Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Differential expression of receptors for Shiga and Cholera toxin is regulated by the cell cycle

MPG-Autoren
/persons/resource/persons15484

Majoul,  I.
Department of Neurobiology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons14884

Boutkevich,  E.
Department of Neurobiology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15841

Soeling,  H. D.
Department of Neurobiology, MPI for biophysical chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

599689.pdf
(Verlagsversion), 604KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Majoul, I., Schmidt, T., Pomasanova, M., Boutkevich, E., Kozlov, Y., & Soeling, H. D. (2002). Differential expression of receptors for Shiga and Cholera toxin is regulated by the cell cycle. Journal of Cell Science, 115(4), 817-826. Retrieved from http://jcs.biologists.org/cgi/reprint/115/4/817.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0012-F43E-D
Zusammenfassung
Cholera and Shiga toxin bind to the cell surface via glycolipid receptors GM1 and Gb3, respectively. Surprisingly, the majority of Vero cells from a non-synchronized population bind either Cholera or Shiga toxin but not both toxins. The hypothesis that the differential expression of toxin receptors is regulated by the cell cycle was tested. We find that Cholera toxin binds preferentially in G0/G1, with little binding through S-phase to telophase, whereas Shiga toxin binds maximally through G2 to telophase but does not bind during G0/G1 and S-phase. The changes result from the corresponding changes in Gb3 and GM1 synthesis, not from variations of receptor transport to the cell surface. The changes do not reflect competition of Gb3 and GM1 synthesis for lactosylceramide. Cells as diverse as Vero cells, PC12 cells and astrocytes show the same cell-cycle- dependent regulation of glycosphingolipid receptors, suggesting that this novel phenomenon is based on a conserved regulatory mechanism.