trans-Golgi (Fig. 4 and Movie S2), most
commonly within the final trans-cisterna (Fig. 4 A–I) but also in
the penultimate cisterna (Fig. 4E). The bundles were always
located within the swollen trans-Golgi periphery, with their fil-
aments aligned roughly perpendicular to the membranes of
nearby COPI-coated buds. Although the coalescence of cargo
proteins at trans-Golgi buds has been previously observed (24,
33, 43), to the best of our knowledge, the only filamentous
structure that has been described in the peripheral trans-Golgi is
animal procollagen (44, 45).
While the Chlamydomonas trans-Golgi filaments may be glyco-

proteins that are secreted to the cell wall, another possibility is that
they are targeted to the dense granules of similar filaments in
nearby vacuoles (“ac” in Fig. 4A). These vacuoles, called acid-
ocalcisomes, are acidified compartments that store polyphosphate
complexed with high concentrations of cations, including calcium,
iron, zinc, and copper (46–48). Thus, an alternative candidate for
the trans-Golgi filaments is polyphosphate, the major nonorganic
component of acidocalcisomes (49–51). These filament bundles
could also contain the enzyme polyphosphate kinase 2, which forms
actin-like fibers concurrent with polyphosphate synthesis (52).
Similar acidocalcisome compartments can be found in other
single-celled eukaryotes, including trypanosomes, apicomplexans,
andDictyostelium, as well as evolutionarily distant organisms such as

bacteria and humans (53). The mechanisms of polyphosphate
traffic and storage may have clinical implications, as platelets
release polyphosphate to stimulate blood coagulation (54, 55).

Dark Luminal Aggregates Within Golgi Cisternae. In the majority of
our tomograms, we observed one or two dark granular ag-
gregates within the Golgi cisternae (Fig. 5). These structures ranged
from 15 to 30 nm in diameter and were composed of smaller
3–5-nm particles. The aggregates were found throughout the
cis- and trans-Golgi, positioned toward the centers (Fig. 5 A–C)

Fig. 4. Intracisternal filament bundles near COPI
buds in the trans-Golgi. (A and B) Two sequential slices
through a tomogram showing a filament bundle (ar-
rows) within the trans-most cisterna, close to a coated
bud. ac, an acidocalcisome containing a dense aggre-
gate of polyphosphate filaments. In B, an actin fila-
ment can be seen below the cisterna, along with a
vesicle surrounding a complex that resembles a 20S
proteasome. (C and D) Segmentation of the cisterna
from A and B showing the Golgi membrane (dark
orange), the coated bud (yellow), and the filament
bundle (blue). The view in D is flipped 180° from C.
(E) A slice from a second tomogram showing filament
bundles within the last two trans-Golgi cisterna, close
to coated buds. Cis-Golgi is toward the left, trans-Golgi
is toward the right. (F–I) Four sequential slices from a
third tomogram showing a filament bundle within the
terminal cisterna of the trans-Golgi. The bundle is
adjacent to a coated bud that is undergoing scission to
become a vesicle. Cis-Golgi is up, trans-Golgi is down.
This tomogram was acquired with a Volta phase plate
(68) to enhance contrast. (Scale bars, 100 nm.)

Fig. 5. Dark aggregates within Golgi cisterna. (A) Overview slice from a
tomogram showing a Golgi with a dark intracisternal aggregate (arrow). A
COPII bud can be seen emanating from the ER. This is a more peripheral
Golgi section compared with Figs. 1 and 2. (B–F) Slices from several tomo-
grams showing close-ups of intracisternal aggregates and corresponding
segmentations in the same orientations (Insets). B is a magnified view of the
aggregate in A. (Scale bars, 200 nm in A; 50 nm in B–F.)
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and periphery (Fig. 5 D–F) of cisternae. However, they were
never found within the narrow central lumina of the trans-Golgi.
The exceptionally high contrast of the aggregates indicates that
they may contain compounds such as phosphate or metals.
A pertinent question is whether these aggregates perform a

biological task or whether they are accumulations of non-
functional material. Protein aggregates have been shown to
traffic through the Golgi en route to functional activity elsewhere
inside or outside the cell. A well-characterized example is the

transport of procollagen aggregates in mammalian cells, which
helped prove the validity of the cisternal maturation model (56–
58). The aggregates in our tomograms were more similar in
appearance to the developing scales of the green alga Scherffelia
dubia (17, 59, 60), which also traverse the Golgi by cisternal
maturation before they are secreted to the cell wall and flagella
(61). However, the Chlamydomonas cell wall is not composed of
scales but rather a fibrillar meshwork of hydroxyproline-rich
glycoproteins (62, 63). Nonetheless, granular structures are vis-
ible in some layers of the Chlamydomonas cell wall (64, 65).
Insights into the identity of the Golgi aggregates could be gained
by correlating their abundance with conditions that increase cell
wall secretion, such as synchronized growth-phase cultures and
recovery from treatment with the autolysin enzyme, which
removes the cell wall (66, 67).
The three intracisternal structures revealed in this study by in

situ cryo-ET provide insights into the mechanisms of cargo
transport through the Golgi (Fig. 6). The large granular aggre-
gates likely transit the Golgi via cisternal maturation, providing
evidence for this mechanism in Chlamydomonas. The bundles of
filaments near the trans-Golgi buds illustrate how specific cargo
may accumulate via oligomerization to facilitate Golgi exit. Fi-
nally, the membrane-linking protein arrays likely contribute to
the narrow central spacing of the trans-Golgi cisternae, thereby
forcing cargo toward the bud sites at the trans-Golgi periphery.
Future studies will focus on the molecular identification of these
intracisternal structures to characterize how their modification
affects Golgi architecture and function.

Materials and Methods
A detailed description of cryo-FIB sample preparation, cryo-ET, and image
analysis is found in SI Materials and Methods.
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